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ABSTRACT Finding the optimal transmit and receive beam pair for reliable communication can be
challenging, especially in highly dynamic environments. Side-information from on-board sensors at the user
equipment (UE) can be used to aid the beam management (BM) process. In this work, we use the orientation
information coming from inertial measurement unit (IMU) for effective BM. Specifically, we use particle
filter (PF) to fuse the reference signal received power (RSRP) information with orientation information.
We perform extensive simulations using realistic ray-tracing channels, practical beam patterns, and various
UE movement and rotation speeds. Simulation results show the proposed strategy can greatly improve the
beam prediction accuracy and reduce the power loss caused by sub-optimal beam-selection.

INDEX TERMS Beam management, sensor-aided communication, IMU, particle filter, beyond 5G, 6G.

I. INTRODUCTION
Communication at millimeter wave (mmWave) and terahertz
(THz) frequencies is suitable for high data-rate applications
owing to large bandwidth available [1]–[3]. The high free-
space path loss at these frequencies implies the use of a
large antenna array with beamforming at the transmitter and
receiver to achieve a sufficient link margin. beam manage-
ment (BM) is the process of finding and maintaining a suit-
able beam pair for communication [4]. BM is challenging,
particularly for highly mobile scenarios where the channel
changes frequently.

In this work, we use the onboard sensor information as
a side-information for effective BM at the UE. Specifically,
we use the orientation information coming from IMU in
addition to RSRP information for BM. The orientation infor-
mation is readily available as IMUs are part of several con-
sumer electronics including mobile phones, augmented real-
ity (AR)/virtual reality (VR) gadgets, and unmanned aerial
vehicles (UAVs) etc.

A. CONTRIBUTIONS
The main contributions of this paper are as follows:
• We fuse the RSRP information and orientation informa-
tion for effective BM at the UE.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ki-Hong Park .

• We formulate the orientation-assisted BM problem
as an angle-of-arrival (AoA) tracking problem. The
proposed problem formulation respects the hardware
constraints of practical mmWave systems and works
with arbitrary antenna array geometry and beam code-
book. Also, the proposed formulation is valid for the
indoor/outdoor scenarios and line-of-sight (LOS)/non-
line-of-sight (NLOS) channels. Finally, the proposed
formulation is compatible with 5G new radio (NR) sig-
naling and as such the use of the proposed methods does
not require any modification to the standard.

• We use PF for information fusion, which ensures that
we do not need to assume any explicit model on the
evolution of channel path gain.While PF is a well known
algorithm, we fill in several gaps to use the PF in our
problem. Specifically, we define a particle to include
(i) AoA in Cartesian coordinates, and (ii) a gain term
including transmit power, channel path gain, and base
station (BS) beam gain.We outline strategies to initialize
the angles and gains of particles, as well as strategies
to update the particles when RSRP information update
rate is lower than the orientation information update rate.
We also outline a strategy to predict the beams from the
particles, and a strategy to predict narrow beams (NBs)
from wide beam (WB) measurements.

• We provide simulation results with realistic ray-tracing
based multipath channels, practical UE and BS beam
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codebooks, and various UE movement and rotation
speeds. Evaluation of the proposed strategy in a realistic
setup lends credibility to the results.

• The proposed strategy is shown to improve the beam
prediction accuracy by up to 15.5% and mean RSRP by
up to 3.84 dB when the UE has fast rotation speed.

B. PRIOR WORK
Several sources of side-information have been used to
improve BM at mmWave frequencies. Specifically, position
of the mobile device/vehicle [5], [6], spatial information
extracted from sub-6 GHz channels [7], [8], light detection
and ranging (lidar) [9], radar [10], [11], camera [12], [13],
hand grip [14] and 3D scene information [15], [16] have been
used to reduce the beam-training overhead and/or improve the
beam prediction accuracy. This article differs from [5]–[16]
in the source of side-information, as we use orientation infor-
mation coming from IMU at the UE. Note that orientation
information is available at the UE and there is no additional
signaling overhead needed to use it.

There is some prior work on using orientation information
for BM [17]–[20]. In [17], the best beam after orientation
change is predicted given the best beam before orientation
change and the amount of orientation change. Specifically,
the AoA is determined from the best beam. The change in
orientation is translated into a change in AoA to predict the
best beam after orientation change. In [18], orientation and
location of the UE relative to the BS are tracked and are used
for beam steering. In [19], the change in pitch is used to track
the LOS path between two vehicles. In [20], orientation and
location are used in a machine learning (ML) based inverse
fingerprinting method for BM.

There are several limitations of the prior work on using ori-
entation information for BM. Specifically, the strategy of [17]
will succeed only if the AoA aligns with the peak direction of
the best beam, which is not guaranteed. Therefore, any pre-
diction based on erroneous AoA is likely to be sub-optimal.
The strategy of [18], i.e., relative position/orientation tracking
is useful only in LOS. Further, the beam steering ignores
the hardware constraints of practical mmWave devices. The
strategy of [19] is useful only in vehicular communication,
where the leading and following vehicles have a strong LOS
path and change in pitch is the primary source of change in
the LOS path. The ML based inverse fingerprinting strategy
of [20] requires data collection and training phase, which
could be too costly and not scalable, especially to outdoor
cellular mobile communications. Finally, the strategies in
[17]–[20] do not consider the 5G NR signaling and practical
beam codebooks as we do in this work.

Another line of prior work uses AoA tracking to do BM
e.g., [21], [22]. This line of work is similar to our work
in that we also formulate our problem as an AoA tracking
problem. The prior work [21], [22], however, does not use the
side-information from IMU as we do. Further, a first-order
Gauss-Markov model for the evolution of channel path gain
and a Gaussian random walk for the evolution of AoA and

angle-of-departure (AoD) is assumed. Assuming explicit
models for channel path gain and AoA/AoD make [21], [22]
applicable only to limited scenarios. This work does not
assume any explicit model for AoA/AoD and path gain
evolution.

The rest of this paper is organized as follows: In Section II,
we discuss the communication system model. We then for-
mulate the orientation-assisted BM problem in Section III.
In Section IV, we outline the details of the proposed PF based
orientation-assisted BM strategy. In Section V, we provide
numerical results to show the benefit of the proposed strategy.
Finally, we conclude the paper in Section VI and outline
directions for future work.

Notation: We use the following notation throughout the
paper. Bold lowercase x is used for column vectors, bold
uppercase X is used for matrices, non-bold letters x,X are
used for scalers. The j-th entry of a column vector x is
[x]j. Superscript T and ∗ represent the transpose and con-
jugate transpose respectively. The N × N identity matrix
is represented by IN , and the N × 1 zero vector is 0N×1.
A Gaussian random vector with mean x and covariance X is
N (x,X). A Uniform random variable with support [a, b] is
U[a, b]. We use E[·] to denote expectation, and mod (·)
is themodulo operator.We define functions to convert powers
from linear to logarithmic scale and back, i.e., pow2db(x) =
10 log10(x) and db2pow(x) = 10

x
10 .

II. SYSTEM MODEL
We consider a communication system shown in Fig. 1 where
the RSRP information, as well as orientation information,
is used at the UE side for beam prediction.

FIGURE 1. The block diagram of a BS-UE communication system in which
the UE uses RSRP information as well as orientation information for
beam prediction.

A. RSRP INFORMATION
We assume multiple antennas at the BS and UE. In this work,
we focus on the downlink (DL) BM, though the proposed
strategies can be extended for uplink (UL) operation also. For
BM in 5G NR, the BS sends beamformed reference signals
(RSs), i.e., synchronization signal blocks (SSBs) and/or chan-
nel state information reference signals (CSI-RSs). The UE
measures the transmitted RSs using different receive beams,
and reports the index and quality of the best transmit beams
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FIGURE 2. Local coordinate systems of the BS and UE.

to the BS. Based on the UE feedback, the BS decides the best
transmit beam for future communication. For simplicity of
exposition, we assume only SSB based DL BM.

For BM, the transmit RSs have the power PT dBm. The
weights of the transmit beam are selected from a beam code-
book containing MBS codewords. A codeword is a set of
analog phase-shift (and possibly amplitude scaling) values
that are applied to the antenna elements to form a beam.
The transmit beam gain is parameterized by azimuth angle
ϕ and zenith angle ϑ shown in Fig. 2a. Specifically, if we use
transmit beam i ∈ 1, · · · ,MBS, then the transmit beam gain
in direction (ϕ, ϑ) is Fi(ϕ, ϑ) dB. Similarly, the weights of
the receive beam are selected from a codebook containing
MUE codewords. The receive beam gain is parameterized
by azimuth angle φ and zenith angle θ shown in Fig. 2b.
Specifically, if we use receive beam j ∈ 1, · · · ,MUE, then the
receive beam gain in direction (φ, θ) isGj(φ, θ) dB. Note that
in our model, the AoD (ϕ, ϑ) and AoA (φ, θ) are in the local
coordinates of the BS and UE respectively as shown in Fig. 2.

We assume that SSBs are transmitted with periodicity TSS.
Let the time variable t denote the index of the SSB. Then,
consider a multipath channel with C paths, such that the path
gain of the c-th path at time t is p(c)t dB, the AoD in the BS
local coordinates is (ϕ(c)t , ϑ

(c)
t ) and the AoA in the UE local

coordinates is (φ(c)t , θ
(c)
t ). If the transmit beam index at time

t is it and the receive beam index is jt , then the RSRP st
corrupted by noise nt is

st = PT + pow2db
( C∑
c=1

db2pow
(
p(c)t + Fit (ϕ

(c)
t , ϑ

(c)
t )

+Gjt (φ
(c)
t , θ

(c)
t )
))
+ nt . (1)

In this work, we are interested in the use of UE orientation
for BM. Therefore, for simplicity, we assume genie-aided
knowledge of the best transmit beam, i.e., i? and focus on
finding j?. A conventional BM strategy based only on RSRP
information operates in the following manner. With known
i?, the UE maintains an RSRP table s ∈ RMUE×1 with all
entries initialized to −∞. The UE receives the beamformed
SSB by varying the receive beams in a round-robin manner.
Specifically, jt = mod(t,MUE) + 1 ∈ {1, · · · ,MUE}. This
way, the jt -th entry of the RSRP table can be set as

[s]jt = st , (2)

and the best receive beam ĵ? is then found at any given time t
as ĵ? = argmax

j
[s]j. Note that, it requires MUE SSB periods

to update the whole SSB table, which could render some
entries in the table outdated due to temporal changes, e.g.,
UE orientation change.

FIGURE 3. The orientation of the phone when the UE local coordinate
system XUEYUEZUE is aligned with global coordinate system XYZ .

B. ORIENTATION INFORMATION
We intend to use orientation information in addition to RSRP
information for BM as shown in Fig. 1. The orientation
information comes from an IMU thatmay include a three-axis
gyroscope (for measurement of angular velocity), a three-axis
accelerometer (for acceleration measurement), and a three-
axis magnetometer (for magnetic field measurement) [23].
We consider the coordinate system shown in Fig. 3 for
UE. The global coordinate system is represented using XYZ
and the UE local coordinate system is represented using
XUEYUEZUE. In Fig. 3, the global coordinate system and the
local coordinate system of the UE are aligned. We assume
a rotations around Z , Y , and X axis, in that order [24]. The
rotation around Z , Y and X are denoted by α, β, and γ
respectively [24]. Let the individual rotation matrices around
each axis be RZ (α), RY (β), and RX (γ ). These matrices are
defined as

RZ (α) =

cosα − sinα 0
sinα cosα 0
0 0 1

 , (3)

RY (β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , (4)

and

RX (γ ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 . (5)

Now,we can construct a composite rotationmatrixR(α, β, γ )
based on individual rotation matrices RZ (α), RY (β), and
RX (γ ), i.e., R(α, β, γ ) = RZ (α)RY (β)RX (γ ). The orien-
tation of the mobile phone at time t is determined by αt ,
βt and γt . In this work, in order to keep the model simple,
we assume that the measurements from IMU are processed
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and integrated so that the orientation at time t is deter-
mined by α̂t , β̂t and γ̂t , which are erroneous estimates of αt ,
βt and γt .

III. PROBLEM FORMULATION
To understand how the orientation information can help in
BM for the UE, consider a toy example. Assume that the
channel between BS and UE is LOS, i.e., there is one strong
path. Further, assume that the AoA (in the UE local coor-
dinate system) is perfectly known, which can be used to
find the best UE beam. Specifically, if the beam-gains of
all the beams are known, it can be determined which beam
has the highest gain for the current AoA. The beam with
the highest gain for the current AoA is also the best beam
for transmission/reception. In such a situation, if the UE
orientation changes, the new AoA (and the new best beam)
can be found based on the orientation information alone. This
simple strategy, though useful to explain the intuition behind
the use of orientation information in BM, is not practical.
First, accurate AoA estimation is very challenging due to the
hardware constraints, i.e., phase-shifter based analog beam-
forming. Second, the orientation information obtained from
sensors is erroneous. Third, the channel experiences changes
that cannot be observed through IMU sensors, e.g., multipath
fading. Therefore, the orientation information and the RSRP
information need to be fused.

To fuse the orientation and RSRP information, we for-
mulate the BM problem as an AoA tracking problem in the
UE local coordinate system. This is again assuming that the
beam-gains of all beams are known, and once the AoA is
determined, the beam that has the best gain for the AoA
can be determined. We formulate the problem by assuming
a single path channel. The numerical results presented in
Section V, however, show that the proposed strategy works
well in practical dynamic multipath channels obtained using
ray-tracing. Further, the single path assumption is fair in
mmWave frequency cellular operation, as the channel has
few strong paths. The number of strong paths in the effective
channel, including BS beamforming, are further reduced due
to a large number of antennas at the BS and the use of high
gain narrow beams. If we consider a single path channel
in (1), and drop the superscript (c), then the RSRP is

st = PT + pt + Fit (ϕt , ϑt )+ Gjt (φt , θt )+ nt . (6)

Because the BS beam is transparent to the UE, we can define
a gain term

gt = PT + pt + Fit (ϕt , ϑt ), (7)

and simply write the RSRP as

st = gt + Gjt (φt , θt )+ nt . (8)

Note that, the AoA at time t can be described in polar
coordinates, i.e., (φt , θt ) as in Fig. 2b and (8). The same
AoA can also be described in the Cartesian coordinates using

a unit vector in the direction (φt , θt ). Specifically, we col-
lect the three components of the Cartesian AoA in a vector
at ∈ R3×1 as

at =

xtyt
zt

 =
sin(θt ) cos(φt )sin(θt ) sin(φt )

cos(θt )

 . (9)

For ease of subsequent exposition, we define a function
pol2car(·) for polar to Cartesian coordinates conversion.
Using this function, (9) can bewritten as at = pol2car(φt , θt ).
The Cartesian coordinate representation of the angle makes it
convenient to describe the evolution of angle due to orienta-
tion change. Specifically, let us define orientation at time t
via a matrix Rt , R(αt , βt , γt ), and similarly orientation at
time t−1 via a matrixRt−1. If the AoA in global coordinates
is represented as ag, then the AoA in UE’s local coordinate
system at time t − 1 is

at−1 = Rt−1ag, (10)

and the AoA in UE’s local coordinate system at time t is

at = Rtag. (11)

Note that, the rotation has no impact on the global AoA ag,
i.e., it does not change between t−1 and t . From (10), we get
RT
t−1at−1 = ag, due to the unitary nature of the matrix Rt−1.

Now, the AoA in UE’s local coordinates at time t , i.e., at can
be related to the AoA in UE’s local coordinates at time t − 1,
i.e., at−1 as

at = RtRT
t−1at−1. (12)

The relationship (12) does not depend on global AoA ag.
Hence, with no risk of confusion, here onwards we refer to
the AoA in UE’s local coordinates simply as the AoA or
the angle. As polar angles (φt , θt ) in (8) are equivalent to
Cartesian angles at in (12), we can write (8) equivalently as

st = gt + Gjt (at )+ nt . (13)

Our objective is to fuse the orientation information,
captured through angle evolution in (12), and the RSRP
information in (13), to do effective BM.

IV. PF TO FUSE RSRP AND ORIENTATION INFORMATION
The problem of fusing RSRP and orientation information can
be solved using PF. The PF is a non-parametric filter that
approximates the posterior by finitely many samples called
‘‘particles’’ [25]–[27]. We leave the discussion on our choice
of using PF over other nonlinear filters from the Kalman
family to a later point in this Section. At this stage, we proceed
by laying down the preliminaries of using PF to fuse the
RSRP and orientation information.

A. PROPOSED BM STRATEGY
Our formulation of UE BM by fusing RSRP and orientation
information is based on Cartesian AoA tracking. Specifically,
the evolution model of the AoA is given in (12), which needs
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FIGURE 4. Uniform sampling of the unit sphere based on Fibonacci grid
with L = 300 points.

Algorithm 1 Procedure to Get Uniformly Spaced Particles
and Their Gains
Input: L, st , Gjt
Initialization: Rt = ∅

1: for ` = 1 : L do
2: θ [`] = cos−1

(
1− 2(`−1)+1

L

)
3: φ[`] = 2π mod

( 2(`−1)
1+
√
5
, 1
)

4: a[`] = pol2car(θ [`], φ[`])
5: g[`]t = st − Gjt (a

[`])
6: Rt = Rt ∪ {a

[`]
t , g

[`]
t }

7: end for
Output: returnRt .

to be tracked. For AoA tracking, it is natural that a particle
contains the angle. Furthermore, from (13), note that we need
to keep track of the gain gt in order to explain the RSRP in the
form of UE beam-gain parameterized by AoA, i.e., Gjt (at ).
Therefore, we include the gain gt also in defining a particle.
Overall, a particle has two components, one to track angle at ,
given in (12), and one to track gain gt , given in (7).
We consider that the total number of particles in the filter

is M . In the beginning, we need to initialize all the M parti-
cles. We define a particle set Pt that contains theM particles
at time t . So initially, we need to obtainP1. For initializing the
angles of the M particles, a good choice is uniform spacing
based on Fibonacci grid [28]. We refer to the particles that
have uniformly spaced angles simply as uniformly spaced
particles. The procedure to obtain uniformly spaced particles
and their gains is given in Algorithm 1. The uniformly spaced
particles obtained through the procedure of Algorithm 1 are
shown in Fig. 4. Note that, uniformly spaced particles based
on the Fibonacci grid is only one initialization option and

other strategies can be used. If some prior knowledge about
the environment is available, it can be used to initialize the
particles, e.g., if there is a higher likelihood of having the
AoA in certain angular regions, a higher number of particles
can be initialized in those regions, and vice versa. Steps 2
to 4 in Algorithm 1 obtain L uniformly spaced polar angles
(φ[`], θ [`]) and subsequently obtain Cartesian angles a[`] from
polar angles. In the initialization phase, L = M as all particles
are uniformly spaced. The gain for the particles is set as in
step 5 of Algorithm 1, i.e., by subtracting the receive beam
gain from the RSRP st . The index jt is the index of the receive
beam used at time t . Note that the sampling strategy used to
obtain the angles a[`] has no bearing on the calculation of the
gain of a particle g[`]t . The calculation of gain in step 5 of
Algorithm 1 is based on the relation (13), and the gain g[`]t is
calculated given the angle a[`]. Therefore the gain calculation
is valid for any strategy used for obtaining the angles a[`]. For
initialization, we use st = s1, and jt = 1. Finally, the angles
and gains are added to the particle set Rt in step 6, which is
returned as output.

Algorithm 2 The PF Algorithm for Orientation-Assisted BM

Input: Pt−1, Rt , Rt−1, Gjt , st , σ
2
n

Initialization: P̄t = ∅
1: for m = 1 : M do
2: a[m]t = R[m]

t
(
R[m]
t−1

)Ta[m]t−1
3: g[m]t = g[m]t−1
4: s[m]t = g[m]t + Gjt (a

[m]
t )

5: w[m]
t =

1√
2πσ 2n

e
−

(st−s
[m]
t )2

2σ2n

6: P̄t = P̄t ∪ {a[m]t , g[m]t ,w[m]
t }

7: end for
8: Pt = ∅
9: for m = 1 : M − N do

10: draw i with probability ∝ w[i]
t

11: Pt = Pt ∪ {a[i]t , g
[i]
t }

12: end for
13: Get N uniform particles in Rt by calling Algorithm 1

with L = N , st , and Gjt .
14: Pt = Pt ∪Rt
Output: return Pt .

We give the PF algorithm tailored for orientation-assisted
BM in Algorithm 2. For all the M particles, first, we update
the angles of the particles in step 2. We also add randomness
to the particles to capture the uncertainty due to erroneous
sensor information in step 2. For updating the angles, first,
we take out the previous orientation, and then add the new
orientation. Specifically, let a[m]t−1 be the angle associated with
the particle m at time t − 1. The process of taking out the
old orientation and adding new orientation is accomplished

by pre-multiplying the angle a[m]t−1 by R[m]
t
(
R[m]
t−1

)T. The
matrix R[m]

t represents the orientation at time t , i.e., the new
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orientation, and is defined as

R[m]
t = R(α̂t + α̃

[m]
t , β̂t + β̃

[m]
t , γ̂t + γ̃

[m]
t ), (14)

where α̃[m]t , β̃
[m]
t , γ̃

[m]
t is the random perturbation generated

for the particle m. The random perturbation is generated
according to the known sensor error statistics σα , σβ and σγ .
The matrix R[m]

t−1 is defined similarly. In step 3, we update
the gains of the particles. Notice that while updating the gain,
we simply use the previous gains, and step 3 is only added for
completeness. It is possible to use the previous gains because
in each time-step we add N particles that contain gains based
on new RSRP information st . We will elaborate more on this
when we discuss steps 13-14. In step 4, we update the RSRP
hypothesis form-th particle, s[m]t , based on the angle and gain
of the particle. In step 5, we calculate the weight of the m-th
particle based on the actual RSRP at time t , st , and the RSRP
hypothesis of m-th particle, s[m]t , assuming Gaussian RSRP
noise nt with variance σ 2

n . We then add the gain of the particle
m, g[m]t , angle of the particle m, a[m]t , and weight of particle

m, w[m]
t , in the temporary particle set P̄t .

In steps 8-12, we do importance sampling of the particles
in P̄t . Importance sampling is a probabilistic implementation
of the Darwinian idea of the survival of the fittest. It ensures
that particles remain close to regions in state space with high
posterior probability. Specifically, we draw M − N particles
using importance sampling. The remaining N particles in
every time-step are uniformly spaced. This strategy solves the
well-known particle deprivation problem of the PF. Particle
deprivation happens when there are not enough particles near
the true state and thus it cannot be tracked [26]. In BM, parti-
cle deprivation can happen e.g., when the channel changes
substantially, i.e., from LOS to NLOS, or the other way
around. Such channel changes can cause dramatic changes in
the AoA. Once the particles have converged to a certain AoA,
without uniform particles throughout the sphere, the new
AoA after channel change cannot be tracked.We add uniform
particles in step 13 and 14 by following the strategy outlined
in Algorithm 1 to obtain uniformly spaced particles and their
gains. Note that the gains of these N particles are based on
current RSRP st . Thus, in each time-step, a fraction of par-
ticles contain the current gain information. Therefore, using
the proposed strategy the gain is implicitly tracked. We call
the set of N uniformly spaced particles Rt , and add these
particles to Pt . The particles set Pt is then returned.
For BM, the best beam needs to be obtained from the

particles. One procedure for obtaining the best beam using
particles is given in Algorithm 3. First, we define the concept
of a beam decision region. The beam decision region of a
beam is the angular region in which the gain of the given
beam is higher than any other beam in the codebook. Given
the number of codewordsMUE, the beam-patterns, the angles
of the particles at time t , we count the number of particles
that fall within the beam decision region of each beam.
Subsequently, the beam that has the highest number of par-
ticles within its decision region is declared the best beam.

Algorithm 3 Beam Prediction Based on Particles
Input: Pt , G1, · · · ,GMUE , M , MUE
1: c = 0MUE×1
2: for m = 1 : M do
3: i? = argmax

i
Gi(a

[m]
t )

4: [c]i? = [c]i? + 1
5: end for

Output: return j? = argmax
j

[c]j.

FIGURE 5. Beam decision regions (shown with different colors) of a WB
codebook with 8 codewords and particles of the PF. Most of the particles
lie in the region where WB 3 has the highest-gain. Therefore, WB 3 is
predicted to be the best beam.

One example of this procedure in action is shown in Fig. 5,
assuming a WB codebook with 8 codewords. The beam
decision regions of different beams are shown with different
colors. The beam index corresponding to each color is shown
in the colorbar on the right of the figure. The particles are
shown in white color. In this example, most of the particles
lie in the beam decision region of WB 3, and therefore WB 3
is the predicted best beam. Counting the number of particles
can also provide an estimate of the top-n (e.g., top-5) best
beams by sorting c (see Algorithm 3) in descending order and
picking the indices of the first n elements. Note that, counting
the particles for beam prediction is only onemethod and other
strategies are possible. As an example, it is possible to use the
mean of the angles of all particles as an estimate of AoA and
then the beam that has the AoA in its beam decision region
can be declared the best beam. This method, however, does
not readily extend to top-n beam prediction.

B. COMMENTS ON PROPOSED BM STRATEGY
1) REASONS FOR CHOOSING PF
Here we address the reasons for choosing the PF over other
nonlinear filters in the Kalman family, e.g., extended Kalman
filter (EKF), and unscented Kalman filter (UKF). The RSRP
equation, i.e., (13) includes the UE beam-gain in terms of the
parameter that we intend to track, i.e., at . The beam-pattern,
however, is a highly nonlinear function of Cartesian angle at .
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This is true for even the most trivial beam-patterns that have
a closed form, e.g., discrete Fourier transform (DFT) beams.
For a high level of non-linearity, it is difficult to guarantee the
stability of a filter. High non-linearity also implies that the
Gaussian assumption on the posterior typically made in para-
metric filters including EKF and UKF is not going to strictly
hold. Further, the beam-patterns in practice are available only
as numerical values determined e.g., by measurements in an
anechoic chamber. Therefore, an accurate estimation of the
gradient required for EKF becomes difficult. In this case,
the derivative can only be approximated, implying approxi-
mation error. Another advantage of using PF is that we do not
need to explicitly track the gain gt , as the N uniform particles
added in every time-step implicitly include the gain informa-
tion. The use of EKF or UKF will require explicit tracking of
the gain. Explicit tracking will also require a process model
for the gain evolution, which can be restrictive/limiting from
the practical application point of view.

2) REASON FOR USING CARTESIAN ANGLES
We formulate the angle tracking problem in the Cartesian
coordinates. One reason for this choice is that, given the
orientation matrices Rt and Rt−1, the relationship between
old angle at−1 and new angle at is linear (see (12)). The
alternative possibility was to formulate the problem using
polar angles (φ, θ). We ruled out a formulation based on polar
angles as we observed that erroneous orientation informa-
tion results in a very high variance in the azimuth angle φ.
Particularly, note that when the AoA is close to the zenith,
a small error can dramatically change φ without changing
the pointing direction significantly. This artifact implies that
polar angle tracking can be difficult.

3) DIFFERENT RSRP AND ORIENTATION
INFORMATION RATE
So far we considered RSRP and orientation information rate
to be identical. It is, however, possible for RSRP and ori-
entation information rate to be different. From BM point
of view, it is more interesting to consider the case when
RSRP information has a lower rate compared to orientation
information. There are multiple reasons for this. First, if ori-
entation information appears at a slower rate, the proposed
strategy will rely heavily on RSRP information, and hence
in essence will become similar to the conventional BM that
relies only onRSRP information. Second, the IMUs inmobile
devices provide information at a rapid rate, e.g., 100Hz is
relatively common [23]. Third, as the orientation information
is also used in applications other than BM, concerns other
than BM may require that the IMUs be operational at all
times. In contrast, reducing the RSRP measurement rate can
save power consumption of the device. So far we considered
the base rate of both RSRP and orientation information to be
1/TSS. We can generalize this by assuming that new RSRP
information is available every f SSB periods, i.e., fTSS. As an
example, with f = 1, we have the case of identical RSRP
and orientation information rate, whereas f = 3 will mean

that RSRP information rate is 3× lower than the orientation
information rate.

As for the practicality of having an RSRP information
rate lower than orientation information rate, as discussed
above, consider the series of articles [29]–[32] in which a
measurement-based model for the temporal evolution of the
orientation is given. In these articles, a first-order autoregres-
sive model is used for modeling the temporal evolution of
the orientation parameters α, β, and γ . The coherence time
for the random process is defined as the time in which the
autocorrelation function of the random process has decreased
to 0.05. This is to say, that the coherence time of the random
process used to generate α, β, and γ , is based on the time
in which the actual measurements had decorrelated by 95%.
The reported measured coherence times for the processes are
between 130ms to 180ms for the walking users. Based on
this observation, it is clear that if 95% decorrelation takes
180ms, significant change in α, β, and γ can occur in fTSS =
60ms (i.e., f = 3 and TSS = 20ms).

From the perspective of PF, note that, when the RSRP
information rate is lower than orientation information rate,
we use the most recent RSRP information in PF. Therefore,
st represents the most recent RSRP available at time t , and jt
is the index of the beam used for obtaining the most recent
RSRP.

FIGURE 6. Beam decision regions (shown with different colors) of a NB
codebook with 28 codewords and particles of the PF. Most of the
particles lie in the region where NB 9 has the highest-gain. Therefore, NB
9 is predicted to be the best beam.

4) PREDICTING NBs USING WB RSRPs
Note that the way we decide the best beam is based on count-
ing the number of particles in the beam decision region of a
particular beam. This is a particularly interesting approach
because it makes it possible to predict the best NB based
on RSRPs of the WBs. Specifically, the SSBs are received
using the WBs, and the PF as given in Algorithm 2 is run.
While counting the number of particles, however, we use
the NB decision regions to predict the best NB. To elabo-
rate, we continue with the example of Fig. 5. The particles
of Fig. 5 overlaid on the beam decision regions of a NB
codebook with 28 codewords are shown in Fig. 6. For the
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same set of particles, we use the beam decision regions of
NBs to predict the best NB. In this example, the number
of particles falling in the beam decision region of NB 9 is
the largest, therefore NB 9 is the predicted best beam. The
proposed method can be advantageous over receiving SSBs
through NBs. This is because WBs are fewer in number, yet
they cover the entire angular space, i.e., the whole sphere.
Therefore, when the channel state changes, e.g., from LOS to
NLOS, the new strong path can be observed quickly, i.e., with
fewer SSBs using WBs. Further, the success of PF based
BM depends on the concentration of the particles around the
AoA of the strong multipath. In our experiments, we have
noticed that even with WB operation the particles are quite
concentrated and hence can be used reliably for accurate
NB prediction.

5) USING PF TO OPTIMIZE UE-OPERATIONS
The state of PF provides information that can help tune other
UE-operations. As an example, the concentration of the par-
ticles can inform about the channel state. The concentration
of particles can be calculated using an angle spread measure,
e.g., the measure used in [33], applied to the particles. If the
spread is low, i.e., more concentration, the channel state is
likely to be LOS, whereas, if the spread is high, i.e., less
concentration, the channel state is likely to be NLOS. The
knowledge of channel state can in turn be used for other tasks,
e.g., to select a codebook optimized for detected channel
state. Similarly, if there is a sudden change in the concentra-
tion of particles, it can imply a channel state changewhich can
be used as a trigger for certain operations, e.g., in hierarchical
beam search, such a trigger can be used to change from beam
refinement to full beam search. Finally, the rate at which the
weights, calculated in step 5 of Algorithm 2 vary, can suggest
the rate of channel change and can be used e.g., to adjust the
RSRP information rate, e.g., f = 1 when detecting a highly
dynamic channel, and f > 1 otherwise.

V. SIMULATION RESULTS
We now present the simulation results. We start by discussing
the simulation setup in detail in Section V-A. We then show
the initial convergence and the ability of PF to avoid particle
deprivation when the channel state changes in Section V-B,
followed by the supremacy of our proposed strategy com-
pared to conventional BM in Section V-C. We then show
that using the proposed strategy NBs can be predicted
using WB RSRPs in Section V-D. In Section V-B to V-D,
we consider a single antenna BS. Finally, in Section V-E
we show the performance of the proposed strategy with a
multi-antenna BS.

A. SIMULATION SETUP
1) RAY-TRACING SETUP
We consider the ray-tracing setup shown in Fig. 7. We use
Wireless InSite R© [34] software for ray-tracing. The consid-
ered location is downtown Rosslyn, VA, USA. The color of

FIGURE 7. The ray-tracing simulation setup of downtown Rosslyn, VA. The
location of BS is shown with the salmon color disc, and the UE moves
along the trajectory shown by green lines.

the buildings in Fig. 7 corresponds to their height. The total
simulation area is 230m× 295m× 100m. All the buildings
are made of concrete. The road surface is made of asphalt.
The operating frequency is 28GHz. The location of the BS
is shown in Fig. 7 with a salmon color disk with the text
BS next to it. The height of the BS is 30m. The UE moves
along a trajectory shown via lines of green color in Fig. 7.
The trajectory is generated by the random waypoint model
where UE picks a random destination within the cell, moves
to the destination with a fixed speed, and again picks another
random destination. A∗ search algorithm is used to find a
route from one destination to the next [35]. In the simulation,
UE moves through 200 destinations and the total length of
the trajectory is around 20 km. Notice that we consider a 120◦

sector and theUE trajectory is limited by the size of the sector.
The number of multipaths at any UE location is C = 25.

2) COMMUNICATION SYSTEM PARAMETERS
As we focus on accurate BM for the UE, we consider the
BS beam to be known. One simple way to simulate this is
to consider a single isotropic antenna at the BS, so the beam-
forming is not required andMBS = 1. It is worth highlighting
that for the BM, a single BS antenna and no beamforming
is a pessimistic setup. This is because our AoA tracking
based BM formulation assumes that the channel has a single
path, so having multipaths only deteriorates the performance
of the PF. Practical mmWave or THz BSs will employ a
large number of antennas and hence will have high beam-
forming gain. The high beamforming gain typically implies
narrow beams and will sparsify the channel. Hence with BS
beamforming, the channel will be more similar to a single
path channel. Therefore, the practical multi-antenna BS with
high gain beamforming is more favorable for the proposed
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FIGURE 8. The composite radiation patterns and the 3 dB contours of the WBs and NB. There are
MW

UE = 8 WBs and MN
UE = 28 NBs. The composite radiation pattern is plotted in the dB scale, and the beam

indices for the contour plots are given in the legend.

strategy. The communication bandwidth is 100MHz and
subcarrier spacing (SCS) is 240 kHz. The transmit power is
PT = 30 30 dBm. At the UE, we consider that we have
codebooks with MW

UE = 8 WBs and MN
UE = 28 NBs. The

WB and NB codebooks are obtained using the procedure
given in [36]. Both the WBs and NBs cover the whole sphere
and are designed assuming 3 bit phase-shifters with no ampli-
tude scaling. The composite radian patterns and the 3 dB
contour plots of the beams for the WB and NB codebooks
are shown in Fig. 8. The beam decision regions of the same
WB and NB codebooks were shown in Fig. 5 and Fig. 6,
respectively.

From actual beam measurements, it was observed that
even in a static setup, there is substantial variation in the
measured RSRP over time. The variation is spatially and tem-
porally correlated. For realistic evaluation, we use the follow-
ing model to mimic this experimentally observed behavior.
Consider that the noise on all MUE receive beams at time
t is collected in a vector nt . To obtain nt , we consider that
the temporal correlation in the noise decreases exponentially,
and the parameter η controls the temporal correlation. Let us
define a vector ňt ∈ RMUE×1 such that ňt ∼ N (0, σ 2

n IMUE),
where σ 2

n is the noise variance. Further, recall that we need
a noise realization every SSB period, i.e., TSS = 20ms.
With this, first, we obtain only temporally correlated noise

vector n̄t

n̄t = e−ηTSS n̄t−1 +
√
1− e−2ηTSS ňt . (15)

Further, to introduce correlation across beams, we define a
correlation matrix P ∈ RMUE×MUE

P =


1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ
...

...
...

...

ρ ρ ρ · · · 1

 , (16)

where 0 ≤ ρ ≤ 1 controls the correlation among beams.
Specifically, ρ = 1 means full correlation and ρ = 0 means
no correlation. Finally, the spatio-temporally correlated noise
vector is nt = P

1
2 n̄t , so as to have E[ntn∗t ] = σ 2

nP. In our
experiments, we use σn = 4.4, η = 0.29, and ρ = 0.8688.
These parameters are chosen based on measurements done
with a mobile phones using a codebook similar to the one
used in this paper. Note that, although we generate aMUE × 1
vector nt for each SSB period, only single element of nt
corresponding to the receive beam jt is used in the simulation.

3) UE ORIENTATION MODEL AND IMU DETAILS
We consider a filtered random walk based UE orientation
model. Specifically, consider a random walk

ᾱt = ᾱt−1 +N (0, σ 2), (17)
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FIGURE 9. Initial convergence of the particles in PF.

where ᾱ0 ∼ U[0◦, 360◦]. Then, the filtered random walk is

αt =
1
K

K−1∑
k=0

ᾱt−k , (18)

where K is the filter length, and larger K implies smoother
variation of orientation. The output of the filtered random
walk is then wrapped to be within [0◦, 360◦]. We use the
same process for obtaining αt , βt , and γt . In addition, for
simplification, we use the same value of σ for generating
αt , βt , and γt . The higher value of σ implies higher rotation.
In experiments, we choose the value of σ to be either 1◦ or
10◦. Further, we chooseK to be either 5 or 21. It is worthwhile
to mention that with K = 21, the value σ = 1◦ results
in rotation of 8.7◦/s and σ = 10◦ results in rotation of
87.1◦/s. This level of rotation, however, is around one axis,
and as three rotations are applied one after another, the overall
rotation can be higher/lower than these values. Note that,
the information from IMU sensors is erroneous. The level of
error in the sensor measurements can be determined from the
sensor specification or from experiments. We model the error
as white Gaussian [23]. The error in each axis is parametrized
by a value, i.e., σα , σβ , and σγ . The values used in our
simulation are σα = 2◦, σβ = 1◦ and σγ = 1◦.

4) PF PARAMETER DETAILS
We consider that there are M = 1000 particles and the
number of uniform particles inserted in each time-step is
N = 150. These choices were informed by numerical
results. Specifically, M = 1000 was found to be sufficient
to get good performance. Increasing M further increased
the computational burden without significantly improving
the performance. The value N = 150 was obtained by
numerically testing the performance of PF for a few values
and selecting the one with the best performance. Note that,
the error caused by the sensor measurements is only one
source of imperfection in the process equation. In practice,
the AoA also changes due to the user movement, and the
channel changes e.g., multipath fading and channel state
change. As these changes are not explicitly modeled in the
process equation, they also get implicitly modeled by the

process noise. Therefore the optimal level of noise for PF
operation is higher than the actual sensor measurement noise,
i.e., σα = 2◦, σβ = 1◦ and σγ = 1◦. We did numerical opti-
mization to find that 4× the sensor measurement noise level
gives the best results for PF. We use a low variance sampler
to implement the importance sampling [37]. The advantage
of low variance sampling is that it covers the sample space
more systematically.

B. INITIAL CONVERGENCE OF PF AND AVOIDING
PARTICLE DEPRIVATION
We first show the convergence of particles to the strongest
paths in the channel and the ability of PF to avoid parti-
cle deprivation when the channel state changes. In Fig. 9,
we show the initial convergence of the PF when the algo-
rithm starts running. Specifically, the AoAs of multipaths in
the channel are shown with red stars. The size of the star
represents the strength of the multipath. In total, there are
C = 25 multipaths, but some of them may not be visible in
the figure as only a few paths are strong. In Fig. 9a, the initial
state of the particles is shown where the particles are uni-
formly distributed over the sphere. In Fig. 9b, we can see that
only after 5 time-steps, the algorithm has started to converge
around AoA of the strong path, with good convergence after
9 time-steps as shown in Fig. 9c.

We show the ability of the PF to avoid particle deprivation
in Fig. 10. In Fig. 10a, we can see that the PF is successfully
tracking the AoAs. Then the channel state changes from
NLOS to LOS at time-step 378 as shown in Fig. 10b. This
sudden change implies that now the particles correspond to a
different spatial region compared to AoA of the strong mul-
tipaths. Due to the presence of N = 150 uniform particles in
every time-step, the PF can recover quickly and the particles
converge to the proximity of the AoA of the strong multipaths
as shown in Fig. 10c.

C. BENEFIT OF ORIENTATION-ASSISTED BM
We now show the benefit of using orientation information
in addition to the RSRP information for BM. For this pur-
pose, we use three metrics. All the metrics are calculated by
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FIGURE 10. Change of channel state and subsequent convergence of of the particles in PF.

TABLE 1. The four cases with slow or fast rotation speed, normal or
sporadic RSRPs information, and smooth or non-smooth rotation.

averaging over the whole UE trajectory. First is the beam
prediction accuracy. This metric, simply called ‘‘AC’’ is the
percentage of times the beam-predicted by a practical strat-
egy, e.g., ‘‘RSRP-only’’ or ‘‘orientation-assisted’’ is the same
as the ‘‘genie-aided’’ best beam. ‘‘RSRP-only’’ is a con-
ventional BM strategy explained at the end of Section II-A,
in which RSRP of only one UE beam is updated in one SSB
period. The ‘‘orientation-assisted’’ is the proposed PF based
strategy. Finally, in the ‘‘genie-aided’’ strategy, the best beam
is obtained assuming instantaneous RSRP knowledge of all
the beams in the UE codebook. The secondmetric is the mean
RSRP which is simply called ‘‘RSRP’’. The third metric is
‘‘RSRP loss’’ simply called ‘‘Loss’’. This metric is obtained
by subtracting the RSRP of the predicted beam of a practical
strategy from the RSRP of the genie-aided best beam and
taking the mean of the difference. We evaluate these metrics
for three UE movement speeds, i.e., 20 kmh−1, 60 kmh−1,
and 100 kmh−1. For each UE movement speed we consider a
UEwithWBs and aUEwith NBs. Also, we consider different
levels of rotation speed, different RSRP information rates,
and different levels of orientation smoothness. Specifically,
we create four cases as shown in Table 1. The rotation speed
is controlled by σ , i.e., σ = 1◦ implies ‘‘Slow’’ rotation and
σ = 10◦ implies ‘‘Fast’’ rotation. The RSRP information
rate is controlled by f , i.e., f = 1 means a new RSRP
measurement every TSS whichwe call ‘‘Normal’’ information
rate, whereas f = 3 means a new RSRP measurement
every 3TSS which we call ‘‘Sporadic’’ information rate. The
rotation smoothness is controlled by K , i.e., K = 21 implies
‘‘Smooth’’ rotation, whereas K = 5 implies ‘‘Non-smooth’’
rotation. In Table 1, a higher case index implies a more
favorable scenario for the use of orientation-information.

The results for this experiment are given in Table 2. From
the results of case 1, we can see that the beam prediction
accuracy of the orientation-assisted strategy is lower com-
pared to RSRP-only. Similarly mean RSRP is also lower
for orientation-assisted strategy, whereas the RSRP loss is
higher for orientation-assisted. The reason is that case 1 is not
a favorable scenario for the use of orientation information.
Specifically, the rotation speed itself is slow so there is not
much benefit of using rotation information. In other words,
before the mobile significantly rotates, RSRP information on
all (or most) beams can be collected to do good BM. Further,
as the orientation information is erroneous, using orientation
information can harmBM. To an extent, the same observation
applies to case 2. Note that, though in the case 2 the rotation
is fast, the RSRP information is still collected at a rapid rate,
and RSRP information alone is sufficient to do good BM.
It is only in the case 3 when the RSRP information rate is
lower than the orientation information rate, that the benefit
of using the orientation-assisted strategy for BM becomes
clear. We can see that depending on the user speed, using the
orientation-assisted strategy can improve the beam prediction
accuracy by up to 8% and reduce the RSRP loss by up to
2 dB. The benefit of orientation-assisted strategy becomes
more pronounced when there is a non-smooth orientation
change, i.e., more rapid and sudden orientation change, as in
the case 4. Specifically, in this case, the beam prediction
accuracy can be improved by up to 10% and RSRP loss can be
reduced by up to 2.37 dB. Finally, note that the benefit of the
orientation-assisted strategy is clear when RSRP information
rate is lower than the orientation information rate. Since it is
easy to know RSRP and orientation information rates, the UE
can use this information to switch between RSRP-only and
orientation-assisted BM. Using this simple switching mech-
anism, the UE can achieve a performance that is at least as
good as RSRP-only in all cases, and in some cases better due
to the use of orientation information.

We now give the cumulative distribution function (CDF)
of the RSRP of RSRP-only, orientation-assisted, and genie-
aided BM strategies. This result is for case 4 with the UE
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TABLE 2. The performance comparison of orientation-assisted BM strategy in comparison with RSRP-only BM in terms of beam prediction accuracy (%),
mean RSRP (dBm), and RSRP loss (dB). The performance is compared for three different UE movement speeds and four cases outlined in Table 1.

FIGURE 11. RSRP CDF comparison of genie-aided, RSRP-only and
orientation-assisted BM. The orientation-assisted BM does better than
RSRP-only due to the use of orientation information.

speed of 60 kmh−1 and NBs. From the results in Fig. 11
we can see that the benefit of using the orientation-assisted
strategy is not limited to a specific percentile region, but the
CDF of orientation-assisted strategy is better than RSRP-only
in all percentile regions.

D. PREDICTING NBS FROM WB RSRPS
Finally, we give a result for predicting NBs usingWB RSRPs
in Fig. 12. The result is for case 4 with the UE speed of
60 kmh−1. For orientation-assisted strategies, there are two
curves. First is ‘‘orientation-assisted: NB measurements’’
which corresponds to the case of usingNBRSRPs for predict-
ing NBs. The second is ‘‘orientation-assisted: WB measure-
ments’’ which corresponds to the case of using WB RSRPs
for predicting NBs. We can see from the results that the WB
RSRPs based strategy has superior performance compared
to the NB RSRPs. The advantage, however, is not signifi-
cant. Specifically, the median gain by using WB measure-
ments over NB measurements is 0.64 dB. This is because the
benefit of using WB measurements over NB measurements
is pronounced only when the channel state changes or for

FIGURE 12. RSRP CDF comparison of of genie-aided, RSRP-only and
orientation-assisted strategies, with results collected over the whole
20 km trajectory. The WB RSRPs based orientation-assisted strategy does
slightly better than NB RSRPs based orientation-assisted strategy.

FIGURE 13. RSRP CDF comparison of of genie-aided, RSRP-only and
orientation-assisted strategies, with results collected over the initial
84 time-steps. The WB RSRPs based orientation-assisted strategy does
significantly better than NB RSRPs based orientation-assisted strategy.

initial convergence. The results presented in Fig. 12, however,
are collected over the whole 20 km trajectory. As there are
a handful of channel state changes over the trajectory, the
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FIGURE 14. The composite radiation pattern (in dB scale) and the 3 dB contours of the beams in BS
codebook. There are MBS = 56 beams, and the codebook is designed to serve the ground UEs (hence vertical
coverage for ϑ > 90◦) and covers one 120◦ sector (hence horizontal coverage for ϕ ∈ [120◦, 240◦]).

advantage of usingWBmeasurements is not clear. In Fig. 13,
we compare the CDFs for initial few time-steps. Specifically,
we show the results for initialMN

UE×f , i.e., 28×3 = 84 time-
steps. Note that, in 84 time-steps one cycle of NB measure-
ments is completed when a new RSRP is available every
3 TSS. We can see from Fig. 13 that the benefit of using WB
measurements is more pronounced in the initial time-steps.
Specifically, the median gain by using WB measurements
over NB measurements is 2.1 dB in this case.

E. MULTI-ANTENNA BS
So far we have assumed a single isotropic antenna at the BS.
We now consider a 16 × 16 uniform planar array (UPA) at
the BS, and a beam codebook containing MBS = 56 beams.
The composite radiation pattern and the 3 dB contours of the
beams in BS codebook are shown in Fig. 14. The codebook
is designed assuming 5 bit phase-shifters with no amplitude
scaling. Further, the codebook is designed to serve the ground
UEs and hence the vertical coverage is for ϑ > 90◦. The
codebook covers one 120◦ sector horizontally and hence
horizontal coverage is for ϕ ∈ [120◦, 240◦] (ϕ = 180◦

points to the positive x axis in Fig. 7). We assume genie-aided
knowledge of the best transmit beam, i.e., the BS beam that
yields the highest RSRP value for any UE beam. With the
knowledge of the BS beam, the problem of finding aUE beam
is the same as what we have considered so far. For brevity,
we only show the results for the case 4, with NBs at the UE,
and the movement speed of 20 kmh−1. Note that this is the
case that had yielded a gain of 2.37 dB with isotropic BS (see
Table 2). The CDF for this experiment is shown in Fig. 15.
The mean RSRP gain by using the proposed orientation-
assisted strategy in comparison with RSRP-only is now
3.84 dB. This is 1.47 dB better than the 2.37 dB which was
achieved with an isotropic BS. Similarly, the beam prediction
accuracy by using the proposed orientation-assisted approach
is now 15.5% higher than the RSRP-only, in comparison
with 10% with an isotropic BS. This improved performance

FIGURE 15. RSRP CDF comparison of of genie-aided, RSRP-only and
orientation-assisted strategies, with MBS = 56 beams. The proposed
orientation-assisted strategy does better than the RSRP-only strategy in
all percentile ranges.

is a result of channel sparsification by the use of BS beams
and verifies the intuition that using isotropic BS is a pes-
simistic setup for the proposed strategy.

VI. CONCLUSION AND FUTURE WORK
We proposed a beam management (BM) strategy based on
fusing reference signal received power (RSRP) and orien-
tation information using particle filter (PF). Specifically,
we formulated the BM problem as an angle-of-arrival (AoA)
tracking problem followed by beam determination by count-
ing the number of particles in the beam decision regions of the
beams. The proposed strategy improves over RSRP-only BM,
particularly in cases that are favorable for using orientation
information i.e., when the rotation is high and non-smooth
and the RSRP information is available sporadically. Using
the proposed orientation-assisted strategy, the BM accuracy
can be improved by 15.5% and the RSRP loss can be reduced
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by 3.84 dB. The RSRP improvement of 3.84 dB (equivalent
to 59% transmission power reduction) at the UE is substantial
and can considerably improve the battery life.

For future work, note that the proposed strategy has
been evaluated with practical assumptions, i.e., realistic ray-
tracing channels, user equipment (UE) and base station
(BS) codebooks, RSRP noise, and inertial measurement unit
(IMU) noise. The proposed strategy, however, needs to be
implemented and evaluated on a mobile device. This includes
computational complexity analysis and optimization (e.g., by
using appropriate resampling strategies, e.g., [38] and/or by
using augmented PF [37]) when implemented on the UE.
Further, in this work, we considered analog beamforming
based on phase-shifters. Extending the proposed strategy for
hybrid analog-digital architectures, where multiple RSRPs
can be available at the same time is also an interesting
direction. Finally, equipped with the AoA estimate, the UE
does not need to sweep the beams in a round-robin manner,
which is inefficient during the beam tracking stage. Instead,
the UE can choose to sweep the predicted best beam (and the
neighboring beams of the predicted best beam). The design
and evaluation of this strategy are left for future work.
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