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ABSTRACT The running state of rolling bearings is complex in operation, and the data are generally
collected under different working conditions. However, when single-source domain adaptation is used
to model the heterogeneously distributed data obtained under different working conditions, the domain-
invariant representations can hardly be used for representation, which directly affects the fault diagnosis
rate. To this end, a method for the fault diagnosis of rolling bearings under different working conditions
based on multi-feature spatial domain adaptation is proposed. Firstly, all the data from source and target
domains are mapped into a feature space to learn the common representations of all domains. Secondly,
the data for each pair of source and target domains are mapped into different feature spaces to get the fault
feature representations under various working conditions. And the multi-domain adaptation network is used
for the domain-specific distribution alignment to learn multiple domain-invariant representations. Thirdly,
these representations are used to train multiple domain-specific classifiers, thus obtaining the recognition
result for each domain-invariant representation. Finally, the domain-specific decision boundaries predicted
by multiple classifiers are employed to align the classifiers’ output of target samples and thus to reduce the
influence from different classifiers. The effectiveness and feasibility of this proposed method have been
verified by diagnostic experiments conducted according to the rolling bearing data from Case Western
Reserve University and Laboratory, respectively.

INDEX TERMS Rolling bearing, different working conditions, multi-feature spatial, domain adaptation,

fault diagnosis.

I. INTRODUCTION

Rotating machinery is critical to the efficiency and safety of
mechanical systems [1]. Rolling bearing is a major compo-
nent of rotating machinery, and its running state significantly
affects the health of such machinery. Therefore, it is necessary
to diagnose this running state to avoid production loss or
even casualty caused by such critical fault [2]-[4]. Thereinto,
the state monitoring system is essential for normal equipment
operation. As the manufacturing industry enters a new era
of big data and intelligence, an increasing number of data
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has been collected from this system under various working
conditions [5], making it more necessary to study how to
utilize these data to diagnose and analyze the bearing state.
Deep transfer learning has become a new research direc-
tion. According to its basic concept, an adaptive layer is
added between the feature extraction and classification layers
so that the data on the source and target domains can be
distributed more similarly [6]-[10]. Besides, more expres-
sive features can be extracted automatically by deep transfer
learning and it utilizes the self-extraction of deep learning
together with transfer learning to acquire “new knowledge”’,
which assist to solve small sample data problem well in
few-shot learning [11]. This learning method is commonly
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used for mechanical fault diagnosis [12]-[16]. For exam-
ple, Zhao et al. [17] reported a transfer learning framework
based on the deep multi-scale convolutional neural network.
In this framework, the adaptive layer’s weighting parame-
ters are adjusted slightly to diagnose the rolling bearings
intelligently. Wang et al. [18] diagnosed the fault of rolling
bearings using the transfer learning strategy that combines
the variable convolutional neural network with the deep long
short-term memories. Tong et al. [19] put forward a new
method to diagnose the bearing fault, which is known as
the domain adaptive feature transfer learning under vari-
able working conditions. That is, the pseudo test labels are
refined on the basis of maximum mean discrepancy (MMD)
and domain-invariant clustering in a public space to repre-
sent the transferable features of training and testing data.
Zhang et al. [20] proposed a transfer learning method for fault
diagnosis based on the neural network so as to improve the
diagnostic performance through the data of different working
conditions. As shown in the bearing data from Case Western
Reserve University, the effectiveness of this method has been
verified.

The idea of deep transfer has been used for the fault
diagnosis of rotating machinery by the above methods, which
achieves good results. However, there are some problems
as follows. 1) The focus is completely on the single-source
unsupervised domain adaptation. However, in actual machin-
ery operation, the labeled data can be collected from many
different sources, such as different rotational speeds or
loads [21]-[24]. Therefore, the adapters from multiple source
domains shall not be modeled in the same way. 2) The
common domain-invariant representations of all domains are
primarily extracted by aligning the source distribution as
well as target domains in a common feature space. How-
ever, the representations can hardly be extracted for the data
under all working conditions in the multi-source unsuper-
vised domain adaptation (MUDA) [25]. Besides, when we
try to align multiple source and target domains, the bigger
mismatch might result in unsatisfying performance in Fig-
ure 1. 3) The domain-specific decision boundary between
clusters is not considered when these methods match the
distribution. Hence, it is necessary to improve the diagnostic
accuracy of rolling bearings under variable working condi-
tions through the heterogeneously distributed data and the
decision boundary of different domains. Zhu et al. [26] pro-
posed a migration learning method based on adaptive multi-
source domain. A multiple adversarial learning strategy is
used to obtain feature representations, but the method is an
adversarial-based learning method and the training time can
be too much. Besides, the method does not consider the
effects of different classifiers. Zhu et al. [27] introduced a new
MUDA framework that aligns the distribution of each pair of
source and target domains in multiple specific feature spaces,
respectively. Also, it aligns the classifiers’ outputs through
domain-specific decision boundaries.

To sum this, This paper proposes a method to diagnose
rolling bearings’ fault under different working conditions
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FIGURE 1. Main idea diagram.

based on multi-feature spatial domain adaptation to solve
the above problems. First, the data of all source and tar-
get domains are mapped into a feature space to learn the
common domain-invariant representations. Second, the data
about each pair of source and target domains are mapped
into multiple different feature spaces, and the domain-
specific distribution is aligned with in order to learn multiple
domain-invariant representations. Third, these representa-
tions are used to train multiple domain-specific classifiers.
Finally, such classifiers are aligned by the domain-specific
decision boundary to solve the problem that the target sam-
ples close to this boundary may get various labels, which
is predicted by different classifiers. Numerous experiments
have proved that this proposed method is more accurate than
existing ones, showing prominent advantages.

The main contributions of this paper are summarized as
follows:

1) Most previous fault diagnosis approaches based on
multi-source domain adaptation have focused on
extracting domain invariant representations of all
domains without considering domain-specific decision
boundaries between clusters. In this paper, we propose
an approach based on a multi-feature spatial adapta-
tion that aligns domain-specific distributions of each
pair of source and target domains by learning multiple
domain-invariant representations and the classifiers’
output from multiple domains.

2) Traditional methods use only a set of source domain
data for training, while our approach collected many
sets of source domain data that has been monitored
from different working conditions to identify the target
data, which extracts various fault features from multi-
ple source domains to achieve a more effective result.

This paper is organized as follows: Section 2 is the the-
ory of MFSAN. Section 3 describes the entire processing
of fault diagnosis procedure. In Section 4, the compari-
son methods and experimental result analysis are given.
Section 5 introduces the generalization ability verification
experiment. Finally, the conclusions are drawn in Section 6.

Il. ALIGNMENT OF MULTI-FEATURE SPATIAL DOMAIN
ADAPTATION

In the MUDA, there are N different source distributions
in the bottom layer, which are expressed as {py;(x, y)}N

j=1
The source domain data are labeled as {(X sj» Y. sj) }jV: 1 where
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FIGURE 2. Network structure diagram.

1%l .
X = {x;.v } X refers to the sample of the source domain
i=

j,and Y = Y !XM refers to the corresponding label.
Besides, the target él?sltribution is p(x,y), from which the
target source data X; = {xf }li’ll are sampled, but Y; is not
labeled.

Figure 2 shows the major idea of Multi-feature spa-
tial adaptive network (MFSAN), which includes two
alignment phases, namely, learning the source-specific
domain-invariant representations and aligning the classifier
output of target samples. Our framework is composed of
one common feature extractor, N domain-specific feature
extractors, and N source-specific classifiers of target samples.

A. COMMON FEATURE EXTRACTOR

In this paper, a common sub-network f(-), which can map
the images from the original feature space into a com-
mon one, is proposed to extract the common representations
of all domains. In our study, the deep learning network
ResNet50 [28] that has been frequently used is used as the
common sub-network.

B. DOMAIN-SPECIFIC FEATURE EXTRACTOR

We expect that each pair of source and target domain data can
be mapped into a specific feature space. Two batch images,
x¥ and x7, are given from the source domain (ij, Y, Yj) and
target domain X', respectively. These domain-specific fea-
ture extractors will receive the common features, f (xSf ) and
f (x’ ), from the common feature extractor. Then, each pair of
source and target domains will be mapped to a specific feature
space by their corresponding unshared domain-specific sub-
networks #; (-), which exists in N source domain (Xxj, Y. Sj).

C. DOMAIN-SPECIFIC CLASSIFIER

Cisa multi-ou}t\;)ut network composed of N domain-specific
predictors (C /) .- Each predictor Cj is a Softmax classifier
that receives tllle specific domain-invariant feature through
J -th domain-specific feature extractors of the source domain,
i.e., H(F(x)). F (-) represents the common feature extractor
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and H (-) is a domain-specific extractor. Then, the classifica-
tion loss is added to each classifier using the cross-entropy,
with the formula expressed as:

N
Les =Y By J(CHF (X)), y7) ey
j=1
where E,[-] is the expected value operator with respect to

the distribution x and J (-, -) represents the cross-entropy loss
function (classification loss).

D. DOMAIN-SPECIFIC DISTRIBUTION ALIGNMENT

To complete the first alignment phase (aligning the distribu-
tion of each pair of source and target domains), MMD [29]
is used to estimate the interpolation between two domains.
MMD refers to the kernel test that refuses or accepts the
null hypothesis p = ¢ by observing samples, where p and
q are two different distributions. Formatively, it defines the
following measurement of the discrepancy:

di (P, @) 2 B, [0 ()] — Eqlt (<)1), )

where ‘H represents the reproducing kernel Hilbert
space (RHKS) of the feature kernel k. Here (J(-) means map-
ping the original samples to RKHS. In practice, the MMD is
estimated to compare the average kernel embedding between
squared distances.

2
A 1 1
du (pg)=|— D 00x)—— 3 0(x) 3)
s xi€Dg ! X€D; H

We estimate the discrepancy between source and target
domains through (3), where dy (p, q) is the unbiased estima-
tion of dy (p, g). The MMD loss is rewritten as:

A
Loma = 5 ;d (H{(F (X)), Hj (F (X)) )

Every specific feature extractor can be used to learn the
domain-invariant representation for each pair of source and
target domains by minimizing the (4).
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E. DOMAIN-SPECIFIC CLASSIFIER ALIGNMENT

The target samples that are near the cluster boundary are
more likely to be misclassified by classifiers from the source
samples. Because classifiers are trained on various source
domains, their prediction on target samples, especially those
near the cluster boundary, may be different. Intuitively,
the same target samples predicted by different classifiers shall
produce an identical result. Therefore, the discrepancy among
all classifiers will be minimized in the second alignment
phase. The absolute value for the discrepancy of the clas-
sifier to the target data output is taken as the discrepancy
loss:

) N—1
Liise = ———————
disc NX(N_l)jzl:

N
x Y Eeox, [|CHIF () — CHF )] (5)
j=i+l

Xu et al. [30] propose a target classification operator
to combine various source classifiers. However, it will be
complex to vote on the labels of target samples. A simi-
lar probability output among all classifiers can be achieved
by minimizing (5). Finally, the mean value of all classi-
fiers’ outputs is calculated to forecast the labels of target

samples.

F. NETWORK TRAINING

In general, our method contains classification loss, MMD
loss, and classifier discrepancy loss. Concretely speaking,
the network can classify the source domain data accurately
by minimizing the classification loss; the domain-invariant
representations can be learned by minimizing the MMD loss;
the discrepancy between classifiers can be reduced by mini-
mizing the classifier discrepancy loss. At last, the total loss is
expressed as:

Ligtal = Leis + ALyyma + yLdisc (6)

The training is mainly conducted based on the stan-
dard’s small-batch stochastic gradient descent (SGD)
algorithm.

IIl. METHOD FOR THE FAULT DIAGNOSIS OF ROLLING
BEARINGS UNDER DIFFERENT ROTATIONAL SPEEDS
BASED ON MULTI-FEATURE SPATIAL DOMAIN
ADAPTATION

This paper introduces a method to detect the fault of
rolling bearings under various working conditions based
on multi-feature spatial domain adaptation. Firstly, we map
the data of all source and target domains into a feature
space to learn the common domain-invariant representations.
Then, we map the data about each pair of source and tar-
get domains to several different feature spaces and align
the domain-specific distribution to learn multiple domain-
invariant representations. Thirdly, we use these represen-
tations to train multiple domain-specific classifiers. The
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TABLE 1. The fault types.

Fault Types Degree of faults/(mm) Labels
Normal N
Outer ring 0.18/0.36/0.53 01/02/03
Inner ring 0.18/0.36/0.53 11/12/13
Rolling element 0.18/0.36/0.53 R1/R2/R3

classifier’s output of target samples will be aligned by the
domain-specific decision boundary because the labels may be
different for target samples near this boundary as predicted by
different classifiers. Finally, we calculate the mean value of
all classifier outputs to predict such samples’ labels. The flow
chart is shown in Figure 3:

1) Collect data samples. Calculate the time-frequency
map through wavelet transform. Divide the training
set (source domain) and testing set (target domain)
in a certain proportion. Construct the data set under
different working conditions.

2) Initialize the MFSAN’s network parameters, and input
multiple source and target domain data into the
MFSAN in bulk.

3) Extract the common feature representations of all
domains through the common sub-network ResNet50.

4) Construct the domain-specific feature extractor that
receives the common features, f (xsj) and f (x’ ) from
the common feature extractor.

5) Use the MMD to measure the discrepancy, and align
all the domain-specific distributions to reduce their
discrepancy.

6) Construct N domain-specific classifiers. Every predic-
tor C; is a Softmax classifier that receives the specific
domain-invariant features extracted by j-th specific fea-
ture extractor of the source domain.

7) Take the absolute value for the interpolation of the
classifier to the probability output of target data as the
discrepancy loss to minimize the discrepancy among
all classifiers.

8) At last, calculate the mean value of all classifiers’
outputs to predict the labels of target samples.

IV. VERIFICATION EXPERIMENT ON THE DATA FROM
CASE WESTERN RESERVE UNIVERSITY

A. DATA DESCRIPTION

In this experiment, the proposed method’s effectiveness
was verified by faults of the deep groove ball bearing
6205-2RS. The bearing data were assembled from the
Case Western Reserve University Bearing Data Center Web-
site. Single-point faults were set on the bearing’s inner ring,
outer ring, and rolling element through the electric dis-
charging machining technique, with the fault diameter of
0.18mm, 0.36mm, and 0.53mm, respectively, and the depth
of 0.28mm. Finally, there were 9 fault states, as shown
in Table 1.
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FIGURE 3. The flow chart of method.

TABLE 2. Condition information.

Speeds(r/min) Load/(HP) Labels
1797 0 A
1772 1 B
1750 2 C

When the data were collected, the bearing was work-
ing at a constant speed of 1797rpm, 1772rpm, and1750rpm
under working conditions A, B, and C, respectively. Besides,
the load was OHP, 1HP, and 2HP, respectively, and the sam-
pling frequency was 12KHz. Table 2 exhibits the working
conditions of this experiment.

B. SET UP A DATA SET

Samples were intercepted from the collected vibration data at
1024 points, and the data were resampled every 500 points.
Thus, there were 200 samples in each fault type. First, each
sample’s wavelet transform was conducted to obtain the
time-frequency map samples, from which 150 ones were
selected randomly. Thus, there were 1500 samples used as
the training set among the 10 fault types. Second, the remain-
ing 50 ones were selected for the test. Thus, there were
500 samples used as the testing set among the 10 fault
types.

Figure 4 shows the time domain waveform of bearing
components’ fault signals in different fault states. The rolling
element’s damage degree and fault types can hardly be deter-
mined through this waveform.
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FIGURE 5. The wavelet transform time-frequency diagram.

Figure 5 is the time-frequency map about the normal state
and the outer ring fault under different pitting degrees and
rotational speeds. Due to limited space, the time-frequency
maps of the remaining faults will not be described in
this paper. By comparing Figures 4 and 5, the faults
were much more diverse and changeable in the wavelet
transform’s time-frequency representation than in the time
domain.

As shown in Figure 5, the bearing’s signal energy was
mainly concentrated in the low-frequency range in a nor-
mal state and kept steady and low during the whole
period. However, the energy was distributed primarily in the
high-frequency range with a wide frequency domain when
the outer ring witnessed different damage degrees. During
this period, the energy showed a higher value and fluctu-
ated significantly, with an apparent non-stationary property.
According to the comparison between Figures 5 (b) and (c),
the energy was distributed in a similar structure when the
outer ring had the same degree of damage under differ-
ent working conditions. However, as the rotation acceler-
ated, the vibration energy increased. The comparison results
showed that the vibration energy increased with the increase
of fault degree, but the elapsed time of fluctuation reduced
accordingly. It can be seen from this that under different
working conditions, the fault signals were much more diverse
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TABLE 3. Performance comparison of classification accuracy(%).

Standards Method A,B—C A,C—B B,C—A Avg Std A—A
Multi-source MFSAN 100 99 99 99.3 0.57 100
DAN 99 98.8 96.6 98.1 1.33
Source DDC 97.6 96 95.1 96.2 127
Combine
ResNet 96.4 94.8 94.8 95.3 0.92
A—C 954 A—B 98 B—A 926
DAN 95.2 2.11 98.2
B—C 952 C—-B 97 C—A 93.1
) A—C 93 A—B 96.1 B—A O9l1.1
Single Source DDC 93.7 2.85 96.9
B—C 94.1 C—B 976 C—A 90.2
A—C 872 A—B 894 B—A 90.2
ResNet 89.9 3.53 97.2
B—C 93 C—-»B 9%.6 C—A 85.1
17 o-5-0-6 |1 ac660660660606060006000
&5
> 0.8 > 0.8t —E&— MFSAN(B,C-A)
g —&r— DAN(A-C) = —A— DAN(B-A)
g —&— DAN(B-C) 5 —O— DAN(C-A)
8 —%— DAN(A+B-C) 2 —¥— DAN(B:C-A)
< DDC(A-C) i DDC(B-A)
< 0.6 DDC(B-C) < 0.6} gggig’i{} N
DDC(A+B-C) e
ResNet(A-C) —A— EL\ELEE?-;{;
ResNet(B-C) esNetE~
0.4 5 . . ; ResNel(A+B-C) 0.4 ) ) —¥— ResNet{B+(-A)
0 5 10 15 20 0 5 10 15 20
Iteration

[teration

FIGURE 6. A,B-C Transfer results.

in the wavelet time-frequency domain than in the time domain
and changed more abundantly. This indicates that the wavelet
transform can fully display the fault features.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In the proposed method, the MMD distance that is frequently
used for transfer learning was adopted to measure the distri-
butional discrepancy between two domains. Therefore, this
method was compared with those following the same mea-
sure criteria, such as deep adaptive methods DAN [31] and
DDC [32]) and deep learning method (ResNet). Besides,
the algorithms were compared and tested using source com-
bine and single source, respectively. Thereinto, the former
meant that various source domain data were mixed as the
training set to test the single target data. As shown by the
comparison results in Table 3, the proposed method’s average
diagnostic precision was highest (99.3%), and the standard
deviation was 0.57%, indicating the effectiveness of this
method.

According to Table 3, the single source’s ResNet showed
a recognition precision of 97.2% under the same working
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FIGURE 7. B,C-A Transfer results.

condition A— A, but the average diagnostic precision was
merely 89.9% under different conditions. This indicates that
ResNet can effectively extract fault features in bearings,
but it lacks the ability of adaptation and cannot reduce the
difference in data distribution caused by various working
conditions. This shows the need for migration adaptation
of data from different working conditions. DAN and DDC
of the single source domain approaches were more pre-
cise than ResNet because they have an adaptation layer,
which can reduce the difference of data distribution in dif-
ferent working conditions. The average diagnosis precision
of DAN is higher than DDC because the MMD used by
the former is multi-kernel while by the latter is single-
kernel. A single fixed kernel may not be the optimal one.
The DAN, DDC, and ResNet of the source combined were
more precise than those of the single source, which indi-
cated that the recognition precision was improved by data
diversity.

However, compared with the proposed method, the source
combine’s values were relatively low, which implied that
the mixed transfer could affect the recognition result.
In this method, multiple source domains were adapted,
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respectively, to learn more specific domain-invariant repre-
sentations. Besides, the domain-specific distribution of each
pair of source and target domains and the domain-specific
classifier output of target samples were aligned in various
feature spaces. Figures 6, 7, and 8 are iteration diagrams for
the test precision of the proposed method and other ones.
From this, we can see that the proposed method has converged
at the fifth iteration, showing higher convergence speed and
stability.

To verify the effectiveness of the proposed method further,
we visualize the characteristics of DAN, ResNet, and this
method under working conditions A, B, and C, as shown
in Figure 9. The characteristics of MFSAN’s two different
feature spaces are presented in Figures 9 (a) and (b), respec-
tively. This indicates that the types are separated from each
other in these two spaces, and the training and testing sets
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FIGURE 10. The experimental station.

TABLE 4. The fault types.

Fault Types Degree of faults/(mm) Labels
Normal N
Outer ring 0.2 (¢}
Inner ring 0.2 1
Rolling element 0.2 R

are located in similar positions. Figure 9 (c) describes the
characteristics of DAN, which shows a better overall effect
compared with ResNet. However, these characteristics are
overlapped because the training sets A and B locate in dif-
ferent feature spaces. In this case, the characteristics may be
overlapped when the two data sets are mixed to adapt the
testing set C.

V. GENERALIZATION ABILITY VERIFICATION
EXPERIMENT ON THE DATA FROM LABORATORY
A. DATA DESCRIPTION
The experimental data were collected from the synthetic
test-bed for mechanical fault simulation (MFS), which
is mainly composed of motor, coupler, rolling bearing,
and vibration acceleration sensor. (Figure 10) Thereinto,
the acceleration sensor was attached to the bearing sup-
port through a magnet base. In this experiment, we adopted
the deep groove ball bearing er-16k with a nodal diameter
of 38.51mm. There were 9 rolling elements in total, with the
contact angle of 9.08°. Single-point faults were set on the
bearing’s inner ring, outer ring, and rolling elements using
the electric discharging machining technique, with the fault
diameter of 0.1mm and the depth of 0.2mm. Four fault states
were simulated in this experiment, as shown in Table 4.
When the data were collected, the bearing was working at a
constant speed of 1200rpm, 900rpm, and 600rpm under work-
ing conditions D, E, and F, respectively. Besides, the load was
5kg, the sampling frequency was 25.6KHz, and the sampling
time was 10s. The data were collected 4 times for each fault.

B. SET UP A DATA SET

Samples were intercepted from the collected vibration data
at 1024 points, and 1000 samples were collected from each
fault type. First, the wavelet transform of each sample was
conducted to obtain the time-frequency map samples, from
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TABLE 5. Performance comparison of classification accuracy(%).

Standards Method D,E—F D,F—E E,F—D Avg Std D—D
Multi-source MFSAN 100 99 97 98.7 1.52 100
DAN 97 954 93 95.1 2.01
Source DDC 95.4 95.1 92.1 942 1.52
Combine
ResNet 85 86.7 85.2 85.6 0.92
D—F 946 D—E 93 E—-D 926
DAN 93 1.60 96.9
E—F 932 F—E 935 F—-D 90.1
. D—-F 957 D—E 922 E—-D 90.1
Single Source DDC 923 2.02 97.5
E—-F 914 F—E 93.6 F—-D 91
D—F 84.6 D—E 81.8 E—D 83.5
ResNet 83.7 291 97.6
E—F 89 F—E 825 F—D 80.0
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FIGURE 11. D,E-F transfer results.
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FIGURE 12. D,F-E transfer results.

which 300 ones were selected randomly. Thus, 1200 samples
were used as the training set among the 4 fault types. Second,
100 samples were selected randomly for the test. Thus, 400
samples were used as the testing set among the 4 fault types.
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FIGURE 13. EF-D transfer results.

C. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results were identical to those in the pre-
vious section when the proposed method was compared with
DAN, DDC, and ResNet. The algorithms were compared and
tested by means of source combine and single source, respec-
tively. As shown by the comparison results in Table 5, the pro-
posed method’s average diagnostic precision was highest,
reaching 98.7%, and the standard deviation was 1.52%, indi-
cating that this method was effective.

It can be found by further observing Table 5 that the
overall diagnostic accuracies of DAN, DDC and ResNet of
the sources combined domain was better than those in the
single source domain, where the standard deviation of ResNet
in the mixed source domain was the smallest at 0.92%, but
the average diagnostic accuracy was only 85.6%. The average
diagnostic accuracies of the mixed-source domain DAN and
DDC methods were 95.1% and 94.2%, respectively, which
were both lower than the proposed method. In the MFSAN,
multiple sources and target domains were adapted, respec-
tively, to learn various specific domain-invariant representa-
tions. The domain-specific distribution of each pair of source
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and target domains and the domain-specific classifier output
of target samples were aligned in multiple feature spaces to
improve the recognition precision of rolling bearings under
different working conditions. Figures 10, 11, and 12 are iter-
ation diagrams for the test precision of the proposed method
and other ones. From this, we can see that the proposed
method shows higher convergence speed and stability.

VI. CONCLUSION

This paper proposes a method to detect the fault of
rolling bearings under different working conditions based
on multi-feature spatial domain adaptation. Firstly, the data
of all source and target domains are mapped into a
feature space to learn the common domain-invariant rep-
resentations. Then, the data for each pair of source and
target domains are mapped into a number of different fea-
ture spaces, and the domain-specific distribution is aligned
to learn multiple domain-invariant representations. Thirdly,
multiple domain-specific classifiers are trained by these rep-
resentations to obtain the recognition result for each of them.
Finally, the classifiers’ output of target samples is aligned
through the domain-specific decision boundary predicted
by various classifiers, thus reducing the influence of such
classifiers. Diagnostic experiments have been carried out
based on the rolling bearing data from Case Western Reserve
University and Laboratory, respectively. Experiments have
shown that compared with existing methods, our method
can improve the recognition precision for the fault diagnosis
of rolling bearings under different working conditions. The
characteristics of this method are described as follows:

1) Align the domain-specific distribution of each
pair of source and target domains; and align the
domain-specific classifier output of target samples in
multiple feature spaces.

2) Diagnose the bearing state based on the data collected
under different working conditions so that the manu-
facturing industry can adapt to the new era of big data
and intelligence.
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