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ABSTRACT Maximally flat (MAXFLAT) half-band filters usually have wider transition-band than other
filters although the frequency response is maximally flat (i.e., no ripples) in the passband and stopband. This
is due to fact that the maximum possible number of zeros at z = ±1 is imposed in half-band close form
solution, which leaves no degree of freedom, and thus no independent parameters for direct control of the
frequency response. This paper describes a novel method for the design of FIR half-band filters with an
explicit control of the transition bandwidth. The proposed method is based on a generalized Lagrange half-
band polynomial (g-LHBP) with coefficients parameterizing a 0-th coefficient h0 and allows the frequency
response of this filter type to be controllable by adjusting h0. Then, h0 is modeled as a steepness parameter of
the transition-band and this is accomplished through theoretically analyzing a polynomial recurrence relation
of the g-LHBP. This method also provides explicit formulas for direct computation of design parameters
related to choosing a desired filter characteristic (by a reasonable trade-off between the transition-band
sharpness and passband & stopband flatness). The examples are shown to provide a complete and accurate
solution for the design of such filters with relatively sharper transition-band steepness than other existing
half-band filters.

INDEX TERMS Maximally flat FIR filters, FIR digital filters, interpolator, closed-form polynomial,
transition-band steepness.

I. INTRODUCTION
Maximally flat (MAXFLAT) filters are one of the
most important types of non-recursive finite impulse
response (FIR) filters and are applied when high stopband
attenuation or smooth frequency response is desired [1]–[5].
The basic idea for the design of MAXFLAT FIR filters is
to use a mathematically proved closed-form solution which
satisfies MAXFLAT constraints at the ends of the frequency
band and is mapped to the transfer function for the com-
putation of coefficients of filters [6]–[13]. However, classi-
cal design involves approximation of the desired frequency
response by some suitable closed-form polynomial [14]–[18]
because such a closed-form solution mainly focuses on
the flatness of the filter but not on the exact frequency
response [11]–[13]. Several methods and implementation
tricks have been proposed for the design of MAXFLAT FIR
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half-band filters [15], [16], [19], [20]. These filters have exact
cutoff frequency at the middle of the frequency band ω =
π / 2 and allow computationally efficient implementations
because almost half of their impulse response (IR) coeffi-
cients are zeros. However, their transition-band is relatively
wider than other filters and can be narrowed only by increas-
ing the length of the filter. Most of the popular MAXFLAT
FIR half-band filters are designed by the Lagrange half-
band polynomial (LHBP) which has the maximum number
of zeros at z = −1 [21], [22]. This class of filters has many
applications such as filter banks, wavelets-based compres-
sion, and multirate techniques [15], [16], [19], [23], [24].
However, similarly to the existing MAXFLAT FIR half-
band filters, the LHBP filters do not also have any inde-
pendent (‘‘free’’) parameters. In other words, there is no
direct control over the frequency response of LHBP filters
in order to achieve a reasonable trade-off between stopband
attenuation and the width of the transition-band. This is
due to fact that the maximum possible number of zeros
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at z = −1 is imposed on a half-band closed form solution,
which leaves no degree of freedom, and thus no independent
parameters.

To address such a narrow transition band issue in designing
FIR filters so far, there have been a lot of efforts in the
direction of frequency response control by utilizing vari-
ous design technologies [14]–[19], [25]–[29]. Rodrigues and
Pai introduced a sharp transition FIR filter design using
sinusoidal functions of frequency to evaluate the impulse
response coefficients in closed form [25]. This method
allows closed-form parameters for simple and direct compu-
tation, but there occur non-negligible amplitude distortions
in the stopband and passband. San-José-Revuelta et al. have
reported an intelligence metaheuristic-based iterative method
using multi-fitness function combined with a weighted error
function [18]. However, this filter design has the disadvantage
of requiring complicated and enormous computation process-
ing for adjusting the ripples of the bands and the width of
the transition-band. In contrast to previous studies [18], [25],
Frequency Response Masking (FRM)-based filters outper-
form other designed filters in terms of the transition band-
width and maximum passband ripple for a given order of
filter within an acceptable limit [17], [19], [28]. Recently,
Roy and Chandra reported enhanced FRM method using an
interpolated band-pass filter, resulting in novel FRM-based
filters with more excellent frequency characteristics [28].
However, this filter bank structure-based design requires high
design complexity to obtain an interpolated prototype filter
and two masking filters which configure the FRMfilter bank.
Moreover, there occur serious problems such as high group
delay and the generation of aliasing band, and the magnitude
response of this filter type never passes through the half-band
cutoff frequency ω = π / 2. Design methods mentioned
above focus on realizing narrow transition band filters, but
not half-band filters with narrow transition bandwidth. FIR
half-band filter design should allow frequency control factors
for narrow transition-band by considering limited frequency
characteristics such that half of their coefficients are zero as
well as being symmetrical. Khan and Ohba [30], Khan [31]
reported FIR half-band filters with narrow transition-band
that have their points of flatness at the middle point between
the passband and stopband, but such a filter does not have any
independent parameters to control the frequency response and
the sharpness of the transition-band can be achieved with a
comparatively higher value of filter length. Ma et al. have
proposed a cascaded half-band filter design by controlling
stopband attenuation for a fixed transition bandwidth [16].
This multistage algorithm allows computation reduction of
more than 4% per input sample as compared to conventional
filters, but there exists the limitation of half-band filter design
because a heuristic threshold value is required to meet a spec-
ified narrow transition band. Hence, the half-band design is
needed for highly accurate filters with controllable frequency
characteristics – i.e., with a reasonable trade-off between
the transition-band sharpness and passband & stopband
ripples.

In this paper, our aim is to design FIR half-band filters with
controllable frequency responses. This is achieved by starting
with a closed-form half-band polynomial. Design regularity
is to impose zeros at z = −1 on the half-band polyno-
mial, and then, the number of zeros must be less than the
maximum possible. First, we present a generalized Lagrange
half-band polynomial (g-LHBP) whose all IR coefficients
are represented with a 0-th IR coefficient h0 for a given
order of filter. Then, through analyzing a linear recursive
relation of the g-LHBP, h0 is parameterized to directly control
the transition-band steepness (or width) of this filter type.
Using the new approach, we develop a design procedure
that is computationally more efficient and accurate than the
previous methods. Also, this new technique provides explicit
formulas for the performance evaluation of a resulting filter
and consequently, allows unusual flexibility in choosing a
best filter with a desired magnitude response characteristic
(namely, with trade-off between the transition-band sharpness
and passband & stopband flatness). Design of FIR half-band
filters through this new approach gives an additional insight
into the physical significance of some independent parame-
ters for an explicit control of the frequency response.

This paper is organized as follows. In Section II we
derive a generalized Lagrange half-band polynomial with h0.
In Section III, an objective control function is derived from
a recursive relation of the g-LHBP and analyzed to parame-
terize h0 as a steepness control factor of the transition-band.
Additionally, various formulas are proposed to design this
filter type efficiently and accurately with a narrow transition
band. In Section IV, design examples that demonstrate the
power of the new technique are shown. In addition, to show
the effectiveness of the proposed method, g-LHBP filters
are compared to existing state-of-art filters. Conclusions are
drawn in Section V.

II. GENERALIZED LAGRANGE HALF-BAND POLYNOMIAL
When Let H (z) be a general symmetric FIR half-band filter
of type II (odd number of odd-symmetric coefficients) with
the real impulse response hn of order 4K − 2, which can be
written as

H (z) = z−(2K−1)QK (z) (1)

by using the transfer function

QK (z) = 0.5+
∑K

n=1
h2K−2n(z−(2n−1) + z2n−1) (2)

whereQK (z) represents a zero-phase half-band lowpass filter.
Design of MAXFLAT FIR half-band filters for the filter type
of (2) can be easily realized by using some suitable closed-
form polynomial [10]–[13], [22] which is then mapped to
the filter function by certain transformations. Regularity is
imposed in the design of QK (z) by focusing QK (z) to have
zeros at z = −1, i.e., terms of the form (1+z−1). One of most
popular methods for designing MAXFLAT FIR half-band
filters of order 4K − 2 is to use a Lagrange half-band
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polynomial (LHBP) [21], [22] as below

QK (z)LHBP = zK
(
1+ z−1

2

)2K

×

{∑K−1

`=0
dK ,`

(
2− z− z−1

4

)`}
(3)

where dK ,` is

dK ,` =
(
K + `− 1

`

)
=

(K + `− 1)!
(K − 1)! × `!

(4)

The LHBP has a maximum number of zeros at z = −1, and
thus, it has a maximally flat response at ω = π , i.e.,

∂kQK (ω)LHBP
∂ωk

∣∣∣∣
ω=π

= 0, k = 0, 1, 2, . . . , 2K − 1 (5)

It is shown that the LHBP filter does not have any inde-
pendent (‘‘free’’) parameters as described in (3) and there
is no direct control over the frequency response of the filter
obtained by the LHBP.

Let us define that QK (z) shown in (2) has 2(K – 1) zeros at
z = −1: i.e.,

∂kQK (ω)
∂ωk

∣∣∣∣
ω=π

= 0, k = 0, 1, 2, . . . , 2K − 3 (6)

The condition of (6) are imposed on (2), and using
Lagrange interpolation at coincident points [30], [31] so that
QK (z) has a recursive relationship similar to (3), a closed-
form half-band polynomial, called a generalized LHBP
(g-LHBP), can be obtained in terms of h0 as (see (A.12)
in Appendix A)

QK (z) = zK−1
(
1+ z−1

2

)2(K−1) {∑K−2

`=0
dK−1,`

×

(
2− z− z−1

4

)`
+ (−1)K−124K−2h0

×

[
1
2

(
2− z− z−1

4

)K−1 (
2− z− z−1

4

)K]}
(7)

It is seen that (7) is identical to LHBP of (3) if h0 is given as

h0 = (−1)K−1
dK ,K−1
24K−2

(8)

where (8) is obtained by additionally imposing a zero at
z = −1 on (7). For a general closed-form expression,
mapping (7) to

QK (z) = zK−1
(
1+ z−1

2

)2(K−1)

{
gK +

∑K

`=1
gK−`

(
z` + z−`

)}
(9)

we can obtain the interpolation coefficients g′`s(` =

0, 1, 2, . . . ,K ) in terms of h0 and K as (see (A.13)

in Appendix A)

g` = (−1)K−`
∑`

j=2

dK−1,K−j
22(K−j)

(
2(K − j)
l − j

)
+ (−1)`+122K−1h0

{(
2(K − 1)
`− 1

)
−

1
2

(
2K
l

)}
(10)

Computation of IR coefficients hn ’s, using (10), was reported
in [13], [24]. In a similar way, mapping (9) into (2), we can
get

hn =
1

22(K−1)

{∑K
`=0

(
2(K − 1)
n− `

)
g`

+

∑K

`=1

(
2(K − 1)
n− `− K

)
gK−`

}
,

n = 1, 2, 3, . . . , 2K − 2 (11a)

or equivalently,

h2n−1 = 0 and h2n =
1

22(K−1)

{∑K

`=0

(
2(K − 1)
2n− `

)
g`

+

∑K

`=1

(
2(K − 1)

2n− `− K

)
gK−`

}
,

n = 1, 2, 3, . . . ,K − 1 (11b)

where
(
A
B

)
= 0, if A < B or B < 0.

Note that when substituting (10) into (11a), the odd
number indexed coefficients are 0, as shown in (11b) –
i.e., h2n−1’s= 0. From (7) the frequency response of this class
of filters can be also expressed in terms of K and h0 as

QK (ω) =
(
cos

ω

2

)2(K−1) {∑K−2

`=0
dK−1,`

×

(
sin
ω

2

)2`
+ (−1)K−124K−2h0

×

[
1
2

(
sin
ω

2

)2(K−1)
−

(
sin
ω

2

)2K]}
(12)

It is shown from (12) that the frequency response is ever con-
trollable by introducing h0 as a parameter and thus, various
g-LHBP filters with trade-off between transition bandwidth
and magnitude flatness can be obtained. In addition, (11),
using (10), also allows direct computation of the coefficients
if h0 is chosen. However, for a given order of filter 4K − 2,
there are an infinite number of FIR half-band filters due to
the large dynamic range of h0. Thus, h0 must be modeled as a
controllably independent parameter which can be optimized
and determined to obtain such a filter with the desired magni-
tude characteristic. This will be explained in the next section.

III. OBJECTIVE CONTROL FUNCTION OF G-LHBP:
TRANSITION-BAND STEEPNESS PARAMETER h0
Now, through the analysis of (12), we consider how to
derive h0 as a steepness parameter for the direct control
of the transition-band edges. Design regularity is here to
determine h0 so that g-LHBP filters have tolerant magnitude
distortion (ripples) but narrow transition band.
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From the recursive relation of QK (z) (see (A.2) in
AppendixA) it is shown thatAK (z) plays a role as an objective
function for the extension of QK−1(z)LHBP to QK (z) (where
QK−1(z)LHBP andAK (z) are also indicated in (A.3) and (A.12)
of Appendix A, respectively). Remarkably, QK (ω) described
in (12) can be also rewritten as a recursive relation

QK (ω) = QK−1(ω)LHBP + AK (ω) (13)

where QK−1(z)LHBP and AK (ω) are given, respectively, as

QK−1(ω)LHBP =
(
cos

ω

2

)2(K−1)∑K−2

`=0
dK−1,`

(
sin
ω

2

)2`
(14)

AK (ω) = (−1)K−122(K−1)h0 (cosω) (sinω)2(K−1)

(15)

(Here AK (ω) has been simplified with sinω = 2sinω2 cos
ω
2 ).

Hence, we can be sure from (13) that for a given K , since
QK−1(ω)LHBP is a known MAXFLAT lowpass function,
AK (z) characterizes QK (ω) in terms of h0. In other words,
we can describe the effect of h0 on QK (ω) through the
analysis of AK (ω). From (15) AK (ω) passing through zero
value at ω = 0, ω = π / 2, and ω = π exhibits a ‘‘anti-
symmetric sinusoid-like shape’’ with respect to π / 2 as the
center point in the range of 0≤ ω ≤ π . Thus, there are
two anti-symmetric peak values that are available to assist
in identifying influential observations of AK (ω) in terms of
h0 on QK (ω). If ω+p and ω−p are the two peak frequencies of
AK (ω), we can obtain in terms of K , by solving ∂AK (ω) /
∂ω = 0 at ω = ω±p , as

ω±p = arccos
(
±

1
√
2K − 1

)
, 0 < ω+p < π/2 < ω−p < π

(16)

and then, the two peak values AK (ω+p ) and AK (ω−p ) are
obtained, by substituting (16) into (15), as

AK (ω±p ) = ±(−1)
K−122K−1h0

×
1

√
2K − 1

(
1−

1
(2K − 1)

)K−1
(17)

where ω±p (double signs in same order) denotes ω+p and ω−p ,
and is related to ω+p + ω

−
p = π from cos(ω+p + ω

−
p ) = −1.

Especially, since both QK−1(z)LHBP and AK (ω) is anti-
symmetric with respect to ω = π / 2 as the center point in
0≤ ω ≤ π ,QK−1(ω±p )LHBP andAK (ω

±
p ) satisfy the following

properties:

QK−1(ω+p )LHBP + QK−1(ω
−
p )LHBP = 1 (18a)

AK (ω+p )+ AK (ω
−
p ) = 0 (18b)

From the relationship of (13), these anti-symmetric properties
at ω = ω+p and ω−p result in

QK (ω+p )+ QK (ω
−
p ) = 1 (19)

Substituting (17) into (13) withω = ω±p and simplifying with
respect to h0, we can obtain

h0 =
QK (ω±p )− QK−1(ω

±
p )LHBP

(−1)K−122K−1
(

1
√
2K−1

) (
1− 1

(2K−1)

)K−1 (20)

where two h0’s (double signs in same order) have an equiv-
alent value since QK (ω+p )− QK−1(ω+p )LHBP = −QK (ω

−
p )+

QK−1(ω−p )LHBP from the properties of (18a) and (19). It is
indicated that using (20) to get h0 in (12) yields QK (ω) that
exactly passes through QK (ω+p ) and QK (ω−p ) at ω = ω+p
and ω−p . Thus, using ω

+
p and ω−p as two transition-band

edge frequencies of this filter (i.e., upper and lower edge
frequencies), we can define a transition-band slope of this
class of g-LHBP filters as below

slopeK =
QK (ω−p )− QK (ω

+
p )

ω−p − ω
+
p

(21)

It is seen, based on (21), that h0 shown in (20) can be used
as a steepness parameter to directly control the transition-
band slop represented with QK (ω+p ) and QK (ω−p ) for a
given K . Consequently, substituting the upper edge
QK (ω+p ) = γ (then, the lower edge becomes QK (ω−p ) = 1
−γ from (19)) into respectively (20) and (21), we can rewrite
h0 and slopeK in terms of γ as

h0,γ =
γ − QK−1(ω+p )LHBP

(−1)K−122K−1
(

1
√
2K−1

) (
1− 1

(2K−1)

)K−1
(22)

slopeK ,γ =
1− 2γ

arccos
(
1− 2

2K−1

) (23)

where ω−p − ω+p has been obtained by using (16)
on product-to-sum transformation (cosω−p ) (cosω+p ) =
1/2 {cos(ω−p − ω+p ) cos(ω−p + ω+p )}. Then, it can be
seen from (23) that the steepness of the transition-band
is controllable by changing the upper-edge parameter γ
for a given K . To determine h0,γ according to (22),
so that a g-LHBP filter has a relatively narrower transi-
tion band than a MAXFLAT g-LHBP filter, γ has to be
chosen within the limits of QK (ω+p )MAXFLAT < γ ≤ 1

FIGURE 1. Design procedure to obtain g-LHBP filters with narrow
transition band.
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where QK (ω+p )MAXFLAT can be obtained according to (8),
(12), and (16) (respectively, h0, QK (ω)MAXFLAT , and
ω+p ). Then, note that for a given K , h0,γ computed
by substituting γ = QK (ω+p )MAXFLAT into (22) is
equal to that h0 by (8), and QK (ω) using h0 with
γ > 1 has sharper transition-band but larger distor-
tion response in the passband and the stopband.Based on
the results so far, Fig. 1 shows a design procedure to
permit direct and simple computation of coefficients of
g-LHBP filters.
Performance evaluation: Choosing h0,γ with γ within

QK (ω+p )MAXFLAT < γ ≤ 1.0 may cause overshoot and under-
shoot in the passband and the stopband, respectively. Hence,
it is necessary to verify whether such distortions are tolerant
or not. To calculate the passband and stopband peak errors
due to using (22), let ω+d and ω−d be the peak overshoot and
undershoot frequencies. Then, QK (ω

+

d ) and QK (ω
−

d ) become
peak values in the passband and the stopband, respectively.
Solving ∂QK (ω) / ∂ω = 0 at ω = ω±d , ω

±

d can be obtained in
terms of K and h0,γ as

ω±d = arccos(
±

√
1

2K − 1

{
1+ (−1)K−1

(2K − 3)
24(K−1)h0,γ

(
2(K − 2)
K − 2

)})
(24)

where ω±d (double signs in same order) denotes ω+d and ω−d ,
satisfying such that ω+d + ω

−

d = π from cos(ω+d + ω
−

d ) =
−1. In the similar way of deriving (19), QK−1(ω

±

d )LHBP and
AK (ω

±

d ) have the following properties, respectively

QK−1(ω
+

d )LHBP + QK−1(ω
−

d )LHBP = 1 and

AK (ω
+

d )+ AK (ω
−

d ) = 0 (25)

to yield

QK (ω
+

d )+ QK (ω
−

d ) = 1 (26)

From (26) it can be seen that the maximum overshoot ripple

δ
ma x
K ,γ due to QK (ω

+

d ) is equal to the magnitude of the peak
undershoot QK (ω

−

d ) as follows:

δ
ma x
K ,γ = QK (ω

+

d )− 1 = −QK (ω
−

d ) (27)

where δ
ma x
K ,γ is zero (i.e., δ

ma x
K ,γ = 0) if h0,γ is chosen accord-

ing to (8) for the design of g-LHBP filters with MAXFLAT
response. From (16) and (24) the inequality relation between
ω±p and ω±d is 0 < ω+d < ω+p < π /2 < ω−p < ω−d <

π and this results in QK (ω
+

d ) > QK (ω+p ) > QK (ω−p ) >
QK (ω

−

d ) due to AK (ω+p ) > AK (ω
+

d ) > AK (ω
−

d ) > AKω−p ).
Fig. 2, in the case of K = 3, shows these parameters on the
frequency responses of two g-LHBP filters where two h0’s
have been chosen according to (22) with γ = 1.0 and (8)
(equal to (22) with γMAXFLAT = 0.8667), respectively. It is
shown that using (22) allows g-LHBP filters with narrow

FIGURE 2. The frequency responses of two g-LHBP filters for a given
K = 3; MAXFLAT filter (black solid line) and narrow transition band filter
(red-bold line).

FIGURE 3. The frequency responses due to γ for a given K = 4 : A4(ω).

FIGURE 4. The frequency responses due to γ for a given K = 4: Q4(ω).

transition band but distortion such as overshoot and under-
shoot in the passband and the stopband, Hence, there still
remains whether or not this undesired distortion due to the use
of h0,γ is within the limit acceptable to the design of such
filters with tolerant magnitude distortion but narrow transi-
tion band. Such performance evaluations are verified through
design examples discussed in the next section.

IV. DESIGN EXAMPLES
In this section, through the design examples of g-LHBP low-
pass filters, we demonstrate the usefulness of the proposed
method, and verify that that the performance parameters
derived above are accurate.
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TABLE 1. Related parameters of Fig. 3 and Fig. 4.

For example, in the case of K = 4 (i.e., the order of filter
is such that 4K − 2 = 14), a general form for the g-LHBP of
order 14 can be given from (9) as

Q4(z) = z3
(
1+ z−1

2

)6 {
g4 +

∑4

`=1
g4−`(z` + z−`)

}
(28)

Then, g′`s(` = 0, 1, 2, . . . , 4) are obtained from (10) as

g0 = 26h0, g1 = −6 · 26h0, g2 = 3/8+ 16 · 26h0,

g3 = −9/4− 26 · 26h0, g4 = 19/4+ 30 · 26h0 (29)

to yield the transfer function of the form shown in (2), which
is expressed as

Q4 (z) = h0z−7 +
(

3
29
− 5h0

)
z−5 +

(
−25
29
+ 9h0

)
z−3

+

(
75
28
− 5h0

)
z−1+0.5

(
75
28
− 5h0

)
z

+

(
−25
29
+ 9h0

)
z3 +

(
3
29
− 5h0

)
z5 + h0,γ z7

(30)
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FIGURE 5. The frequency responses of g-LHBP filters due to K : γ = 0.9.

FIGURE 6. The frequency responses of g-LHBP filters due to K : γ = 1.0.

where h2n(n = 1, 2, 3) is obtained by substituting (29)
into (11b) with K = 4. Note that the odd number indexed
coefficients of the half-band filter given by (2) are zero – i.e.,
h2n−1(n = 1, 2, 3). The frequency response of Q4(z) is
such that from (13) Q4(ω) = Q3(ω)LHBP + A4(ω) where
Q3(ω)LHBP and A4(ω) are given, respectively from (14)
and (15), as

Q3(ω)LHBP =
(
cos

ω

2

)6 {
1+ 3

(
sin
ω

2

)2
+ 6

(
sin
ω

2

)4}
(31)

A4 (ω) = −h026 (cosω) (sinω)6 (32)

Then, h0 are obtained, by substituting K = 4 into (22),
as

h0,γ = −

√
7
7

210 · 33

{
γ − Q3(ω+p )LHBP

}
(33)

where choosing K = 4 yields ω+p = 0.3766π and
Q3(ω+p )LHBP = 0.8220 from (16) and (31), respectively.
To show the effectiveness of the proposed method, the per-
formance evaluation is carried out with four g-LHBP fil-

FIGURE 7. The performance comparison (from Table 3 ) for a given K
and γ : |slopeK ,γ |.

FIGURE 8. The performance comparison (from Table 3 ) for a given K
and γ : δmax

K ,γ .

ters using four h0,γ ’s with γ = MAXFLAT, 0.9, 0.95, and
1.0 where γ = MAXFLAT means the use of (8) for h0,γ –
i.e., h0,γ = h0 = −d4,3/ 214 that is equal to substituting
γMAXFLAT = 0.8592 into (33). Fig. 3 and Fig. 4 shows A4(ω)
and Q4(ω) due to four h0,γ ’s and the related parameters are
also indicated in Table 1. It is shown that the g-LHBP filters
can have, by controlling h0,γ in (30), tolerant distortions

but relatively narrow transition bands – i.e., 0 < δ
ma x
4,γ ≤

0.0610 in 0.8592 < γ ≤ 1.0 but 2.9117 < |Slope4,γ | ≤
4.0527. Especially, taking γ = 0.9 yields the g-LHBP filter
that has an approximately flat magnitude response similar to
the MAXFLAT FIR filter (substituting γMAXFLAT ) but rela-
tively narrower transition band.

Table 2 indicates g`’s and hn’s of two filters using h0,γ ’s
with γMAXFLAT and γ = 1.0 where g`’s and hn’s have been
chosen according to (10) and (11), respectively.

For additional examples, Fig. 5 and Fig. 6 show g-LHBP
filters with various K , and the related parameters of the
filters are also indicated in Table 3. It can be found that as
γ increases for a given K , the steepness of the transition-
band slope increases rapidly but the amplitude distortion

(δ
ma x
K ,γ ) increases very slightly. The more K increases, the
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TABLE 2. Coefficients of the two g-LHBP filters for K = 4.

TABLE 3. Related parameters of Fig. 5 and Fig. 6 for γMAXFLAT , γ = 0.9, and γ = 1.0.

greater effect it can have, as shown in Fig. 7 and Fig. 8 that
demonstrates the performance of g-LHBP filters for a given
K and γ . In addition, Table 4 shows the comparison of the
proposed method with the previous state-of-the-art works,
where examples given in [16]–[19], [25], [28] have been
considered for comparison purposes. It can be seen that the
g-LHBP filters outperform the other designed filters in terms
of transition bandwidth and peak-to-peak passband/stopband
ripples. Particularly, it also appears the FRM-based filter

suggested by Roy and Chandra [28] has relatively narrow
transition bandwidth as compared to the g-LHBP filter, but
non-negligible ripples take place in the stopband apart from
complicated problems due to FRM bank structure-based fil-
ter form. Consequently, these examples demonstrate that
the proposed method derives flexible FIR half-band filters
with controllable frequency characteristics – i.e., with a rea-
sonable trade-off between the transition-band sharpness and
passband & stopband ripples.
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TABLE 4. Comparison of proposed g-LHBP filter and previous narrow transition-band filters.

V. CONCLUSION
The Problems with wide transition-band always arise in
MAXFLAT FIR half-band filter design which leaves no
degree of freedom (i.e., independent parameters) to control
the frequency response by some closed-form polynomial.

In this paper, we have proposed a new method to design
FIR half-band filters with an explicit control of the transition-
band steepness. For this purpose, we have developed a
generalized Lagrange half-band polynomial parameterizing
0-th coefficient h0 and have provided a solution to use h0
as a transition-band steepness parameter of this filter type.
In addition, new formulas have been given for direct and sim-
ple computation of parameters in closed form. The examples
were also shown to verify the performance of this class of
filters with tolerant ripple but relatively narrower transition
band. Hence, a solution to the problem encountered in the
previous methods is found.

APPENDIX A
DERIVATION OF THE G-LHBP
From (2) the transfer function of order 4K − 2(= 2N ) can be
rewritten by

QK (z) = h0z−(2K−1) + h2z−(2K−3) + . . .+ h2K−4z−3

+ h2K−2z−1 + 0.5+ h2K−2z++h2K−4z3

+ . . .+ h2z2K−3 + h0z2K−1 (A.1)

The flatness condition of (6) is imposed on (A.1)-i.e.,
2(K− 1) zeros at z = −1, and using Lagrange interpolation

at coincident points [24], [30], QK (z) has a recursive relation
similar to (3) and consequently, can be expressed by using an
objective function AK (z) for the extension of QK−1(z)LHBP to
QK (z) as below

QK (z) = QK−1(z)LHBP + AK (z) (A.2)

where QK−1(z)LHBP is a LHBP filter of order 4K − 6, which
is obtained from (3) as

QK−1(z)LHBP = zK−1
(
1+ z−1

2

)2(K−1)

×

∑K−2

`=0
dK−1,`

(
2− z− z−1

4

)`
(A.3)

and the objective function AK (z) is defined by using two
unknown coefficients cK−1 and cK as

AK (z) = zK−1
(
1+ z−1

2

)2(K−1)

×

{
cK−1

(
(2− z− z−1)

4

)K−1
+ cK

(
(2− z− z−1)

4

)K}
(A.4)

From (A.2) QK (z) can be rewritten as

QK (z) = zK−1
(
1+ z−1

2

)2(K−1)
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×

{∑K−2

`=0
dK−1,`

(
2− z− z−1

4

)`
+ cK−1

(
(2− z− z−1)

4

)K−1
,

+ cK

(
(2− z− z−1)

4

)K}
(A.5)

For mapping this polynomial into a general form of (11),
using the transformation(

2− z−1 − z
4

)`∣∣∣∣∣
z=ejω

=
1
22`

{(
2`
`

)
+ 2

∑`

j=1
(−1)j(

2`
`− j

)
zj + z−j

2

∣∣∣∣
z=ejω

}
(A.6)

on (A.5) and simplifying in a similar way of [10], we can
obtain g`’s which are expressed in terms of cK−1 and cK as

g` = (−1)K−`
∑`

j=2

dK−1,K−j
22(K−j)

(
2(K − j)
`− j

)
+(−1)K−`

{
cK−1
22(K−1)

(
2(K − 1)
`− 1

)
+

cK
22K

(
2K
`

)}
(A.7)

where
(
A
B

)
= 0, if A < B or B < 0.

From (A.7) and (13) g0, g1, h0, and h1 are given respec-
tively as

g0 = (−1)K
cK
22K

and g1 = (−1)K−1

×

{
cK−1
22(K−1)

+
cK
22K

(
2K
1

)}
(A.8)

h0 =
g0

22(K−1)
and h1 =

1
22(K−1)

×

{(
2(K − 1)

1

)
g0 + g1

}
= 0 (A.9)

where h1 = 0 results from h2n−1’s = 0 given in (A.1).
Substituting (A.8) into (A.9) yields cK−1 and cK which are
expressed in terms of h0 as

cK−1 = (−1)K−124K−3h0 (A.10)

cK = (−1)K24K−2h0 (A.11)

By substituting these results into (A.4), (A.5), and (A.7),
we can have respectively

AK (z) = (−1)K−124K−2h0zK−1
(
(1+ z−1)

2

)2(K−1)

×

{
1
2

(
(2− z− z−1)

4

)K−1
−

(
(2− z− z−1)

4

)K}
(A.12)

QK (z) = zK−1
(
1+ z−1

2

)2(K−1) {∑K−2

`=0
dK−1,`

×

(
2− z− z−1

4

)`
+ (−1)K−124K−2h0

×

[
1
2

(
2− z− z−1

4

)K−1
−

(
2− z− z−1

4

)K]}
(A.13)

g` = (−1)K−`
∑`

j=2

dK−1,K−j
22(K−j)

(
2(K − j)
`− j

)
+(−1)2K−1−`22K−1h0

{(
2(K − 1)
`− 1

)
−
1
2

(
2K
`

)}
= (−1)K−`

∑`

j=2

dK−1,K−j
22(K−j)

(
2(K − j)
`− j

)
+(−1)`+122K−1h0

{(
2(K − 1)
`− 1

)
−
1
2

(
2K
`

)}
(A.14)
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