
Received February 28, 2021, accepted March 24, 2021, date of publication March 31, 2021, date of current version April 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069966

Modeling and Analysis of the Page
Sizing Problem for NVM Storage
in Virtualized Systems
YUNJOO PARK AND HYOKYUNG BAHN , (Member, IEEE)
Department of Computer Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea

Corresponding author: Hyokyung Bahn (bahn@ewha.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant by the Korean Government through MSIP
under Grant 2019R1A2C1009275, and in part by the ICT Research and Development Program of MSIP/IITP (Developing system software
technologies for emerging new memory that adaptively learn workload characteristics) under Grant 2019-0-00074.

ABSTRACT Recently, NVM (non-volatile memory) has advanced as a fast storage medium, and traditional
memorymanagement systems designed for HDD storage should be reconsidered. In this article, we revisit the
page sizing problem in NVM storage, specially focusing on virtualized systems. The page sizing problem has
not caught attention in traditional systems because of the two reasons. First, the memory performance is not
sensitive to the page size when HDD is adopted as storage. We show that this is not the case in NVM storage
by analyzing the TLBmiss rate and the page fault rate, which have trade-off relations with respect to the page
size. Second, changing the page size in traditional systems is not easy as it accompanies significant overhead.
However, due to the widespread adoption of virtualized systems, the page sizing problem becomes feasible
for virtual machines, which are generated for executing specific workloads with fixed hardware resources.
In this article, we design a page size model that accurately estimates the TLB miss rate and the page fault
rate for NVM storage. We then present a method that has the ability of estimating the memory access time
as the page size is varied, which can guide a suitable page size for given environments. By considering
workload characteristics with given memory and storage resources, we show that the memory performance
of virtualized systems can be improved by 38.4% when our model is adopted.

INDEX TERMS Page size, NVM, virtualization, memory performance, address translation, page fault.

I. INTRODUCTION
For decades, the most commonly used page size in memory
subsystems is 4KB. There have been attempts to change the
page size [1]–[5], but 4KB is still commonly used. This is
closely related to the characteristics of hard disk drive (HDD),
which has been the main storage of computer systems. The
access time of HDD is limited to tens of milliseconds, which
is 5 to 6 orders of magnitude slower than DRAM access
time [6]. Thus, the primary goal of memory subsystem design
in traditional computer systems has been the minimization of
storage accesses [7]. Also, as the seek movement is necessary
for accessing data in HDD, which accounts for the major
portion of storage access time, reading large data for each
seek is efficient.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

When considering these two characteristics of HDD
(i.e., slow and seek), deciding a page size as large as possi-
ble would be a good solution. However, due to the limited
capacity of main memory, reading large data from storage
incurs the eviction of some other data in memory. Thus,
increasing the size of data to be transferred is efficient only
when the memory is sufficient or the data will be actually
used. By considering this, read-ahead techniques are used to
control the size of data to be transferred by monitoring the
access characteristics of the data [8]. That is, if the access
pattern is shown to be sequential, operating systems usually
increase the number of pages to be read.

Recently, as the main memory capacity increases dra-
matically, there are attempts to use huge pages [9]–[11]
and/or multiple size pages [12]–[17] in modern operating
systems. However, the current operating systems like Linux
just provide an option to change the page size of the system,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 52839

https://orcid.org/0000-0002-7188-3889


Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

but they do not have the ability of adapting the page size
to given system situations. Meanwhile, NVM (non-volatile
memory) emerges as a new storage medium, and the page
sizing problem is becoming an important issue. That is, our
analysis shows that the memory system performance under
NVM storage is sensitive to the page size, which was not the
case for HDD storage systems.

Due to the recent advances in fast NVM storage tech-
nologies, the wide speed gap between memory and storage
has been significantly reduced. The access time of NVM is
about 1-100 times that of DRAM [18], [19], which is the
significant improvement from the HDD case of 100, 000 to
1,000, 000 times. Another important change is that there is
no seek movement in NVM so that it should pay much cost
as the size of data to be transferred becomes large. That is,
the gain of reading large data from each seek in HDD is not
effective any longer in NVM. By considering this, using a
small page can be an effective solution in NVM.

However, as storage accesses become very fast in NVM,
the bottleneck of a memory access is shifting to the address
translation between logical and physical addresses. Note
that the memory access time consists of the address trans-
lation time and the data access time. As the data access
time becomes very small by the reduced page fault handling
latency in NVM storage, improving the TLBmiss rate during
address translation matters significantly. Although a small
page can be adopted in order to improve the data access time,
it increases the TLB miss rate, which eventually degrades the
address translation time. To improve the address translation
time, the page size should be large. This is because the TLB
miss rate would be improved when the limited number of
TLB entries covers more memory area, and it can be realized
by increasing the page size.

Because of the two conflicting reasons aforementioned,
it is necessary to select the page size by considering the
relative impact of the address translation and the data
access in given situations. Also, depending on whether
the memory capacity is sufficient or not, an appropriate
page size may change, which should also be considered
in deciding the page size, making the problem even more
complicated.

To cope with this situation, we design a page size model
that accurately estimates the TLBmiss rate and the page fault
rate as the page size is varied. We then present a method
that has the ability of estimating the memory access time for
various page sizes, which can guide a suitable page size for
given system environments.

Meanwhile, page sizing problems have not caught atten-
tion in traditional systems because changing the page size
of a system incurs significant performance overhead during
the page size transition, not being an easy matter in real
system situations. However, due to the widespread adoption
of virtualization techniques in desktop PCs as well as cloud
systems, selecting the page size for each virtual machine
becomes a feasible solution. This is because virtual machines
are usually created for executing specific workloads, and the

resource configurations for each virtual machine are decided
while it is generated.

For example, the memory capacity, the storage type, and
the workload type are determined for each virtual machine
as shown in Fig. 1, and it is possible to find an appropriate
page size for the given virtual machine when it starts. That is,
the optimized page size depends on whether the main mem-
ory size is sufficient or not, the storage is HDD or NVM, and
the workload is memory-intensive or computing-intensive,
and selecting the page size is possible by considering the
characteristics of the virtual machine. We present the page
sizemodel for NVM, and show the effectiveness of this model
on virtualized systems. By considering workload characteris-
tics with given memory and storage resources, we show that
the memory system performance can be improved by 38.4%
on average and up to 55.7% when the page size of a virtual
machine is determined based on our model.

FIGURE 1. A host system with HDD and NVM storage and the three virtual
machines on top of it with different resource configurations and
workload characteristics.

The remainder of this article is organized as fol-
lows. Section II briefly explains the motivation of this
research. Section III presents the analysis and modeling of
memory access time, specially focusing on the page fault
rate and the TLB miss rate. In Section IV, we conduct the
validation of our model with respect to the accuracy and the
effectiveness in virtualized systems. Section V briefly sum-
marizes the studies related to this article. Finally, we conclude
this article in Section VI.

II. MOTIVATIONS
In this section, we overview the memory system perfor-
mances when NVM-based storage is adopted. Specifically,
we observe the influence of the page size as the storage
media change. We compare the memory access time when
using HDD and NVM as the underlying storage device in
order to see the impact of the page size on memory sys-
tem performances. As HDD and NVM have two different

52840 VOLUME 9, 2021



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

FIGURE 2. Memory access time under different types of storage systems.

aspects, i.e. access speed and existence of seek movement,
we additionally simulate two hypothetical storage media:
slow-NVM, which is as slow as HDD but does not have seek
movement similar to NVM, and fast-HDD, which is as fast as
NVM but has seek movement of head like HDD.

Fig. 2 shows the normalized memory access time of a
Linux system as the page size is varied for HDD, NVM, fast-
HDD, and slow-NVM, respectively. (The characteristics of
the workloads we experimented will be explained later in
Section III.) As shown in the figure, HDD storage shows
good performances if the page size is 4KB or more, but the
performance is not sensitive when the page size is larger
than 4KB. In HDD-based systems, there are 5 to 6 orders of
magnitude speed gap between memory and storage, so the
page fault rate is the primary factor that accounts for the
performance of the system. Thus, memory systems should be
designed to minimize the page fault rate.

In the case of NVM, as shown in Fig. 2(d), neither a large
page nor a small page performs well, and the memory system
performance is sensitive to the page size. This is because
the memory access time is influenced by the two conflicting
factors: the TLB miss rate and the page fault rate. Each
factor affects the address translation time and the data access

time, respectively, which are the two time components of the
memory access time. Thus, we need to consider the impact of
these two factors in the given environment, and judiciously
determine an appropriate page size.

One interesting result is that the page sizing problem
is not complicated in fast-HDD and slow-NVM as shown
in Figs. 2(b) and 2(c), respectively. That is, a large page
performs well in fast-HDD as it improves the address trans-
lation time by reducing the TLB miss rate and also improves
the data access time by considering the large seek cost for
each storage access. In case of slow-NVM, a small page
performs well as storage access is the crucial factor that deter-
mines memory performances, but the cost of storage access
is proportional to the size of data. Thus, it is not necessary
to transfer large data unless they are known to be actually
used.

Fig. 3 separately shows the address translation time and
the data access time for HDD and NVM storage systems.
As shown in the figure, the data access time accounts for the
most of the memory access time in the HDD-based system.
The address translation time is negligible, and thus the goal of
the memory system design focuses only on the minimization
of storage accesses. On the other hand, as shown in Fig. 3(b),

VOLUME 9, 2021 52841



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

FIGURE 3. Memory access time as a function of the page size.

the impact of the address translation time is not negligible
in the NVM-based system. A large page size reduces the
address translation time by improving the TLB miss rate.
In contrast, a small page size reduces the data access time by
decreasing the page fault handling time, which depends on
the size of data to be transferred. Thus, the page size should
be selected by considering these trade-off relations. This is
not an easy matter as the effect of the two time components
depends not only on the memory capacity but also on the
system situations. To accurately estimate the relation between
the memory access time and the page size, we will present a
model that fits the address translation time and the data access
time well by making use of appropriate functions.

Before concluding this section, let us briefly discuss the
case of flash-based SSD (solid state drives). SSD is widely
adopted in various kinds of systems ranging from mobile
laptops to cloud servers. SSD has no seek like NVM, but
the access latency is about 3 orders of magnitude slower
than NVM. We performed experiments under such configu-
rations and observed that the result for SSD is similar to that
of slow-NVM rather than NVM.

That is, SSD is just 10 to 100 times faster than HDD, but
NVM is over 10,000 times and up to 100,000 times faster
than HDD. Thus, SSD and NVM are very different types of
storage, and in the case of SSD, determining the page size
is not a complicated problem similar to slow-NVM. This
is because the impact of the address translation time is not
significant, and thus the trade-off relationship between the
TLB miss rate and the page fault rate does not form in SSD.
This does not simply indicate that the page sizing in SSD is
unnecessary, but we are not interested in this as the problem
is not challenging in academic perspectives. Nevertheless,
as the performance of SSD is being improved, the problem
will be similar to that of NVM storage, and thus the page
sizing will be increasingly sensitive to various situations
including the address translation time, the memory size, and
workload characteristics. Thus, it will be a topic of our future
research if the performance of SSD becomes close to that
of NVM.

III. ANALYSIS AND MODELING OF MEMORY ACCESS
TIME
Modern general-purpose operating systems manage the main
memory by the fixed size unit called page. The most common
page size is 4KB, which is also the basic unit for transferring
memory data to storage. However, modern operating systems
like Linux also support the read-ahead (or prefetching) func-
tion to load up to 128 adjacent pages from storage if a page
fault happens. The rationale behind this lies in the character-
istics of HDD, which requires high seek cost per each storage
access irrespective of the data size to be transferred. That is,
loading large data for each storage access will be efficient
in HDD storage. In some large memory systems, huge pages
of up to 4MB are also supported for HDD-based systems.
However, this will not be efficient for NVM storage as it is
fast and does not have seek movement.

Meanwhile, decreasing the page size is not an easy matter
as it will do harm to the address translation process. That
is, a fixed number of TLB entries can cover more memory
address space if the page size grows, which can improve the
address translation time. Thus, the page size for NVM-based
systems should be carefully selected by considering these
overall situations.

To see the effect of the page size on the memory access
time, we analyze and model the TLB miss rate and the page
fault rate as the page size is varied. Then, we verify our model
by using real memory access traces captured from various
Linux applications. The characteristics of these traces are
described in Table 1.

We opened thememory access trace of the five applications
in our Github page [20]. The game trace was collected while
playing the traditional card game application called Freecell;
the office trace was extracted while editing a document file
by the text editor software gedit; the photo trace was collected
during the execution of the image view and organizer appli-
cation Geeqie; the PDF trace was captured while viewing a
PDF file by the document viewer application KGhostview;
and the multimedia trace was collected while playing a media
file through the Linux media player.

As our traces were captured at the instruction level memory
references, they have complicated nested loops, which are
difficult to be described through a single characteristic like
file access patterns [21]. Thus, we focus on the characteristics
of the workloads with respect to the locality of references.
Specifically, we analyze the access density of the references
based on the footprint of the applications and the total number
of memory accesses that occur within the footprint. As listed
in Table 1, the access density of the game application is
the lowest among the five applications we experimented,
which implies that a relatively low performance can be
expected when the same ratio of resources (i.e., TLB size
or memory size) per footprint is provided. On the contrary,
the access densities of the multimedia and office applications
exhibit very high, and thus, we can expect relatively high

52842 VOLUME 9, 2021



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

TABLE 1. Workload characteristics.

performances when the same proportion of the resources are
provided.

A. MEMORY ACCESS TIME
As the main memory of modern computer systems is usually
managed based on virtual memory paging, translation of
logical to physical addresses is necessary in order to access
a memory page. This is conducted by accessing the page
table, which is resident in main memory. To accelerate the
address translation process, a certain subset of the page table
is maintained in the Translation Look-aside Buffer (TLB),
which behaves as a hardware cache of the page table.

Accordingly, in order to access a memory page, address
translation by TLB is firstly tried. The page table is, then,
accessed only if the address translation by TLB fails. Then,
the actual data is accessed in the memory location pointed by
the translated address. During this process, if the requested
data does not exist in main memory, it should be loaded from
storage, which we call the page fault. Assume that the TLB
miss rate is r , and the page fault rate is f . Then the memory
access time TMEM is represented as

TMEM = TADDR + TPAGE (1)

TADDR = (1− r)∗tε + r∗(tε + tτ ) (2)

TPAGE = (1− f )∗tτ + f ∗(tτ + TPF ) (3)

where TADDR is the address translation time, TPAGE is the data
access time, tε is the latency to access TLB entries, tτ is the
latency to access memory, and TPF is the page fault handling
time.

As the TLB capacity is limited, inserting a new entry
needs the eviction of an existing entry if no free entry is
available. In order to decide the entry to be evicted, we use the
LRU (Least Recently Used) replacement algorithm, which is
commonly used in associative caches including TLB. Since
the number of pages in main memory is also fixed, we need
another replacement algorithm. In particular, if a page should
be loaded from storage but no free page is available in
memory, we should evict an existing page from memory.
For selecting a victim page in memory, we use the CLOCK
replacement algorithm as it is a representative algorithm used
in paging systems [22]. Note that Linux also adopts a variant
of the CLOCK algorithm by making use of two page lists,

the active list and the inactive list, and replaces pages not used
recently in the inactive list.

B. TLB MISS RATE
With the limited number of TLB entries, a large page can
cover more memory address space, probably improving the
TLB miss rate. To validate this in real situations, we per-
form experiments for various workloads and page sizes.
Fig. 4 shows this result. As can be seen from this figure,
the TLB miss rate is improved as the page size grows from
512B to 64KB for all workloads we experimented.

To predict the TLB miss rate for a given system or work-
load precisely, we perform the fitting of the TLB miss rate
as a function of the page size. In particular, we use the three
simple and typical fit functions and compare the adjusted R2

and RMSE values. The three fit functions are as follows:

f1 (x) = ax2 + bx + c (4)

f2 (x) = axb (5)

f3 (x) = aebx (6)

where (4), (5), and (6), respectively, represent the quadratic-
fit, power-fit, and exponential-fit.
Fig. 5 shows some examples of the fit with the actual data.

As can be seen from the figure, the power fit models the TLB
miss rate the best. For more accurate validation, we calculate
the adjusted R2 and RMSE values of the three fits as shown
in Tables 2 and 3. As listed in the table, the power-fit results in
the highest adjusted R2 of 0.947 as well as the lowest RMSE
of 0.033 on average.

C. PAGE FAULT RATE
The page fault rate depends on the available memory size
as well as the page size. Since the main memory capacity is
fixed, the number of page frames decreases as the page size
grows. The page fault rate follows the law of the diminishing
marginal utility as the page size increases. That is, the page
fault rate curve has an inflection point. With the given mem-
ory capacity, the page fault rate is improved as the page size
grows due to the principle of locality. However, after that
point, the page fault rate is degraded again because the limited
memory capacity cannot accommodate a variety of data. This
point, of course, is varied based on the characteristics of
workloads. In particular, if the memory size is not sufficient,

VOLUME 9, 2021 52843



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

FIGURE 4. The TLB miss rate as a function of the page size.

TABLE 2. The adjusted R2 value of the TLB miss rate as the fit functions
are varied.

the page fault rate increases more rapidly after the inflection
point.

Fig. 6 shows the page fault rate curves as a function of
the page size with the memory capacity of 30% to 100%.
The memory capacity of 100% implies the configuration
that the complete footprint of the workload can be loaded
into memory. As we see from the figure, except for the
photo application, the page fault rate increases after a certain
page size. For the photo application, we can also see this

TABLE 3. RMSE of the TLB miss rate as the fit functions are varied.

trend when the page size is even larger than the ranges we
experimented. To find the function that fits this trend, we use
an exponential fit composed of two terms as follows.

f (x) = aebx + cedx (7)

As shown in Fig. 7, the exponential-fit with two terms
works well in most cases, but it seems that the accuracy
is degraded when the memory size is relatively small. The
adjusted R2 and RMSE are compared under different memory

52844 VOLUME 9, 2021



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

FIGURE 5. Examples of the fit functions.

FIGURE 6. The simulated and modeled page fault rate as a function of the page size.

sizes to verify the suitability of our exponential-fit. As shown
in Tables 4 and 5, the modeled page fault rate tends not to
fit at small memory sizes. Therefore, we use a paired t-test
to validate whether the measured and the modeled page fault
rates are statistically different. The null hypothesis of the test
states that the difference between the measured and the mod-
eled page fault rates is equal to zero. Based on the t-statistics
in Table 6, the tests fail to reject the null hypothesis for all

five tested workloads. In other words, there is no statistically
significant evidence to conclude that the measured and the
modeled page fault rates are different. Thus, we apply the
exponential-fit to the page fault rate model.

IV. VALIDATIONS AND IMPLICATIONS
This section validates the model we designed for the page
fault rate and the TLB miss rate with respect to the memory

VOLUME 9, 2021 52845



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

FIGURE 7. The simulated and modeled page fault rate as a function of the page size.

access time, and then assesses the effectiveness of this model.
Specifically, the evaluation is conducted under a variety of
virtual machine environments.

Fig. 8 shows the comparisons of the results from our
model and those from the replaying experiment under the
30% memory capacity. As shown in the figure, our model
predicts the memory access time well. Although the predicted
memory access time by our model does not find the exact
value, the trend is very similar. Note that it is more important
to predict trends rather than exact values when determining
the page size to minimize the overall memory access time.

To see the similarity of the two curves, we calculate the
Pearson correlation coefficient as shown in Table 7. Note
that the value is close to 1 when the two curves are similar.
As listed in Table 7, the Pearson coefficient is more than 0.99
in all cases, implying that our model predicts the memory
access time accurately for given page sizes.

As the proposed model has the ability of predicting mem-
ory access time well, we can make use of the model in
determining the page size for the given system accordingly.
To assess the effectiveness of our model, we perform simula-
tion experiments under the 5 scenarios consisting of 12 virtual
machines. Table 8 lists the configurations of each scenario we
experimented.

Scenario 1 consists of three virtual machines, VM-1,
VM-2, and VM-3, which execute game, office, and photo
applications, respectively, with the memory size of 80%,
10%, and 60%, and the storage of NVM. Similarly,
Scenario 2 consists of three virtual machines, VM-4, VM-5,
and VM-6, which execute PDF, multimedia, and game appli-
cations, respectively, with the memory size of 90%, 50%,
and 30%. VM-4 and VM-5 use NVM as storage, whereas
VM-6 usesHDD. Scenario 3 consists of two virtualmachines,
VM-7 and VM-8, which perform the office and photo appli-
cations, respectively, with the same resource configurations
of NVM storage and 80%memory. Scenario 4 consists of two
virtual machines, VM-9 and VM-10, which execute the PDF
and multimedia applications, respectively, with the memory
size of 20% and 80%, and the storage of NVM. Scenario 5
consists of two virtual machines, VM-11 and VM-12, which
execute the game and office applications, respectively, with
the memory size of 60% and 40%, and the storage of NVM
and HDD.

Fig. 9 shows the memory access time of the system that
uses the page size based on our model in comparison with
the original system with the 4KB page. We also simulated
an adaptive page sizing approach based on the Hill climbing
method and compared the result with our model. Note that

52846 VOLUME 9, 2021



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

TABLE 4. The adjusted R2 value of the page fault rate as the fit functions are varied.

TABLE 5. RMSE of the page fault rate as the fit functions are varied.

FIGURE 8. Validation of the proposed model.

TABLE 6. The T-Test between the modeled and the actual data.

Hill climbing is an empirical method that attempts to find
a better solution by making an incremental change to the
solution until no further improvements can be found.

As shown in the figure, the proposed model improves the
memory access time significantly compared to the original
system. Specifically, the improvement is 38.4% on average.
The largest improvement is observed in VM-4, where the sys-
tem adopting our model shows 55.7% better than the original
system. This is because thememory size of VM-4 is relatively
large, and thus 4KB is far from the page size suitable for
this situation. Note that the proposed model shows even
better results as the memory size increases by improving the
address translation time. Nevertheless, our model improves
the memory access time by 19.0% in VM-2, although it has
a relatively small memory size. This is due to the character-
istics of the application executed in VM-2. That is, the office

VOLUME 9, 2021 52847



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

FIGURE 9. Comparisons of the original 4KB page configuration and those with the proposed model and the Hill climbing method.

TABLE 7. Pearson correlation coefficients between the modeled and the
actual memory access time.

application we executed in VM-2 is memory-intensive, and
thus the memory performance exhibits sensitive to the page
size. There is no performance improvement in VM-6 and
VM-12 as they adopt HDD storage, and thus our model was
not adopted. Except for these two cases, NVM storage is used
and our model improves the memory performance in all cases
ranging from 10.0% to 55.7% according to the workload and
system situations.

Now, let us see the page size chosen by our model.
As shown in Fig. 9, the selected page size is not identical, but
ranges widely from 1KB to 32KB according to the relative
memory size and the workload characteristics. Specifically,
the page size was 1KB in VM-2, 2KB in VM-9, 4KB in VM-6

and VM-12, 8KB in VM-11, 16KB in VM-1, VM-3, VM-5,
and VM-8, and 32KB in VM-4, VM-7, and VM-10.When the
memory size of the VM is relatively small or the locality of
the workload is weak, page faults account for a large portion
of the memory access time, and thus a relatively small page
performs well. VM-2 and VM-9 are such cases. In contrast,
when the memory size is sufficient or the locality of the
workload is strong, the address translation process accounts
for a large portion in memory performance, and a rela-
tively large page performs well. VM-1, VM-3, VM-4, VM-5,
VM-7, VM-8, and VM-10 are such cases.

Now, let us discuss the performance of our model in com-
parison with the Hill climbing method. As shown in Fig. 9,
Hill climbing also yields better performance than the original
systemwith the 4KB page, but the performance improvement
of our model against Hill climbing is 22.5% on average. This
is because our model estimates a suitable page size for the
givenVMenvironment precisely, whereas Hill climbing finds
an appropriate page size through trial and error. Note also that
Hill climbing needs the overhead of transition as the page size
is gradually changed.

V. RELATED WORK
Using NVM in various storage layers has been attempted.
NVM has both memory and storage features but its phys-
ical characteristics are different to DRAM memory or

52848 VOLUME 9, 2021



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

TABLE 8. Experimental scenarios used in the experiments.

HDD storage media. Thus, a number of studies have been
conducted on the efficient management of NVM when it is
adopted in various storage hierarchies of computer systems.

In early work, as the size of NVM was not large enough
for main storage, a certain limited part of the total storage
image could be located on NVM. Specifically, important data
(e.g., metadata) or hot data can be stored on NVM. The
Protected and persistent RAM File System (PRAMFS) is
devised to maintain frequently accessed data in NVM for
fast reboot and power cycle intact without flushing them
to slow HDD [23]. Edel et al. propose MRAMFS, which
maintains metadata on NVM [24]. In order to efficiently
manage the limited NVM storage space, they store metadata
in a compressed form.

As the capacity of NVM grows significantly, studies on
NVM storage have focused on the file system design that
retains the total file system image on NVM. Condit et al.
propose BPFS, which is a new copy-on-write file system
for NVM that makes use of the byte-addressable feature
of NVM [25]. In particular, BPFS updates data in-place if
the modifications are smaller than an atomic operation unit.
This can eliminate a large proportion of out-of-place updates
that occur in copy-on-write file systems. Lee et al. propose
another copy-on-write file system for NVM called OND [26].
Unlike conventional copy-on-write file systems that need the
propagation of out-of-place updates up to the file system root,
OND breaks the recursive writes at the immediate parent
level.

Wu and Reddy present an in-memory file system for NVM
called SCMFS (Storage-Class Memory File System) [27].
SCMFS allows file accesses via memory interfaces, thereby
eliminating the overhead of software stacks in file I/Os.
Lee et al. propose a new journaling file system for NVM
called Shortcut-JFS [18]. Unlike traditional journaling file
systems that require the writing of an entire block twice
for journaling and checkpointing, Shortcut-JFS reduces the
writing by more than half based on the differential logging
and in-place checkpointing techniques.

There have been studies on efficient user-defined stor-
age interfaces utilizing the byte-addressability of NVM.

Coburn et al. present NVM-based in-memory persistent data
store, which allows users to generate a persistent data struc-
ture based on NVM [28]. Volos et al. suggest a programming
interface for NVM called Mnemosyne that allows the cre-
ation and management of data in NVM without the risk of
inconsistency [29]. In particular, Mnemosyne enables users
to declare persistent data with the given primitives, which
ensure transaction management, thereby guaranteeing data
consistency against system failures. Peng et al. present a user-
space page management scheme that exploits application and
storage characteristics [30]. Specifically, they use application
hints to improve the selection of caching, prefetching, and
eviction policies. They also support various page sizes appro-
priately for each user memory region, balancing the overhead
and data usage.

Recently, studies on NVM storage focus on the simplifi-
cation of traditional software stacks and I/O paths designed
for slow HDD storage. Yang et al. suggest synchronous I/O
for fast NVM storage by showing its better performance than
interrupt-based asynchronous I/O if storage is sufficiently
fast [31]. Caulfield et al. present an efficient software and
hardware interfaces for fast NVM storage based on the quan-
tification of each software stack’s overhead during storage
I/Os [32]. Lee et al. investigate theNVMstorage performance
for a wide range of operating system configurations, and
show that the effect of synchronous I/O, direct I/O, and read-
ahead in NVM is different to that in HDD storage [19].

VI. CONCLUSION
In this article, we revisited the page sizing problem in NVM
storage, specially focusing on virtualized systems. Unlike tra-
ditional systems where changing the page size is not feasible,
we showed that the page sizing problem has come into a
new situation due to the widespread adoption of virtualized
systems and the emergence of fast NVM storage. This article
analyzed the memory access time in NVM-based storage
separately for the address translation time and the data access
time as the page size is varied. We then designed a page
size model that accurately estimates the TLB miss rate and
the page fault rate for NVM storage. By using this model,

VOLUME 9, 2021 52849



Y. Park, H. Bahn: Modeling and Analysis of Page Sizing Problem for NVM Storage in Virtualized Systems

it is possible to estimate the effect of the page size on the
memory system performances, and we can guide an appro-
priate page size for given system environments. We showed
that the memory system performance of virtualized systems
can be improved by 38.4% on average and up to 55.7%
by considering workload characteristics and given resource
configurations in deciding the page size of a virtual machine
based on our model.

REFERENCES
[1] Y. Park and H. Bahn, ‘‘Management of virtual memory systems under

high performance PCM-based swap devices,’’ in Proc. IEEE 39th Annu.
Comput. Softw. Appl. Conf., Jul. 2015, pp. 764–772.

[2] P. Weisberg and Y. Wiseman, ‘‘Using 4KB page size for virtual memory
is obsolete,’’ in Proc. IEEE Int. Conf. Inf. Reuse Integr., Aug. 2009,
pp. 262–265.

[3] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, ‘‘Supporting
superpages in non-contiguous physical memory,’’ in Proc. IEEE 21st Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2015, pp. 223–234.

[4] J. Navarro, S. Iyer, P. Druschel, and A. Cox, ‘‘Practical, transparent operat-
ing system support for superpages,’’ACMSIGOPSOper. Syst. Rev., vol. 36,
pp. 89–104, Dec. 2002.

[5] Y. Park and H. Bahn, ‘‘Challenges in memory subsystem design for future
smartphone systems,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput.
(BigComp), Feb. 2017, pp. 255–260.

[6] E. Lee and H. Bahn, ‘‘Caching strategies for high-performance storage
media,’’ ACM Trans. Storage, vol. 10, no. 3, pp. 1–22, Jul. 2014.

[7] S. W. Ng, ‘‘Advances in disk technology: Performance issues,’’ Computer,
vol. 31, no. 5, pp. 75–81, May 1998.

[8] A. Laga, J. Boukhobza, M. Koskas, and F. Singhoff, ‘‘Lynx: A learning
linux prefetching mechanism for SSD performance model,’’ in Proc. 5th
Non-Volatile Memory Syst. Appl. Symp. (NVMSA), Aug. 2016, pp. 1–6.

[9] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, ‘‘Coordinated
and efficient huge page management with Ingens,’’ in Proc. 12th USENIX
Symp. Oper. Syst. Design Implement. (OSDI), 2016, pp. 705–721.

[10] N. Agarwal and T. Wenisch, ‘‘Thermostat: Application-transparent page
management for two-tiered main memory,’’ in Proc. 22th Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2017, pp. 631–644.

[11] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He,
and S. Jiang, ‘‘Supporting superpages and lightweight page migration in
hybrid memory systems,’’ ACM Trans. Archit. Code Optim., vol. 16, no. 2,
pp. 1–26, Jun. 2019.

[12] N. Ganapathy and C. Schimmel, ‘‘General purpose operating system sup-
port for multiple page sizes,’’ in Proc. Annu. Tech. Conf. (ATC), 1998,
pp. 91–104.

[13] Sun BluePrints On-line, Sun Microsyst., Santa Clara, CA, USA, 2004.
[Online]. Available: http://home.mit.bme.hu/~meszaros/edu/oprend
szerek/segedlet/unix/x_memoriakezeles/solaris_Multiple_Page_Size_Sup
port.pdf

[14] Y. A. Khalidi, G. R. Anderson, S. A. Chessin, S. I. Kong, C. E. Narad,
and M. Talluri, ‘‘Virtual address to physical address translation cache that
supports multiple page sizes,’’ U.S. Patent 5 479 627, Dec. 26, 1995.

[15] S. Winwood, Y. Shuf, and H. Franke, ‘‘Multiple page size support in the
Linux kernel,’’ in Proc. Ottawa Linux Symp., 2002, pp. 573–593.

[16] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, ‘‘Mosaic: Enabling application-transparent
support for multiple page sizes in throughput processors,’’ ACM SIGOPS
Oper. Syst. Rev., vol. 52, no. 1, pp. 27–44, Aug. 2018.

[17] F. Guvenilir and Y. N. Patt, ‘‘Tailored page sizes,’’ inProc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020, pp. 900–912.

[18] E. Lee, S. Hoon Yoo, and H. Bahn, ‘‘Design and implementation of a
journaling file system for phase-change memory,’’ IEEE Trans. Comput.,
vol. 64, no. 5, pp. 1349–1360, May 2015.

[19] E. Lee, H. Bahn, S. Yoo, and S. H. Noh, ‘‘Empirical study of NVM storage:
An operating system’s perspective and implications,’’ in Proc. IEEE 22nd
Int. Symp. Modeling, Anal. Simul. Comput. Telecommun. Syst., Sep. 2014,
pp. 405–410.

[20] Memory Access Traces. Accessed: Feb. 28, 2021. [Online]. Available:
https://github.com/oslab-ewha/memtrace

[21] D. Shin, K. Cho, and H. Bahn, ‘‘File type and access pattern aware buffer
cache management for rendering systems,’’ Electronics, vol. 9, no. 1,
p. 164, Jan. 2020.

[22] S. Lee, H. Bahn, and S. H. Noh, ‘‘CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory archi-
tectures,’’ IEEE Trans. Comput., vol. 63, no. 9, pp. 2187–2200, Sep. 2014.

[23] Protected and Persistent RAM Filesystem. Accessed: Feb. 28, 2021.
[Online]. Available: http://pramfs.sourceforge.net

[24] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt, ‘‘MRAMFS:
A compressing file system for non-volatile RAM,’’ in Proc. 12th IEEE Int.
Symp. Modeling, Anal., Simulation Comput. Telecommun. Syst., Oct. 2004,
pp. 596–603.

[25] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, ‘‘Better I/O through byte-addressable, persistent memory,’’ in
Proc. ACM Symp. Oper. Syst. Princ. (SOSP), Oct. 2009, pp. 133–146.

[26] E. Lee, J. E. Jang, T. Kim, and H. Bahn, ‘‘On-demand snapshot: An
efficient versioning file system for phase-change memory,’’ IEEE Trans.
Knowl. Data Eng., vol. 25, no. 12, pp. 2841–2853, Dec. 2013.

[27] X. Wu and A. L. N. Reddy, ‘‘SCMFS: A file system for storage class
memory,’’ in Proc. Int. Conf. Supercomput. (SC), 2011, pp. 1–11.

[28] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, ‘‘NV-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,’’ in Proc. 16th Int. Conf. Archit.
Support Program. Lang. Oper. Syst., 2011, pp. 105–118.

[29] H. Volos, A. J. Tack, and M. M. Swift, ‘‘Mnemosyne: Lightweight per-
sistent memory,’’ in Proc. 16th Int. Conf. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS), 2011, pp. 91–104.

[30] I. Peng, M. McFadden, E. Green, K. Iwabuchi, K. Wu, D. Li, R. Pearce,
and M. Gokhale, ‘‘UMap: Enabling application-driven optimizations for
page management,’’ in Proc. IEEE/ACM Workshop Memory Centric High
Perform. Comput. (MCHPC), Nov. 2019, pp. 71–78.

[31] J. Yang, D. B. Minturn, and F. Hady, ‘‘When poll is better than interrupt,’’
in Proc. Conf. File Storage Technol. (FAST), 2012, p. 3.

[32] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta, and S. Swan-
son, ‘‘Moneta: A high-performance storage array architecture for next-
generation, non-volatile memories,’’ in Proc. IEEE/ACM Symp. Microar-
chitecture (Micro), Dec. 2010, pp. 385–395.

YUNJOO PARK received the B.S. degree in
computer science and engineering from Ewha
Womans University, South Korea, in 2015, where
she is currently pursuing the Ph.D. degree in
computer science and engineering. Her research
interests include operating systems, storage sys-
tems, embedded systems, software platform tech-
nologies, cloud computing, and emerging storage
systems.

HYOKYUNG BAHN (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science and engineering from Seoul National
University, in 1997, 1999, and 2002, respec-
tively. He is currently a Full Professor of com-
puter science and engineering with EwhaWomans
University, Seoul, Republic of Korea. He has pub-
lishedmore than 100 papers in leading conferences
and journals including USENIX FAST, IEEE
TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, and ACM Transactions on Storage.
His research interests include operating systems, caching algorithms, storage
systems, embedded systems, system optimizations, and real-time systems.
He received the Best Paper Awards at the USENIX Conference on File and
Storage Technologies in 2013.

52850 VOLUME 9, 2021

http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/x_memoriakezeles/solaris_Multiple_Page_Size_Support.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/x_memoriakezeles/solaris_Multiple_Page_Size_Support.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/x_memoriakezeles/solaris_Multiple_Page_Size_Support.pdf

