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ABSTRACT This study is concerned with a synchronization problem of two fractional reaction-diffusion
neural networks with input saturation and time-varying delays by the Lyapunov direct method.We extend the
traditional ellipsoid method by giving the novel definition of the ellipsoid and linear region of the saturated,
which makes our method succinct and effective. First, we linearize the saturation terms by the properties of
convex hulls. Then, by using a new Lyapunov-Krasovskii functional, we give the synchronization criteria and
estimate the domain of attraction. All the results are presented in the form of linear matrix inequalities(LMIs).
Finally, two numerical experiments verify the validity and reliability of our method.

INDEX TERMS Fractional reaction-diffusion, neural networks, Riemann-Liouville, input saturation.

I. INTRODUCTION
After the conception of ‘‘small world’’ [1] came up,
the related research of complex networks has entered a
rapid development stage. Complex networks is the network
dynamically evolving in time whose structure is regular and
complex [2]. It is an abstract description of the interaction
between individuals in nature over time. Therefore, complex
networks can describe not only the whole but also local
behavior.

As one kind of complex networks, the neural networks
has attracted many scholars’ interest because it can simu-
late many practical problems. Under the existing theoretical
framework, the neural networks are described in two parts:
the topological structure and the dynamical model. From
the point of view of the dynamical model, previous stud-
ies mainly focused on the ODEs model. Still, in practice,
the reaction-diffusion phenomenon cannot be ignored due
to the necessity of describing the behavior of substance in
space. Thus reaction-diffusion neural networks have become
a research hotspot in recent years [3]–[5]. On the other
hand, as an extension of the integral order reaction-diffusion
equation, the fractional-order reaction-diffusion equation can
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model more complex phenomena due to its non-local prop-
erties. It has achieved great success in such fields as anoma-
lous diffusion [6], image enhancement [7], and porous media
seepage [8], [9]. For neural networks, the existing researches
mainly focus on the problems of ODEs with Caputo and
Riemann-Liouville derivative [10], utilize the Laplace trans-
form and properties of Mittag-Leffler function to obtain sta-
bility conditions [11]–[14]. On the other hand, the adaptive
control law also attracts the attention of scholars. In [15],
an adaptive sliding mode control method was presented for
a class of fractional-order nonlinear time-delay systems with
uncertainties to solve the target output tracking problem.
By employing Hermitian form Lyapunov functionals and
fractional skills, [16] present some sufficient criteria for
fractional complex projective synchronization. In [17], suf-
ficient conditions for the global asymptotical stabilization
of a class of fractional-order nonautonomous systems had
been obtained by constructing quadratic Lyapunov functions
and utilizing a new property for Caputo fractional derivative.
In [18], the sliding mode control problem for a normalized
singular fractional-order system with matched uncertainties
was investigated. The global stabilization criteria were given
in [19] for fractional memristor-based neural networks with
the aid of Lyapunov functions and the comparison princi-
ple. In general, the above research mainly focuses on the
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ODE system. Only the recent work [20] concern about
the fractional reaction-diffusion neural networks(FRDNNs)
problemwith Riemann-Liouville derivative. Hence, the study
of neural networks with fractional order reaction-diffusion
model will further develop related fields.

Considering almost all practical applications, the time
delay is unavoidable. Hence in this paper, we also take this
factor into account. In many cases, researchers will construct
a special Lyapunov functional to solve such problems: the
Lyapunov-Krasovskii functional. The Lyapunov-Krasovskii
stability theorem for fractional systems with delay had been
investigated in literature [21]. And the Lyapunov-Krasovskii
functional has many applications on the stability criterion and
controller designing [22]–[25].

From the earlier discussion, synchronization between the
nodes of neural networks is a widespread phenomenon. Usu-
ally, we need to introduce some controllers to synchronize
the nodes in the neural networks. Fortunately, there many
synchronization control strategies such as pinning control
[26], [27], sliding mode control [28], adaptive control [29],
and sampled-data control [30], which have been implemented
can be applied on this topic.

On the other hand, when designing the controller for syn-
chronization, input saturation cannot be neglected due to
the maximum power or the propagation and reaction rate.
Once the control signal reaches or exceeds the saturation
state, the system will become hard to control or completely
uncontrollable. At present, some methods such as ellipsoid
method [31], anti-windup [32], [33], have been applied to
solve such problems. The problem of adaptive neural control
for a class of strict-feedback stochastic nonlinear systems
with multiple time-varying delays subject to input saturation
has been investigated in [34], neural network-based adaptive
control for spacecraft under actuator failures and input sat-
urations has been handled in [35], and [36] investigates reli-
able estimation problem forMarkovian jump neural networks
with sensor saturation. There exists extensive research on the
control systems with saturation [31], [37]–[41]. The ellipsoid
method [31] is simple and reliable, has been applied suc-
cessfully in some discrete or ODEs model [42], [43], but no
application is seen in PDEs models such as reaction-diffusion
problems. In fact, some successfulmethods in theODEmodel
cannot be directly applied to the PDE model, and we must
consider the evolution of the model in the whole space. Com-
pared to other anti-windup methods, which usually introduce
a dead zone, the main advantage of this method is that it
is easy to linearize the saturation controller by introducing
the auxiliary gain function. The estimation of the domain of
attraction can be obtained by solving LMIs.

To the best of our knowledge, synchronization of FRDNNs
with input saturation has not yet been fully investigated,
which has theoretical and practical value to study. We hope
that by putting forward such a Riemann-Liouville neural
network, combined with some existing research basis, we can
contribute to technology development in related fields and
get some more universal results. Hence, motivated by the

above reasons, the synchronization of FRDNNs with input
saturation is investigated in this paper. We mainly intend
to extend the ellipsoid method [44] combining with the
Lyapunov-Krasovskii functional to the field of fractional par-
tial differential model.

In this paper, we will focus on the synchronization of
FRDNNs with time-varying delays and input saturation. Lin-
earization of the saturated input is by using the properties of
the convex hulls. The main contributions and innovations of
this paper are as follows:

a) New definitions of the ellipsoid and linear region of the
saturated are given for the FRDNNs input saturation problem.

b) A novel Lyapunov-Krasovskii functional is employed.
c) The saturation controller based on the convex hulls

is extended to Riemann-Liouville FRDNNs. Meanwhile,
the designed method can be easily extended to the system
with Neumann boundary conditions.

d) The domain of attraction is also estimated to ensure that
the initial value range does not exceed the saturation input’s
control capacity.

This paper is organized as follows. Section II gives some
basic concepts, symbols, assumptions, and lemmas that are
needed in the later proof process. In section III-IV we give the
criterion of synchronization and the estimation of the domain
of attraction. In Section V, we verify the theorem given
in Section III by some numerical example. In Section VI,
we summarize this paper and look forward to future research.
Notation: Throughout this paper, Rn denotes the

n-dimensional Euclidean vector space, In denotes the n × n
identity matrix, ⊗ denotes the Kronecker product.

II. PRELIMINARIES
Problem Formulation: In this paper, we set the response
system as the following Riemann-Liouville FRDNNs

R
t0∂

α
t ui = di1ui − ciui(x, t)+

n∑
j=1

aijfj(uj(x, t))

+

n∑
j=1

gijfj(uj(x, t − τ (t))+ bisat(Ji(x, t)),

t ≥ 0, i = 1, 2, . . . ,N , (1)

with the Dirichlet boundary conditions and initial conditions
as

R
t0∂

α−1
t ui(x, s) = φi(x, s), (x, s) ∈ �× [−τ, 0],

ui(x, t) = 0, (x, t) ∈ ∂�× [−τ,+∞], (2)

where 1 =
n∑
j=1

∂2

∂xj2
is the Laplace diffusion operator on �;

φi(x, t) is a bounded continuous function; x ∈ Rn is spatial
independent variable; ui(x, t) ∈ Rn are the n-dimensional
state of the i-th neuron at time t; ci and di are n×n dimensional
constant diagonal matrix where ci represents the rate with
which the ith neuron will reset its potential to the resting state
when disconnected from the networks and external inputs in
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space x, and di represents the transmission diffusion coeffi-
cient along the ith neuron; aij and gij are n × n dimensional
constant matrix where aij denote the connection strength,
and gij are the coupling strength between the ith and the
jth nodes; fj are the excitation function of the jth node; τ (t)
is the time-varying delay satisfying 0 ≤ τ (t) ≤ τ and
0 ≤ τ̇ (t) ≤ σ ≤ 1; Ji(x, t) are the control input and

sat(Ji(x, t)) = sign(Ji(x, t))min{|Ji(x, t)| , J i} (3)

is the saturation function with the input saturation upbound
J i. Rt0∂

α
t ui(t) denotes theα order Riemann-Liouville derivative

which is defined as [45]

R
t0∂

α
t ui(x, t) =



1
0(n− α)

dn

dxn

t∫
t0

ui(x, s)

(t − s)α−n+1
ds

while n− 1 < α < n,

1
0(−α)

t∫
t0

ui(x, s)

(t − s)α+1
ds,

while α < 0,

(4)

where 0(·) denotes the Gamma function. Then, we set the
drive system as

R
t0∂

α
t vi = di1vi − civi(x, t)+

N∑
j=1

aijfj(vj(x, t))

+

N∑
j=1

gijfj(vj(x, t−τ (t)), t≥0, i=1, 2, . . . ,N ,

(5)

with

R
t0∂

α−1
s vi(x, s) = ϕi(x, s), (x, s) ∈ �× [−τ, 0],

vi(x, t) = 0, (x, t) ∈ ∂�× [−τ,+∞]. (6)

Let ei(x, t) = ui(x, t)−vi(x, t) as the synchronization error
function, then we have the error system as

R
t0∂

α
t ei(x, t)

= di1ei(x, t)− ciei(x, t)

+

N∑
j=1

aij
(
fj(uj(x, t))− fj(vj(x, t))

)

+

N∑
j=1

gij
(
fj(uj(x, t − τ (t)))− fj(vj(x, t − τ (t)))

)
+ bisat(Ji(x, t)), t ≥ 0, i = 1, 2, . . . ,N , (7)

with

R
t0∂

α−1
s ei(x, s) = e0i(x, s), (x, s) ∈ �× [−τ, 0],

ei(x, t) = 0, (x, t) ∈ ∂�× [−τ,+∞]. (8)

Next, some useful definitions are presented.

Definition 1: Define ε(P, ρ) = {ēT (x, t) ∈ Rn :
ēT (t)Pē(t) ≤ ρ

V (�) , ē
T (t) = max{e(x, t), x ∈ �}}, where P is

a positive definite matrix, V (�) denotes the volume of �.
Definition 2: The range of state values in which the control

input remains linear with respect to ei(x, t) is defined as
L(K ) = {ēi(t) ∈ Rn : kl ēi(t) ≤ J̄i, ēi(t) = max{ei(x, t), x ∈
�}, l = 1, 2, . . . , n, i ∈ N }.
Remark 1: Definition 1 and 2 extends the conception

of the ellipsoid and linear region of the saturated in [44].
By introducing the spatial variables, we use the maximum
value of the function on the definition domain to represent
the function’s properties. We can find that this definition is
very convenient to deal with the FRDNNs problem in later
proof.
Definition 3 ([44]): The convex hulls of ei is defined as

co {ei : i ∈ [1,N ]} :=

{
N∑
i=1

θiei :
N∑
i=1

θi = 1, θi ≥ 0

}
.

Definition 4 ([44]): For initial condition φ(t0), the domain
of attraction for u is defined as

S :=
{
φ(t0) : lim

t→∞
u(t, φ(t0)) = 0

}
.

The assumptions given below are essential assets to
achieve the main results of this paper.
Assumpution 1 ([29]): For any u(x, t), v(x, t) ∈ Rn, there

exist constants δi > 0(j = 1, 2, . . . ,N ), such that:

|fi(u)− fi(v)| ≤ δi |u− v| , (9)

and δmax = max{δi}.
The following important lemmas will be employed during

the proof process in the later section.
Lemma 1 ([20]): Let u(x, t) ∈ Cn[� × [t0,+∞]] be a

continuous function with the Riemann-Liouville fractional-
order derivative existing, then the following inequality
holds:

1
2
R
t0∂

α
t u

T (x, t)Pu(x, t) ≤ u(x, t)PRt0∂
α
t u

T (x, t),

∀α ∈ (0, 1), t > t0.

where P ∈ Rn×n is a positive definite matrix.
Then, inspired by [43], we note that the saturation terms’

expressions can be treated independently of spatial coordi-
nates. Thus we can give the expressions of sat(Kx(x, t)) as
the following lemma:
Lemma 2:Let2 be the set of n×n diagonal matrices whose

diagonal elements are either 1 or 0. Suppose each element of
2 is labeled as2l and denote2

−

l = In−2l . Clearly, if2l ∈

2, then 2−l ∈ 2. Let K ,H ∈ Rn×n, then, for any u(x, t) ∈

L(H ), we have sat(Ku(x, t)) =
2n∑
l=1
θl(2lK +2

−

l H )u(x, t),

where 0 ≤ θl ≤ 1(l = 1, 2, . . . , 2n) are some scalars

satisfying .
2n∑
l=1
θl = 1.

VOLUME 9, 2021 50909



Y. Wang et al.: Synchronization of FRDNNs With Time-Varying Delays and Input Saturation

Lemma 3 ([46]): For any vector x, y ∈ Rn, positive definite
matrix H ∈ Rn×n, the following inequality holds

±2xy ≤ xTHx + yTH−1y.

Hence, according to Lemma 2 and Kronecker product
properties, the synchronization errors (7) can be rewritten into
a compact form as

R
t0∂

α
t e(x, t)

= D1e(x, t)− Ce(x, t)

+A (f (u(x, t))− f (v(x, t)))

+G (f (u(x, t − τ (t)))− f (v(x, t − τ (t))))

+B
2n∑
l=1

θl(IN ⊗2lK + IN ⊗2
−

l H )e(x, t), (10)

where D = diag{di}, C = diag{ci}, G = {gij},
B = diag{bi} with compatible dimension and f (u(x, t)) =
(f1(u1(x, t)) . . . fN (uN (x, t)))T .

III. MAIN RESULTS
In this section, we will derive sufficient conditions for syn-
chronization of the systems with the Dirichlet boundary and
control input saturation, that is:
Theorem: Suppose the assumption 1 holds, then system (1)

and (5) will achieve synchronization if there exists a positive
definite matrix Q and arbitrary matrix K , H such that

8̃ =

 8̃1,1 0 0

∗ 8̃2,2 0

∗ ∗ 8̃3,3

 ≤ 0, (11)

and

ε(I , ρ) ⊆ L(H ), (12)

where

8̃1,1 =
1
2
AAT +

1
2
δT δ +

1
2
GGT + Q− C

+B
2n∑
l=1

θl(IN ⊗2lK + IN ⊗2
−

l H ),

8̃2,2 = −D,

8̃3,3 = −(1− σ )Q+
1
2
δT δ.

(13)

with known matrix A,B,C,D,G.
Proof: Choose the following Lyapunov functional

V (t) = V1(t)+ V2(t), (14)

where

V1(t) =
1
2

∫
�

R
t0∂

α−1
t (eT (x, t)e(x, t))dx, (15)

V2(t) =

t∫
t−τ (t)

∫
�

eT (x, s)Qe(x, s)dxds. (16)

Thus V (t) ≥ 0 holds obviously. Then, according to Lemma 1,
we get the derivative of V1(t) along the trajectories of system
(10) as follows:

V̇1(t)

≤

∫
�

eT (x, t)Rt0∂
α
t e(x, t)dx

=

∫
�

eT (x, t)[D1e(x, t)− Ce(x, t)

+A (f (u(x, t))− f (v(x, t)))

+G (f (u(x, t − τ (t)))− f (v(x, t − τ (t))))

+B
2n∑
l=1

θl(IN ⊗2lK + IN ⊗2
−

l H )e(x, t)]dx

=

∫
�

eT (x, t)D1e(x, t)dx −
∫
�

eT (x, t)Ce(x, t)dx

+

∫
�

eT (x, t)A (f (u(x, t))−f (v(x, t))) dx

+

∫
�

eT (x, t)G (f (u(x, t−τ (t)))− f (v(x, t − τ (t)))) dx

+

∫
�

eT (x, t)B
2n∑
l=1

θl(IN ⊗2lK+IN ⊗2
−

l H )e(x, t)dx.

(17)

Utilizing Green’s formula and the boundary conditions,
we have∫

�

eT (x, t)D1e(x, t)dx

= eT (x, t)Dex(x, t)
∣∣∣l
0
−

l∫
0

exT (x, t)Dex(x, t)dx

= −

l∫
0

exT (x, t)Dex(x, t)dx. (18)

According to assumption (A1) and lemma 3, the third and
fourth term satisfy the inequalities∫

�

eT (x, t)A (f (u(x, t))− f (v(x, t))) dx

≤
1
2

∫
�

eT (x, t)AAT e(x, t)dx

+
1
2

∫
�

eT (x, t)δT δe(x, t)dx (19)
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and∫
�

eT (x, t)G (f (u(x, t − τ (t)))− f (v(x, t − τ (t)))) dx

≤
1
2

∫
�

eT (x, t)GGT e(x, t)dx

+
1
2

∫
�

eT (x, t − τ (t))δT δe(x, t − τ (t))dx (20)

Substituting (18)-(20) into (17), we have

V̇1(t)

≤ −

∫
�

exT (x, t)Dex(x, t)dx −
∫
�

eT (x, t)Ce(x, t)dx

+
1
2

∫
�

eT (x, t)AAT e(x, t)dx

+
1
2

∫
�

eT (x, t)δT δe(x, t)dx

+
1
2

∫
�

eT (x, t)GGT e(x, t)dx

+
1
2

∫
�

eT (x, t − τ (t))δT δe(x, t − τ (t))dx

+

∫
�

eT (x, t)B
2n∑
l=1

θl(IN ⊗2lK+IN ⊗2
−

l H )e(x, t)dx.

(21)

Similarly, the derivative of V2(t) satisfies the following
inequality

V̇2(t)

≤

∫
�

eT (x, t)Qe(x, t)dx

− (1−σ )×
∫
�

eT (x, t−τ (t))Qe(x, t−τ (t))dx. (22)

Substituting (21) and (22) into (14), we have

V̇ (t)

= V̇1(t)+ V̇2(t)

≤ −

∫
�

exT (x, t)Dex(x, t)−
∫
�

eT (x, t)Ce(x, t)dx

+
1
2

∫
�

eT (x, t)AAT e(x, t)dx

+
1
2

∫
�

eT (x, t)δT δe(x, t)dx

+
1
2

∫
�

eT (x, t)GGT e(x, t)dx

+
1
2

∫
�

eT (x, t − τ (t))δT δe(x, t − τ (t))dx

+

∫
�

eT (x, t)B
2n∑
l=1

θl(IN ⊗2lK + IN ⊗2
−

l H )e(x, t)dx

+

∫
�

eT (x, t)Qe(x, t)dx

− (1− σ )×
∫
�

eT (x, t − τ (t))Qe(x, t − τ (t))dx. (23)

Thus, according to the condition (11), we have

V̇ (t) =
∫
�

ẽT (x, t)8̃̃e(x, t)dx ≤ 0, (24)

where ẽ(x, t) = [eT (x, t), exT (x, t), eT (x, t − τ (t))]T and

8̃1,1 =
1
2
AAT +

1
2
δT δ +

1
2
GGT + Q− C

+B
2n∑
l=1

θl(IN ⊗2lK + IN ⊗2
−

l H ),

8̃2,2 = −D,

8̃3,3 = −(1− σ )Q+
1
2
δT δ.

(25)

Since (12) is equivalent to

min{ēT (t)ē(t) : hiē(t) = J̄i} ≥ ρ, (26)

we can transform it as

min{ēT (t)ē(t) : hiē(t) = J̄i}

=

∫
�

J̄2i (hihi
T )
−1
dx = MJ̄2i (hihi

T )−1, (27)

through the Lagrange multiplier method, where M = V (�)
denotes the volume of �. Thus we have

hihiT ≤
MJ i

2

ρ
. (28)

According to the Schur complement, (28) can be expressed
as the following LMIs form(

I hi

hiT
MJ i

2

ρ

)
≥ 0. (29)

Thus, system (1) and (5) can achieve synchronization under
the saturation input control.

Meanwhile, according to (14) and we have

V (0) =
1
2

∫
�

R
t0∂

α−1
0 (eT (x, 0)e(x, 0))dx

+

0∫
−τ (0)

∫
�

eT (x, s)Qe(x, s)dxds = ϑ, (30)

where ϑ is a constant. Accordingly, since V̇ (t) ≤ 0, it con-
cludes that

∫
�

R
t0∂

α−1
t (eT (x, t)e(x, t)) ≤ V (t) ≤ V (0) = ϑ .
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In other words, for any initial value e(x, 0) ∈ ε(I , ρ), e(x, t)
will not leave ε(I , ρ) indicating that for all t > 0, e(x, t) ∈
ε(I , ρ) ⊆ L(H ) holds.

The proof is completed.
Remark 1: In [47] when dealing with the Lyapunov func-

tional V , the fractional derivation is directly carried out and
get the Mittag-Leffler stability. For the time-delay problem,
fractional derivation on the functional V cannot work, so to
use Lyapunov-Krasovskii functional and derivate the func-
tional V with respect to t is a more convenient way.
Remark 2: The Lyapunov-Krasovskii functional presented

in our paper is a traditional and mature approach for
related works of ODEs. Still, research seldom handles the
Riemann-Liouville derivative with reaction-diffusion and sat-
uration comprehensively, so we have made an original explo-
ration of this issue.
Corollary: Assume that τ (t) ≡ 0, then system (1) and (5)

can reach synchronization with the feedback control

Ji(x, t) = kiei(x, t), (31)

if the following conditions

8̃ =

(
8̃1,1 0
∗ 8̃2,2

)
≤ 0, (32)

and

ε(I , ρ) ⊆ L(H ), (33)

hold, where
8̃1,1 =

1
2
AAT + δT δ +

1
2
GGT + Q− C − Q

+B
2n∑
l=1

θl(IN ⊗2lK + IN ⊗2
−

l H ),

8̃2,2 = −D.

(34)

with known matrix A,B,C,D,G, positive definite matrix Q
and arbitrary matrix K ,H .

IV. ESTIMATE THE DOMAIN OF ATTRACTION
Due to the nonlinear influence of saturation, the stability
region is often local. In this section, we will give sufficient
conditions for the initial conditions which can ensure the two
system reach synchronization during a finite time.

It is difficult to deal with spatial variables, so we simplify
the problem. Consider the set of the maximum values of the
initial value of the system in its domain

χ = {‖e1(x, t)‖max, ‖e2(x, t)‖max, . . . , ‖eN (x, t)‖max}

(35)

which conform to some certain shape reference set χR, then
we hope that the shape reference set can fill the attraction
region of the system as fully as possible. That is to solve the
problem

sup
Q>0,D,A,G,
C,B,K ,H

γ

s.t.

a) γχ ⊂ ε(I , ρ),

b) 8̃ ≤ 0,

c) ε(I , ρ) ⊆ L(H ). (36)

If χR is a polygon, i.e.

χR = co{e1, e2, . . . , eN } (37)

thus the constraint a) is equivalent to γ 2MeTimaxeimax ≤

ρ, i = 1, . . . ,N . According to the Schur component, we have

M
ρ
eTimaxeimax ≤

1
γ 2
⇔

(
1
γ 2

eTimax

eimax
ρ
M

)
≥ 0,

i = 1, . . . ,N .

(38)

Hence, we get (38) as the sufficient condition for the domain
of initial conditions that can ensure the two systems can
achieve synchronization under the above theorem conditions.

Also, we can solve the following optimization problem to
get the maximal volume of ε(I , ρ),

min
Q>0,D,A,G,
C,B,K ,H

ζ

s.t.

a) 8̃ ≤ 0,

b) ε(I , ζ−1) ⊆ L(H ). (39)

where ζ = 1
ρ
.

Remark 3: It should note that (38) is ‘‘sufficient’’ enough,
which means that the estimation of the domain of attraction is
often smaller than its theoretical one. In other words, the ini-
tial conditions obtained by the abovemethods are usually safe
enough, but we still hope to find more conservative laws in
our future work.

V. NUMERICAL EXAMPLES
In this section, we will give two examples. In Example 1,
We take the parameters satisfying all the Theorem conditions
to test the feedback control capability. Then, we will test the
tolerance upbound of the initial errors in Example 2.
Example 1: Consider two four-nodes FDRNNs defined on

� × [−τ,+∞) = [−1, 1] × [−τ,+∞) with the following
parameters:

α = 0.75, n = 1,N = 4,

J i = 50,B = I4,

D = diag{0.3, 0.2, 0.35, 0.4},

C = diag{−6,−3,−4,−3.6},

A = G =


2 1 1 1
1 2 0.4 1
1 0.4 0.7 0.2
1 1 0.2 2

 ,
f (u(x, t)) = tanh(u(x, t)),

τ (t) =
0.1et

1+ et
,
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and the initial value are given as u0i(x) = 0.41 sin(2π ix) and
v0i(x) = 0, i = 1, 2, 3, 4. Then according to the definition
(4), it can be transformed as ui(x, t̄) = 0.66 sin(2π ix) and
vi(x, t̄) = 0 for t̄ ∈ [−τ, 0] approximately. Thus, we can get
the maximal ρ ≈ 1.4625 by solving (39).

FIGURE 1. System errors without control of example 1.

FIGURE 1 shows the error system keeps oscillating
in a large range without input control, which implies
that the two neural networks cannot reach synchronization
due to the influence of reaction terms and time-varying
delays.

We use the MATLAB LMI control toolbox to solve the
LMIs in the Theorem and get the feasible solution through the
above parameters. Based on these solutions, we can choose
the feedback gain matrix

K = diag{−25.3473,−24.0324,−23.1751,−23.4426}.

FIGURE 2. System errors with control of example 1.

With the above control gain, FIGURE 2 illustrates that
the errors between the two neural networks achieve the
neighborhood of 0 on the entire domain. Looking at it from
another angle, as FIGURE 3 depicts, the errors between
two systems decay very quickly under the proposed control
input.

FIGURE 3. System errors with control at x = 0.18 of example 1.

FIGURE 4. Control input of example 1.

FIGURE 5. Control input at x = 0.18 of example 1.

Then FIGURE 4 and 5 shows the input control signal of
each node. In this situation, they didn’t trigger saturation.
Next, Example 2 will test the robustness of the designed
control law.
Example 2: Consider the parameters in Example 1, and

we will replace them with some ‘‘sick’’ initial conditions to
test the maximal tolerance of the initial errors. From (38),
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FIGURE 6. System errors of example 2 with eimax = 0.8426 at x = 0.18.

FIGURE 7. Control input of example 2 with eimax = 0.8426 at x = 0.18.

FIGURE 8. System errors of example 2 with eimax = 0.8426.

naturally, except for the two boundaries, we can take the
initial errors as the maximum value on the interval value on
the whole domain, that is u0i(x) = eimax , v0i(x) = 0. Let
γ = 1, thus we have eimax ≈ 0.8426, the numerical exper-
iment indicate that two system can reach synchronization as
FIGURE 6 illustrate.

FIGURE 9. Saturation control input of example 2 with eimax = 0.8426.

FIGURE 10. Saturation control input of example 2 with eimax = 20 at
x = 0.18.

FIGURE 11. Saturation control input of example 2 with eimax = 20.

Increasing eimax to 20, we found that although the control
input has reached the saturation state, the error system can
still approach the neighborhood of zero in finite time accord-
ing to FIGURE 10-12.

Continue increase eimax to 25, we found that the errors of
node 1 increase rapidly as FIGURE 13 and 14 illustrate which
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FIGURE 12. System errors of example 2 with eimax = 20.

FIGURE 13. Saturation control input of example 2 with eimax = 25 at
x = 0.18.

FIGURE 14. System errors of example 2 with eimax = 25.

indicate that under the saturation bound J i = 50 the systems
cannot synchronize.

VI. CONCLUSION
In this work, firstly, the definitions of the ellipsoid and the lin-
ear region of the saturated are extended to PDEs case. Under
this framework, we construct a suitable Lyapunov-Krasovskii

functional for synchronizing two fractional reaction-diffusion
neural networks and obtain sufficient conditions under sat-
urated control inputs by using convex hulls and some
Riemann-Liouville fractional integral properties. Besides,
we estimate the domain of attraction. All the conditions are
presented in the form of LMIs thus can easily be solved by
the MATLAB toolbox. At last, two numerical experiments
show that the proposed control laws are reliable when trig-
ger saturation state. Meanwhile, the designed control law is
safe enough with our estimation of the domain of attraction.
As we can see, our method is simple and sufficient, but the
estimation of the domain of attraction is too small. In our
future work, we can find some more suitable inequalities to
achieve more conservative conditions and apply our approach
on network consensus, fault-tolerant, adaptive fuzzy control,
etc.
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