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ABSTRACT Cyber-Physical Systems (CPS) underpin global critical infrastructure, including power, water,
gas systems and smart grids. CPS, as a technology platform, is unique as a target for Advanced Persistent
Threats (APTs), given the potentially high impact of a successful breach. Additionally, CPSs are targets
as they produce significant amounts of heterogeneous data from the multitude of devices and networks
included in their architecture. It is, therefore, essential to develop efficient privacy-preserving techniques
for safeguarding system data from cyber attacks. This paper introduces a comprehensive review of the
current privacy-preserving techniques for protecting CPS systems and their data from cyber attacks. Concepts
of Privacy preservation and CPSs are discussed, demonstrating CPSs’ components and the way these
systems could be exploited by either cyber and physical hacking scenarios. Then, classification of privacy
preservation according to the way they would be protected, including perturbation, authentication, machine
learning (ML), cryptography and blockchain, are explained to illustrate how they would be employed for
data privacy preservation. Finally, we show existing challenges, solutions and future research directions of
privacy preservation in CPSs.

INDEX TERMS Privacy preservation, cyber-physical systems, perturbation, authentication, machine learn-
ing, cryptography, blockchain.

I. INTRODUCTION
A Cyber-Physical Systems (CPSs) are the underpinning
fabric controlling the world’s critical infrastructure. CPS is
the integration between the cyber and physical spaces, and
are the bridge between the purely cyber and the kinetic,
such as power generation and distribution, water treatment,
manufacturing and mining. Such systems are tightly inte-
grated and customised to the specific domain [1]. Each CPS
installation can be comprised of hundreds or thousands of
singular sensors and actuators. This scale and integration
generates significant heterogeneous data [2]–[4], including
sensor observations, network flow, and user data. This combi-
nation of unique factors creates challenges in the performance
of efficient big data analytics. Specifically, there are issues
in system control and data analytics for the observation of
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and management of activities within these environments [2],
[5]. A CPS environment, such as a power system, will be
comprised of multiple cyber-physical components, each with
its own industry-specific communication protocol [6]. Such
interconnectivity significantly increases the complexity of
such environments [2], [6], [7], generating a large volume
of data to be protected from cyber attacks.

One of the more common CPS control systems architec-
tures is SCADA. More particularly, SCADA acts as inter-
face, which is responsible for monitoring, configuring and
controlling the physical components of the CPS, such as its
power systems [3], [7]. Its main function is to anatomise and
deduce valuable information to improve a system’s opera-
tional functions for which various computerised models use
a Human-machine Interface (HMI) [7]; for instance, SCADA
in a power system acts as industrial technology which manip-
ulates big data measurements gathered from the input through
current and voltage transformers and then forwards certain
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FIGURE 1. Simplified architecture of SCADA in CPS.

commands to control other system devices [4]. Its key com-
ponents are Programmable Logic Controllers (PLCs) and
Remote Terminal Units (RTUs) that operate as ports for
handling data sent to terminals using some protocols, such
as IEC 60870-5-101/104, IEC 61850 and DNP3 that interact
with the Modbus TCP/IP model [7], [8].

To identify and recognise potential cyber attacks against
CPSs, it is essential to characterise the standard components
of a CPS that could be vulnerable and be exploited using
advanced persistent attacks. As shown in Figure 1, a CPS has
a large scale of devices and systems, as sensors, actuators,
PLCs, RTUs and HMIs [9], which run systems and interact
with the Internet for engaging CPSs operations, like use sen-
sors to measure the power meters’ data and sending them for
further processing, analysis and visualisation. CPSs include
different layers of operations and communications, physical,
control, supervisory control and corporate layers [10]. Each
of these layers is discussed separately. First, the physical layer
is comprised of components involving sensors and actuators,
which send directly to the control system for processing.
The control layer is comprised of Programmable Logic Con-
trollers (PLCs) and Remote Terminal Units (RTUs). These
units receive data from physical devices and send back the
control commands to be executed. Based on the data received
from physical sensing devices and actuators, the control unit
pushes commands to perform specific tasks. Lastly, the cor-
porate layer is responsible for communicating between the
physical, computing and network devices and systems is
potentially vulnerable to the security and privacy issues found
in any corporate network [6], [10], [11]. Cyberthreats are
exploitable by attackers who often use advanced and sophisti-
cated attacking methods and tools to breach the security prin-
ciples of the Confidentiality, Integrity and Availability (CIA)
triad [12].

This paper provides the core concepts and a critical review
of the previous research of Cyber-Physical Systems from a
cybersecurity perspective. As CPSs, such as power networks,
produce significant volumes of heterogeneous data from

multiple sources, it is necessary to also understand mecha-
nisms that can be applied to maintain customer and system
privacy. This work therefore also seeks to also focus on
processes and research in the area of privacy preservation,
as applied to the cybersecurity of this domains. The key
aim of this paper is to review the current state of privacy-
preserving techniques for protecting CPSs and their networks
against cyber threats, with their effectiveness for enabling
intrusion detection examined to determine their capability to
discover cyber attacks while implementing privacy preserva-
tion. One key outcome is to outline the need to develop effi-
cient methods for intrusion detection in a privacy-preserving
manner, for protecting data and system components
against unauthorised access and identifying cyber attacks,
respectively.

The concept and architecture of CPSs and how their com-
ponents can be compromised using cyber and physical hack-
ing scenarios is discussed in Section II. Privacy preservation
and its types, including perturbation, authentication, Machine
Learning (ML), cryptography and blockchain, are discussed
in section III to demonstrate how they could be applied to pro-
tect the original data in CPSs and their networks. Approaches
for intrusion detection and their methodologies are explained
to indicate how they can be used to discover cyber attacks
on CPSs and their networks. Also, the heterogeneous data
sources of CPSs and their characteristics are examined to
show how methods for privacy preservation and intrusion
detection can be evaluated. The Challenges and research
contributions of this work are elaborated in Section IV.
Finally, The conclusion of this research study is discussed in
section V.

II. CPSs AND CYBER THREATS
A CPS incorporates physical and communication technolo-
gies and their elements which can be classified as cyber,
physical and cyber-physical. A cyber element includes com-
puting and network parts which have no direct contact with
the physical world, the physical one the hardware and indus-
trial parts which have no direct contact with the cyber parts
and the cyber-physical one devices and systems that link
the cyber and physical parts, such as sensors and actuators
[1]. A CPS involves the heterogeneous data sources of its
physical devices as well as its computing and network sys-
tems that generate big data [3], [4]. Due to the complex
nature of big data, they are challenging on several levels;
specifically, system control and data analytics for monitoring
and managing their activities [2], [5]. In a CPS, such as
a power system, the role of Supervisory Control and Data
Acquisition (SCADA) is to act as an interface for moni-
toring and managing its operations using standard commu-
nication and industrial protocols [6]. However, the CPS’s
inter-connectivity of sensors, actuators and network devices
at different power nodes increases the complexity of the
platform ecosystem (such as a power grid) [7], and pro-
duces a large amount of data that must be protected against
cyber attacks.
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A SCADA system is responsible for the remote control,
configuration and monitoring of the physical components of
any CPS, such as its power systems [3]. Its main role is to syn-
thesize and infer valuable information to improve a system’s
operational functions for which various computerised models
use a Human-Machine Interface (HMI) [7]; for instance, in a
power system, SCADA acts as industrial technology which
manipulates big data measurements gathered from the input
through current and voltage transformers and then forwards
certain commands to control other system devices [4]. Its
key components are Programmable Logic Controllers (PLCs)
and Remote Terminal Units (RTUs) that operate as ports for
handling data sent to terminals using some protocols, such
as IEC 60870-5-101/104, IEC 61850 and DNP3 that interact
with the Modbus TCP/IP model [8].

Apart from SCADA systems, there are other control mech-
anisms used in power sub-stations, such as interlocking and
defence utilities [8]. The intercommunication between phys-
ical automation systems and Information Technology (IT)
platforms through network connections greatly effects the
complexity of these systems and their big data. This complex-
ity is highlighted in Figure 1. As SCADA is more vulnerable
to exposure by cyber attackers than other modules because
one of its primary functions is to remotely monitor the phys-
ical processes in a power system, securing such systems
is a complicated and unstable target as new vulnerabilities
appear every day, especially given the high sensitivity of
control data.

In order to identify potential cyber threats against CPS sys-
tems, it is necessary to first understand the basic components
of a CPS, including which aspects are vulnerable and can be
exploited from advanced and motivated attackers. As shown
in Figure 1, a CPS is comprised of a wide range of sensors,
actuators and components [9] which manage systems and
interact with additional networks (including corporate net-
works and potentially Internet connections) to undertake CPS
operations. CPSs are comprised of physical, control, super-
visory control and corporate layers [10]. Cyber-threats have
been developed by Cyber attackers who often use advanced
and sophisticated attacking methods and tools to breach
the security principles of the Confidentiality, Integrity and
Availability (CIA) triad [12]. Malicious activities affecting
confidentiality include Man-In-The-Middle (MITM) attacks
and data exfiltration [13]. There are also integrity attacks that
are specific to CPS ecosystems; these include the alteration of
CPS components or registers [14], the exposure of the system
data by false data injection, data poising, and illegal alteration
of data or configuration. This can include data sources includ-
ing sensor or devices measurements and control commands,
and therefore, the normal events of the physical and network
devices are modified. While attacks on availability, including
Denial of Service (DoS) and Distributed DoS (DDoS). There
are also cases specific to CPS in this area, such as the ability to
impact the operation of RTUs and PLCs by sending themmal-
formed data. This is a particular issue on older systems that do
not have the computational power for rigorous error checking.

Such attacks can temporarily or permanently offline or phys-
ically damage network elements. This can distort the normal
operations of CPSs [15].

To protect CPS devices and data against cyberattacks,
there are several areas of research that are being actively
explored. These include methods for privacy preservation to
keep the system original data to be secure from illegal access,
and intrusion detection that can identify cyber attacks that
can exploit CPSs and their networks. These are introduced
below.

III. PRIVACY PRESERVATION IN CPS ENVIRONMENTS
Privacy preservation is the procedure of safeguarding sensi-
tive information from exploitation by adversaries while still
allowing it to be effectively processed on the network [6],
[16]. Privacy preservation in CPS first appeared in 2008 in
work by Aggarwal and Srikan [17], and was designed to both
provide data utility whilst eliminating the ability for adver-
saries in the network to gain access to the CPS sensitive data
storage. As previously outlined, CPS systems generate large
amounts of heterogeneous data from multiple sources, and
there is therefore a need for developing privacy preservation
methods across this data, whilst still allowing existing net-
work security measures, such as anomaly detection, to oper-
ate effectively [18], [19]. Given that CPS systems attract
motivated, skilled attackers over a significant time period, one
goal is the potential access and exfiltration of control system
data such as power information, user credentials for further
system access, and an understanding of key nodes to cause
significant kinetic impact.

There are extensive research studies that have been pro-
posed to maintain the data privacy and security of CPS
environments against cyber-threats, specifically for ensuring
their confidentiality and integrity [3], [7], [18], [20], [21].
There are multiple ways of classify methods for privacy-
preservation, but the most effective and intuitive is to classify
according to the purpose of data transformation [7], [16]. This
classification has three categories: data generalisation; data
transformation; and data aggregation. Generalisation tech-
niques [20] maintain data confidentiality by converting sensi-
tive features into general values. By contrast, transformation
techniques [21] modify the original data with new values and
use some projection techniques to reduce the data’s dimen-
sionality. Aggregation techniques work by [18] splitting the
original data into small parts and altering each part’s private
values with the average of that part. Other studies introduced
in [22] focused on data aggregation for maintaining system
security and privacy. These techniques are effective to pre-
serve sensitive data from illegitimate access. However data
heterogeneity techniques are still nascent in CPS research
given the difficulty in effectively managing different data
types [17]. Given the large variety of data in CPS ecosystems,
this is a non-trivial issue in the field.

An alternate method for categorising privacy preserva-
tion techniques is based on their characteristics. The cate-
gories in this form are; heuristic- [23], reconstruction- [24],
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FIGURE 2. Classification of privacy preservation in control systems.

cryptographic- [25] and blockchain-based [26]. These tech-
niques are considered to be effective in data protection,
but they still have problems of providing few cryptographic
details, incur high computational costs, lack describing data
norms if it is raw or aggregated and can’t scale well [16], [25].
Several methods based on Data Mining (DM) and Machine
Learning (ML) [27], perturbation (i.e., Differential Privacy
(DP)) [1] and encryption [28] were deployed to transform,
alter, distribute and conceal system information from expo-
sure during processing or transmitting them though networks
[3], [29]. In control systems, such as power grids, there are
security, privacy and commercial limitations on data, and
as such it is not available within the public domain or for
research purposes [3], [7], therefore, it is hard to obtain
relevant data from different sources.

Therefore, mitigating the cyber and privacy threats attack-
ing CPS ecosystems is still an active area of research, and
several research studies have been conducted with the express
aim of protecting CPS physical and network confidential data
[16], [18], [27], [30], [31]. Encryption techniques are tradi-
tionally used to safeguard sensitive data but still they have
issue in further analysis and data management while lately
Machine learning, data mining and statistical approaches are
extensively applied [16], [17], [18], [24].

Figure 2 depicts privacy preservation techniques types,
methodologies, advantages and drawbacks to elaborate their
contributions and aspects for improvement. The overview of
existing privacy-preserving techniques provided below high-
lights their benefits and limitations based on the ways they
protect the data.

A. PERTURBATION-BASED PRIVACY PRESERVATION
The basic concept behind perturbation is to find an appro-
priate way of transforming the original information in order
to hide the sensitive data using different types of transfor-
mations, such as projection and geometric perturbations, sta-
tistical measures, such as noise, and Gaussian and Markov
processes. Preserving data privacy is critical but difficult to
achieve in terms of the level of protection (i.e., the amount of
sensitive information altered) while maintaining data utility
which is the capability to derive useful information from
the shape of data, especially good performances of intrusion
detection [7]. The more perturbation applied, the greater
the difficulty of obtaining useful information from altered
data. Achieving a trade-off between the privacy protection
level and data utility is a controversial issue that requires
more investigation [32]. There are many approaches for
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transforming the original data to a new form, as described
in the following sub-sections.

1) SIGNAL DISTORTION
Distorting the data of CPSs is an important perturbation tech-
nique for providing privacy preservation in different appli-
cations, such as power consumption and intrusion detection
systems (IDSs), which is achieved by adding or removing
some noise matrices from the original data. However as,
like any perturbation approach, such changes could affect
some important information (i.e., lose data utility), obtaining
a balance between data protection and utility is still a signif-
icant challenge [7], [32]. Various studies for maintaining the
privacy of data-driven devices in different applications, such
as that of Kabir et al. [33], use the Non-negative Matrix Fac-
torisation (NMF) and sparseness constraint to hide sensitive
information. This constraint provides a sparse data represen-
tation in which a predefined threshold is set to control the
level of data distortion. The authors mention the effective-
ness of this approach for preserving and cancelling sensitive
information as well as the usefulness of this informationwhen
applying DM techniques. However, as using a sparseness
constraint with NMF is considered a side-effect of controlling
the degree of data sparseness, the parameters used should
be carefully specified before data distortion, especially the
truncation threshold for completing the distortion process.

In [34], a distortion method that aims to remove some
sensitive itemsets is proposed. This method works through
the generation of association rule mining from the original
data, which leads to sensitive rules being hidden and their
support or confidence reduced. In this method, the rules for
modification preferably contain fewer non-negative itemsets
which could decrease the side-effects of information while
mining. Although the experimental results show that this
proposed approach can efficiently hide the sensitive rules
and reduce their side-effects, thereby achieving the ideal of
hiding all the sensitive rules while retaining the non-sensitive
ones for mining purposes with no side effects, is difficult.
It depends greatly on the user’s definition of sensitive and
non-sensitive rules and the data context. The more itemsets
and sensitive rules, the more processing time is required.
Jia et al. [35] proposed two protocol schemes for privacy
preservation and data aggregation in a smart grid in the face of
a Human-factor-aware Differential (HAD) aggregation attack
which is responsible for inferring a person’s information
and exploiting their readings while measuring data aggre-
gation/data metering aggregation. To resist this attack, noise
was added to each reading value with no avoiding aggregator
to deduce any information about users. However, these meth-
ods consume additional time and resources when compared to
other methods. This potentially affected the accuracy ofmeter
readings, which is not preferred for billing operations. A new
algorithm for protecting data privacy based on NMF and sin-
gular value decomposition as a type of matrix decomposition
was proposed in [36]. Although it improves the privacy level
over that of a single decomposition, its data utility measures

are not sufficiently enhanced and the parameter adjustments
required increase its computational time.

2) PROJECTION-BASED TRANSFORMATION
The balance of privacy-preservation techniques is in both
protecting sensitive information from advanced persistent
threats and other adversaries at the same time as ensuring
a significant level of information utility. Transformation-
based privacy-preserving techniques are one form of process
designed to create this balance. The Geometrical Data Trans-
formation (GDT) is extensively used to preserve privacy to
an extent, but it does not achieve high levels of privacy [3],
[37]. Other transformation-based projection techniques, such
as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA), decrease data dimensions using
the highest variations in the original data [37]. Feature Reduc-
tion (FR), which is an approach that removes unimportant
or irrelevant and noisy features from a dataset [38], has
two stages: Feature Selection (FS); and Feature Extraction
(FE) [7], [38]. The former aims to eradicate redundant and
uncorrelated features from CPSs big data collections and the
latter changes the high dimensions of data to smaller ones.
The purpose of both stages is to reduce the computational
cost and enhance the process of big data analytics and data
privacy by removing unnecessary information [11], [38].

Various studies use projection techniques to protect the pri-
vacy of sensitive data [7], [39]; for example, Keshk et al. [7]
designed a method called Privacy Preservation Intrusion
Detection (PPID) for protecting and defending SCADA
systems against attackers. In it, the correlation coefficient
approach is employed to reduce the number of SCADA
features by selecting important information with no data
exposure. Then, the EM clustering algorithm is applied to
detect malicious behaviours in the SCADA data. An exper-
iment conducted on a power system dataset shows that the
PPID is more effective and efficient than the ML techniques
with which it is compared but it needs advanced clustering
approaches to obtain better detection accuracy. Another pro-
jection technique introduced in 2018 [39] for feature learn-
ing of big data is the Double-projection Deep-computation
Model (DPDCM). In it, the raw data input is projected into
two non-linear sub-spaces by exchanging the DCM layer with
a double-projection one and then using these two sub-spaces
as output to model the features. As this method’s param-
eters require adjustment, a learning algorithm is applied,
with cloud computing used to enhance the computational
overhead (i.e., for storage and power computations). How-
ever, as the cloud suffers from privacy concerns, a fully
Homomorphic Encryption (HE) technique used to encrypt the
private training objects leads to the PPDPDCM. The results
of experiments conducted on two classification datasets and
compared with those of the traditional DCM and proposed
PPDPDCMshow that the latter ismore effective and accurate.
Although the cloud is used, the model’s complexity is still
high in terms of computational time andmodel training. In the
study of dimension reduction with privacy preservation in
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[40], mechanisms for dimension reduction are theoretically
evaluated and then a non-linear reduction based on neural
networks (NNs) is used to ensure the protection of data
images. This method performs effectively compared with
other similar ones but has a learning process that incurs a large
computational overhead and has an issue regarding parameter
settings.

3) DIFFERENTIAL PRIVACY (DP)
DP is an efficient statistical approach that guarantees uncon-
ditional privacy as no assumption is made about an attacking
adversary’s knowledge. This ensures that certain perturbed
data computations do not change greatly when the original
data are updated while data privacy is retained even after
other parties are accessed [1], with the results of any com-
putations indistinguishable regardless of the original records
in the dataset. Its concept is first introduced by Dwork in
[41] for privacy preservation in different domains. Many of
the mechanisms used to preserve DP at a certain level are
explained in the following.

• Laplace mechanism (-DP) - achieves an intrinsic trade-
off between the privacy and accuracy of outcomes
by adding additive noise from a Laplace distribution
[42], [43] that is inversely proportional to that of the
database’s users. In other words, achieving the same
privacy protection for more users requires less noise
because of the smaller value but greater privacy protec-
tion leads to less accurate outcomes.

• Gaussian mechanism ((,d)-DP) adds additive noise to
numeric queries and Independent and Identically Dis-
tributed (i.i.d) entries. It could be better to apply it than
the -DP although it achieves less privacy. Nevertheless,
an analysis of its performance is simple because any lin-
ear transformation of a Gaussian random vector remains
Gaussian, such as in linear systems [42].

• Exponential mechanism– is a more general mecha-
nism with a scoring function that is selected randomly.
It is often chosen based on corresponding queries as it
accomplishes the -DP by reporting a query in a Proba-
bility Density Function (PDF) [43]. Although it is not
limited to numeric queries, it is not easy to find aPDFs
in a closed form to a multivariate distribution.

• Hybrid mechanism– while the previous mechanisms
are relatively straightforward as they have to calculate
only one value (i.e., sensitivity) in simple queries, more
complicated ones need to be decomposed into multiple
simpler ones for easy calculations.

Due to the purely mathematical computations in DP, it has
been widely applied as one of the major privacy approaches
for CPSs in recent years. In [44], Uhlerop et al. apply the -
DP to publish a genome’s aggregate data and secure them
from attackers to identify a person using the DNA mixture.
Additive noise is added to the confidential data to be released,
with a -DP and utility level achieved in a promising way.
However, the increase in the amount of data and sparsity

of the released data create an issue for securely publishing
genome data in terms of data privacy and utility. In 2015,
Chen et al. [45] proposed a Multifunctional Data Aggrega-
tion (MuDA) approach for preserving an individual’s data
whilemanaging the consumption of electricity in a smart grid.
In it, several statistical functions are computed based on user
data to achieve a variety of services, such as system initiali-
sation, with the aggregation reported. Also, it can withstand
differential attacks, with simulations of it demonstrating its
efficiency in terms of computational complexity and commu-
nication overhead. However, it requires some assumptions for
better understanding and implementation, and its results are
compared with only those of one popular method.

A similar secure data-aggregation scheme called Differ-
entially Private Aggregation with Fault Tolerance (DPAFT)
in [46] applies both DP and fault tolerance. In it, a con-
straint relationship based on a key-exchange protocol is
used for aggregation to support the fault tolerance that
DPAFT can maintain against strong attacks. The different
phases implemented are system initialisation, data aggre-
gation request, data aggregation request relay, user report
generation, privacy-preserving report aggregation and secure
report reading. Although the extensive experiments con-
ducted reveal that it is efficient in terms of storage and
computational costs and is capable of achieving both privacy
and data utility, its communication overhead and data con-
fidentiality and integrity are not considered. Very recently,
Guan et al. [47] introduced a data-aggregation scheme for
privacy protection based on fault tolerance and aggregation
in which the data privacy of a smart grid can be preserved
by using secret sharing and setting a threshold to resist a
differential attack. It demonstrates reasonable efficiency and
a low error rate but has an issue regarding the parameter
setting (i.e., threshold) and its computational complexity is
considered high as it increases exponentially with more smart
meters.

The schemes in [45] and [46] are similar, with the
main difference between them their cryptographic methods.
Lin et al. [48] designed a scheme for tackling privacy preser-
vation for a Body Area Network (BAN) using DP, where the
noise is added to the BAN’s big data to provide adequate
interferences. The feasibility of this processing system for
big data is ensured by dynamic noise thresholds rather than
ordinary noises. Their results demonstrate the capability of
this scheme to generate sufficient interferences to resist an
attacker targeting a specific user’s sensitive data. However,
the threshold values need to be carefully quantified for bet-
ter privacy protection and using such noises can affect data
utility.

A systematic approach aimed at identifying the data utility
level in an attempt to characterise the sensitive critical data
needing to be protected and releasing the unimportant data
without sacrificing control by analysing the ‘no free lunch
privacy principle’ is proposed in [84]. In it, the original data
are filtered to comprise the least confidential data and then
an adaptive local DP is applied to study optimal control
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versus privacy protection. In [49], Zhang et al. present a
battery-basedDP-preserving scheme and then extend it to two
cost-friendly techniques for preventing meter readings from
exposing a customer’s electricity consumption. Although the
experiments show DP and cost savings under static and
dynamic pricing policies, changes in the DP’s parameters can
cause a loss of privacy. Ni et al. [50] proposed a new privacy-
preserving clustering technique using DP to tackle the prob-
lem of balancing between data privacy and the availability of
clustering results. In it, the multi-core point method is used
at the most remote location from the clustering results. While
this technique shows that the clustering is accurately affected
by scaled data, the parameters used affect its accuracy and
privacy budget.

B. AUTHENTICATION-BASED PRIVACY PRESERVATION
Advances in the capabilities of communication and Internet
technologies have introduced additional security and privacy
challenges, such as (i) the confidentiality and integrity of con-
trol system data and (ii) system and user authentications. One
popular authentication approach (i.e., single sign-on) called
OAuth [51] can provide ways of checking the authenticity of
a third-party’s access without sharing its credentials. Other
methods used extensively over web services are the OpenID
[38] and Secure Assertion Markup Language (SAML) [52],
where the former allows web users to sign on to various web
services using one digital identity while the latter provides
the necessary identity credentials in XML. Despite the above
approaches being extensively used, they raise many security
concerns, such as potential vulnerabilities to attacks that track
users (e.g., MITM ones) [49] and the resources required to
store these data. Several researchers have tried to address
these challenges; for example, Das et al. [53] proposed a
unified keymanagement theoretical framework for protecting
a smart grid user’s data by working through multiple commu-
nication layers. In it, the Extensible Authentication Protocol
(EAP) is employed assuming that smart meters have low-
cost wireless devices. However, it could increase a system’s
overhead by repeating attempts to obtain peer authentications
for different protocols.

In another authentication technique introduced in [54],
a key management framework is applied to meter infrastruc-
tures at three different transmissionmodes, unicast, broadcast
and multicast, based on a key graph. Since it was designed for
different modes, key generation, refreshment and distribution
policies are needed in each mode for message authentica-
tion and encryption purposes. However, its storage and time
costs are considered high due to the requirement to store
related data, such as keys and data values, and process key
management at different modes. Also, in [55], an integrated
authentication and confidentiality protocol that offers privacy
and integrity for a metering system in a smart grid through
a mutual authentication of messages among smart meters
and gateways is proposed. For each smart meter, the read-
ing message is encrypted and aggregated with the current
message after its validation. Finally, the resultant message is

forwarded to the next level/node until it reaches the collector
end for further use by a control system. However, messages
could be delayed or clash with an increase in the number
of hops/nodes and many of the device’s computations are
consumed. Xu et al. [56] proposed a technique based on
virtual-reality methods to avoid the need for an actual face
to be authenticated which could breach user privacy. Despite
its effectiveness for domain-specific data privacy, its utility
for social networking is ignored.

Several studies introduced in [22] maintain security and
prevent privacy leaks by focusing on data aggregation.
In [57], Chim et al. suggest an approach for keeping a user’s
daily electricity usage safely away from third-party invaders
by applying the concept of the customer blindly signing
his credentials for use later when acquiring more power.
Although its performance shows that it is feasible in terms
of time and the likelihood of a lack of collisions, it requires
a prior signing operation and memory resources as additional
storage for customers signatures. Chim et al. [8] attempted
to solve issues of the authentication and privacy of a user’s
power information by aggregating the messages sent to a
control centre to decrease the capacities of traffic packets.
Also, the encryption methods that keep users identities secure
while requestingmore or less power perform reasonably well.
However, this is not sufficient as the assumption that the
encryption keys are difficult to hack requires more investi-
gation.

In [58], a proposed cloud-based authentication scheme
using a modular exponential technique firstly encrypts a
tag’s information regarding communications between IoV
and radar. Then, the anonymity of the tag is developed as
an efficient way of ensuring data privacy by protecting itse
information from malicious actions. Compared with other
protocols, it shows that it is effective and reliable in terms
of having a lower computational overhead and fewer com-
munication interactions. Some authentication work is based
on access control, such as in [59] where a self-adaptive
access control method for securely viewing patients records
in both normal and emergency cases is proposed, with a de-
duplication method used to save the storage of identical med-
ical files. Firstly, the medical data are encrypted according
to an access policy and then the method applied based on a
break-glass control one. The experimental results show that
this methodology is efficient and practical but that the time it
consumes increases with the sizes of the attributes.

C. DATA MINING AND MACHINE LEARNING BASED
PRIVACY PRESERVATION
DM and ML are usually used to deduce and conclude
patterns and inferences from a collection of data which
could compromise CIA [60]. As exchanging sensitive and
confidential information for data analysis and publishing pur-
poses requires protecting the data from disclosure, Privacy-
preserving DM (PPDM) and Privacy-preserving ML (PPML)
methods for guaranteeing a high level of privacy while max-
imising data utility for analytical and mining purposes are
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essential. In other words, using PPDMor PPML for data anal-
ysis and inference goals without losing the privacy of sensi-
tive and personal data is very important [27]. Currently, there
are many PPDM and PPMLmethods, such as randomisation,
anonymisation, clustering, classification and association rule
mining, as discussed in the following sub-sections.

1) RANDOMISATION-BASED PPDM/PPML
Randomisation approaches are applied mainly in the collec-
tion phase as the collector is assumed to be untrusted, with
the original data distorted by noise to build new representa-
tions of the authentic them. Therefore, although the original
data cannot be recovered, the aggregate distributions can be
used for mining and inferring operations [61]. They could be
randomised using additive [21] or multiplicative alterations
[62], where the former adds randomised noise-generating
data distributions for DM and the latter uses random pro-
jections or rotations of noises with a known distribution.
While these approaches are effective in the data collection
stages and do not need further resources, their data utility
is degraded/limited and requires a large amount of noise-
masking original data values. Randomised responses and
noise perturbations assist in achieving privacy preservation
with knowledge inference [16].

2) ANONYMISATION-BASED PPDM/PPML
In the publishing phase, protecting individuals information
(i.e., personalised privacy) requires data holders and pub-
lishers to clear the identification data because they could
compromise individuals sensitive and personal data [41]. Two
general types of disclosure are identity and attribute. The first
relates to hacking the unique identifiers of individuals while
the attribute one can be inferred through the available data.
Several techniques are used to preserve identity privacy, such
as k-anonymity, l-diversity and t-closeness. One ormore data-
sanitising operations, such as generalisation, suppression,
anatomisation and perturbation, can be applied in privacy
models. K-anonymity is a simple and efficient approach for
identity protection as it can prevent any association between
individuals and related sensitive values by modifying the
original data (D) so that the identifiable attributes of a dataset
are not considered different from at least k-1 records. Data
generalisation and suppression are used in k-anonymity to
replace the sensitive values by a general one for privacy
purposes. In [63], an anonymisation technique forminimising
information loss (IL) during the process of data publishing is
proposed.

To satisfy the requirements of data experts, two algo-
rithms that provide accurate measurements of the IL and
effective data anonymisation explore the largest portion of
a problem. The experimental evaluations using click-stream
and medical data show more reliable answers to queries
than some other methods. In another effective approach for
the privacy preservation of personal data proposed in [64],
the data are transformed into a k-anonymous shape with
their utility using a reference to differentiate among their

analytical characteristics. The experimental results reveal that
this technique can protect the data patterns extracted from
mining algorithms. Although anonymisation methods are
simple, they do not consider that each record represents one
individual and, occasionally, ignore the sensitive attributes
while anonymising the available data which might disclose
private information during the de-anonymisation process.

Wang et al. [65] introduced a novel notion of Differen-
tially Private K-anonymity (DPKA) based on the DP and k-
anonymity perceptions to support the privacy of queries in
location services such as mobile devices. A pool of k-query
interests is defined, including k − 1 dummy ones, with the
selected and dummy ones submitted together to the location
provider which cannot differentiate between them. Therefore,
DP is employed using a probabilistic inference, where the
protection level is achieved if the posterior probability of
any two queries is sufficiently close and controlled by an
privacy budget. For two cases in this work, the necessary
0-DPKA and more general -DPKA, if the first one is not
achieved, it is proven that the -DPKA is equivalent to the
transformed 0-DPKA. Four real datasets and synthetic Zipf
distributions are used for simulation tests which demonstrate
this method’s effectiveness in guaranteeing the privacy of
queries. However, a careful setting of the parameters which
can affect the privacy budget and data utility is required while
the integration of DP would increase the time costs.

The l-diversity approach is used to maintain the diversity
of sensitive attributes, the inferences of which k-anonymity
fails to hide [27]. In it, a set of entities in which there is at
least a l value for each sensitive attribute, a more solid notion
is entropy l-diversity as it could be extended to numerous
sensitive attributes through more anonymisation [66]. L is a
privacy measure like k, with a higher l leading to greater pri-
vacy but possibly decreasing the data utility. However, it does
not include the data distribution for each value which can
result in privacy leakage if the sensitive values have a skewed
distribution. To solve this problem, in another approach called
t-closeness in [67], a threshold (t) is preset as the upper
bound for checking the closeness of the distributions of the
sensitive values in the original and anonymised data. Privacy
preservation in the data-publishing phase using the above
mentioned techniques, that alter the original data to keep the
identities of the data and user secure, provides great privacy
control and data utility as the publisher can access all the data.
However, these techniques perform many processes which
increase the overhead and the data holder (third party) must
be online and available most of the time.

The authors in [68] improved on their previouswork in [69]
by proposing a privacy-preserving data-publishing frame-
work using k-anonymity which has better data utility than
comparative methods as it customises k-anonymisation to the
interest of data users. Instead of linear features, non-linear
ones are used in the evaluation to assess this extended frame-
work. Although, experimentally, it demonstrates enhanced
data protection and utility, the IL in the pre-sanitised data
increases when the level of k-anonymity is higher. Also,
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the computational overhead increases with increases in the
labelled data and features of data records. A novel Restricted
Sensitive Attributes-based Sequential Anonymisation (RSA-
SA) approach for preserving data-stream publishing and
achieving the diversity of both semantics and sensitivity is
introduced in [70]. Unlike the previous approaches men-
tioned, it is a simple anonymisation process with tuple-by-
tuple noise addition. It can minimise the delay time and IL
as well as maintain data usage as the exact value (QID)
of each tuple is released. However, its average processing
time increases with large data streams and some sensitive
attributes.

3) ASSOCIATION RULE-BASED PPDM/PPML
An association rule-mining method aims to find the relevant
relationships among a dataset’s elements which are expressed
as rules associated with their probability of occurrence [16],
[71]. Any rule is a strong one if it satisfies the thresholds
of minimum support and confidence [27]. As some rules
could release confidential information about the original data,
privacy preservation based on hiding these rules is essential,
with its main target to mine all non-sensitive rules and not
reveal sensitive ones [16]. Some techniques [16], [71], [72]
propose certain solutions for guaranteeing the hiding of sen-
sitive rules while maintaining non-sensitive ones ready for
processing; for example, Lai et al. [72] developed a semantic
solution for outsourcing rule mining and data integrity as
attackers could breach data servers to obtain sensitive data
and inject false data into the results to semantically expose
the data. Assuming that the data are categorical, this solution
is capable of sounding an alarm regarding any false injection
into the mining results.

Iqbal et al. [73] used a Bayesian network-based centre
tendency and a priori algorithms to differentiate between
sensitive and non-sensitive rules to protect the former, with
the K2 algorithm applied to create the Bayesian network’s
nodes and improve the accuracy of preserving the privacy
of the XML rules. A heuristic-based algorithm for enclos-
ing certain sensitive association rules called the Modified
Decrease in Support for the Right-hand Side (RHS) items in
Rule Clusters (MDSRRC) is proposed in [71]. Multiple items
are used in the consequent (RHS) and antecedent (LHS) items
of rule clusters by which the drawbacks of the DSRRC rule-
hiding algorithm [74] are overcome as sensitive transactions
are chosen according to defined criteria and then modified.
The experimental results demonstrate its better efficiency
and capability in managing the database than the DSRRC
algorithm.

The intensive research conducted over decades reveals that
existing privacy-preserving techniques facilitate good data
protection. However, they still suffer from major incomplete-
ness because of their high computational and communica-
tion overheads, scalability issue when the volume of data
increases, lack of resilience against, and capabilities to detect,
some attacks, and poor levels of integrity and data utility,
with some, such as authentication and encryption techniques,

requiring unique identities to create keys or having compli-
cated key management. The connection between personal
data and personal identification should be eliminated to
prevent any hacker inferring confidential information about
users from their identifications.

4) CLASSIFICATION-BASED PPDM/PPML
Classification is a form of supervised learning by a clas-
sifier that is first built in the learning phase based on an
amount of data called a training set, with the class labels
of undefined data then identified and called a testing set
[16]. In other words, classification is a mapping function that
transforms a record of some attributes into a corresponding
class label which can be a mathematical equation, decision
tree or rules [27]. Evaluating such a classifier depends on
the accuracy of correctly classified records using a dataset
divided into training and testing sets. During the data-release
stage, it is essential to preserve and hide confidential informa-
tion while classification mining is performed, as illustrated
in the literature [16], [75], [76]; for example, Bi and Zhang
[76] proposed a privacy-preserving classification algorithm
based on a perturbation scheme in which a random per-
turbation matrix is applied to different data types such as
character, Boolean, numeric and classified. The experimental
outcomes show the effectiveness of this method in terms
of its privacy level and mining accuracy but its computa-
tional cost is greatly impacted. In a proposed outsourced
privacy-protecting framework for classification, the classifier
can be securely trained using the data available on cloud
servers encrypted with different keys using a semi-honest
model based on HE without a clear interaction between data
providers and evaluators. However, it incurs a high computa-
tional cost and complex communication.

5) CLUSTERING-BASED PPDM/PPML
Clustering is the process of apportioning a collection of data
into groups based on some measures (i.e., similarity ones) in
which data in the same cluster are more similar than those in
others. Several research studies carried out to apply clustering
algorithms for privacy preservation include vertically and
horizontally partitioned data models. In the latter, the data
collected from different organisations with the same set of
features/attributes are divided into non-overlapped horizontal
portions while the former divides the data into different sets
of attributes which have the same number of transactions.

Many studies apply clustering as pre-processing for pri-
vacy protection, for example, He et al. [77] proposed a
clustering-based anonymity approach in which all the data
records are clustered into correlated portions using a k-means
algorithm, and then expanded it to the l-diversity technique.
The experimental results show that data utility is improved in
terms of IL but increasing the data dimensionality negatively
affects both it and the computational cost. The authors in [78]
used a single-pass k-means clustering algorithm before the
data are anonymised which protects an individual’s personal
data from disclosure by unauthorised parties. To maintain
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data confidentiality, generalisation and suppression processes
are implemented. In [3], Fahad et al. firstly apportion the data
according to their types, then cluster them based on similarity
measures (distance) and, finally, replace the assigned values
of the clusters to achieve data perturbation. This framework
shows experimentally that it is effective for simultaneously
dealing with different data types and changing the original
data and data utility. However, the significance of the given
attributes is not sufficiently considered.

D. CRYPTOGRAPHY-BASED PRIVACY PRESERVATION
Securing computations in several applications could pose
privacy concerns as they allow one or multiple parties to
share and execute certain functions and analyse data inputs
[79], [80]. A public key is shared among users/peers who
exchange an encrypted message which, as well as access-
ing the message content, discloses the system’s privacy and
integrity. Various researchers use cryptographic mechanisms
as a conventional way of guaranteeing system security and
information privacy [80]; for instance, Kalogridis et al. [81]
introduced a unified approach that aims to address the secu-
rity and privacy issues of smart meters by analysing different
security solutions and fusing them to be associated with the
tightly correlated system components. In particular, the anal-
ysed solutions are categorised as three main components
(i.e., communication, computing and system control) and
then security solutions are mapped, with the most appropriate
defense mechanism selected.

Encryption schemes can be symmetric or asymmetric and
both try to transform readable data into an unreadable form
(plain text into ciphertext). Symmetric encryption uses the
same key for two parties and the asymmetric one a public
key for encrypting the text and a private one for decryption.
Although these schemes seem to be efficient, their biggest
problem is how to trust the keys through the encryption
process. A common attack that can compromise keys is
a MITM one that can render encryption useless. In [82],
a Public Key Infrastructure (PKI) scheme for securing devices
while exchanging messages between users on two edges is
proposed. It binds public keys with user identities while
the registration authority processes and applies attestation
protocols, firewalls and common authentication to restrict the
impacts on disclosed devices.

There are many cryptographic techniques for securing and
protecting a large amount of data on the cloud or control
systems. The three major approaches that can achieve data
privacy through computations in a scalable and lightweight
manner [83] are: Secure Multiparty Computation (SMC),
Verifiable Computation (VC) and Homomorphic Encryption
(HE). these are explained as follows.
• SMC-based privacy preservation: is an encryption
protocol used in almost all encryption methods with
different data analytics such as a distributed PPDM
[80], [83], with two common techniques for MC gar-
bled circuits and secret sharing [84]. However, the var-
ious studies of SMC have some limitations as their

approaches could be attacked by several threats and
they have high communication complexity that grows
exponentially with an increasing number of parties.

• VC-based privacy preservation: is an approach that
permits data holders to inspect the security of com-
putations. An intermediate prover is a powerful entity
responsible for obtaining the requirements for compu-
tations, checking their correctness and then passing the
results to other parties [79]. Compared with SMC and
HE approaches, VC can guarantee data integrity, but
not data confidentiality, while performing computations
which is essential in the presence of untrusted parties
and adversaries.

• HE-based privacy preservation: the concept of HE
was first introduced by Rivest et al. [85] because,
although encryption is usually used to preserve the con-
fidentiality of sensitive data, as conventional encryp-
tion techniques cannot operate on encrypted data,
the data should be decrypted first [80], which means that
users/parties cannot perform or use available services
without sacrificing their privacy.

HE is a special type of encryption scheme that allows a
third party (e.g., cloud, SCADA control) to conduct certain
operations on encrypted data without the need to decrypt it in
advance, such as is required byRSA and Paillier. In particular,
it can preserve the format of encrypted data and computa-
tional features in which the original data (i.e., unencrypted
data) are not revealed to third parties during computations.
It can be categorised as three schemes based on the number of
functions permitted to be performed on cipher data. The first,
Partially HE (PHE), consists of only one type of operation
(addition or multiplication but not both) and is allowed for
any number of users. The second, Somewhat HE (SWHE),
is a type of operation (addition or multiplication or both)
for only limited usage. The third, Fully HE (FHE), provides
any number of operations for any amount of usage. Because
of the limited operations of PHE and SWHE as well as the
increasing sizes of ciphertexts in each operation, they are
not often used in real applications. In contrast, FHE sup-
ports the conduct of different arithmetic operations at the
same time.

HE-based privacy has been extensively studied, primarily
due to its homomorphic features for executing some arith-
metic operations. There are several encryption techniques
which support different homomorphic features, such as
multiplicative homomorphism (RSA) [86]), additive homo-
morphism (Paillier [87]) and the recently proposed fully
homomorphic scheme [88] for complicated functions. How-
ever, most HE techniques are still impractical because their
computational overheads affect their efficiency; for instance,
in [89], Sushmita and Amiya propose a framework for
simultaneously aggregating the readings of a smart grid
and protecting customers privacy in which an additive HE
technique is applied. They use attribute-based encryption to
support access control according to the stored data. One of
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the obvious drawbacks of this approach is assuming the trust-
worthiness of the RTU that controls these operations. For the
authentication of smart meters [90], the homomorphic hash
function is applied using a non-square matrix to reduce the
number of computations involved in smart meters. Although
the probability of success in attack scenarios is used as a
theoretical measure of its effectiveness in terms of security,
the performance of the proposed method regarding execution
time and memory usage is influenced by the security param-
eters defined.

Recently, in [91], an Extended Privacy-preserving Demand
Response (EPPDR) scheme that uses HE for demand aggre-
gation and efficient responses achieves privacy preservation
and user confidentiality in the local area. Then, an adaptive-
key evolutionary technique secures a user’s session and pri-
vate keys. An analysis demonstrates the efficiency of this
scheme in terms of computational and communication costs
compared with those of peer methods. Tassos and Awad
[92] proposed two decentralised protocols for aggregating the
measurements of smart meters, with one based on symmetric
cryptography and the other on public-key encryption. They
attempt to prevent untrusted entities from determining cer-
tain consumption patterns as this could lead to breaching a
customer’s privacy and profiling his behaviour. An evaluation
shows that both protocols are scalable but only with respect
to their limited memory and communication requirements.
There are two other lightweight privacy-preserving data-
aggregation schemes [93], [94] for handling the privacy of
customers and data integrity. Both use asymmetric HE, with
a key-exchange method (Diffie–Hellman (DH) or Elliptic
Curve Diffie–Hellman (ECDH)) in [93] and an aggregate-
signature scheme in [94]. The experimental analyses show
their superiority in maintaining data integrity and users pri-
vacy with lower transmission overheads than comparative
schemes but they still suffer from high levels of complexity
and transmission overheads.

In [93], the ciphertext size increases linearly with the secu-
rity parameters while, in [94], static secret keys are used so
that forward and backward secrecies canot be disclosed, with
these schemes also considered forgeable. A comprehensive
review of HE techniques is provided in [80]. A practical
framework for anomaly detection and privacy preservation
of cloud data (i.e., sensor data) which applies a HE scheme
over data processing to ensure a system’s security and privacy
is proposed in [79], in particular, Domingo-Ferrer’s additive
and multiplicative privacy homomorphism technique before
the communication and processing stages. The experimental
results show that it outperforms other comparative methods
for the original plaintext and ciphertext in terms of detection
accuracy. In another HE research study in [95], which is an
extension of that in [96], an integer-based scale-invariant FHE
scheme is proposed but with a new and interesting prop-
erty called message-space hideability in which a message
is hidden from the public key. Although it is efficient with
large integers and satisfies the security requirement, HE often
incurs a high computational time.

An approach for data integrity based on lightweight
authenticated data using an encryption methodology for pri-
vacy preservation is proposed in [97]. It has three main
entities that aim to act as prover and verifier while retain-
ing evidence that enables the integrity of data streams.
In more detail, a data user initiates a query to the cloud
and, once the result is ready, its integrity is verified by
evidential information transmitted from a secure channel.
Its overall performance reveals that its computational over-
head does not increase as much as those in the original
methods but its data utility cannot be retained as there
are no further analysis is conducted on the ciphertext. In
[98], a method based on a parallel FHE algorithm which
works on floating-point numbers, not only integers, and can
eliminate security threats using any out-of-order ciphertexts
is proposed. As homomorphic algorithms have low effi-
ciency, this scheme uses a MapReduce platform through
data blocks. The experimental results show that its speed
ratio is better than those of traditional techniques but the
time consumed by Reduce can increase with large volumes
of data.

E. BLOCKCHAIN-BASED PRIVACY PRESERVATION
A blockchain, which was introduced at the beginning of
the 1990s by Haber and Stornetta [99], is based on the
theory of chaining time-stamped rows using cryptographic
algorithms, i.e., the hash functions recently used in Bit-
coin cryptography [100]. In a blockchain, an input such
as a message can be mapped to another message with a
set of n bytes. A Blockchain contains each block’s meta-
data (the time stamp and hash value of the previous block)
and payload (original data), with the time provided in each
block usually represented by a discrete value that regularly
increases as more blocks are added [101]. It is considered
a public distributed and uncorrupted ledger database [101]
with the potential to successfully achieve data integrity and
reliability. Simply, transactions are chronologically recorded
in a chain of blocks in which any participant can keep
track of them without any central recording [26]. Since a
blockchain is characterised mainly by its trustworthiness,
persistence, decentralisation and anonymity [102] to achieve
the integrity and security of an application, there can be mul-
tiple copies of it through different participants (i.e., computer
systems). The participants form a network of nodes, each
of which represents a computer system, with any change
in the blockchain made by a participant sent as a duplicate
copy to the others [102]. For more details, the key ele-
ments [26], [103] that characterise a blockchain are discussed
below.
• Decentralisation: all involved parties (i.e., nodes/ par-
ticipants) have the authority to control/add, change or
verify the appended transactions instead of them being
centrally coordinated (peer to peer) [26]. In a decen-
tralised blockchain network, each user is considered a
miner joining the consensus process and validating every
newly provided transaction to expand the chain [101].
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This feature reduces the risk of a single-point failure or
data breach.

• Trustworthiness: data transactions (i.e., records) are
continually verified and validated [26], [102], with
their integrity achieved using a cryptographic mecha-
nism (hash) created for each one which is kept in a block
over the blockchain which guarantees that it cannot be
altered or updated (persistence).

• Immutability: validated transactions recorded in the
blockchain are immutable as any alteration to them
requires the other nodes to verify and mark them as
valid blocks [26], [103]. Also, the consensus process is
employed later to maintain the integrity and validity of
the blockchain’s records whereby the consensus proto-
col at each node should generate the same corresponding
output according to its rule (level of confidence) [102]

• Contractual: each miner applies a certain consensus
process to ensure the precision and synchronisation of
any monetary actions and includes some defined rules
regarding the status of the data [103].

• Anonymity: in the blockchain network, the main ele-
ment to be anonymised is the participants (miners) in
order to achieve trustworthiness among them, with only
its address required [26], [103]. Therefore, different and
changeable public keys can be used to preserve the
anonymity and privacy of each miner. This is a very
attractive area of research in various applications not
only for users but also data transactions to keep a system
secure and privacy preserved.

• Transparency: this is the routine for examining the data
in the same miner in each time interval for self-auditing
purposes and to prevent corruption [26].

1) ARCHITECTURE OF BLOCKCHAIN FOR PRIVACY
PRESERVATION
A blockchain is a series of blocks appended continuously
by the network’s nodes/participants (called a peer-to-peer
network (P2P)) which are linked and secured by various
cryptographic mechanisms and can offer privacy preservation
for CPSs and their network nodes [103]. Each node in the net-
work has the same authority as there is no central coordination
(no central server), exchanges information with other nodes
and verifies and synchronises data transactions and blocks
[26], [103]. For each block in the chain, a pointer links it
and its ancestor in a chronological order using a hash value
it generates, with the first block known as a genesis one as it
has no ancestor/parent block.

During the growth of a blockchain, the hash functions
should follow several security requirements [104]. Firstly,
a first-layer resistance denotes the struggle to recover the
hash values, that is, a hash value (h) requires a complexity
of O(2n) to estimate an x input, where H (x) = h and,
secondly, a second-layer resistance indicates that an input (x)
has a hash value with O(2n) complexity for calculating the
values x0 = x, where H (x0) = h. Finally, a hash-collision
resistance requires a complexity of O(2n/2) to obtain either

FIGURE 3. Elements of blockchain.

of the previous two hash values. As shown in Figure 3, each
block encompasses a set of features/attributes, including an
index, block version, ancestor hash, current hash, time stamp,
transactions (data) and a nonce (i.e., proof), as described
below.

• Block index: contains a sequential number for each
block in the ledger/chain.

• Block version: is a set of rules for validation.
• Ancestor hash: is the hash value of the previous block
in the chain. The hash function can be defined as a trans-
formation method which takes an input sequence and
returns a hash value that will be different if a single bit
in the input sequence is changed. Hashing is extremely
important in blockchain technology as it assures that no-
one can change any data in the chain without providing
the ledger with an updated copy of this change, thereby
improving its trustworthiness and security.

• Current hash: is the hash value of the current block.
• Time stamp: is the time taken for the block message to
be generated (in seconds) which can help data tracing
and synchronisation as it also increases the security of
data modifications made by different users.

• Transactions: are the data stored in each block which
depend mainly on an application that uses a blockchain,
such as finance, contracting and services ones, with the
amount allowed to be stored based on the block’s size.

• Nonce: this is also known as proof (i.e., consensus
methods), with its value calculated for each block’s hash
(from 0 which increases for each block generation). It is
a set of rules used to generate a new block and verify
a chain. It is called a digital signature and different
methods, such as symmetric cryptography, have been
used, with encryption one of the main ones for spreading
data over a network.

A digital signature can be identified as a two-step process
of [26], [102] signing and verification, for which each par-
ticipant in a P2P network uses its public and private keys.
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Its private key is kept confidential and used to sign data
transactions while its public one is available for later use by
other participants/users to access the signed transactions and
approve their correctness. For a better understanding, the fol-
lowing is an example of how blocks are generated, signed
and verified. Assuming there is a network of ten users (U1,
U2. . . , U10), if U1 has a transaction to add or alter, it needs
to sign this transaction, generate the hash value for it and
encrypt it using its private key. It then sends this transaction
to everyone in the network and provides a copy to the ledger.
If U3 receives this transaction (data and hash value), using
U1’s public key, it decrypts the encrypted hash and compares
it with the one previously received from U1. If they are the
same, U3 verifies this transaction and continues, otherwise
the transaction is not accepted as an addition or alteration.
As previously mentioned, there are different methods for
consensus which are discussed in the next sub-section.

2) CONSENSUS METHODS AND BLOCKCHAIN-ENABLED
PRIVACY
The idea behind consensus comes from the Byzantine Gen-
eral (BG) problem [105] in which finding a consensus among
some of the nodes in an untrusted environment is attempted.
The problem begins when many generals want to attack a
city and others to retreat. Since an attack should include
all the generals, it is important to reach a consensus. The
same challenge occurs with blockchain technology when the
environment/network is distributed without central control
and no trust among the participants is required. The two most
popular consensus approaches are described below.

• Proof of Work (PoW): this approach, which is used
for blockchain authentication, focuses on discouraging
DoS attacks and network spams in which a device’s
computational time is affected. To add transactions,
a complicated computational procedure is required as
the dominant node should calculate a hash value equal
to or less than a predefined threshold (nonce). Each
participant in a decentralised blockchain network has to
continuously estimate the hash values until the required
one is reached and then broadcast it to the other partic-
ipants. In this process, the participant nodes are miners
and the consensus strategy (PoW) mining as different
valid blockchains could be generated simultaneously.
Sometimes, a block later becomes an authentic one that
could not have been tampered with but the problem of
this strategy is the computational time and resources it
consumes.

• Proof of Stake (PoS): this approach allows a partici-
pant or miner to work on a block’s transactions based
on trust [26], [106] which is determined by the users
with more currency or data. As, when these users have
many transactions, it is possible for them to assault the
network [26] and any participant should hold at least a
base of cryptocurrency [26], [102] to be considered a
miner and/or validator. The PoS is considered to save

more energy than the POW [102], [107] as its users are
required to provide proof of ownership instead of finding
a nonce.

• Practical Byzantine Fault Tolerance (pBFT): this is a
common consensus protocol presently deployed on the
Hyperledger Fabric platform [108]. It is usually applied
in a private blockchain as trustworthiness is embedded
between participants unlike in the PoeT, PoW and PoS
protocols. Also, it is energy-efficient for conveying a
high quantity of transactions without the requirement
to optimise the network to involve a large number of
participants; for instance, its algorithms in blockchains
are divided into two groups, general active and passive
replications. A basic replication is selected from the
active ones which receive transactions from a consumer
and transfers them to the other replications. This process
has four phases: pre-preparing; planning; agreeing; and
responding. In the first stage, all the transactions are
referred to mainly as general active replications, each
of which signs and exchanges its transaction with the
other replications. In the response phase, all the active
replications provide their responses to the main one
with proofs of consensus. Finally, the main one col-
lects all the signed transactions and places them in a
stack [109].

Privacy preservation has attracted major attention to
blockchains although many methods have security aspects
of pseudonymity and tamper-proof techniques. Using
asymmetric-key cryptography to numerically sign transac-
tions and approve the right participants does not promise
privacy or guarantee anonymity as all transactions are visible
[110]. Recent studies have shown the practicality of de-
anonymising attacks using cryptocurrencies [111], [112].
Biryukov et al. [113] linked an encoded transaction to real
participants by recognising heuristic groups in order to clas-
sify digital wallets and other previously acquired services.
Many approaches developed to improve blockchain confi-
dentiality and anonymity can be categorised as two types:
mixing services; and zero-knowledge proof. The former
provide the fund transfers of a client and randomly exchange
them for other clients funds to disclose their ownership.
Zero-knowledge proof-based methods use the cryptographic
accumulator to verify transactions with a digital signature
so that clients can swap random funds. However, they lead
to high computational costs and expose transaction funds.
To handle these issues and further enhance the anonymity
of transactions, Zerocash [114] is considered.

Although private and consortium blockchains achieve
greater privacy protection than public ones with less exposure
to cyber attacks, their integration in a single CPS would
make them less efficient and exposed to a single point of
failure [115]. In contrast, public, distributed and decentralised
ledgers suffer from untrustworthiness among network par-
ticipants. Therefore, CPSs are generally hesitant to share
information or article intrusions due to anxiety about data
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confidentiality and integrity as it is relatively difficult to
quantify the reputational levels of untrusted individuals.
The capability to maintain data storage with a supervisory
capacity can incur computational overheads in terms of time
and cost [104], [109]. Corporations are progressively using
CPSs to scale their storages of various datasets as security
and privacy are still challenging. Furthermore, blockchains
work in various jurisdictions where it is difficult to guarantee
compliance with all the rules. Therefore, a decentralised
privacy-preserving architecture would enable compliance
with procedures and the control of costs and policies related
to a CPS.

Securing CPSs, especially modern power systems, against
cyber attacks has received a great deal of attention over the
last few years [116]. The interconnection of their objects
(such as sensors and actuators) as well as their communi-
cations with the Internet (Internet of Things (IoT)) and ITs
increase their complexity as they require the control and data
management of multiple users at one time [117]. A CPS
is considered an IoT because many of its objects are con-
nected with its communication with the Internet which could
increase an outsider’s capability to violate its systems [118],
including its SCADA control one which could be threatened
because its primary responsibilities are tomonitor and control
the CPS.

Malicious or advanced adversaries of external sources in
CPSs using Internet Protocol (IP)-driven proprietary or local-
area networks can cause devastating consequences by mis-
using communication faults to launch simple or dismissive
attacks which may lead to the corruption of control opera-
tions, catastrophic failures or DoS. Consequently, the safety
and stability of a power system could be compromised [119]
and, even more seriously, the big data generated by it can
become vulnerable [118], [120]. There are two main types
of attacks, physical and cyber, with the former targetting
physical components/devices such as the power grid’s PMU
and the latter aiming to gain access to the network’s opera-
tions and system information [120]. Cyber attacks that target
system data, as in data-poisoning ones, are considered serious
due to their capabilities to manipulate system data without
being identified by an IDS or bad detection method.

A new paradigm called a blockchain was introduced
in 2008 to provide a significant solution to security and pri-
vacy issues in different applications (e.g., medical, economic,
social and power system control) as it works basically on
the concept of a decentralised and shared ledger. It enables
communicating devices/users to store, exchange, backtrack
and update information in a secure way without any author-
ity from other parties, as illustrated in the previous section.
Although a blockchain is successful in achieving security
through a P2P network using encryption, the privacy of sur-
rounding transactions is not confirmed due to data sharing
within this network. Therefore, researchers are introducing
privacy-protecting methods based on blockchains using dif-
ferent approaches, such as DP, encryption, smart contract or
hybrid.

Researchers are increasingly exploiting blockchains for
CPSs as, generally, IoT applications introduce new possibil-
ities and strategies for securing and protecting their informa-
tion due to the decentralisation and trustless characteristics
of blockchains. Many approaches based on blockchains for
addressing security and privacy issues in the IoT andCPSs are
proposed in the literature; for example, Zyskind et al. [121]
introduced an access control management protocol-based
blockchain technology for preserving the privacy of personal
data against third parties since, as the data collected by
companies and social networks are a valuable asset for any
organisation to improve its services and profit, the issue of
user privacy is of concern. Three entities are involved in
this platform, users, services and a blockchain’s nodes, with
the first two able to query the nodes and access them for
permission to change. However, this platform is computation-
ally expensive and lacks data analytics as the data in it are
encrypted.

In [122], a Healthcare Data Gateway (HDG) platform
based on blockchain storage whereby patients have the con-
trol to own, access and share their private health records with-
out breaching their privacy is proposed. However, although
this privacy is achieved through system access control,
the data and all the computations are not considered secure.
Azaria et al. [123] proposed a decentralised data management
system called MedRec which allows patients complete and
immutable access control and data storage management but
its time complexity is high and its data processing limited and
not well preserved. However, it can be considered an access
control approach for privacy preservation.

In [124], a blockchain in a M2M transmission system is
collaboratively designed through: (1) unifying the data format
of building blocks in/of public-area networks in order to
provide essential communication and conduct queries; (2)
connecting the public and private areas in a/the device to
pass queries and their results; (3) keeping data records of
the M2M communication process in private-area blocks. To
demonstrate the applicability of a blockchain for securing
M2M in a CPS, a case study of a cotton production system in
whichmultiple copies of all the data are stored in a blockchain
is conducted. Using a blockchain allows a system to increase
its number of machines which avoids any illegal tampering
of data and ensures an efficient and secure system. However,
this paper doesn’t examine the system’s complexity and only
considers one production system. Blockchain technology is
used in [125] to achieve the privacy and integrity of healthcare
data while different authorised parties, such as patients, have
the privileges of storing data, conducting computations and
requesting queries from the system. In a blockchain, cryp-
tographic techniques are applied to encrypt sensitive data
to protect them against various vulnerabilities and ensure
the pseudonymity of patients. However, this method is not
evaluated using health data, especially the privacy level it
achieves or its computational cost.

In [126], a new model based on a blockchain and
online ML for the privacy preservation of healthcare data is
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introduced. The blockchain adapts decentralisation between
different institutional sites and has additional proof-of-
information as well as its PoW to achieve its priority of apply-
ing ML on the blockchain’s parties. Although this framework
achieves privacy protection while learning a model based on
the patients data without transferring them, it is still compu-
tationally expensive for transaction mining and determining
learning priorities using the additional proof-of-information.
Also, a threshold has to be set in advance for it to perform
well. Finally, as it is not evaluated and compared with other
algorithms and applications, it lacks applicability. In [127],
an authorisation framework is proposed as a distributed
privacy-preserving access control through IoT devices using
a smart contract and is integrated with a blockchain to ensure
a fair distribution among various entities. However, it requires
identity and policy checks every time before an entity is
authorised to process a transaction and its storage and time
costs are quite high.

In 2018, a privacy preserving-based blockchain called
BPDS [128] in which the EMRs are stored on the cloud
and the associated indices kept in a tamper-proof consortium
blockchain to reduce the chance of the RMRs data being
leaked and altered is developed. In this scheme, the consensus
method is improved to increase the trust of selected medical
organisations in reliable data sharing. Despite eliminating the
risk of patients privacy being compromised, the time and stor-
age resources required are very expensive. Also, a hypothet-
ical level of trust is assumed for some selected organisations
which would not be applicable in reality. In another research
study of a blockchain [129], an attribute-based signature
scheme with multiple authorities based on a blockchain and
ABS scheme that provides a secure protocol in a distributed
system with better performance than comparative studies in
terms of efficiency is proposed. However, its sign-verification
computational overhead increases linearly with the number of
authorities and attributes while only the authorities granted
access, not data privacy, are considered.

A privacy preserving-based data aggregation and
blockchain technology for securing the electrical consump-
tion data in a smart grid is proposed in [130] In it, users are
split into groups which record their data in the blockchain,
with each group using pseudonyms and bloom filters to
anonymise their identities and authentications, respectively.
The computational cost of this method is evaluated by
comparing it with traditional authentication and aggregation
schemes and it is shown that it takes the least time. However,
its privacy level and system utility are not evaluated. In [131],
the e-government system’s privacy preservation is considered
using a framework-based blockchain technology for gaining
a high level of trust in public sectors. Although it enhances
convenience, security and reliability, the time required to
validate each transaction is still high. Also, it is not evaluated
and compared with other work and presents only a theoretical
discussion.

Since it is crucial for medical data to be protected from
unauthorised parties, in [132], blockchain-based data (DPS)

is implemented on an ethereum platform on which medical
data can be preserved and any tampering can be discovered
and verified. A performance evaluation shows that the cost
of DPS is less than 2 USD for 50 MB of data but increases
dramatically with increases in the number of preserved files.
Also, it requires improvements to optimise the data structure
and cannot precisely distinguish any tampering ofmultimedia
files. In [133], a blockchain-oriented technique for tackling
the issue of privacy in a smart grid and defending it against
cyber threats is proposed. It simulates power meters as net-
work nodes (a blockchain network) with their readings stored
in blocks. Although effective for protecting power nodes,
it requires many computational resources.

Since 2019, the IoT’s data have been securely shared
using blockchain technology with a secure Support Vector
Machine (SVM) algorithm [134] in which each data provider
encrypts its data and uploads them as block transactions.
In the data blocks, the IoT is encrypted using a homomorphic
cryptosystem to enable SVM training without any third-party
intervention. Although the experimental results reveal the
effectiveness of using a SVM training classifier, the time
consumed increases relative to the amount of trained data.
Blockchain and cryptographic methods are deployed for a
distributed storage scheme in [135] in which blockchain min-
ers verify the upcoming transactions. Using certificateless
cryptography, these transactions are audited and broadcast
among parties IoT devices. This proposed scheme is used
to evaluate a blockchain’s design and system’s efficiency.
Although it reveals the accountability of such systems, they
are not applicable in a complicated IoT environment and also
require many computational resources for the blockchain and
authentication purposes.

3) EVALUATION METRICS FOR ASSESSING PRIVACY
PRESERVATION AND INTRUSION DETECTION
The levels of data privacy preserved are quantified by com-
puting variations between the original and transformed data
using the term’privacy level index (pindex) provided in [3] as

pindex =
var(O)− var(U )

var(O)
(1)

whereO andU refer to the original and updated data, respec-
tively (i.e., before and after applying the privacy method),
with a larger pindex indicating a higher level of privacy. The
dissimilarity (DISS) level, which is the difference between
the feature frequencies of the two datasets before and after
data sanitisation, is given by

DISS =
N∑
i=1

|O(i)− U (i)|
N∑
i=1

O(i) (2)

such that i is a counter for all N observations in the dataset
features O(i) and its transformed version U (i).

The information loss (IL) measure is also applied, which
estimates the information loss rate occurred by reconstruction
functions while computing the density functionOx of features

VOLUME 9, 2021 55091



M. Keshk et al.: Privacy-Preserving Schemes for Safeguarding Heterogeneous Data Sources in CPS

s, as provided by

IL =
1
2
E
[∫

Ωx
|Ox − Ûx)|dx

]
(3)

where half of the mean values of L1 norm between Ox and
Ûx are computed by the density distributions before and after
data modifications.

To assess the quality of intrusion detection, as the effective-
ness of the transformed data is tested based on ML criteria,
the following Accuracy, Detection Rate (DR) and False Pos-
itive Rate (FPR) measures are used.

The Accuracy is the ratio of all normal and attack records
correctly classified, that is,

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(4)

The DR is the proportion of correctly detected attack
records, that is,

DR =
TP

TP+ FN
(5)

The FPR is the proportion of wrongly detected attack
records, that is,

FPR =
FP

FP+ TN
(6)

These measures depend on the four terms true positive
(TP), true negative (TN ), false negative (FN ) and false posi-
tive (FP) which refer to the numbers of actual attack vectors
categorised as attacks, of actual legitimate vectors identified
as legitimate, of actual attack vectors identified as legitimate
and of actual legitimate vectors identified as attacks, respec-
tively.

IV. CHALLENGES AND RESEARCH OPPORTUNITIES
Since CPSs are connected to the Internet using network mod-
els such asModus TCP/IP, there are several challenges related
to cyber security and data privacy [1], [6], [136]– [10]. Cyber-
security problems are linked to identifying new variants of
cyber- and zero-day attacks as well as safeguarding CPSs
cyber and physical components [16], [75] as such attacks
significantly violate the objectives of availability and confi-
dentiality, and disrupt legitimate operations. There are also
problems related to integrity attacks that illegally sniff, steal
and modify the original data, including those of the network
traffic and telemetry data of CPSs devices and networks [6],
[10]– [13]. The open challenges related to the security and
privacy of CPSs and their networks are discussed in the
following.
• The availability of data for evaluating approaches for
privacy preservation and intrusion detection is a major
challenge as many organisations do not share their data
due to privacy concerns. There is a lack of heterogeneous
data sources (i.e., datasets) that involve measurements
and telemetry data of CPSs and their network traffic
[6], [118]. As existing datasets [137], [138] do not
involve new attack activities that disrupt the operations

of CPSs and their networks, evaluations of the imple-
mentations of privacy preservation and intrusion detec-
tion will likely be inaccurate [3], [10], [136]. There is
also a limited number of ground truths that demonstrate
the validity of security events that occur. Consequently,
there is a real need for the design of a realistic dataset
that involves the telemetry and network data of CPSs
to measure the reliability of new security and privacy
mechanisms based on AI algorithms.

• Handling the heterogeneity of a CPS’s data and protect-
ing its original data against cyber and physical attacks
are also significant challenges. CPSs generate large-
scale data collected from the sensors and actuators as
well as network traffic of their industrial and network
systems [3], [37]. These data require effective data ana-
lytical methods-based privacy preservation that can pro-
cess their large volumes obtained from physical and
network elements, and ensure their protection against
integrity attacks that attempt to illegally modify the orig-
inal data [16], [17], [52], [139]. These data collections
can help the understanding of system dynamics using
privacy-preserving models, prevent integrity attacks and
enhance the performances of CPSs.

• While protecting CPSs original data using privacy-
preserving models, discovering zero-day attacks
requires an anomaly-based IDS that produces high false
alarm rates [7], [79], [118]. This problem is related
to accomplishing the high reliability versus privacy
of a system because most existing privacy-preserving
models add noises and schemes for fully anonymising
and keeping their identities secure but degrade the detec-
tion accuracy of anomaly-based IDSs [69], [70]. It is
important to develop highly efficient privacy-preserving
anomaly-detecting methods that can safeguard CPSs
data and identify new attack data without disclosing any
sensitive information across their networks.

• Building a comprehensive profile that includes all
possible normal events is very difficult to accomplish
efficiently, especially if the data are collected from mea-
surements obtained from sensors and network packets
as their boundaries between legitimate and suspicious
activities are usually not precise. There are errors regard-
ing FP and FN rates when a normal event falls in a
cyber-attack region and a suspicious one in a legitimate
region, respectively. As these errors could increase by
implementing privacy-preserving models, it is important
to ensure high detection accuracy and privacy levels to
achieve a defense-in-depth strategy that protects CPSs.

• Developing real-time techniques for privacy preserva-
tion and anomaly detection is also very challenging
for several reasons. Firstly, the features created from
the data of sensors and network traffic include a set
of noisy and irrelevant attributes that should be han-
dled using FS-based privacy-preserving mechanisms.
Secondly, the light weights of attack detection-enabled
privacy techniques need to be carefully designed to
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enhance performances for accurate detection and pri-
vacy protection. If these issues are not successfully
resolved, these methods consume high computational
resources and produce high false alarm rates, resulting
in low privacy levels.

• Methods for privacy preservation and intrusion detection
cannot be directly implemented for CPSs without con-
sidering their complex natures that involve physical and
communication parties as well as network protocols and
resource-constrained devices that have limited compu-
tational power and storage capacity. Therefore, any pro-
posed methods require high computational capabilities
that can handle the complexity of protocols and devices,
discover new attack types and protect sensitive data from
illegal disclosure. They should be adaptive and reliable
in order to handle the dynamic states of CPSs, such
as power networks, by considering feature projection
and reduction mechanisms that reduce the data’s high
dimensionality.

• Integrating techniques for privacy preservation and
intrusion detection is still complex due to their diffi-
cult deployment and the high computational processing
they require for applications across CPSs networks.
An intrusion detection model should be combined with
a database management system-enabled privacy protec-
tion that permits the creation of alerts in real time. Also,
adapting a privacy-preservingmethodology requires fur-
ther exploration to ensure the hiding of CPSs’ confiden-
tial data and a high degree of reliability for discovering
attack events. Numerous research challenges in this
domain are addressed in this thesis.

V. CONCLUSION
In this paper, the current state of privacy preserving tech-
niques for protecting the CPSs is discussed. This work begins
with a detailed background of CPSs concepts; outlining
the uniqueness of these systems and the high impact for
cybersecurity breaches. This work also outlines the need for
data privacy, especially given the advanced persistent threats
that are likely to target such installations. As discussed,
there are the three key challenges for the development of
methods for privacy-preserving-enabled anomaly detection
in CPSs. Firstly, the lack of datasets that include heteroge-
neous data sources including recent normal and malicious
behaviours that can be used to estimate the performances
of new methods in respect to their applicability for CPSs.
Secondly, how to manage the data heterogeneity of CPSs
data and preserving their original data against cyber attacks.
Since a CPS generates large amount of data gathered from
physical and network systems, it needs efficient data analyt-
ical method-based privacy preservation to be processed and
kept safe against integrity attacks that try to illegally alter the
original data. The third challenge is how to protect CPSs’
data by identifying zero-day attacks with low false alarm
rates. This is related to achieving the high credibility of sys-
tems while maintaining their privacy levels as most existing
privacy-preserving techniques add noises and anonymous

approaches to fully anonymise and keep their identities secure
but cannot achieve high reliability in terms of data protection
and attack detection. Although CPS security is an active
field of research, there is a need for additional work to over-
come these unique challenges. CPS installations represent
high-impact cybersecurity targets, and as such require novel
research to be applied specifically to this domain. Future
research is necessary in several areas to ensure the safety of
global critical infrastructure; specifically in the development
of datasets, balancing data utility and privacy, and how to
effectively detect advanced persistent threats with a high
accuracy in these challenging ecosystems.
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