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ABSTRACT In eukaryotic cells, Piwi-interacting RNAs (piRNAs) are the type of short chain non-coding
RNA molecules, which interconnect with PIWI proteins. It performs various cellular and genetic functions
such as gene-specific protein translation, expression regulation, maintenance, and formulation of germ cells.
Seeing the prominent contribution of piRNA in eukaryotic organism cells, many attempts were made to
identify it computationally, however, unsatisfactory results were obtained. So, it is requisite to extend the
concept of a computational tool in such a way that accurately represents piRNA. In this regard, intelligent
and high discriminative deep learning i.e., the convolutional neural network based sequential-computational
model known as ‘‘piRNA-CNN’’ is carried out for the prediction of piRNA. RNA sequences are mathemat-
ically expressed using the natural language processing method namely: word2vec in order to get prominent,
relevant, and high variated numerical descriptors. The proposed ‘‘piRNA-CNN’’ model yields an accuracy
of 93.83% for the first-layer in which the provided query RNA molecule is predicted as non-piRNA or
piRNA. In case of the piRNA, the proposed model identified the query as mRNA deadenylation or without
deadenylation in the second layer, and achieved 91.19% of accuracy. The obtained outcomes authenticated
that the piRNA-CNN model exposed substantial results matched to the current tools stated in the literature,
so far. It is further expected that the suggested predictive tool will assist scientists and researchers to design
improved computational tools.

INDEX TERMS RNA, ensemble learning, genetic algorithm, word2vec, CNN.

I. INTRODUCTION
In eukaryotic cells, Piwi-interacting RNAs (piRNAs) are the
leading group of short chain non-coding RNA molecules
with a length of 24–31 nucleotides long polymer [1]. Var-
ious genomic and cellular functions including transposon
silencing, gene expression regulation, maintenance and for-
mulation of germ cells, and specific protein translation are
performed by piRNAs. Numerous attempts were carried out
and finally revealed that piRNAs are involved in various
kinds of cancer; so, the study and knowledge regarding such
type of RNAs are very imperative in certain areas such as
RNA biology and drug development [2]–[4]. In a sequel,
Lee et al., and Nishibu et al., performed several experimental
methods in order to categorize whether an RNA molecule is
piRNAs or not [5], [6]. However, only relying on laboratory
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experimental methods for sequence analysis are inadequate,
inefficient; expensive as well as insensitive in some situ-
ations. Viewing the importance of piRNAs, computational
approaches are essential to make possible the analysis of
piRNAs in a more precise and efficient way. In the real
world, there are two types of piRNA are reported, one is
carried out deadenylation to target mRNA while the other
one is without deadenylation [7]. However, the experimen-
tal methods are failed to explicitly explain the difference
between these two types. Researchers have only concentrated
on classifying piRNAs and non-piRNAs and introduced var-
ious computational models. Zhang et al. employed a support
vector machine (SVM) and k-mer approach for proposing
an automated model known as piRNAs predictor [8]. Later
on, Wang et al. utilized SVM and transposon interaction for
discrimination of piRNAs [9]. Likewise, Luo et al., used
physicochemical properties of RNA [10]. In a sequel, Li et al.,
adopted the notion of ensemble learning for the prediction of
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piRNAs [11]. Recently, Liu et al., proposed a two-layer auto-
matic model for the prediction of piRNAs and their functional
types [1]. Similarly, li et al., introduced a predictor known as
‘‘piRNAPred’’ to identify piRNA and their function types by
support vector machine [12]. Khan et al., suggested a deep
neural network (DNN) based computational model called
‘‘2L-piRNADNN’’ utilizing physicochemical behavior of
RNA and di-nucleotide auto covariance as feature extraction
techniques [13]. Here, an effort was made to propose a com-
putational intelligent model for discrimination of piRNA and
its types, adopting contemporary machine learning and deep
learning approaches. In the case of Machine learning, two
distinct nature of RNA sequences formulation methods were
applied to extract numerical features. The extracted feature
spaces are then provided to individual learning algorithms.
Further, the predictions of individual learners are merged
using a bio-inspired evolutionary genetic algorithm in order
to correctly identify the desired class. In Deep Learning,
word2vec method based feature space is used in combination
with the CNN model. The analysis of the developed model
is carried out on two benchmark datasets to demonstrate the
stability and generalization strength of the model. As shown
in Table 2 and 3, the Deep learning approach obtained suc-
cessful results than the Machine learning approaches and
existing methods.
• Natural language processing method ‘‘word2vec’’ is
used for expressing RNA sequences.

• Compared machine learning algorithms with deep
learning algorithm.

• 7-fold is applied for assessment.
• Various performace metrics are used for examining the
algorithms performance.

• High throughput intelligent computational predictor is
developed for piRNAs.

II. MATERIALS AND METHODS
A. BENCHMARK DATASET
In a biological system, Chou’s 5-step rules become a bench-
mark for introducing a sequence-based statistical predictor
[14]. The first and main step is the selection or construction
of a valid dataset according to the problem that represents
the motif of the target class. Here, the Liu et al dataset is
selected as a benchmark dataset S Liu et al., [1]. It can be
mathematically expressed as:{

S = S+ + S−

S+ = S+inst + S
+

non−inst
(1)

where the negative subset consists of 1,418 non-piRNAs seg-
ments; the positive subset contains 1,418 piRNAs segments;
the subset is composed of 709 samples of piRNAs segments,
which have the function of instructing target mRNA deadeny-
lation [7]; while the remaining 709 samples subset belongs to
without such function.

In this study, efforts were made to analyze various machine
learning and deep learning algorithms in order to develope

an intelligent computational model for the identification
of piwi-interaction RNA and their types. RNA sequences
are also formulated with via discrete and natural language
processing methods. Details are mentioned below:

B. MACHINE LEARNING APPROACH
Here, we used various feature extraction methods and
classifiers to work as baselines for comparison with the
proposed deep-learning approach.

1) Feature Extraction Methods
The second step of Chou’s rules is how to mathemat-
ically express DNA/RNA instances with an operative
numerical formulation, which can correctly return the
correlation with the desired class to be predicted. How-
ever, machine learning algorithms are designed in such
a way that merely uses the vector. In order to collect
only numeric features in the form of a vector from
biological sequences, the discrete feature extraction
method pseudo amino acid composition (PseAAC) was
used [15]–[19]. The PseAAC concept has been broadly
and rapidly exploited in the area of proteomics. Later
on, this concept was extended to RNA/DNA sequences
in the form of pseudo K-tuple nucleotide composi-
tion (PseKNC) [20]–[28]. It is also used for genome
analysis. Accordingly, the idea of PseKNC has been
implemented for expressing RNA sequences using dis-
crete methods di-nucleotide composition (DNC) and
tri-nucleotide composition (TNC).
• Di-nucleotide Composition (DNC) is a feature-
encoding scheme, which expresses an RNA
sequence with the help of two consecutive
nucleotides pair. The occurrence frequency of
each pair, such as N1N2 represents the 1st pair,
N2N3 denotes the 2nd pair, and so forth, is com-
puted. Finally, 4 × 4 = 16D resultant features
space is generated [22], [25], [29]. DNC can be
mathematically formulated as below:

S = [f (AU )f (AG)f (AC) . . . .f (UU )]T (2)

S = [f di1 , f
di
2 , f

di
3 , . . . .f

di
16]

T (3)

where f di1 = f (AU ) is the frequency of AU , f di2 =
f (AG) is the frequency of AG; and so forth, T is a
transpose.

• Tri-nucleotide Composition (TNC) is another
feature-encoding scheme, which represents RNA
sequence with the help of three consecutive
nucleotides pair. The frequency of each pair is cal-
culated. For example, in RNA sequence, the first
pair is N1 N2 N3, the second pair is N2 N3 N4,
and so forth, consequently, 4 × 4 × 4 = 64D
corresponding features vector is produced [20],
[25]. The TNC can be numerically expressed as:

S = [f (AAA)f (AAU ), . . . ., f (UUU )]T (4)

S = [f 3−tuple1 , f 3−tuple2 , . . . .f 3−tuple64 ]T (5)
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where f 3−tuple1 = f (AAA) is the frequency of AAA,
f 3−tuple2 = f (AAC) is the AAC in RNA sequences;
and so forth.

2) Classification Algorithms The next step of Chou’s
rules is what type of classification hypotheses imple-
ment in order to execute the training and pre-
dicting process effectively. Here, various supervised
learning hypotheses are adopted as an operational
engine. These learning hypotheses were implemented
in numerous fields of pattern recognition, compu-
tational biology, data mining, and bioinformatics
[15], [26], [27], [30]–[39]. In this study, we applied var-
ious powerful learning algorithms namely: K-nearest
neighbor (KNN), Support Vector Machine (SVM),
Probabilistic neural network (PNN), Random for-
est (RF), and Generalize regression neural network
(GRNN). The basic idea of these algorithms has been
explained and cited in the previous works [16], [25],
[40]–[50]

3) Ensemble LearningEnsemble classification is a learn-
ing technique that is using for enhancing the prediction
rate of individual learners as well as reducing gen-
eralization errors. Mostly, ensemble classification has
obtained efficient performance compared to individual
learner based systems due to its discrimination power,
because it compensates the weakness of individual
learners by each other [51]–[53]. However, there is
no predefined rule that how to combine the number
of learners in an efficient way. A number of different
approaches are formulated to combine the learners.
The simplest one is to fuse a large number of learners
and then choose the optimal combination. Boosting is
another ensemble technique in which, the single learner
is re-trained iteratively in order to reduce classification
error. Ensemble learning is mostly performed in two
different ways, namely: majority voting and weighted
voting. Majority voting is a simple approach in which
a decision is made on the basis of the majority in a pool
of input. In weighted voting, learners are not treated
uniformly. Each learner is associated with a weight
that is proportional to its performance. High weight
leaner has more influence on the learning process.
In addition, optimization techniques are also utilized
in ensemble learning to minimize classification errors.
Optimization techniques are employed in two differ-
ent ways such as coverage optimization and decision
optimization. Coverage optimization is the selection
of optimum learners’ subset from the utilized learners.
On the other hand, decision optimization is the selec-
tion of optimal output by combining the predictions
of multiple learners. Learner selection is the process
to select the subset of k optimum learners from the
pool of N learners, which have an advanced prediction
rate. In this case, the possible combinations in solu-
tion space are NLk (N ≥ k), which shows that the

solution space is exponential. This issue was resolved
by applying an effective bio-inspired tool genetic algo-
rithm (GA)widely used for solving the problem of local
search. GA avoids local minima by utilizing crossover
and mutation operators and tries to seek an optimum or
near optimum solution employing probabilistic search
techniques in massive and intricate search space. Few
researchers have utilized GA in ensemble learning for
learners’ selection in order to obtain promising results
[54]–[56]. In this research, five diverse nature of learn-
ing hypotheses; KNN, PNN, RF, GRNN, and, SVM
is operated [18], [57]–[60]. KNN is an example-based
learner who operates on the theory of proximity in the
value of the attributes [61]. SVM is a powerful oper-
ational engine based on the statistical learning theory
while PNN is established on Bayes theory [62]. First,
the individual learners are trained and their outcomes
are saved. Then these outcomes are forwarded to GA
for ensemble learning. The process of GA is presented
as follows:

• Chromosome encoding
The first step of GA is to encode the solution into a
chromosome. The size of the chromosome is limited to
the number of learners in the pool and weight is assigned
to each learner either 1 or 0 where 1 shows the learner
is included in the learning process while 0 denotes the
learner does not take part in learning. For instance,
chromosome S = 10110110 illustrates that L1, L3, L4,
L6, and L7 learners are taken place in ensemble learning.
In this work, 100 population and 200 generations were
used.

• Initial population
The first step in the function of a GA is to randomly
generate an initial population. Every member of this
population encodes a conceivable answer for a problem.
After making the initial population every member is
calculated and allocated fitness value according to the
fitness function.

• Fitness function
The assessment of each individual is performed by the
fitness function. The fitness value is computed by fus-
ing the predicted outcomes of selected learners in the
ensemble and finally, the decision is made on the basis
of majority voting. In this study, accuracy is utilized as
a fitness function.

• Selection
A fitness-based methodology is used to select individual
solutions in the selection process, where the fitter indi-
vidualsmeasured by a fitness function, aremore likely to
be selected. In this study, two high fitness value chromo-
somes are selected as parents using roulette wheel-based
selection.

• Reproduction
In GA, a new generation (offspring) is reproduced by
using genetic operators like crossover and/or mutation.
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FIGURE 1. Framework of the proposed ‘‘piRNA-CNN’’ computational
model.

Crossover is the exchange of information between the
parents and offsprings; consequently, the generated off-
springs may be better than parents. Here, the m-points
crossover operator is used. Themutation operator is used
to change the value of one or more genes in the selected
chromosome.

• Termination criteria
The GA proceeds the next generation till the maximum
number of generations and finally, the best solution is
returned to the problem.

EL = KNN ⊕ PNN ⊕ SVM ⊕ RF ⊕ GRNN (6)

where the symbol ⊕ represents the merging operator
and EL represents Ensemble Learning. The procedure
of how the ensemble learning functions by merging the
five base learners are as per the following:
Assume the anticipated outcomes of a single learner
for the genomic query R are {C1,C2,C3,C4,C5} ∈

{S1, S2, S4, S5} where C1,C2,C3,C4,C5 are single
learners and S1, S2, S3, S4, S5 are piRNA.

Zj =
5∑
i=1

δ(Ci, Sj), {j = 1, 2, 3 . . . ..} (7)

δ(Ci, Sj) =

{
1 if Ci ∈ Sj
0 otherwise

(8)

Lastly, the outcome of the ensemble learner merged
through majority voting using GA is produced as:

GAEL = Max{x1Y1, x2Y2, x3Y3, x4Y4, x5Y5} (9)

where GAEL is the anticipated outcome of the ensem-
ble learner, the Max denotes selecting the maximum
one, and x1, x2, x3, x4, x5 is the weight of learners.
The framework of the proposed system is illustrated in
Figure 1.

TABLE 1. List of training parameters.

C. DEEP LEARNING APPROACHES
1) Distributed Feature Representation: The concept

of natural language processing (NLP) was adopted
by scientists in order to develop computational
models for various biological applications, such as
i.e., iN6-Methyl (5-step) [63], and alternative splicing
site prediction [64]. Therefore, keeping the signifi-
cance of NLP models in existing predictors, a dis-
tributed feature representation of natural languages
processing technique i.e., word2vec method is applied
in order to obtain interpretable representations for
piwi-interacting RNAs and their functions. In this
work, the genomes are collected from the Genbank
of http:// hgdownload.soe.ucsc.edu, which are split
into ‘21’ chromosomes ‘‘Chr1’’, ‘‘Chr2’’, ‘‘Chr3’’,
‘‘Chr4’’, ‘‘Chr5’’, . . . , ‘‘X’’, and ‘‘Y’’. Moreover,
the chromosome having a sequence length of 100nt
is divided into sentences. The words are created by
splitting each sentence using 3mers. The continuous
bag-of-words (CBOW) approach is utilized in order to
train the word2vec model. Whereas, CBOW is used
to predict the current word ‘‘w(t)’’ according to the
contiguous words in a predefined window. The train-
ing parameters of the proposed word2vec model are
illustrated in Table 1. At last, after extracted features
using the word2vecmodel, each extracted feature space
has the dimension size of n*100, where ‘‘n’’ denotes
the number of samples and 100 is the number of infor-
mation/features against each sample. Moreover, each
sample with length ‘‘L’’ is denoted ((L - 2) × 100).

2) Convolutional Neural Network (CNN): A CNN is a
deep learning algorithm applied for the prediction of
image processing as well as sequential based bioin-
formatics data [47], [65]–[67]. In this context, a one-
dimensional (1D) CNN model is very effective for
the prediction of the bioinformatics dataset. The archi-
tecture of CNN consists of convolution layer, ReLU
layer, max-pooling layer, normalization layer, loss
layer, dropout layer, fully connected layer. The CNN
model is trained by several optimal hyper-parameters
i.e., the size of the filters is [3], [5], [7], [9], number
of filters are [10], [12], [14], [16], [18], number of
convolution layers are [1]–[3], the padding values are
same, the stride value is 1, the number of the neurons of
the dense layer and dropout probability after dense and
convolution layers. The range of dropout probability
is [0.25, 0.3, 0.35]. The selection of hyper-parameters
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is based on the higher prediction outcomes in terms
of sensitivity, specificity, accuracy, MCC, and AUC.
Moreover; the normalized class probability of the input
data can be displayed using the sigmoid( ) function.
These operators can be mathematically expressed as
follows:

Conv(R)jk = ReLU
( FS−1∑

fs=0

F−1∑
f=0

W k
fsf Rj+fs,f

)
(10)

ReLU represents the rectified linear function and math-
ematically can be defined as ReLU(y) = max(0, y)

Sigmoid(y) =
1

1+ e−y
(11)

In this work, the proposed ‘‘piRNA-CNN’’ model was
implemented using Keras library in python [68]. On the
other hand, the number of batch size = 64 and epochs
= 100. To train the model, a minimum learning rate
of 0.0004 is kept and Adam optimizer is utilized.

D. PREDICTION QUALITY MEASUREMENT
Various performance assessment measures are utilized to
examine the success rates of learning algorithms [33], [48],
[69]–[72]. Here, Accuracy (Acc), sensitivity (Sn), speci-
ficity (Sp) and Mathew’s correlation coefficient (MCC) are
employed.

Accuracy=
T+ + T−

T+ + T− + F+ + F−
× 100 (12)

Sensitivity=
T+

T+ + F−
× 100 (13)

Specificity=
T−

T− + F+
× 100 (14)

MCC =
(T+×T−)−(F+×F−)√

(T++F+)(T++F−)(T−+F−)(T−+F+)
(15)

where T+, F−, T−, and F+ indicate true positive, false
negative, true negative, and false positive respectively.

E. CROSS-VALIDATION
In literature, there are three popular CV methods used for
analysis and prediction: i.e., jackknife test, K-fold cross-
validation (or subsampling) test, and independent dataset test.
Though, the jackknife test yields unique results for a examine
benchmark dataset with high time complexity. In contrast,
the K-fold cross-validation test overcomes the complexity
issue of the jackknife test along with performing the same
characteristics of the former. Therefore, in this study, we have
adopted the seven-fold CV test to assess the error rates of the
proposed ‘‘piRNA-CNN’’ model. The feature spaces are split
into seven subsets at each layer i.e., First-layer and Second-
layer, where one subset is used for testing and the rest are
used for training to measure the performance. This procedure
was repeated seven times until each subset was used as a test
set once [1], [73]. Therefore, every seven subsets were single

TABLE 2. Success rates of classification algorithms on DNC and TNC and
word2vec feature spaces.

TABLE 3. Comparison of the proposed piRNA-CNN model with existing
predication models.

out one by one to test the model and their average outcome is
considered the final result.

III. RESULTS AND DISCUSSION
Table 2 demonstrates the prediction performance of machine
learning and deep learning classification algorithms on
various benchmark datasets. In machine learning classifica-
tion algorithms SVM, KNN, RF, GRNN, and PNN along
with ensemble models are utilized in combination with
discrete feature spaces. On the other hand, in the Deep
learning classification algorithm, CCN in conjunction with
natural language processing technique based feature space
is used. The first-layer prediction performance of the pro-
posed model in Table 2 shows that the performance of the
deep learning based approach is much better than not only
individual machine learning approaches but also from the
ensemble model. The success rates of the deep learning
approach in terms of accuracy, sensitivity, and specificity are
4.98%, 3.28%, and 6.70%, respectively are improved than
machine learning approaches. In the second-layer, the pre-
dictive outcome of the deep learning method is 5.16% higher
than the highest result of the machine learning method.
Finally, a comparison has been made between the developed
model and the current state-of-the-art methods as shown
in Table 3 on CV tests such as 7-folds. The pioneer works
on these data have been carried out by 2L-piRNA, piR-
NAPred, and 2L-piRNADNN. After empirically examining
the outcomes of the developed model and already existing
models, it is observed that the accuracy of our developed
computational model for the first-layer is 2.04% higher than
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existing methods. Similarly, for the second layer, the devel-
oped computational model obtained 6.67% higher accu-
racy than existing methods. Establishing a user-friendly and
open access web-predictor provides a practical platform for
researchers in the design of pharmaceutical drugs and also
expedient for academia as established in a series of recent
publications [1], [74]–[81].

IV. CONCLUSION
An attempt was made to develop an intelligent and
high-throughput computational model namely ‘‘piRNA-
CNN’’ for the identification of piRNA and non-piRNA,
in this study. Here, analysis has been drawn between machine
learning algorithms and deep learning algorithms. First, two
discrete feature encoding methods such as DNC and TNC are
applied to excerpt numerical values from RNA sequences.
Then these feature spaces are provided to five machine
learning algorithms and noted their outcomes. Furthermore,
the concept of ensemble learning is adapted to merge the pre-
diction of individual learners in order to minimize variance
instigated by the peculiarities of a single training. It is shown
that ensemble learning with TNC feature space achieved effi-
cient outcomes compared to individual learners. The ensem-
ble was carried out via GA. In contrast, RNA sequences
are expressed by the natural language processing technique
word2vec. Then the obtained feature space is provided to
deep learning algorithm CNN for prediction of piRNAs.
The results demonstrate that the success rate of the CNN
base model is much better than machine learning algorithms.
In conclusion, the obtained outcomes authenticated that the
piRNA-CNN model exposed substantial results matched to
the current tools stated in the literature, so far. It is further
expected that the suggested predictive tool will assist scien-
tists and researchers to design improved computational tools.
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