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ABSTRACT This paper examines the optimal spectrum competing strategy for a virtual network operator
in cognitive cellular networks with energy-harvesting base stations. In the scenario for this study, multiple
cognitive virtual network operators (CVNOs) obtain spectrum resources from a mobile network operator via
spectrum sensing and leasing in order to provide data services to their subscribers. Compared to traditional
spectrum leasing via long-term contract, spectrum acquired by sensing is usually cheaper but is unreliable
due to the stochastic activities of the licensed users. The CVNOs need to determine the optimal sensing and
leasing amount to satisfy the needs of subscribers while guaranteeing a low leasing cost. We aim to find an
efficient spectrum sensing and leasing scheme for a CVNO in order to maximize its utility in the long run.
The problem is first formulated as the framework of a sequential decision process considering the dynamics
of users’ activities, spectrum prices, and harvested energy. We then develop a deep reinforcement learning
algorithm that uses deep neural networks as function approximators so the CVNO can learn the optimal
decision policy by interacting with the environment. We analyze the performance of our proposed scheme
through extensive simulations. The experiment results show that the proposed mechanism can significantly
improve the CVNO’s long-term benefit compared to other learning and non-learning methods.

INDEX TERMS Cognitive radio, deep reinforcement learning, energy harvesting, spectrum leasing,
spectrum sensing, virtual network.

I. INTRODUCTION
Spectrum resources are becoming more and more scarce due
to the tremendous growth in mobile subscribers and wireless
communication services. However, most of the spectrum
bands allocated via licensing are often under utilized, even
in densely populated urban areas, since mobile users do not
always require radio resources [1]. To enhance spectrum
resource utilization, many methods for dynamic spectrum
access have been proposed [2]–[4]. For example, the concepts
of cognitive radio [5] and wireless network virtualization
(WNV) [6] were introduced to improve spectrum utilization
and efficiency. Specifically, cognitive radio technology can
help the network operators to tackle spectrum scarcity and
inefficient spectrum usage by allowing unlicensed users
to utilize spectrum holes in the licensed bands without
affecting the primary users. With WNV, a mobile network
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operator (MNO) dynamically leases temporarily unused
spectrum to virtual network operators, which allows
the MNO to gain more revenue and improve spectrum
utilization.

WNV is a process of abstracting and sharing network
infrastructure and radio resources among multiple parties
in order to improve resource utilization and reduce oper-
ational costs [7]. Therefore, many studies have been con-
ducted to promote WNV in future wireless networks. For
example, Nguyen et al. [8] developed an optimal trading
contract to maximize the total utility at the network oper-
ator while satisfying the requirements of service providers.
Rawat et al. [9] formulated a three-layer game that incor-
porates the dynamics of wireless infrastructure providers
(WIPs), mobile virtual network operators (MVNOs), and
internet of thing devices into a sequential decision-making
process. The authors derived a unique optimal solution that
facilitates a tradeoff between quality of service (QoS) of end
users, payoffs of MVNOs, and payoffs of WIPs.
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Competitive spectrum sharing among multiple secondary
users in cognitive radio networks can also enhance the uti-
lization of scarce radio spectrum [1]. Our study considers a
cognitive virtual network operator (CVNO) that can access
licensed spectrum via both spectrum sensing and spectrum
leasing. With the cognitive capability, the CVNO can sense
the spectrum holes in the licensed spectrum, and then it can
decide whether to access those holes or not without violating
the current operations of the licensed users. Since the avail-
ability of the primary channels depends on the activity of the
licensed users, which is not known in advance, the amount
of efficient spectrum obtained via sensing is usually uncer-
tain. So far, some research has been conducted to investigate
the interactions between the MNO and the CVNOs. For
example, Sun et al. [10] investigated an oligopoly offloading
market, where several MVNOs compete to serve end users
using network infrastructures leased from the host MNO. The
authors formulated the interactive behaviors of MVNOs and
the host MNO as an inventory game, and they proposed two
algorithms to achieve the equilibrium. In other work [11],
Yi and Cai investigated spectrum sharing with power-
constrained multi-radio secondary users (SUs) in cognitive
radio networks. In the considered scenario, there exists a
primary spectrum owner who runs auctions for leasing her
idle channels and multiple SUs bidding for winning the usage
of spectrum channels. However, these studies did not include
the explicit cost of the primary channels that the CVNOs need
to pay when using them.

Furthermore, most work did not consider small-cell net-
works with energy harvesting for WNV. Recently, small-cell
networks have been regarded as one of the key compo-
nents of future wireless communications to improve spectrum
efficiency and energy efficiency. With the increase in the
number of small-cell networks, energy-harvesting technology
is considered a promising solution to energy conservation
in low-power systems [12]. In this paper, we investigate
the problem of competitive spectrum leasing in a cognitive
virtualized network that is powered by renewable energy.
This network consists of one MNO, a set of CVNOs and
their subscribed users. The CVNOs compete for spectrum
resources owned by the MNO in short-term periods via both
spectrum-sensing and spectrum-leasing methods to provide
specific services to the users. The cost of accessing spectrum
holes in a primary band is usually cheaper than directly
leasing the available spectrum from the MNO. However,
the spectrum acquired by sensing is unreliable due to the
uncertainty of the sensing results. Hence, the CVNOs need
to adapt their strategies in terms of requested spectrum sizes
in order to provide their users with the best performancewhile
paying the MNO a low leasing cost.

Although there has been some excellent work on spec-
trum investment and pricing in cognitive virtualized net-
works [13]–[16], there is little research considering online
learning-based approaches (e.g., reinforcement learning [RL]
algorithms) for spectrum sensing and leasing in cognitive
virtualized networks. For example, Li et al. [13] proposed

an optimization-based approach to solving a spectrum invest-
ment problem for a MVNO in cognitive radio networks.
In [14], Yu et al. modeled the spectrum leasing and sensing
decisions of an MVNO as a non-convex optimization prob-
lem, and solved the problem by using a backward induc-
tion method. In [15], Wu et al. used backward induction
to characterize a dynamic game for competitive spectrum
acquisition and pricing strategies between two MVNOs.
Similarly, Li et al. [16] proposed cooperative pricing strate-
gies for MVNOs in order to maximize their profits. Specif-
ically, the authors studied the pricing decisions for MVNOs
within the uncertainties of spectrum inventories in both coop-
erative and non-cooperative situations. Furthermore, to the
best of our knowledge, none of these works integrated deep
neural networks (DNNs) into RL to solve spectrum leasing
problems with large state and action spaces.

In a nutshell, we propose a deep reinforcement learn-
ing (DRL)-based method for efficient spectrum competi-
tion under the uncertainties of harvested energy, spectrum
prices, and users’ activities in cognitive virtualized networks.
We first model the spectrum leasing problem as a sequen-
tial decision-making process and then develop a DRL-based
framework to solve the problem. The main contributions of
this paper are summarized as follows.
• We introduce WNV into small-cell, cognitive radio net-
works, and propose a novel spectrum-leasing scheme
for a CVNO considering the dynamics of the network
environment, such as users’ activities, spectrum prices,
and harvested energy.

• We model the interactions between the MNO and
the CVNOs as a stochastic decision-making process.
During this process, the CVNOs compete for spectrum
resources by announcing their requested spectrum sizes.
We aim to find the optimal decision policy to maximize
the utility for a CVNO in the long run.

• We develop an RL-based algorithm (i.e., Q-learning)
to solve the formulated problem, based on which the
CVNO can learn the optimal decision policy through
interactions with the network environment.

• We further use DNNs as function approximators to esti-
mate the Q-values of all decisions, given the network
state, which can enhance the efficiency of the proposed
method in cases of large state and action spaces.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and the formulation of the
spectrum-leasing problem. In Section III, we present the
proposed deep RL-based solution to the formulated problem.
In Section IV, we evaluate the performance of the proposed
method with various numerical results. We finally conclude
this paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Figure 1, we consider a cognitive virtualized net-
work with oneMNO and a set, V = {1, 2, . . . ,V }, of CVNOs
that acquire spectrum resources from the MNO to provide
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FIGURE 1. The considered model of a cognitive virtualized network with
green base stations.

data services to subscribed users. The spectrum resources
are divided into the licensed band and the leasing band.
The licensed band is primarily reserved for serving licensed
users (LUs) of the MNO, and each channel is occupied by
an LU. We assume that CVNO v ∈ V can access a finite
number of channels from this band, denoted as N li

v , through
spectrum sensing without explicit communication with the
MNO. Meanwhile, the leasing band contains the temporarily
unused portions of the spectrum resources that are available
for lease, and the CVNO can lease the radio channels from
this band by communicating with the MNO. We denote as
N le the total number of radio channels in the leasing band,
which will be shared among the CVNOs in the network.
We assume that the MNO has already reserved a finite num-
ber of radio channels from the leasing band for each CVNO
according to the contract agreement between the MNO and
the CVNO. However, the channels acquired through advance
reservation might not be enough for the demands of the
users, so the CVNOs might request extra channels. Since the
spectrum resources are limited, the CVNOs need to compete
for radio channels by announcing their requested spectrum
sizes (i.e., the number of channels) to the MNO based on the
demands of their users and the prices offered by the MNO.

The system operates in a time-slotted fashion, in which
each slot is indexed by notation t and is of equal time dura-
tion (in miliseconds). In each time slot, the MNO charges
CVNO v for the spectrum of the leasing and the licensed
bands at rates of π lev (t) and π

li
v , respectively, per unit channel.

It is important to note that π lev (t) might change over time
according to the demands of the CVNOs while π liv is a
constant, and that the cost of accessing the licensed band is
lower than the leasing band, which is upper bounded by πmax
(i.e., π liv ≤ π

le
v (t) ≤ πmax). The benefit that CVNO v gains

from utilizing a channel to serve its subscribers is denoted
by gv. Each CVNO owns a green base station (BS) that is
equipped with an energy-harvesting device in order to harvest
energy from renewable sources (e.g., solar power). The BS
stores its harvested energy (packets) in a battery with a finite

capacity, Ebatv , and uses these energy packets for data trans-
missions. We denote as ehv(t) the number of energy packets
that a BS can harvest in time slot t , which is given as

ehv(t) ∈ {1, 2, . . . , ξ} (1)

where 0 < ξ ≤ Ebatv , and we assume that ehv(t) follows a
Poisson point process with mean µe.
The activity of an LU is described by a two-state discrete-

time Markov chain process, as shown in Figure 2. In a given
time slot, an LU might be in one of two states: active (1) or
inactive (0) with state-transition probabilities P10 and P01.
To access the licensed channels, the CVNO needs to perform
spectrum sensing. We assume that the CVNO can collect the
sensing information from a sensor network and combine the
local sensing data using a specific rule (e.g., a soft combi-
nation approach [17], [18]) to decide the states of LUs. The
sensing performance can be evaluated by the probabilities of
detection (Pd ) and false alarm (Pf ). The former metric refers
to the probability that the active state of the LU is detected
correctly, whereas the latter metric is the probability that the
sensing result indicates the presence of the LU signal on the
corresponding channel, when actually there is no signal. For
simplicity, we call the CVNOs’ subscribers the SUs, when no
ambiguity arises.

FIGURE 2. The two-state Markov chain process used in this paper to
model the activities of the licensed users.

B. PROBLEM FORMULATION
The operation of the system is illustrated in Fig. 3. At the
beginning of time step t , the MNO announces the unit prices
for radio resources in both bands, π liv and π lev (t). CVNO vfirst
determines the amount of licensed channels that it is going
to sense, x liv (t). We denote as es the energy consumption to
perform spectrum sensing on one channel, hence, the total
energy consumption for spectrum sensing is esx liv (t). Let y

li
v (t)

denote the number of channels that the CVNO obtains after
spectrum sensing, which can be calculated as

yliv (t) = λx
li
v (t) (2)

where λ ∈ [0, 1] denotes the fraction of sensed spec-
trum that is temporarily available for use. The CVNO then
announces its leasing amount, x lev (t), to the MNO by consid-
ering the sensing results, the demands of their subscribers,
and the resource prices. Since the spectrum resources are
limited, the MNO fairly allocates the channels to the CVNOs
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FIGURE 3. The operation of the considered system.

as follows:

ylev (t) = min
(
x lev (t),

N le∑
v∈V x

le
v (t)

x lev (t)
)

(3)

where ylev (t) ≤ x lev (t) is the number of channels allocated
to CVNO v. Finally, the CVNOs use the obtained channels,
yliv (t) + ylev (t), to transmit data to the SUs. We denote as etr

the number of energy packets required for transmitting data to
the SUs (per unit channel). We can see from Eq. (3) that if we
increase x lev (t), the value of y

le
v (t) will increase, which means

that if the channel requirements increase, the energy con-
sumption for data transmission might also increase. There-
fore, the current energy capacity of the BS will also affect the
sensing and leasing decision of the CVNO.

A CVNO needs to satisfy the requirements of its sub-
scribers while guaranteeing a low leasing cost by competing
for radio resources using its own sensing and leasing strat-
egy. At a given time step, subscriber mv of CVNO v might
request bmv (t) ∈ {0, 1, · · · , bmax} wireless channels for their
data service, where bmax denotes the maximum number of
channels that can be used to provide a data service to an SU;
and bmv (t) = 0 means that the SU does not require data
from the CVNO. Thus, the total demand from the SUs can
be calculated as

bv(t) =
∑
mv

bmv (t) (4)

We assume that a user (i.e., an SU) can receive better service
quality if the CVNO assigns more channels to that user.
We aim to develop a learning-based framework for the CVNO
in order to maximize its utility in the long run.

We define the utility function for a CVNO, which is the
difference between the benefit from, and the total cost of,
leasing spectrum as follows:

Uv(t) = gv
(
yliv (t)+ y

le
v (t)

)
−

(
π liv y

li
v (t)+ π

le
v (t)y

le
v (t)

)
(5)

In Eq. (5), the first term on the right side is the benefit that
the CVNO can obtain by using the allocated channels to serve
its users. The last two terms represent the cost of purchasing
resources from the MNO.

The CVNO aims to maximize its utility considering the
stochastic properties of harvested energy, the LUs’ activities,
the SUs’ demands, and the spectrum prices. The utility max-
imization problem at CVNO v for time horizon T > 0 can be
formulated as follows:

max
{xliv (t),xlev (t)}

T∑
t=0

γ tUv(t)

s.t. C1 : (2), (3), (4), (5)

C2 : x lev (t)+ y
li
v (t) ≤ bv(t)

C3 : x lev (t)+ y
li
v (t) ≤

erv(t)− e
sx liv (t)

etr

C4 : x liv (t) ∈
[
0,N li

v

]
, x lev (t) ∈

[
0,N le

]
(6)

where γ ≤ 1 is a non-negative coefficient (i.e., a discount
rate) that prioritizes immediate utilities over future utilities;
T∑
t=0

γ tUv(t) is a cumulative discounted utility from the current

time slot to the future. (C2) ensures that the number of wire-
less channels acquired from sensing and leasing can be fully
utilized. (C3) makes sure that the total energy consumption
for spectrum sensing and for data transmission using the
requested channels can not exceed the current energy level in
the battery of the base station, erv(t). To solve this utility max-
imization problem, we develop a deep RL-based framework
so the CVNO can learn the dynamics of the environment,
and thus, make better decisions through interactions with the
environment.

III. DYNAMIC SPECTRUM COMPETITION WITH DRL
In this section, we present a learning-based method for spec-
trum sensing and leasing by a CVNO in cognitive virtualized
networks, upon which the CVNO can adapt to the variations
in the environment during a decision-making process. In this
network, the environment dynamics are unknown in advance,
and hence, the agent needs to learn the changes in the users’
activities, the harvested energy, and the spectrum prices in
order to make sensing and leasing decisions. In particular,
we employ a DRL algorithm in which DNNs are used as
function approximators to estimate the value function to solve
the formulated problem. The main purpose of this algorithm
is to maximize the utility of the CVNO in the long run.

A. TWO-STEP SEQUENTIAL DECISION PROCESS
By using RL algorithms, the agent can estimate the sys-
tem dynamics through a sequential decision-making process.
During this process, the agent gradually learns how tomap the
observed state of the environment to a suitable action in order
to maximize utility for the CVNO. Among those well-known
RL algorithms, Q-learning is the most widely used training
technique, and is a model-free approach that can help the
agent to learn the optimal policy without having prior infor-
mation about the environment [19]. Therefore, we employ
Q-learning to optimize the sensing and leasing policy for a
CVNO in the considered virtualized network.
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The problem is reformulated as a two-step sequential deci-
sion process, where the CVNO first determines the sensing
amount, and subsequently determines the leasing amount.
Regarding the learning algorithm, we first define the state
space, the action space, and the reward function. The system
state obtained by CVNO v at the beginning of time slot t is
denoted by

sv(t) =
{
erv(t), bv(t), π

le
v (t)

}
(7)

where erv(t) represents the current energy level of the BS;
π lev (t) is the unit price of the leasing channels; bv(t) is the total
demand from the SUs. We employ two Q-learning agents to
learn the optimal policy, where each agent takes the system
state as input to make sensing and leasing decisions. In the
proposed method, agent 1 will make sensing decisions, x liv (t),
after observing the system state. Meanwhile, agent 2 will
make leasing decisions, x lev (t), after observing the system
state and the sensing result. Therefore, the action spaces for
agent 1 and agent 2 can be defined as follows:

A1 =

{
0, 1, . . . ,N li

v

}
(8)

and

A2 =

{
0, 1, . . . ,N le

}
(9)

respectively. For the reward function, we use the utility func-
tion Uv(t) defined in Eq. (5) to represent the immediate
reward that the agents can receive after taking actions. At the
end of each time slot, the agents automatically adjust their
behaviors based on the returned rewards.

The long-term utility of the CVNO can be estimated by
using the Q-value function, denoted by Q(s, a), which repre-
sents the expected sum of discounted utilities when the agent
is in state s and is taking action a:

Q(s, a) = E

[
T∑
t=0

γ tU (t)|s(0) = s, a(0) = a

]
(10)

During the decision process, the algorithm updates the
Q-value at each time t using a temporal-difference (TD)
update rule, as follows:

Q(t+1)(s, a) = Q(t)(s, a)+ ηδ(t) (11)

where η ∈ (0, 1) is the learning rate, and δ(t) is the TD
error, which is the difference between the target value,U (t)+
γ maxa′ Q(t)(s′, a′), and the current one,Q(t)(s, a), as follows:

δ(t) = U (t)+ γ max
a′

Q(t)(s′, a′)− Q(t)(s, a) (12)

where s′ is the next state of the CVNO after taking the action,
and a′ is the action taken to maximize the Q-value at state s′.
The Q-value update process aims at minimizing the TD error,
and then gradually converges to the optimal value function,
fromwhich the agents can select the optimal decisions at each
time step. The algorithm repeats this decision-making process
until convergence. With classic RL algorithms, Q-values are
simply stored in a lookup table (namely, the Q table), which

might be ineffective for large-scale models since iteratively
updating the Q-values might take time and effort, and thus,
significantly reduce the performance of the algorithm. There-
fore, we combine deep learning with Q-learning and exploit
DNNs to represent the Q function, referred to as a deep
Q-network (DQN) algorithm.

B. DQN-BASED FRAMEWORK
We denote as Q(s, a; θi) ∀i ∈ {1, 2} the Q-network that
agent i uses to represent the Q-value of state-action pair (s, a),
where parameter θi stands for the weight of the DNN. The
Q-network is used to map the input states into appropriate
actions, and it is composed of three main parts: one input
layer, several hidden layers, and one output layer. The input
layer stores state sv(t) using a finite number of cells that is
equal to the number of elements of the state. The hidden
layers contain finite cells and uses a rectified linear unit
function as the activation function to perform a threshold
operation on each input element, as follows:

f (s) = max(θis+ b, 0) (13)

where b is a bias vector. The output layer uses a linear
activation function to produce the estimatedQ-values for each
action, given state s, and thus, its size is equal to the size of the
action space, |Ai|. To improve the performance of the DQN,
we also employ two other techniques (i.e., experience replay
and fixed target network) in the design of the DQN algorithm.
With the experience replay technique, the agent needs to store
any new experience, ψ (t)

i = {s, a,U , s
′
}i, at each training

step into a replay memory, M(t)
i =

{
ψ

(0)
i , ψ

(1)
i . . . , ψ

(t)
i

}
,

where U and s′ are the instant utility and the next system
state. The agent then uniformly selects mini-batches from
Mi to train the Q-network. With the fixed target network
technique, the agent needs to build a second DNN that has the
same structure as the current Q-network (namely, a target net-
work). We denote by θ ′i the weight of the target network, and
we periodically update these parameters during the training
process. In the traditional DQN, the Q-network is iteratively
optimized to minimize the loss function, which is given as

L(θi) = EMi

[
(R− Q(s, a; θi))2

]
(14)

where R is the target value, and is given as

R = U + γmax
a′
Q
(
s′, a′; θ ′i

)
(15)

However, the max operation in Eq. (15) might result in
overly optimistic value estimates, since it is used for both
choosing and evaluating an action. To reduce over-estimation,
we employ a double DQN (DDQN) algorithm [20] and
rewrite the target value as follows:

R = U + γQ
(
s′, argmax

a′
Q
(
s′, a′; θ ′i

)
; θi

)
(16)

With this approach, actions are chosen based on the online
Q-network, θi, while both the Q-network and the target net-
work are used to evaluate the values of the chosen actions.
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Weight θi is gradually optimized by using a stochastic gradi-
ent descent with back propagation algorithm, as follows:

1θi = ηδ∇θ iQ(s, a; θi) (17)

where the TD error, δ, is rewritten as follows:

δ=U+γQ
(
s′, argmax

a′
Q(s′, a′; θi); θ ′i

)
−Q(s, a; θi) (18)

And the target network parameters, θ ′i , are updated after
every finite time steps. The proposed DDQN framework is
illustrated in Figure 4.

FIGURE 4. A flowchart of the proposed DDQN framework.

C. ACTION SELECTION PROCEDURE
During the sequential decision process, the agents inter-
act with the environment by executing actions according
to an ε-greedy policy, where ε ∈ (0, 1) is the explo-
ration rate. It is important to note that the chosen actions
must satisfy the constraints in Eq. (6). We denote as aiv(t)
the action that agent i can select at time t . In this paper,
agent 1 makes sensing decisions after observing the sys-
tem state. Hence, we can derive from (C3) and (C4) that
a1v(t) can be limited in

[
0, a1max(t)

]
, where a1max(t) =

min
(

erv(t)
es+etr ,N

li
v

)
. Similarly, agent 2 makes leasing decisions

after observing the sensing result and the system state, thus
action a2v(t) can be limited in [0, a2max(t)], where a

2
max(t) =

min
(
min

(
bv(t),

erv(t)−e
sxliv (t)

etr

)
− yliv (t),N

le
)
.

LetAf
i (t) ⊂ Ai denote the feasible action space for agent i

at time t , which can be given as

Afi (t) =
[
0, 1, . . . , aimax(t)

]
∀i ∈ {1, 2} (19)

At a given time step, an agent can either choose a random
action in the feasible action spacewith probability ε or choose
an action that maximizes the Q-value of the state-action pair
in the current time slot with probability 1− ε, as follows:

aiv(t) = argmax
a∈Af

i (t)

Q(sv(t), a; θi) (20)

The overall learning process using DDQN algorithm is
described in Algorithm 1.

Algorithm 1 Learning Procedure With DDQN

1: Initialize θi, θ ′i , and Mi ∀i ∈ {1, 2}.
2: for episode ep = 1, 2, . . . do
3: for step t = 0, 1, . . . ,T do
4: Agent 1 observes state sv(t) and specifies Af

1(t),
then executes action a1v(t).

5: Agent 2 observes state sv(t), sensing result and spec-
ifies Af

2(t), then executes action a2v(t).
6: Obtain reward Uv(t) and observe state sv(t + 1).
7: for Agent i = 1, 2 do
8: Store tuple {sv(t), aiv(t),Uv(t), sv(t + 1)} inMi.
9: Select K random tuples from the memory as the

training samples.
10: for k = 1, 2, . . . ,K do
11: if t < T then
12: Compute target value by using Eq. (16)
13: else
14: R = Uv(t)
15: end if
16: Compute TD error by using Eq. (18).
17: end for
18: Update θi by using Eq. (17).
19: end for
20: end for
21: Replace θ ′i with θi.
22: end for

IV. PERFORMANCE ANALYSIS
In this section, we provide simulation results for the proposed
spectrum sensing and leasing scheme in a cognitive virtu-
alized network under different system configurations. The
simulations were implemented by using Python-integrated
software with Keras and TensorFlow deep learning libraries
(Python 3.7, Anaconda 2020 distribution, The Anaconda Inc.,
Austin, Texas, USA, 2020).

A. SIMULATION PARAMETERS
We conducted simulations with the following parameters.
The number of CVNOs in the network is V = 3, and each
CVNO provides data services to 5 subscribers. There are
30 orthogonal channels in total, in which N li

v = 15 and
N le
= 15. The state transition probabilities of each LU in the

discrete-time Markov process were set to P10 = P01 = 0.2.
We set the value of the desired probability of detection at
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Pd = 0.9, and the probability of false alarm at Pf = 0.1. The
channel requirements of the SUs were uniformly generated
from the set {0, 1, 2, 3}, which means the SU might request
channels from this set with the same probability. We assume
the MNO sets prices for the resources in the current time slot
based on the demands of the CVNOs in the previous time
slot, which can be defined by using elastic pricing functions
as follows [21]:

π lev (t + 1) = α +
β

N le

(∑
v∈V

ylev (t)

)τ
(21)

where α, β, and τ are positive coefficients, and τ ≥ 1. This
equation indicates that the MNO intends to set a higher price
for a unit wireless channel when the demand increases. For
the pricing function of the leasing band, we use (α, β, τ ) =
(1, 0.5, 1.5). The price range for the leasing band was set to
1 ≤ π lev (t) ≤ 3. The MNO charges the CVNOs much lower
price for the channels in the licensed band than those in the
leasing band, that is π liv = 1. The benefit for serving the
SUs by using one channel was set at gv = 4. We assume
that each CVNO does not know the pricing strategy of the
MNO, or the leasing strategies of other CVNOs in the net-
work. Regarding energy harvesting, the average harvested
energy at a base station was set at µe = 5 energy packets.
The total energy capacity of a base station is Ebatv = 16
energy packets. Energy consumption for spectrum sensing
and data transmission were set at es = 1 and etr = 2,
respectively. As for the proposed DDQN algorithm, the
Q-network includes two hidden layers, each of which con-
tains 100 cells. The discount factor was set to γ = 0.99,
and the learning rate of the algorithm was set to η = 0.01.
We set ε = 1 at the beginning of the training process and
gradually decreased it to 0 at a rate of 0.01 per time slot.
We trained the network over 100 episodes of T = 2000
time steps each. In addition, the convergence condition was
defined as |Uep − Uep−1| < 0.005, where Uep denotes the
average utility that the CVNO obtains at episode ep. All the
results were obtained by averaging over a large number of
independent runs.

We compared the performance of the proposed spectrum
sensing and leasing scheme with the following schemes:
• Single-agent scheme: the CVNO employs only oneDRL
agent to learn the optimal policy. The agent will make
sensing and leasing decisions simultaneously at the
beginning of each time slot after observing the system
state.

• Myopic scheme: the CVNO aims to maximize its util-
ity in the current time slot. This scheme is equivalent
to our scheme when the discount factor is set to zero
(i.e., γ = 0).

• Random scheme: the CVNO makes decisions about the
sensing amount and the leasing amount randomly.

In the considered system, the first CVNO might employ
the proposed DDQN or the single-agent scheme algorithm,
whereas the second and the third CVNOs use the myopic and
the random schemes, respectively.

B. SIMULATION RESULTS
We first verify the convergence performance of the proposed
algorithm during the training process, as shown in Figure 5.
We can observe from the figure that the average utility for
the CVNO using the learning method increases with the
increment in the number of training episodes, and then grad-
ually converges at the 80th episodes. We can also see that
the proposed method can converge to the optimal policy
faster than the single-agent algorithm. This is because by
using the proposed method, the CVNO makes leasing deci-
sions after knowing the available amount of sensed spec-
trum. This can guarantee that the CVNO will not lease too
many expensive channels from the leasing band and thus
can improve its utility. Meanwhile, utility for the CVNOs
using non-learningmethods was unchangedwhen the number
of episodes increased. Furthermore, the DDQN agent can
provide the CVNO with the best performance, since it can
learn the environment’s dynamics during the training process.

FIGURE 5. Average utility from the different schemes as a function of the
number of episodes.

Figure 6 shows the impact of harvested energy on the
average utility for the CVNOs in the network. The average
harvested energy at each BS varied from 2 to 7 (energy pack-
ets). As depicted from the figure, the average utility obtained
by the CVNOs increased significantly with growth in the
number of energy packets that the BSs harvested from the

FIGURE 6. Average utility according to the average amount of harvested
energy.

VOLUME 9, 2021 52199



Q. V. Do, I. Koo: Deep Reinforcement Learning Based Dynamic Spectrum Competition

environment in each time slot. The reason is that the BSs can
store more energy in their batteries, so the CVNOs can lease
more resources from the MNO to serve their subscribers.
Thus, the CVNOs can earn more revenue, since they can sell
more resources to users.Moreover, theDDQNagent can learn
about the arrival of harvested energy through interaction with
the environment. Therefore, it can choose the appropriate
action in each time slot in order to maximize the utility for
the corresponding CVNO. As a consequence, the CVNO that
uses the proposed algorithm for spectrum sensing and leasing
can achieve the best performance.

Figure 7 shows the effect of the battery capacity of the
BSs on the performance of the proposed method in terms
of average utility. We can observe from the figure that a
larger battery capacity allows a BS to store more harvested
energy for further use. Hence, the CVNOs can request more
resources from the MNO in order to provide more services
to users, which results in an increase in the utility for each
CVNO. Compared with the myopic and the random schemes,
the utility achieved by the first CVNO dominates the other
schemes. To explain this, the CVNOwith the myopic scheme
aims to maximize its utility in the current time slot by
requesting as many resources as possible. However, due to
the limitation on harvested energy, this kind of action might
cause the corresponding BS to lack energy for future use,
which leads to lower utility. The CVNO with the random
scheme will request random spectrum sizes from the MNO
based on the remaining energy, the demands of its users, and
the available spectrum announced by the MNO. However,
traffic is time-varying, and the harvested energy and system
bandwidth have a stochastic feature, so the CVNO might not
request enough resources to serve the users in the current time
slot. Therefore, the final utility is low.

FIGURE 7. Average utility based on battery capacity in each BS.

We further examined the effect of the number of licensed
channels on the performance of the proposed algorithm.
In this case, the number of licensed channels was set at
N li
v ∈ [8, 16], as shown in Figure 8. We can see from the

figure that growth in the number of licensed channels in
the system can provide the CVNOs with better performance.
In particular, utility for the learning CVNO rises quickly as
N li increases. Meanwhile, utility for those using non-learning
methods also increases, but at a very low rate. The reason is

FIGURE 8. Average utility based on the number of licensed channels.

that theDDQNagent can learn the activities of the LUs during
the training process, and thus, it can guide the CVNO to select
better actions after interacting with the environment. As a
consequence, the proposed learning algorithm can provide
the CVNO with the best performance.

Figures 9 and 10 present the average utility for each
CVNO under the effect of false alarm probability Pf and
correct detection probability Pd . In this scenario, we change
the values of Pf and Pd to verify the performance of the
resource-leasing methods. As can be seen from Fig. 9, there
are significant decreases in utility when the probability of
false alarm rises from 0.1 to 0.5. Since the CVNOs select
actions based partly on the sensing results, a high false alarm
rate might cause CVNOs to select bad actions, which thus
results in lower utility. For example, the CVNOs might take
a risk and lease busy channels, which means the CVNOs do
not have enough resources for data transmissions. As a result,
the revenue gained from serving the users will be reduced

FIGURE 9. Average utility based on the probability of false alarm.

FIGURE 10. Average utility based on the probability of correct detection.
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significantly. Conversely, an increment in the probability of
correct detection can provide better utility to all CVNOs in the
network. This is because the MNO can allocate more unused
channels from the licensed band to the CVNOs for their
services. Therefore, the CVNOs might gain more revenue
by transmitting data to their subscribers. Furthermore, with
higher detection probability, the CVNO does not need to
request more channels from the leasing band, which might
cause the resource price to increase quickly, and hence, profit
will increase.

V. CONCLUSION
In this paper, we investigate the spectrum competition
problem in cognitive virtualized networks where multiple
CVNOs lease spectrum resources from an MNO in order
to provide data services to their subscribers. The CVNOs
compete for limited spectrum resources by announcing
the values of the spectrum sizes they are going to lease
from the MNO. The problem is formulated as a sequential
decision-making process, during which the CVNOs make
their sensing and leasing decisions despite uncertainties in
the users’ activities, in the amount of harvested energy, and
in the resource prices. We propose a DDQN-based frame-
work for efficient spectrum sensing and leasing so a CVNO
can maximize its long-term utility. With this method, neural
networks are used as function approximators to estimate
the value functions, which is useful for solving large-scale
problems. By using our proposed approach, the CVNO can
learn the optimal decision policy through interaction with the
network environment without knowing the system’s dynam-
ics in advance. The simulation results show that our proposed
method outperforms the other strategies in terms of average
utility.
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