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ABSTRACT Chest radiography is a significant diagnostic tool used to detect diseases afflicting the chest.
The automatic detection techniques associated with computer vision are being adopted in medical imaging
research. Over the last decade, several remarkable advancements have been made in the field of medical
diagnostics with the application of deep learning techniques. Various automated systems have been proposed
for the rapid detection of pneumonia from chest X-rays. Although several algorithms are currently available
for pneumonia detection, a detailed review summarizing the literature and offering guidelines for medical
practitioners is lacking. This study will help practitioners to select the most effective and efficient methods
from a real-time perspective, review the available datasets, and understand the results obtained in this
domain. It will also present an overview of the literature on intelligent pneumonia identification from chest
X-rays. The usability, goodness factors, and computational complexities of the algorithms employed for
intelligent pneumonia identification are analyzed. Additionally, this study discusses the quality, usability,
and size of the available chest X-ray datasets and techniques for coping with unbalanced datasets. A detailed
comparison of the available studies reveals that the majority of the applied datasets are highly unbalanced
and limited, providing unreliable results and rendering methods that are unsuitable for large-scale use.
Large-scale balanced datasets can be obtained via smart techniques, such as generative adversarial networks.
Current literature has indicated that deep learning-based algorithms achieve the best results for pneumonia
classification with an accuracy of 98.7%, a sensitivity of 0.99, and a specificity of 0.98. The higher accuracy
offered by deep-learning algorithms in addition to their appropriate class balancing techniques serves as a
good reference for further research.

INDEX TERMS Chest radiography, computer vision, deep learning, generative adversarial networks,
medical imaging, pneumonia detection, unbalanced datasets.

I. INTRODUCTION
A chest X-ray (CXR) is a simple, economical, and com-
monly adoptedmechanism for diagnosing lung infections [1].
The CXR can be perceived as either normal or presenting
a disease, such as lung cancer, tuberculosis, or pneumo-
nia by an experienced radiologist. One of the most com-
mon lung diseases is pneumonia, a lung infection caused by
viruses, bacteria, or fungi [2]. Pneumonia is life-threatening
to infants, older adults, patients placed on a ventilator in
hospitals, and patients with asthma. Moreover, pneumonia is
a high-risk illness, especially in developing countries where
millions of people are impoverished and lack access to
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medical facilities. TheWorld Health Organization (WHO) [3]
estimates that each year, more than four million deaths are
caused by pneumonia and other diseases associated with
air pollution [3]. More than 150 million people, mainly
children under five years old, are infected with pneumonia
annually [4]. Viral pneumonia tends to be mild, whereas
bacterial pneumonia is severe, especially in children [5].
Fungal pneumonia can occur in patients with weak immune
systems. Because of the low cost of CXRs, they are more
commonly requested than other medical modalities such as
magnetic resonance imaging (MRI) and computed tomogra-
phy (CT) [6]. The demand for CXRs translates to thousands
of readings per radiologist annually. However, there is a
shortage of radiologists in both developing and developed
countries [7].
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The mortality from lung diseases can be reduced via accu-
rate and timely diagnosis. In developing countries, where
diagnoses and treatment are delayed because of the short-
age of experienced radiologists, pneumonia in children is
associated with alarming death rates. The massive imbal-
ance between the number of doctors and the population of
a specific area also hinders timely diagnosis. Furthermore,
the resolution of CXRs is lower than those of MRI and
CT; and therefore, they cannot be easily interpreted even
by experienced radiologists. The decision-making of med-
ical staff can be supplemented by computer-aided diagnos-
tic (CAD) tools, which combine aspects of computer vision
and machine learning (ML) with radiological image analysis
to recognize and extract patterns [8]. A typical CAD system
sequentially processes the input data (i.e., CXRs), extracts
and classifies the features. In the first step, the CXR data are
preprocessed. In the second step, the features are extracted
from input images using various techniques such as Gaussian
filters [9], morphological operation [10], and edge detec-
tion [11]. In the third step, the extracted features are distin-
guished using a suitable classifier such as a support vector
machine (SVM) [12], the random forest (RF) algorithm [13],
or the neural network [14].

The publicly available CXR datasets for pneumonia are
highly class-imbalanced, indicating that more images are
available in one class than in the other. The accuracy of a
classification system is considerably affected by class imbal-
ance. For instance, the dataset compiled by Kermany et al. [2]
(used as an example in this study) includes 5,856 images,
among which 4,273 images belong to the disease (pneumo-
nia) class and only 1,583 images belong to the normal class.
Several preprocessing techniques can be used to resolve the
class imbalance problems. Traditionally, the minority class
is oversampled by duplicating randomly selected samples,
whereas the majority class is undersampled. However, ran-
dom oversampling introduces an overfitting problem, and
valuable information can potentially be lost because of under-
sampling. Besides, the sampling technique exhibits limited
generalization and variance [15]. The training dataset is often
expanded via data augmentation, resulting in false represen-
tations of the original images to avoid overfitting [16]. More
recently, artificial datasets have been generated by generative
adversarial networks (GANs) [17], which include two neural
networks: a generator and a discriminator. The generator syn-
thesizes artificial samples with the required variations from
the input data distribution, and the discriminator differentiates
between the samples generated by the generator and those
in the input data. Thoroughly engineered architectures, such
as deep convolutional GAN (DCGAN) [18], styleGAN [19],
and Cycle GAN [20], have been introduced for more robust
synthesized data generation.

Traditional CAD-based systems [21] have success-
fully classified lung diseases from CXRs, but they
require extensive handcrafted techniques for feature-
extraction from images, followed by applying ML classifiers
[12], [13]. To overcome this limitation, several artificial

intelligence (AI) based solutions were developed. Data-
driven deep learning (DL) methods for instance achieved
automatic end-to-end feature extraction and classification.
Over the past decade, the convolutional neural network
(CNN), a type of deep neural network, has achieved
groundbreaking results in different tasks related to pattern
recognition. Inspired by the visual cortex of humans [22],
CNNs differentiate several classes in image recognition
problems [16]. However, CNN requires a large volume
of training data. Medical image classification using CNN
is usually performed either by training the CNN from
scratch, using an existing pre-trained network without
retraining, or fine-tuning a pre-trained network on a target
dataset [23].

Recently, DL-based algorithms, such as SegNet [24],
U-Net [25], Chexnet [26], and CardiacNet [27], have
become the default choice for medical imaging applications.
DL-based techniques are applied for pneumonia detection
from CXRs [28].

In this study, the current literature on pneumonia identifi-
cation from CXR images is presented and the contributions
are summarized as follow:
• Review and analysis of the usability, goodness factors,
and computational complexity of the algorithms that
were used for pneumonia identification.

• Review and analysis of the quality, usability, size,
and class balance extent of the available CXR images
datasets.

• Discuss and provide a comparative analysis of the algo-
rithms used for pneumonia identification.

• Recommend future directions based on the current
literature for the medical practitioner and research com-
munity which could assist them to select the best meth-
ods from a real-time perspective, perceive the available
datasets, and understand the results obtained in this
domain.

The remainder of this paper is organized as follows. Section II
describes the research method adopted, Section III elaborates
on the datasets and presents their details. Section IV focuses
on data preprocessing and augmentation techniques that solve
the unbalanced class problem, and Section V reviews the
techniques applied to lung disease detection. Section VI
describes the evaluation metrics followed by a comparative
analysis and discussion in section VII. Section IX finalizes
the conclusion of the paper.

II. RESEARCH METHOD
An unbiased research method [29] that can ensure complete
coverage of the relevant research is required for conducting a
systematic literature review.

A. DATA SOURCES
We used four electronic databases (ED) as primary data
sources to search for the relevant studies. The electronic
databases used during the search process are presented
in Table 1.
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TABLE 1. Data sources.

B. SEARCH TERMS
The following search terms were used based on the research
question and the literature:
• Pneumonia detection OR health safety infectious dis-
eases of chest OR X-ray dataset OR deep learning for
pneumonia

• Chest radiography OR chest X-rays OR chest disease
detection

The search string for the automated search is as follows:
(Chest OR pneumonia OR diseases OR X-ray OR

X-ray OR CXR OR lung diseases); data balancing AND
chest X-rays OR pneumonia, Generative Adversarial Net-
works (GANs) AND chest X-rays

C. STUDY SELECTION PROCEDURE
The study selection procedure included identification, screen-
ing, eligibility, and inclusion of the research papers.

D. INCLUSION AND EXCLUSION CRITERIA
We extracted relevant studies from different data sources
under the following inclusion and exclusion criteria.

1) INCLUSION
• Studies related to pneumonia identification using CXRs
• Studies not focused on pneumonia detection but con-
tributing to solving the problem

• Studies published in a peer-reviewed conference or
journal

• Studies published between 2010 and 2020 inclusively.
• Studies published in English
• Peer-reviewed publications

2) EXCLUSION
• Studies other than pneumonia identification using CXRs
• Studies published in languages other than English
• Studies with no validation of the proposed technique
• Editorials, short papers, posters, technical reports,
patents, reviews, Wikipedia, surveys, and extended
papers

E. QUALITY ASSESSMENT CRITERIA
The following quality criteria were defined for our systematic
review:
• Are the study objectives clearly defined?
• Are the estimation methods well defined?

• Is the estimation accuracy measured and validated?
• Are the limitations of the study explicitly stated?
• Is the result published in a reputable venue?

III. DATASETS
A. THE CHEST X-RAY14 DATASET
Wang et al. [1] presented a chest X-ray database named Chest
X-ray14 [1], which contains 108,948 images of eight (cur-
rently 14) diseases obtained from 32,717 patients (collected
from 1992 to 2015). This dataset was acquired from Picture
Archiving and Communication Systems (PACS). The eight
common thoracic diseases, i.e., atelectasis, effusion, infil-
tration, cardiomegaly, mass, nodule, pneumonia, and pneu-
mothorax, were shortlisted as keywords in a search of the
PACS system, and the associated images were extracted.
Some sample images of multiple chest pathologies are pre-
sented in Fig. 1. The typical size of the X-ray images
(3000 × 2000 pixels) was resized to 1024 × 1024 pixels
without losing any significant details or contents. Among
the 108,948 images, 24,636 images contained one or more
pathologies, whereas the remaining 84,312 images were nor-
mal. Themean age of the patients was 46.9 years, with 63,340
(56.5%) CXRs for male and 48,780 (43.5%) CXRs for female
patients. Less than 1,500 pneumonia images were found in
this publicly available dataset.

FIGURE 1. Examples of lung-disease images extracted from the Chest
X-rays14 dataset.

B. PEDIATRIC CXRS FOR PNEUMONIA DETECTION
Kermany et al. [2] collected and labeled pediatric CXRs
from the Guangzhou Women and Children’s Medical Cen-
tre (Guangzhou, China). CXR imaging was performed as
part of the routine clinical care of the patients. In this
study, the authors selected 5,856 CXR images from pedi-
atric patients aged 1–5 years: 4,273 pneumonia images
(2,780 bacterial and 1,493 viral) and 1,583 normal images.
The X-ray images are available in various dimensions such
as 1040 × 664, 1224 × 1000, and 1848 × 1632 pixels.
Fig. 2 shows a sample image obtained from the dataset of
Kermany et al. [2].
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FIGURE 2. Sample images from the Pediatric CXR dataset.

FIGURE 3. Sample images are taken from the MIMIC dataset.

C. MIMIC CXR
Currently, MIMIC–CXR–JPG [30] is the largest publicly
available CXR dataset worldwide. It contains more than
377,110 CXRs obtained via 227,827 studies. It contains
the data of 14 chest diseases sourced from the Beth
Israel DeaconessMedical Centre (Massachusetts, USA) from
2011 to 2016. The CXRs are publicly available in full resolu-
tion (typically 2544×3056). Sample images from this dataset
are presented in Fig. 3.

D. OPEN-I INDIANA DATASET
Demner-Fushman et al. [31] collected the Indiana (USA)
dataset from multiple hospitals associated with the Indi-
ana University School of Medicine. This dataset comprises
7, 470 chest radiographs (resolution: 512 × 512 pixels) and
3,955 associated reports. The images are annotated with dis-
ease view (frontal or lateral) and include pulmonary edema,
cardiac hypertrophy, pleural effusion, and opacity.

FIGURE 4. Sample images from the Indiana dataset.

This dataset is publicly available for users but contains only
40 pneumonia samples. Sample images from this dataset are
presented in Fig. 4.

E. MC DATASET
Collaborating with Montgomery County’s (MC) screening
program for tuberculosis (USA), Jaeger et al. [32] obtained
138 chest images, including 80 from healthy subjects and
58 from tuberculosis patients. Among these images, 63 were
obtained from males, 74 were obtained from females, and
one was obtained from a patient of unknown/other gender.
The resolution of the images varied from 4020 × 4892 to
4892 × 4020 pixels. This dataset is publicly available but
contains no pneumonia samples. Therefore, it cannot be used
as a pneumonia detection dataset. Sample images from the
MC dataset are presented in Fig. 5.

F. SHENZHEN DATASET
In addition to the MC database, Jaeger et al. [32] obtained
the Shenzhen dataset from Shenzhen’s hospital (Guangdong
Province, China), named the Guangdong Medical College.
This dataset, which was collected as part of the hospital’s
routine within 1 month, contains 662 chest radiographs,
including 326 healthy and 336 tuberculosis cases. Among
the 662 images, 442 were obtained from males, 213 were
obtained from females, and sevenwere obtained from patients
of unknown/other gender. The dataset is publicly avail-
able in PNG format, and the image size is approximately
3000× 3000 pixels. Some examples are displayed in Fig. 6.

G. KIT DATASET
Ryoo and Kim [33] collected 10,848 images from the Korea
Institute of Tuberculosis. This dataset includes 7,020 images
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FIGURE 5. Sample images from the MC dataset.

FIGURE 6. Sample images from the Shenzhen dataset.

from healthy subjects and 3,828 images from tuberculosis
cases.

H. JSRT DATASET [34]
The Japanese Society of Radiological Technology [34] col-
lected 247 chest images, among which 154 presented with
pulmonary nodules (100 nodules were malignant and 54 were
benign), and 93 were nodule-free. Among these 154 images,
119 were frommen (68 with nodules and 51 without nodules)
and 128 were from women (86 with nodules and 42 without
nodule). The average age of the patients with nodules was
60 years. All X-ray images are sized 2048 × 2048 pixels,
and the depth of the grayscale is 12 bits. Examples are shown
in Fig. 7.

IV. DATA PREPROCESSING
Themajority of the CXRs are obtained in Digital Imaging and
Communications in Medicine (DICOM) format with a large
amount of metadata. However, this format cannot be easily
understood by experts outside the radiology domain [30].

FIGURE 7. Sample images from the JSRT dataset.

In other domains, images are usually stored in formats such
as PNG and JPEG, which are processed using compression
algorithms to conserve the information in the image without
losing any desired information. First, the information of the
concerned patient is deidentified to satisfy the mandatory pri-
vacy standards. This step requires the removal of the patient’s
details, identifiers, and dates using a customized algorithm.
In this algorithm, image processing and an optical character
recognition system are combined to detect and remove text
from the X-ray image. After de-identification, the DICOM
images are converted into JPEG or bitmap format using pre-
viously described approaches [1], [30].

However, the dimensions of normal X-ray images
(3000 × 2000 pixels) are difficult to process due to the high
computational cost. Therefore, the X-ray images must be
dimensionally reduced to an optimal size while preserving
the vital information in them. For example, Wang et al. [1]
reduced the size of X-ray images to 1024 × 1024 pixels and
512× 512 pixels. The sizes of the MIMIC [30] and pediatric
CXR datasets were set to 2048×2048 and 1024×1024 pixels,
respectively.

A. DATA BALANCING, AUGMENTATION, AND
ENHANCEMENT USING TRADITIONAL TECHNIQUES
Themajority of the pneumonia image datasets suffer from the
class-imbalanced issue. The imbalance problem has been tra-
ditionally using the following techniques. The mean squared
error (MSE) is effective to evaluate classification models
on balanced datasets [35] but often fails when the data are
imbalanced because it equally captures the errors in the
minority and majority classes [35], [36]. The loss function is
biased toward the majority class because the error associated
with the majority class overwhelms that associated with the
minority class. Wang et al. [35] proposed the mean false
error (MFE) and its improved version, i.e., the mean squared
false error (MSFE), for training the neural networks on class-
imbalanced data [37]. MFE is inspired by the concepts of
false-positive rate and false-negative rate and can be used to
estimate the average error in each class. Further, the mean
false positive error (FPE) associated with the majority class
and the mean false-negative error (FNE) associated with the
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minority class is added, as shown in (1).

l = FPE + FNE . (1)

Although MFE performs better on imbalanced data than
the MSE [38], however, the MFE loss does not ensure that
FNE will also be reduced because the FPE error contributes
more to the sum (MFE) due to the presence of considerably
more samples in the majority class. Therefore, the MFE loss
function is insensitive to the error associated with the minor-
ity class and cannot guarantee higher performance when
using this class [35]. This problem is effectively solved by
the MSFE, in which the loss function (l’) is calculated as

l ′ = (FPE)2 + (FNE)2

=
1
2
((FPE + FNE)2 + (FPE − FNE)2 (2)

TominimizeMSFE, the errors associated with the majority
and minority classes are simultaneously minimized, result-
ing in improved unbiased classification accuracy [39], [40].
A better classification performance can be obtained based
on the MSFE when compared with that obtained based
on the MSE [41]; however, the improvement is only
minor [35], [40]. Data sampling can also help in data bal-
ancing problems. Samples can be randomly duplicated from
the minority class and randomly removed from the major-
ity class. However, as mentioned above, random duplication
and undersampling result in overfitting (owing to duplicate
samples) and loss of important information, respectively.
Undersampling and oversampling methodologies for solving
data-unbalanced problems have been substantially developed
since the late 1990s [42]–[48]. Numerous researchers have
suggested and employed different sampling techniques.

Several reviews have focused on the effectiveness and
usability of these methodologies [43], [44]. Random sam-
pling, as proposed by some researchers, has several shortcom-
ings. First, it can eliminate important relevant samples from
the data, risking the overfitting problem. Kubat [45] selected
samples from the original population via one-sided selection,
forming an undersampled dataset. The Tomek links algo-
rithm [48] and the condensed nearest neighbor method [42]
were employed to identify the bad samples from the data. The
latter algorithm filters out the noisy and bad examples from
the majority class that needs to be undersampled.

Laurikkala [46] suggested the neighborhood cleaning rule
for filtering excess examples from the majority class data.
The authors calculated three nearest neighbors for every
example (Di) from the training set. If Di fits within the com-
mon class but has been misclassified by the chosen nearest
neighbors, it is detached from the dataset. If Di is located
within the less common class and has been misclassified
by the chosen nearest neighbors, it should also be detached
from the dataset. This approach can hit a computational
bottleneck when processing large and highly imbalanced
datasets.

The synthetic minority oversampling technique
(SMOTE) [47] creates simulated data based on the

similarities between pairs of the existing minority samples.
New instances in the minority class are created by obtaining
samples from the target class and combining their features
with the features of their neighbors. The classification perfor-
mance of the minority class can be improved using the newly
synthesized instances by balancing its data with those of the
majority class [49]. However, SMOTE has limited generaliz-
ability and fails when data cannot be linearly separated [50].
Further, it cannot handle high-dimensional data [50]–[52].
Therefore,Wang [53] incorporated SMOTE into a locally lin-
ear embedding algorithm (LLE) that maps high-dimensional
data into a low-dimensional space, where data are more sepa-
rable. The LLE–SMOTE algorithm reverse-maps the instance
synthesized in the new feature space to its original input
space [53], [54]. The authors collected three datasets of CXR
images and verified the pulmonary detection performances
of their method using multiple classifiers (k-neural network,
SVM, and naïve Bayes). The minority-to-majority class ratio
was approximately 1:25. The classification accuracy of the
LLE–SMOTE algorithm was greater than that of the conven-
tional SMOTE by 2–4% [53]. However, the LLE–SMOTE
algorithm cannot be generalized to new data because it is
based on the LLE algorithm [55].

Krawczyk et al. [56] presented several data sampling tech-
niques for class-imbalanced problems (SMOTEBoost [57],
OverBagging [58], RAMO [59], ADASYN [60], and con-
ventional SMOTE [47]) and tested them on a dataset of
340 images for breast cancer detection. The majority class
contained 144 images of intermediate malignancy, whereas
the minority class contained 26 images of high malignancy
(giving an approximate imbalance ratio of 6:1). As the base
classifier, they employed an SVMwith a Gaussian kernel and
a minimal optimization training procedure. SMOTEBoost
achieved the highest sensitivity (88.46%) and specificity
(exact negative rate= 88.8%) among the tested oversampling
methods. The data sampling techniques proposed in a previ-
ous study [56] are given below.

The adaptive synthetic sampling approach for imbalanced
learning (ADASYN) algorithm [60] uses the weighted dis-
tributions of different instances from the minority class
based on the difficulty level. Here, more synthetic instances
are generated for a minority class that is harder to learn
when compared with the instances that are easy to learn.
It improves learning concerning the data distribution by
reducing the bias caused by class imbalance and shifts
the classification boundary toward difficult instances [61].
Because ADASYN is adaptive, its precision can be
affected [62].

Ranked minority oversampling (RAMO) [59] is an exten-
sion of ADASYN that ranks the samples from the minority
class during each iteration according to a sampling proba-
bility distribution. Unlike ADASYN, in which the number
of synthetic instances must be specified, RAMO determines
the probability of generating synthetic instances for each
minority example [56]. However, RAMOboost is sensitive to
noise [62].
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Instead of randomly sampling the whole dataset, OverBag-
ging [58] separately and randomly oversamples the minority
class in each bagging iteration. The main advantage asso-
ciated with this method is that it will increase the minority
samples and the majority of samples can be used as a part
of each bootstrap iteration. However, the complexity of the
algorithm increases with the increasing number of samples
during the training process.

The SMOTEBoost algorithm [57] is the combination of
the SMOTE and boosting procedure. Here, the prediction
accuracy of the minority class improves when using SMOTE;
further, boosting improves the accuracy by focusing on the
difficult examples in both the minority and majority classes.
Although SMOTEBoost outperforms SMOTE, it is difficult
to optimize and the boosting technique is sensitive to noise.

B. DATA BALANCING USING GENERATIVE
ADVERSARIAL NETWORKS (GANS)
Traditional oversampling techniques are usually employed
after the feature extraction step in training data [63]. However,
as DL algorithms utilize end-to-end feature extraction and
classification, incorporating oversampling techniques with
DL models would require costly parameter tuning [63], [64].
Furthermore, these techniques can work for low dimen-
sion tabular data but not for high-dimensional image data
[65], [66]. Therefore, GAN is a suitable alternative when
applied to image datasets. A GAN generates new samples
based on the learned input (training) data distribution p.
GANs comprise two multilayer perceptrons: a discriminator
(D) and a generator (G). The generator creates samples from
the simple distribution p(g) such that p(data) = p(g). During
the training process, G maximizes the error-generating prob-
ability of D and creates fake samples following the input data
distribution. After several training steps, the goal p(data) =
p(g) is achieved and D cannot discriminate between the real
samples and samples from G. Thus, synthetic samples can be
generated using GANs.

GANs have attracted attention because of their high per-
formance; however, they are unstable during training and
often produce nonsensical outputs from G. To overcome
these problems, researchers have recently developed modi-
fied GANs such as DCGAN [18], styleGAN [19], and Cycle
GAN [20]. DCGAN is more stable during training than the
traditional GAN, and both its generator and discriminators
are deep CNNs [67]. The GAN-based network StyleGAN can
generate high-resolution images (e.g. 1024× 1024 pixels) in
which the generator network is modified via stacking in fully
connected layers. Although StyleGANs can generate high-
dimensional realistic images [68], the images are spoiled by
artifacts such as water splotches and phase artifacts [69], [70].
CycleGAN [20] is used to translate an unpaired image from
a source domain to a target domain using a technique such
as style transfer, season transformation, and object transfigu-
ration. CycleGAN uses the cycle- consistency loss to return
the translated image to the original image [71]. In this type
of network, only one style can be transferred per network;

moreover, the algorithm with the cycle-consistent loss func-
tion becomes complicated with the increasing number of
transferred styles [72].

Wei et al. [73] proposed a structure-correcting adversarial
network (SCAN) for organ segmentation (left lung, right
lung, and heart) from CXRs. SCAN is suitable for small
training datasets because of its critical network that can dif-
ferentiate between the ground truth annotations and the mask
synthesized by the segmentation network [73]. The critic net-
work and segmentation network can be trained end-to-end to
achieve realistic segmentation outcomes [73], [74]. The algo-
rithm was evaluated using the publicly available JSRT [34]
and Montgomery [32] datasets. The authors of a previous
study [73] trained a fully convolutional network (FCN) on
a small dataset of grayscale CXR images. The segmentation
network could be optimized using FCN, whereas SCAN
differentiated the segmentation network predictions from the
ground truth annotations. Data augmentation was not applied
because it did not improve the results. The algorithm was
tested by the intersection-over-union (IoU) and dice coeffi-
cient metrics. In the JSRT evaluation, the adversarial training
improved the performance from 92.9% in FCN to 94.7% in
the proposed algorithm.

Adar et al. [75] isolated the region of interest (ROI) in
a synthetic liver lesion using a GAN architecture and clas-
sified its features using CNN. They used a limited dataset
of 182 CT images of liver lesions (53 cysts, 64 metas-
tases, and 65 hemangiomas). The sensitivity and specificity
were improved from 78.6% and 88.4%, in classic data aug-
mentation to 85.7% and 92.4%, respectively, in the GAN-
generated synthetic data augmentation. However, the ROI
segmented in their paper was excised only from a 2D CT
image. Gupta et al. [76] proposed a GAN for bone-lesion
detection. To reduce the computational resources required,
they extracted a lesion patch from the X-ray rather than
from the full image and thereby obtained many patches. For
training, the lesions were annotated manually under expert
advice. A non-lesion patch was translated into a lesion patch.

Salehinejad et al. [74] proposed DCGAN for generat-
ing artificial CXR images from real X-ray images. In the
present study, the dataset was obtained from the Radiol-
ogy Information System, which stores the data of four
diseases, and the classification was performed by using
AlexNet [16]. The accuracy improved from 88.4% [75] to
92.1%, but the generated images had a relatively low res-
olution. Chuquicusma et al. [77] artificially generated CT
images of lung nodules by using DCGAN and checked their
quality in a visual Turing test conducted by two radiologists.
The DCGAN was judged to have produced highly realistic
samples when the radiologists could not distinguish the orig-
inal images from the DCGAN-generated samples.

Chuquicusma et al. [77] extracted 1145 lung nodules
(635 benign and 510 malignant) from the Lung Image
Database Consortium image collection. They generated lung
nodules (benign and malignant) using DCGAN and com-
pared the qualities of the generated and original nodules.
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As a visual Turing test, they presented the generated and
real images to radiologists in a radiology room to evaluate
their perception and classify between real and generated lung
nodules (malignant, benign, and both). The experienced radi-
ologists, one with 13 years of experience (Radiologist 1) and
the other with four years of experience (Radiologist 2), were
not shown the sample before the experiments and could not
observe each other’s evaluation. Both the radiologists were
presented with 36 high-quality samples on a 6 × 6 squared
grid. Radiologist 1 accurately assessed 67% and 58% of the
fake and real generated nodules, respectively. Meanwhile,
Radiologist 2 accurately evaluated 100% and 92% of the
fake and real generated nodules, respectively. The interob-
server agreements of the benign and malignant real cases
were 44.91% and 58.56%, respectively. The experimental
results revealed that realistic samples can be generated using
DCGAN. However, some samples contained signs of both
benign andmalignant nodules. These ambiguous, low-quality
instances should be improved.

Baur et al. [78] proposed the deeply discriminated GAN
(DDGAN) algorithm, which can be trained end-to-end and
has multiple discriminators attached to different levels of the
generator. Realistic high-resolution samples of skin lesions
can be obtained from a set of 2,000 training samples using
the modified Laplacian pyramid GAN (LAPGAN) algo-
rithm. This algorithm was evaluated on the 2017 Inter-
national Skin Imaging Collaboration (ISIC) [79] dataset,
containing 2000 samples (374 melanomas, 1372 benign
lesions, and 254 seborrheic keratosis samples). The perfor-
mance of LAPGAN was compared with those of DCGAN
and DDGAN. LAPGAN slightly outperformed DDGAN
because it involved multiple noise sources, which are benefi-
cial for sample diversity and realism. However, the proposed
LAPGAN algorithm proved to be challenging to train, and its
hyperparameters were difficult to adjust. Meanwhile, when
trained on 374 images, DCGAN failed but DDGAN could be
trained easily with fast convergence and no degradation from
severe high-frequency artifacts; accordingly, it realistically
generated high-quality images of 256× 256 pixels.

Malygina et al. [80] attempted to solve the unbalanced data
problem using CycleGAN for sample creation and DenseNet
for classification. The authors used the binary classification
of pneumonia versus normal samples on the Chest X-rays14
dataset [2]. To balance the dataset, they generated new sam-
ples using CycleGAN and achieved an area under the curve
value of 0.9939. However, no other performancemetrics were
evaluated, and no comparisons with related works or non-
standard data divisions were reported. Unlike GANs, which
learn mappings only from random noise vectors, conditional
GANs (cGANs) learn mappings from both observed images
and random noise vectors. A cGAN conditions the input and
generates a corresponding output image, synthesizing a novel
sample with specific attributes. However, it is computation-
ally expensive and restricted to attribute labeling.

Mahapatra et al. [81] generated CXR images from the
Segmentation in Chest Radiographs (SCR) database, which

contained 247 lung images (153 nodules and 93 healthy),
using a cGAN and an active learning technique. They adopted
a three-step methodology: sample generation using a condi-
tional GAN, classification/segmentation of a lung nodule, and
sample informativeness calculation. They labeled the dataset
of 16 samples and manually segmented the masks in each
class, thereby generating up to 200 synthetic images from
each test image using cGAN. After their informativeness was
verified using a Bayesian neural network (BNN), the gen-
erated images were added to the training data to fine-tune
the previously trained classifier. These steps were repeated
until the performance of the classifier did not change. The
authors varied the number of samples in the initial training
set and showed that the method achieved almost the same
results as fully supervised learning (training and testing on
the whole dataset) even when training and testing on 35% of
the full dataset. After their informativeness was verified using
a BNN, the generated images were added to the training data
to fine-tune the classifier. The test set includes 400 images
(200 normal and 200 nodular). When training on 35% of the
labeled data, the accuracy was 91.9% versus 92.4% in fully
supervised learning.

V. DATA MINING TECHNIQUES
A. TRADITIONAL MACHINE LEARNING
Oliveria et al. [21] proposed PneumoCAD, which is an
ML-based network that can be used to identify pneumonia
and normal pediatric CRX images. The authors obtained a
subset of 40 images (20 pneumonia and 20 non-pneumonia
images) from a knowledge database for training [21]. The
system was evaluated using another 20 random test images
extracted from the same database. The texture features were
extracted using eight wavelet transform coefficients: Haar,
three members of the Daubechies family (Db 2, Db 4,
and Db 8), two members of the Coiflets family (Coif 2
and Coif 4), and two members of the biorthogonal fam-
ily (Bior 2.2 and Bior 4.4). The features of pneumonia and
normal images were differentiated by the weighted nearest
neighbor method based on the Euclidean distance. In the eval-
uation experiments, the Haar wavelet transforms provided the
highest accuracy of feature extraction from X-rays (97%) but
amediocre specificity (80%). Even though the PneumonCAD
prototype can classify pneumonia images, its specificity is not
promising. Furthermore, this method lacks a preprocessing
technique that can be used to eliminate noise from the input
images. A similar ML-based pneumonia detection system
called PneumoCAD was developed by Macedo et al. [60].
PneumoCAD accepts CXRs as the input and extracts their
useful features using the Haar wavelet transform. The pneu-
monia images are then classified using a k-nearest neighbor
(KNN) classifier. The model was trained and evaluated on a
dataset of 156 verified child chest radiographs (78 pneumonia
and 78 normal). The average accuracy of the KNN (k = 9)
was 91.75%. Although its accuracy should be improved, this
study will assist the future development of CAD systems.
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Sousa et al. [82] extended PneumoCAD [21] by comparing
the performances of variousML algorithms concerning child-
hood pneumonia detection from CXRs. The authors used
a self-created dataset known as the PneumoCAD dataset,
which contained 156 grayscale chest radiographs. These
images were first annotated by expert radiologists following
the WHO guidelines. The authors extracted several texture-
based features for the classification task: the coefficient
of variation, energy, contrast, average energy, correlation,
entropy, difference variance, average deviation, difference
entropy, inverse, difference moment, sum average, residual
mean, sum entropy, variance, sum variance, standard devia-
tion, and suavity [83]–[86]. The sequential forward elimina-
tion algorithm was used to determine the useful features. For
instance, the best features in the case of SVM were the corre-
lation, average deviation, difference variance, and standard
deviation. Finally, the classification was performed using
three classifiers, i.e., SVM, KNN, and naïve Bayes, with
classification accuracies of 77%, 70%, and 68%, respectively.
Sousa et al. [87] further extended PneumoCAD by proposing
five ML classifiers such as KNN, naïve Bayes, multilayer
perceptron, decision tree, and SVM and three-dimensionality
reduction techniques (sequential forward selection, principal
component analysis (PCA), and kernel PCA (KPCA). The
authors used the dataset and features given in a previous
study [82] and performed a 10-fold cross-validation test on
each classifier. For each combination, the authors evaluated
the pneumonia detection performance of their algorithm on
CXRs. The highest accuracy (96%) was achieved when using
the 13-dimensional features produced by KPCA and classi-
fied by naïve Bayes.

Depeursinge et al. [88] compared the performances of
five ML classifiers (naïve Bayes, KNN, J48 decision trees,
multilayer perceptrons, and SVM) for tissue segmentation
from high-resolution CT images. Their self-collected dataset
contained 843 radiographs covering six pathologies (emphy-
sema, fibrosis, micronodules, ground glass, macro-nodules,
and healthy) and their annotated regions of interest (ROIs).
From the ROIs, the authors extracted gray-level histograms,
air components, and quincunx-wavelet frame coefficients
with B-spline wavelets. They extracted 39 texture-based
attributes and optimized the parameters of each classifier
by grid searching. The performance was evaluated based on
McNemar’s statistical tests and the accuracy measure. The
obtained features were then classified by various ML classi-
fiers (NB, KNN, SVM, MLP, and J48). The SVM achieved
the best values of each metric, with a mean testing accuracy
of 88.3% and an accuracy of 96.4% for binary classification
(pathology vs. normal). However, the detection accuracy of
macro-nodules was only 42.5%.

Noor et al. [89] proposed a wavelet transform-based
method that can be used to extract features from the
CXR images obtained from the Institute of Respiratory
Medicine, Malaysia. They applied the modified principal
component (ModPC) method for dimensional reduction
and distinguishing normal images from pneumonia images.

Although the proposed method can successfully classify nor-
mal and pneumonia samples, the wavelet transform cannot
preserve the phase information. Ambita et al. [90] proposed
locally adaptive regression kernel descriptors for feature
extraction, PCA for dimensional reduction, and an SVM
classifier for pneumonia detection fromCXR images [2]. The
quality of the input images was improved using image prepro-
cessing techniques such as Gaussian filters, power law trans-
formation, and Otsu thresholding. The precision and recall
were 0.95 and 0.96, respectively, on a sample size of 1000 and
0.98 (both measures) on a sample size of 400. The accuracy
decreased with the increasing sample size; furthermore, the
authors did not follow the standard data division [2].

Khatri et al. [91] proposed EarthMovers Distance (EMD)
for pneumonia detection from CXR images. The authors
preprocessed the images by cropping the lung regions, nor-
malized the intensity, and calculated the EMD difference
to distinguish the pneumonia samples from non-pneumonia
samples. The classification accuracy was 83.3%, but EMD
is sensitive to rotation, scaling, and intensity variations, and
cannot feasibly handle large amounts of data.

Varela-Santos and Patricia Melin [92] proposed a
ML-based approach for pneumonia classification from Chest
X-rays [1]. The authors first used image pre-processing by
extracting the lung regions (by resizing the image) followed
by the image enhancement technique using histogram equal-
ization. For feature extraction and classification, the authors
employed Gray Co-Occurrence Matrix (GLCM) and ANN,
respectively. Experimental results show that the mean accu-
racy of 92% using the neural network with the Gradient
Descent, Adaptive Learning, and Momentum Algorithm.
However, it uses only binary classification on the chest X-rays
14 dataset, further, the accuracy still needs improvement.
Similar work is done by Pavithra et.al. [93], who employed
power law transformation and median filter for image pre-
processing followed by Gabor filter for feature extraction.
Finally, ANN is used for the classification of Chest X-rays
and which achieved an accuracy of 94.82%. However, this
lack of details in the work presented to further evaluate their
performance.

Yao et al. [94] proposed a ML-based automated sys-
tem based on which five diseases, including pneumonia,
can be identified. They collocated 40 CTs and employed
SVM classifiers with texture-analysis ability. The authors
initially segmented the lung regions using region growing and
dynamic programming. Subsequently, they divided them into
16 × 16 texture blocks and extracted a feature vector con-
taining 25 texture features, including mean, variance, energy,
and correlation. The co-occurrence matrix was also obtained.
Finally, the CT images were classified using an SVM. The
authors achieved an accuracy of 80% during the pneumonia
detection task. However, the proposed system struggled to
distinguish bacterial pneumonia from H1N1 influenza.

Self et al. [95] compared the diagnostic performance of
CXRs with CT scans for lung opacities (infiltrate, consol-
idation, pneumonia, or bronchopneumonia) in emergency
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department patients. The authors used a cohort of 4237 sub-
jects who had chest CT scans and 3423 similar subjects that
underwent CXRs. CT scans and CXRs interpreted by radi-
ologists show that sensitivity and positive predictive rate of
CXR in the detection of pulmonary opacity was only 43.5%
and 26.9%, respectively. Thus, the authors show that CXR
could lead to significant misdiagnosis of pneumonia.

Naydenova et al. [96] employed ML methods in a novel
diagnostic process. These methods consider numerous clin-
ical measurements that can be performed using cheap and
easily operable devices as input. To evaluate their findings,
the authors collected a dataset of 1093 Gambian children
aged 2–59 months, including 777 pneumonia samples and
316 healthy samples. They applied preprocessing techniques
to data with missing values and extracted 47 clinical char-
acteristic features. The useful features were extracted using
nine feature selection techniques (correlation coefficients,
minimum redundancy, Gram–Schmidt, relief, orthogonaliza-
tion, selection operator, least angle shrinkage, elastic net, and
sparse linear discriminant analysis). The authors divided the
data into ten equals sections. Each feature selection technique
was iterated 50 times in each section to achieve unbiased
results. The ten most relevant features were then obtained by
majority voting. Finally, the extracted features were learned
by the SVM, logistic regression, and RF ML procedures.
The authors also employed a predictive algorithm with four
predictive attributes (temperature, heart rate, oxygen satura-
tion, and respiratory rate). The authors reported a sensitivity
of 96.6%, a specificity of 96.4%, and an AUC of 97.8%.
However, these individual features must be combined to gen-
eralize the pneumonia detection system beyond the control
cases (which are inapplicable to clinical scenarios). Another
study done byAntin et al. [97] proposed a supervised learning
technique for pneumonia detection in CXR images and used
the NIH database [1] of 112120 radiographs collected from
30805 patients. The images are pre-annotated with ‘‘one’’,
‘‘more than one’’ or ‘‘no’’ diseases by expert radiologists. The
authors selected 500 random samples and employed t-SNE
(TDistributed Stochastic Neighbor Embedding) [98] for visu-
alization. The k-means clusteringwas performed to label each
point from t-SNE. Further, the authors used classification
on Chest X-ray performance by using logistic regression
classifier, DenseNet but the accuracy of the proposed method
was poor i.e. AUC = 0.60.

B. DEEP LEARNING
A CNN comprises three main parts: the input images, an in-
depth feature extractor, and a classifier. Through its multiple
layers, the feature extractor automatically learns the essen-
tial features from the raw input (or preprocessed) images.
The learned features are passed to a classifier such as Soft-
Max, where they are classified based on the learned features.
A CNN contains several layers, i.e., a convolutional layer,
a pooling layer, an activation layer, a dropout layer, and a
classifier (e.g., SoftMax) [99]. A CNN can be built from
scratch [5] by employing an existing pre-trained network

without retraining or by fine-tuning a pre-trained network on
a target dataset.

1) TRANSFER LEARNING (OF PRETRAINED NETWORKS)
Wang et al. [1] collected the largest CXR dataset, which
contained 108, 948 images of eight (currently 14) diseases
obtained from 32, 717 patients. The authors classified multi-
ple pathologies in the CXRs using various pre-trained mod-
els (AlexNet [16], GoogleNet, VGG16, and ResNet). The
ResNet model with AUC = 0.63 provided higher accuracy
when compared with those provided by the remaining pre-
trained networks. Although the accuracy of their proposed
system is not promising, the authors provided a baseline
dataset for the research community. To improve the classi-
fication performance on this dataset, Yao et al. [8] proposed
a two-stage end-to-end model with a DCNN encoder and an
RNN (long short-term memory) decoder that can be used to
predict the labels of the pathologies in the Chest X-ray14 data.
The DCNN was a modified DenseNet trained from scratch
on the Chest X-ray14 dataset. The classification performance
of the proposed method improved from that of a previous
study [1], achieving an AUC of 0.71. Rajpurkar et al. [26]
proposed Chexnet, which is a pre-trained 121-layer DenseNet
trained on the Chest X-ray14 dataset, to further improve the
pneumonia detection performance of the previous methods
[1], [8]. The proposed algorithm improved the accuracy to
76% and enhanced the F1 metric. For pneumonia detection,
the dataset was divided into training (98, 637 images), val-
idation (6351 images), and testing (420 images) sets. The
dataset was split into training, validation, and test sets in
proportions of 70%, 10%, and 20%, respectively, to ensure
that the algorithm was applied to all 14 diseases in the Chest
X-ray14 dataset. The authors compared the performance of
the proposed Chexnet model with the assessments of the
experienced radiologists. Chexnet outperformed the manual
assessments, with an F1 score of 0.435 (versus 0.387 in the
manual assessments). The authors also visualized the lung
nodules in CXRs using a heat map. However, the AUC of
pneumonia detection was only 0.76, indicating the need for
improvement.

Kermany et al. [2] proposed a transfer learning algorithm
for retinal diagnosis via optical coherence tomography
(OCT). Their method, which was based on the transfer learn-
ing of retinal OCT images, achieved state-of-the-art perfor-
mance. The same transfer learning system was applied to
a pediatric CXR dataset for pneumonia classification [2].
When comparing normal and pneumonia images, the accu-
racy, specificity, and sensitivity of this system were 92.8%,
0.90%, and 0.93%, respectively. Meanwhile, the accuracy,
specificity, and sensitivity associated with the detection of
bacterial versus viral pneumonia were 90.7%, 0.88, and 0.90,
respectively. Although the authors created a useful baseline
by creating the pediatric CXR dataset and employed the
transfer learning model, the accuracy of the proposed system
was not promising. In another work done by Ayan et al. [100]
compared the performances of two pre-trained networks
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(VGG16 and Xception) on the same dataset [2]. For VGG-16
network, the accuracy, sensitivity, and specificity of distin-
guishing normal from pneumonia images were 0.87, 0.82,
and 0.91 while 0.82, 0.85, and 0.76, for Xception. The exper-
imental results show that the VGG16 network is better in
detecting normal cases while the Xception network is better
in detecting pneumonia cases. Thakur et al. [101] proposed a
pre-trained VGG16 network for pneumonia detection on the
CXRs dataset [2]. Experimental results show an accuracy of
90.54%, precision, recall, and F-1 score of 87.9%, 98.7%,
and 92.9%, respectively. However, the performance of the
proposed models [100], [101] was not promising.

Li et al. [102] proposed the attention-guided squeeze-and-
excitation network (SENet) architecture [103] based on the
transfer learning-based model for pneumonia detection. This
method erases the pneumonia region in the CXR and replaces
it with non-pneumonia pixels to increase the attention of the
CNN. The lung regions are segmented by U-Net and classi-
fied using the proposed SENet. The experimental results were
obtained at different threshold levels (T). When T (IoU) =
0.3, the precision and recall were 0.611 and 0.835, respec-
tively, and the accuracy (model score) and false-positive
rate were 0.262 and 0.194, respectively. Jain et al. [104]
proposed several DL-based models for pneumonia detec-
tion from CXRs: a customized CNN, another customized
CNN, VGG16, VGG19, ResNet50, and Inception-v3, with
validation accuracies of 85.26%, 92.31%, 87.28%, 88.46%,
77.56%, and 70.99%, respectively. The experimental results
show that the customized CNN outperformed the pre-trained
model, with an accuracy of 92.3% and a recall of 98%.
However, the precision of both the studies [102], [104] was
low. Similar work done by Ureta et al. proposed the com-
bination of three different pre-trained networks (Resnet-18,
VGG16, and DenseNet) for pneumonia classification on
chest X-rays dataset [2]. The fully connected layer was
replaced with a linear classifier with a single output [ureta]
thus obtaining an accuracy of 96.6% with specificity and
sensitivity of 97.8% and 96% respectively. The authors per-
formed experiments on Chest X-rays 14 dataset for binary
classification (pneumonia vs non-pneumonia) to evaluate the
performance on an external dataset. However, the accuracy
was only 51%.

Chhikara et al. [105] applied a preprocessing technique
followed by a pre-trained Inceptionv3 model for pneumonia
detection from pediatric CXRs [2]. Pre-processing involved
median filter for noise reduction, gamma correction: to dis-
play the image correctly, Contrast Limited Adaptive His-
togram Equalization (CLAHE) for image enhancement, and
JPEG compression to compress the image size without com-
promising the image quality. Experimental results performed
using the pre-trained incpetionV3 model show an accuracy of
90.01%, precision, recall, and F-1 score of 0.907, 0.957, and
0.932, respectively. Schwyzer [106] proposed a DL-based
ResNet-34 model to classify pulmonary infections in CXR
dose-equivalent CT. The experimental results show that the
specificities for standard dose and reduced dose were 93.8%

and 93.3%, respectively. However, the sensitivity was lower
for the reduced dose (71.0%) than that for the standard
dose (82.9%).

Togacar et al. [107] applied three DL methods (Alexnet,
VGG16, and VGG19) in a deep feature learning model that
extracts CXR images at the eighth fully connected layer. The
1000 features obtained from each DL model were reduced
to 100 by considering minimum redundancy and maximum
relevance. Finally, the authors combined the features obtained
from Alextnet, VGG16, and VGG19, obtaining a feature
vector size of 300, which achieved a classification accu-
racy of 99% when LDA classifier was used on a CXR
dataset [2]. Although promising results were obtained using
the proposed method, the authors did not apply the standard
data division presented previously [2]; instead, they balanced
only the normal images by data augmentation. Similarly,
Liang et al. [108] proposed 49 layers of the convolutional
layer residual structure that can overcome the overfitting
for pneumonia detection on pediatric CXR datasets [2]. The
network was pre-trained on Chest X-rays14 [1] instead of
ImageNet, which is a major advantage. The experimental
results show that the accuracy, precision, and recall of the
proposed method were 0.905, 0.891, and 0.967, respectively.

Zech et al. [109] proposed pre-trained Densnet-1212 and
ResNet-50 to evaluate the generalizability of DL to external
site data. Three datasets, i.e., Chest X-ray-14 (NIH), Mount
Sinai Hospital (MSH; 48,915 radiographs), and Indiana Uni-
versity Network for Patient Care (IU; 7,470 radiographs),
were used to evaluate the performance of the proposedmodel.
The authors used only frontal radiographs for experimenta-
tion and used 100% of IU data for the external test because
the data did not contain patient identifiers. NIH and MSH
contain patient identifiers; therefore, they were separated into
training (70%), validation (20%), and test (10%) sets. The
training was performed on three dataset combinations: MSH
only, NIH only, and combined MSH–NIH. The extensive
experiments conducted indicated that the accuracy, sensi-
tivity, specificity, and AUC were 0.732, 0.950, 0.706, and
0.931, respectively, when performing the internal test using
the MSH–NIH model. However, during the external test
(trained on MSH–NIH, and test on IU), the accuracy, sen-
sitivity, specificity, and AUC were 0.238, 0.974, 0.230, and
0.815, respectively. Thus, the experimental results revealed
that the model trained on an internal dataset could not provide
promising results when considering an external set.

Putha et al. [110] trained a DL system on the largest
available dataset, which contained 2.3 million CXR images
with different pathologies. The DL algorithm (ResNet) was
validated using 100, 000 of these images (CQ100k) and was
further evaluated using 2000 images (CQ2000) collected
from three hospitals in India. The pathologies were obtained
from the images and their associated reports using a natural
language programming (NLP) algorithm. 1930 X-ray images
were independently verified by experienced radiologists to
evaluate the correctness of the NLP algorithm. The accuracy
of pathology classification on the CQ2000 dataset ranged
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from 89.0% to 99.0%. The same results were obtained on the
CQ100k dataset, but the accuracy of detecting normal X-ray
images from this dataset reduced to 86.0%. This study did
not validate the detection of other pathologies, such as rib
fractures and pneumothorax, and did not localize the lung
legions. Furthermore, its accuracy must be improved. This
study is a useful baseline for conducting further research.

Yee et al. [111] employed pre-trained Inception V3 as
feature extractor and three other ML classifiers: KNN, SVM,
and neural network for pneumonia classification on CXR
dataset [2]. Experimental results were performed to show
that among the three classifiers, a maximum ACU of 93%
was achieved when SVM was used as a classifier, how-
ever, the sensitivity was only 83.3%. Asnaoui et al. [112]
proposed comparison of different pre-trained DL mod-
els: VGG16, VGG19, InceptionV3, Xception, DenseNet201,
MobileNet_v2, ResNet-50, Inception_Resnet_V2 and cus-
tomized CNN for pneumonia classification using chest
X-rays. Experimental results show that Inception_Resnet_v2,
mobileNet_v2 gave an accuracy of around 96% while the
other algorithms did not perform well with accuracy, not
over 85%.

2) DL AND NONIMAGE FEATURES
Baltruschat et al. [28] supplemented the CXR dataset with
nonimage features (patient age, gender, and acquisition
type). The authors applied the transferred learning tech-
nique (ResNet) with and without fine-tuning and a CNN
trained from scratch. The data were split in two ways. In the
first data split, patients with multiple follow-up records were
assigned to a single subset. This splitting enabled a vast
range of patient numbers, for example, 22420 images can
be split into 5817 patients (split 2) or 6245 patients (split 5).
The second dataset split was described byWang et al. [1]. The
former split improved the accuracy of classifying pneumonia
by transferred learning from 75.3% to 76.7% (for image
dimensions of 448× 448 pixels). The latter split reduced
the AUC result of detecting pneumonia with ResNet-38 to
0.71 but achieved superior results with respect to the five
remaining diseases in the CXR dataset.

Bar et al. [113] concatenated the Decaf [114] features
with the low-level features (the GIST and bag-of-words fea-
tures) and classified lung pathologies using a feature selec-
tion method. For feature selection, they selected the 5000
most significant features from among the 18, 920 features
obtained by concatenating the Decaf and low-level features.
The authors demonstrated the effectiveness of using the low-
level features with the concatenation of DL features for
pathology classification. They also proposed that selecting
only the intelligent and useful features from the whole feature
set would improve the classification. Although the effective-
ness of their method was clarified [113], the classification
accuracy should be improved.

Er et al. [115] performed a comparative study of different
neural networks in chest disease diagnosis. The dataset was
obtained from Diyarbakir Chest Diseases Hospital located in

the southeast of Turkey, which included the epicrisis reports
of patients with tuberculosis (50 samples), chronic obstruc-
tive pulmonary disease (71), pneumonia (60), asthma (44),
and lung cancer (32) as well as healthy samples (100). The
authors collected 357 samples and analyzed 38 nonimage
features, including complaints of coughing, weakness, chest
aches, and high body temperature. The experimental results
showed that the probabilistic neural network (PNN) [116]
achieved the highest average accuracy (92.16%) but low
accuracy for pneumonia detection (88.33%). The most suc-
cessful network in the pneumonia analysis (60 samples) was
the multilayer neural network with the Levenberg–Marquart
architecture [117] (one hidden layer), which achieved an
accuracy of 91.67%, but the average accuracy for all the
pathologies was 90.48%. Furthermore, no other metrics were
presented in their study.

3) CUSTOMIZED CNN
Stephan et al. [4] proposed a CNN with four convolution
layers, which were trained from scratch using the pediatric
CXR dataset proposed by Kermany et al. [2]. The data split
was performed differently from that in the study of [2] by
assigning 2134 images to the validation set and increas-
ing the training dataset via augmentation techniques. The
authors reported an accuracy of 93.7% by building a less
computationally complex DL model on the validation set;
however, this performance could not be consolidated using
other metrics. This lack of further verification and perfor-
mance in case of a nonstandard division of the dataset is
considered a significant drawback of their study. Raheel [5]
proposed an 18-layer customized DCNN and trained it on the
pediatric CXR dataset. They followed the dataset division of
the original authors [16]. The experimental result indicated
that the accuracy of the proposed system (94.3%)was1.6%
greater than that of Kermany et al. [2] and that the sensitivity
was 99%. However, the specificity was only 86%.

Verma et al. [118] proposed a customized CNN to classify
lung nodule in CXR images into three classes: pulmonary TB,
viral pneumonia, and bacterial pneumonia. The authors [118]
preprocessed the images via data augmentation to avoid over-
fitting. The experimental results indicated an overall accuracy
of 99.01%, but the experimental details were missing from
the study. Omar [119] similarly proposed a customized CNN
model for pneumonia detection from CXRs [2] and achieved
an overall accuracy of 87.65%. However, Omar’s study omit-
ted other performance metrics, including precision and recall.
Bhatt et al. [120] proposed a computationally cheap nine-
layer customized CNN for pneumonia classification from
CXRs [2]. After randomly dividing the data into training and
test sets, the authors achieved an accuracy of 96.18%, a sen-
sitivity of 98.16%, and a specificity of 91.29% [98]. These
authors did not follow the standard data division proposed
in a previous study [2]; in addition, the specificity is not
promising.

Wu et al. [121] proposed an adaptive median filter
CNN and RF (ACNN–RF) for pneumonia detection using
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CXRs [2]. Initially, they removed noise from the images via
median filtering. The features in the cleaned images were
extracted by a CNN and were classified by RF based on
GridSearchCV. The experimental results indicated that the
proposed method achieved an accuracy of 96.9% as well as
a precision and recall of 0.90 and 0.95, respectively. Further-
more, the testing time of the proposed system was 625.4 s,
whereas that of the CNN model was 921.2 s. However,
the proposed model exhibited low precision. In another study
conducted by Sarkar et al. [122] proposed a preprocessing
method followed by a DL model that achieved an accuracy
of 98.82% and AUC of 0.99726 on CXRs [2]. The authors
used bilateral filtering, the CLAHE algorithm for image
enhancement, and a modified DL model using the GAP layer
rather than a flattened layer. Although the authors considered
promising accuracy, the authors did not follow the standard
data division proposed in a previous study [2].

A CNN is perceived as a black box that outputs a per-
formance without relaying the understanding of the process.
Such a lack of transparency can adversely affect decision-
making. To improve this situation, Rajarman et al. [123] pro-
posed a visual explanation of the prediction and activation of
CNNs. Two models (VGG16 and a CNN built from scratch)
were evaluated, and their results were presented visually. The
lung boundaries were detected using an atlas-based detection
algorithm [84], and the classification was performed by a
DCNN. The VGG16 achieved a better learning and opti-
mization outcome when compared with that obtained using
the customized CNN. The VGG16 improved the accuracy
of distinguishing between pneumonia and normal images
from 92.8% in Kermany et al. [2] to 96.2%. Meanwhile, the
accuracy of distinguishing between viral and bacterial pneu-
monia improved from 90.7% to 93.6%. Although promising
results were achieved, the specificity of classifying viral and
bacterial pneumonia by the VGG16 network was only 85.9%.

Abiyev et al. [124] proposed customized CNN, compet-
itive neural networks (CpNNs) with unsupervised learning,
and backpropagation neural networks (BPNNs) with super-
vised learning for pathology detection from chest X-rays.
Multiple experiments performed show that CpNN converges
faster than CNN; however, if the accuracy is the primary
concern then the accuracy of the proposed CNN is higher
(92.4%) than CpNN (80.04%), BPNN, (89.57%) VGG16
(86%), VGG19 (92%), and CNNwith GIST (92%). However,
the accuracy still needs improvements, further, other perfor-
mance metrics such as sensitivity and specificity were not
given.

4) SEGMENTATION BY FCN AND RCNN
Gu et al. [125] proposed a two-step method that can classify
bacterial and viral pneumonia from chest radiographs. In the
first step, the lung regions were extracted from the X-ray
images using an FCN. In the second step, the lung regions
were classified into pediatric viral or bacterial pneumonia
using a DL network with handcrafted features. The authors
used the publicly available MC [32] and JSRT [34] datasets

for segmentation and the data from the Guangzhou Women
and Children’s Medical Center [2] for binary classification.
Feature extraction by transfer learning achieved higher accu-
racy (80.0% ± 2.02%) when compared with those achieved
by other feature extraction techniques. The performance was
further improved using an ensemble of features (gray-level
co-occurrence matrix, wavelets, a histogram of oriented gra-
dients, and DCNN features), although the improvement was
slight (AUC = 82.3% ± 0.14%). The authors presented that
segmentation and utilization of the handcrafted features will
increase the accuracy; however, the method must be further
improved because the sensitivity and specificity of using
ensemble features were 0.556 and 0.926, respectively.

Mask–RCNN [126] is a deep neural network designed for
tasks such as segmentation. Jaiswal et al. [127] proposed
mask–RCNNwith ResNet101 (and ResNet50) as a backbone
detector for pneumonia detection and trained it on the dataset
of the Radiological Society of North America [128], which
contained almost 30, 000 annotated X-ray images. Mask–
RCNN outperformed several object detection techniques,
such as YOLO3 and U-Net when evaluated on the test set
(the Society of Thoracic Radiology dataset). The proposed
model predicted the bounding box of each CXR, its label,
and its masks with the respective class. The performance
of the proposed model can be further improved by improv-
ing the architecture of the proposed model; however, this
would necessitate the adjustment of the hyperparameters.
Wang et al. [129] presented cooperative CNN (co-CNN) for
pneumonia detection and localization on CXRs [128]. The
authors used U-Net for lung segmentation, co-CNN for pneu-
monia classification, and localization. Various experiments
performed show a prediction score of 0.2409, sensitivity
and specificity of 0.89 and 0.78, respectively which needs
improvement.

The method of Li Zhe et al. [130] identifies and localizes
disease lesions in CXRs [1] under a limited amount of super-
vision. The proposed method accurately visualizes the loca-
tion of the disease in the x-ray image, improving the disease
interpretation. First, the image input is processed by Preact–
Resnet (Resnet-v2) [91], which extracts the feature tensors
of size h = h/32,w = w/32 and c = 2048. Here, h,w, and
c are the height, width, and number of channels of the input
image, respectively. The image is then divided into a P × P
grid for predicting K possible disease types. As the recog-
nition network, they applied FCN [92]. The image model
was Resnet-v2-50, and the patch-slice size was selected from
{12, 16, 20}. The CXR dataset contains 984 labeled bound-
ing boxes for 880 images; the reaming 111, 240 images are
unannotated. The first evaluation was performed by five-fold
cross-validation on 70% of the unannotated images and 70%
of the annotated images. The second evaluation checked the
effectiveness of the supervision provided by the bounding
boxes. To this end, the proportion of unannotated bounding
boxes was reduced from 80% to 0%. The authors showed that
in some cases, the result of 40% (44496) unannotated images
with 80% (704) annotated images outperformed the result
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of 80% (88; 892) unannotated images. The authors suc-
cessfully show that the proposed model significantly
outperform [1] in identification and localization of multiple
pathologies with limited number of annotated data, however,
in terms of pneumonia the performance did not improve
from [1] i.e. the AUCwas 0.60 in the proposed work however,
it was 0.63 in [1].

5) ENSEMBLE METHODS
Chouhan et al. [131] proposed an ensemble of different state-
of-the-art DL algorithms (Alexnet, Inception v3, ResNet,
GoogleNet, and DenseNet-121) for pneumonia detection
from pediatric CXRs. Multiple experiments confirmed that
the ensemble method outperformed the remaining meth-
ods [2], achieving an accuracy of 96.4% and a sensitivity of
99.0% (versus an average accuracy and sensitivity of 92.8%
and 93.2%, respectively, in previous methods). The ensemble
method can be applied to improve model accuracy. However,
the ensemble method is computationally expensive because it
required multiple architectures to be combined. Further, the
precision (93.2%) of the proposed model was not appreciably
different from those of the previousmethods, which is another
disadvantage of the study [131].

Vijendran et al. [132] proposed a multilayered method
called online sequential extreme learningmachines (OSELM)
for pneumonia detection from the Chest X-ray and MNIST
datasets. The multilayered OSELM achieved an accuracy
of 91.7% on the Chest X-rays dataset, which exceeded those
obtained using the SVM (86.5%) and conventional extreme
learning machines (89.8%). Although the traditional CNN
outperformedOSLEM in terms of accuracy (92%), the testing
time was 2.434 s in CNN but only 1.2 s in the multilayered
OSELM. Thus, the accuracy of multilayered OSELM was
similar to that of traditional CNN but within a much shorter
runtime. However, the authors did not provide any additional
performance metrics to evaluate the performance of the
compared methods.

Islam et al. [133] proposed ensemble DCCN models
(AlexNet, VGG16, VGG19, ResNet-50, ResNet-101, and
ResNet-152) that can be used to accurately detect abnormali-
ties (cardiomegaly and tuberculosis) in CXRs. In the Indiana,
JSRT, and Shenzhen datasets, the accuracies of cardiomegaly
and tuberculosis detection using the ensemble DCCNs were
93.0% and 90%, respectively, which was 17% greater than
that associated with the rule-based methods. Although the
proposed ensemble model achieved promising accuracy, its
sensitivity for tuberculosis detection was only 88% and its
specificity for cardiomegaly detection was 92%. These per-
formances should be improved.

Sirazitdinov et al. [134] proposed an ensemble of
RatinaNet and mask–R-CNN for pneumonia detection and
localization in the dataset of 26,684 images from Kaggle
Pneumonia [128]. The precision, recall, and F1 score of the
ensemble were 0.75, 0.79, and 0.77, respectively. The exper-
imental results reveal that the performance of the proposed
ensemble model improved when compared with those of

the state-of-the-art models (the F1 score for ResNet-50 was
0.68 and that for DenseNet-121 was 0.731). However, further,
improvement is required to minimize false positives and false
negatives.

Ko et al. [135] proposed a weighted ensemble of object
detection models (mask–R-CNN and RetinaNet) for feature
extraction from CXRs. The weighted ensemble of two mask
R-CNNs and three RetinaNet models delivered the best per-
formance, with a mean average precision of 0.21746 (versus
0.19984 associated with the individual model). However,
no comparisons with the existing works were reported.

Hashmi et al. [136] proposed a weighted classifier com-
prising different DL models (ResNet18, Xception, Incep-
tionV3, DenseNet121, andMobileNetV3), which can be used
to identify pneumonia from CXRs [2]. The experimental
results confirmed a remarkable accuracy of 98.43% and pre-
cision and recall values of 98.26% and 99.0%, respectively.
Although this method outperformed all the existing meth-
ods, the testing images used slightly differed from those of
Chouhan et al. [131]. Specifically, Hashmi et al. [115] used
700 test images (400 pneumonia and 300 normal), whereas
Chouhan et al. [131] used 624 test images (390 pneumonia
and 324 normal). The data division of Chouhan et al. [131]
was similar to that of the baseline study [2]. Yan et al.
proposed multi-scale CNN (MSCNN) for pneumonia classi-
fication on chest CT scans. The proposed MSCNN contains
an ensemble of a multiscale spatial pyramid (MSSP) for
image decomposition and then fed to MSCNN which is pre-
trained EfficientNetB0 for classification. The authors col-
lected 416 CT scans samples from 206 COVID-19 patients,
412 CT scans of pneumonia collected from 412 pneumonia
patients. Experimental results were performed to show that
the proposed AI system achieved promising results with AUC
of 93.4% on scan level while AUC of 96.2% was achieved on
slice level.

Yu et al. 2021 [137] achieved a promising accuracy
of 98.7% for pneumonia classification from CXR [2] when
a DL-based CGNet model was employed. The authors first
used a pre-trained DL-based model for feature extraction and
then the extracted feature were reconstructed based on fea-
tures correlation using Euclidean distance. Finally, the recon-
structed features were used for classification using ANN
which achieved an accuracy of 98.7%, sensitivity, and speci-
ficity of 0.99 and 0.98, respectively.

6) ANALYSES OF PARTIAL DATASETS WITH
NONSTANDARD DIVISIONS
Some researchers have performed nonstandard divisions of
partial datasets. Rahmat et al. [138] employed Faster RCNN,
based on which pathological and normal CXRs can be clas-
sified. The authors selected a subset of 200 pathological
and normal images from the Chest X-ray14 dataset. The
accuracy of Faster RCNN was 62.0%, which was greater
than the judgment accuracies of a general practitioner and
a medical student but still very low because the data were
highly imbalanced. The specificity (54.39%) was also low,
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but Faster RCNN is useful for localizing the pathologies
(including pneumonia) in CXRs.

Chandra et al. [139] employed ML methods on a sub-
set of the Chest X-ray 14 [1] dataset. The authors initially
segmented the lung regions and then extracted eight sta-
tistical features (mean, variance, standard deviation, skew-
ness, kurtosis, smoothness, uniformity, and entropy) from the
lung ROI. The extracted features were allocated to multiple
classifiers: RF, MLP, logistics regression, sequential mini-
mal optimization, and classification via regression. In the
experimental evaluation, logistic regression outperformed the
remaining classifiers with accuracy, sensitivity, and speci-
ficity values of 96.63%, 93.68%, and 97.57%, respectively.
However, the method was evaluated using only 412 images
(206 normal and 206 pneumonia).

Varshni et al. [140] applied six DL algorithms
(Xception, VGG16, VGG-19, ResNet-50, DenseNet-121,
and DenseNet-169) as the feature extractors and combined
them with multiple ML classifiers (RF, KNN, Naive Bayes,
and SVM) for pneumonia detection in CXRs. Because the
Chest X-ray14 dataset [1] contains 1431 pneumonia images,
they selected 1431 normal images to balance the dataset for
binary classification. The AUC on the 573-image test dataset
was 0.8002 in a series of experiments with the appropriate
parameters of the SVM classifier in DenseNet169. However,
there were several limitations: only binary classification was
used in this study. The performance of pneumonia detection
was not promising, and the applied pre-trained networks were
computationally expensive.

7) PNEUMONIA AND COVID-19
The recent outbreak of the COVID-19 disease and its rapid
spread worldwide poses a global health challenge [141]. This
spread to the lungs, causing pneumonia. As a result, many
researchers have focused on developing algorithms that can
identify pneumonia.

Mahmud et al. [142] proposed deep CNN-based CovXNet
for pneumonia and COVID-19 detection. The proposed
CovXNet extracts features from CXRs via depth-wise con-
volution with varying dilution rates. Multiple forms of
CovXNets were used for different resolutions of CXR
images followed by a stacking algorithm for optimiza-
tion. Gradient-based discriminative localization employed
in the localization of abnormal lung regions. Experiments
were performed to verify the result, and an accuracy
of 96.9% was achieved in classifying viral pneumonia and
COVID-19, 94.7 for bacterial pneumonia and COVID-19,
and 97.4% for COVID and normal CXRs. However, in the
classification among COVID/normal/viral/bacterial pneumo-
nia and COVID-19/Viral Pneumonia/Bacterial pneumonia,
the accuracy was only 90.2% and 89.6%, respectively.
Rahimzada et al. [143] proposed concatenation of pretrained
Xception and ResNet50V2 for pneumonia and covid-19
detection using CXRs [144], [128]. Experimental results
show that concatenation of Xception and ResNet50V2
resulted in an overall accuracy of 91%, with promising

accuracy of 99% for COVID-19. However, the sensitivity
for COVID-19 and pneumonia was only 8.53 and 8.35%,
respectively. Furthermore, poor precision (35.27%) and low
specificity (88.09%) were achieved for COVID-19 and nor-
mal samples, respectively.

Jin et al. 2021 [145] proposed a three-step DL-basedmodel
for pneumonia and COVID-19 classification. They first used
AlexNet to extract features from 1743 CXRs [1], [144], fol-
lowed by ReliefF algorithm [146], [147] which ranked the
features based on their importance. Finally, the top n features
selected were used for classification in conjunction with the
SVM classifier. The experimental results showed that the
proposed algorithm can achieve an accuracy of 98.6% using
only 40 features. The proposed model was faster as compared
to other state-of-the-art models.

Dey et al. 2021 [148] employed concatenated features
obtained from the state-of-the-art DL-based models and tra-
ditional ML algorithms. The authors extracted Gray-Level
Co-Occurrence Matrix, discrete and complex wavelet trans-
form (DWT, and CWT, respectively) from CXRs [2] and
employed PCA for feature selection. They also extracted fea-
tures using a VGG19 based DL algorithmwhich was concate-
nated with handcrafted features as an input to ML classifiers
(KNN, SVM, RF, and DT). Experiments showed that the use
of combined features and the RF classifier can result in an
accuracy of 97.8%, with precision and recall of 0.94 and
0.96, respectively. Although the proposed approach showed
promising results compared to those obtained using only the
DL model, it is computationally complex [145].

Das et al. 2021 [149] evaluated the performance of three
DL-based CNN, VGG16, and ResNet50 models for pneumo-
nia and COVID-19 classification from CXRs. They obtained
2,686 CXRs (1,345 viral pneumonia and 1,341 normal)
from [2] and 219 CXRs from [144]. The experimental results
showed that VGG16 achieved a better classification accu-
racy of 97.6% with precision and recall of 0.965 and 0.965,
respectively as compared to Resnet50 and CNN that achieved
accuracy results of 94.5% and 93.6%, respectively.

Rajpal et al. 2021 [150] proposed a transfer learning-
based model for pneumonia classification. They obtained a
dataset from different sources such as [144], [151], [152]
and [153]. The dataset contained 1,560 CXRs from pneu-
monia, COVID-19, and normal classes with 520 CXRs in
each class. A feature vector of size 252 was obtained using
the Resnet50 model, which was reduced to 64 features using
PCA, followed by dense and dropout layers. A final feature
vector of size 16 was obtained using the Resnet50 model.
The authors also used handcrafted feature vectors of size 252
(14 FFT, 112 DWT, 1126 texture features). The experimental
work on the combined feature vector resulted in a classifica-
tion accuracy of 97% with an average sensitivity of 0.978.

Tuncer et al. 2021 [154] proposed a fuzzy-transformmodel
(F-transform) [155] to obtain a novel fuzzy tree for pneu-
monia classification. They used a dataset obtained from
online sources which contained 435 CXRs (150 normal,
135 COVID-19, and 150 pneumonia). They first obtained
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three levels of fuzzy trees and a multi-kernel local binary
pattern for features extraction. Iterative neighborhood com-
ponent (INCA) was employed to select only appropriate
features based on the correlation among the features and a
feature vector of size 616 was achieved. Finally, classifiers
such as DT, LD, SVM, and KNN were used for classifica-
tion. SVM achieved better performance with an accuracy of
97.01%. However, the accuracy in detecting the pneumonia
class was 94.8%.

Danilov et al. 2021 [156] evaluated the performance
of four DL models for pneumonia classification from
2631 CXRs: EfficientNet B1, B3, VGG16 and MobileNetV2
[2], [144], [151]–[153]. After fine-tuning, the proposed mod-
els achieved an accuracy of only 78% for pneumonia classi-
fication. To further improve the classification performance,
the authors employed Grad-CAM [157], which provided
guided attention to the lung area based on U-Net segmenta-
tion. The Grad-CAM technique improved the classification
performance by 1%.

TABLE 2. Calculation of the performance metrics.

VI. PERFORMANCE METRICS
The performance of a pneumonia detection system was eval-
uated based on various performance metrics. The accuracy
metric determines the correctness of the identified instances
in both classes of binary classification. This measure must
be supplemented by other metrics such as precision, recall,
F1 score, and AUC. The precision, recall, and F1 score are
given by Eqs. (3), (4), and (5), respectively. Table 2 shows
the structure of a confusion matrix.

Precision = TP/(TP+ FP), (3)

Recall =
TP

(TP+ FN )
, (4)

F1 score =
2 (Precision× Recall)
(Precsion+ Recall)

. (5)

VII. COMPARATIVE ANALYSIS AND DISCUSSION
This section compares and briefly discusses the state-of-the-
art approaches and datasets used for pneumonia identification
from CXRs. The evaluation is mainly focused on ensuring
robustness and usability.

It can be seen from Table 3 that there are multiple datasets
in the literature for pneumonia detection. The most famous
and significant datasets are the MIMIC CXR [30] and Chest
X-rays14 [1] datasets, which contain multiple pathologies.
However, both these datasets contained fewer examples of
pneumonia when compared with other classes, making them
highly imbalanced. The pediatric Chest X-ray dataset [2]

TABLE 3. Comparison of datasets comprised of chest X-ray W.R.T
detection of pneumonia.

can be considered as the most relevant dataset because it
contained only pneumonia and normal samples. Various tech-
niques [56], [73]–[75], [78], [80], [81] have been proposed to
tackle the class imbalance problem, but a small number of
researchers have followed these techniques. The authors of
the majority of the studies have undersampled the datasets to
obtain a fewer number of balanced images. Therefore, it is
difficult to improve the acceptance of the above methods in
clinical applications.

Furthermore, the majority of the CXR datasets contained
no pneumonia samples [32]–[34]. The composite samples in
the present dataset can be exploited as a temporary solution
for pneumonia classification, but the combined number of
images is only approximately 5,000 which is insufficient for
accurate and reliable detection.

Table 4 presents a brief overview of the pneumonia detec-
tion efforts. The majority of the efforts achieved comparable
accuracies, but the results were evaluated on small scales
with unbalanced datasets. An accuracy of 96% has been
achieved in the domain of traditional ML algorithms [64]
by exploiting NB with dimensionality reduction techniques.
The traditional ML algorithms are computationally cheap
but require extensive handcrafted techniques to extract use-
ful features from the input data and are also affected by
noise. To address these problems, researchers have developed
automatic feature-learning techniques such as DL algorithms,
which are effective in many medical and image recognition
tasks. Various DL-based methods have achieved promising
accuracy [2], [4], [5], [26], [84], [85], [103].

The accuracy of DL can be further enhanced using an
ensemble modeling approach, wherein the predictions of
multiple models are combined to improve the overall classifi-
cation performance. Although DL has achieved state-of-the-
art performance, several limitations remained; in particular,
these techniques require computational resources, extensive
experimentation, and hyperparameter tuning. Furthermore,
in most studies, DL is considered as a black box without
visualization results, making it inefficient for real-time use.
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TABLE 4. Comparison of the pneumonia detection techniques.
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TABLE 4. (Continued.) Comparison of the pneumonia detection techniques.
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TABLE 4. (Continued.) Comparison of the pneumonia detection techniques.
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TABLE 4. (Continued.) Comparison of the pneumonia detection techniques.

VIII. LIMITATIONS OF THE STUDY
There are several future directions to improve the review
presented in this paper. Firstly, the review only considers
articles that were published in English. The selected articles
are only focused on X-rays images, however, CT scans, MRI,
and fMRI data can also be considered. Due to the recent
outbreak of the COVID-19, many researchers have shifted
their attention to developing advanced ML models to assist
in pneumonia identification. As a result, many papers were
published in the past year. This review covers many of the
most influential papers on pneumonia and COVID-19, how-
ever; we limited our review to methods developed to extract
valuable features from X-rays. Furthermore, due to resem-
blance to COVID-19, papers related to the string ‘‘pneumonia
AND machine learning’’ and published between 2010 and
2019 were only 31 on IEEE explorer, compared to 94 in
2020 only. This shows that there is a need for a separate
review study to focus only on pneumonia and COVID-19.
In addition, this study did not consider performing experi-
mental works to analyze and compare the performance of the
existing methods.

IX. CONCLUSION
Chest radiography has played a vital role in the examination
and diagnosis of chest diseases. Thus, automatic detection
has become a popular topic in computer vision research for
medical imaging. Many algorithms using various techniques
have been developed, but a literature review summarizing the
currently available practices has been lacking. Based on this

review, practitioners can select an appropriate method from
a real-time perspective, understand the currently available
datasets, and appreciate the currently achieved results in this
domain.

This study presented an overview of the current litera-
ture on pneumonia identification from the chest X-ray data.
It summarized the topic and analyzed the usability, goodness
factors, and computational complexities of the present algo-
rithms. We observed that multiple datasets are available for a
prescribed task.

Further, traditional ML methods can be employed
when high computational resources are scarce but cannot
be employed for industrial-scale intelligent detection of
pneumonia. Therefore, DL can be used.

Most of the CXR datasets [1], [2], [30] are highly imbal-
anced, and only some researchers have followed the proposed
balancing techniques. In most cases, the authors have utilized
undersampling and obtained their results with few images.
These results are unreliable and cannot be exploited on an
industrial scale. We suggest collecting large-scale data that
should be balanced and contain approximately one million
samples of pneumonia cases. Such datasets can be difficult
to create because they rely on humans as the gold stan-
dard, are subject to copyright and privacy laws, and may
require verification by multiple sources, which is expensive,
time-consuming, and subjective. Therefore, based on the
literature, we suggest generating high-quality synthesized
images using GANs along with data augmentation tech-
niques. Unlike traditional oversampling techniques such as
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SMOTE, which generates samples based on the line between
instances of the minority class [160], [161], the GANs gener-
ative model learns highly informative features from major-
ity classes and uses them to generate images for minority
classes [161], [162]. Furthermore, GANs work well with
images thus incorporating GANs based synthesized images
with the training data would significantly improve the classi-
fication performance [67], [163]–[167].

Finally, a significant volume of pneumonia detectionworks
have focused on DL algorithms; few studies are based on tra-
ditionalML [21], [82], [87]–[89], [91], [92], [94]–[97], [158].
The current best performance with a low computational
requirement was provided by Sousa et al. [87]. However,
the works of Hashmi et al. [136] and Chouhan et al. [131] can
also be considered remarkable if computational power is not
constrained. Therefore, the main challenges to be addressed
in the future are listed below:
• Researchers have mainly focused on DL algorithms
for pneumonia detection, but preprocessing techniques,
such as image enhancement, data augmentation tech-
niques (classic and synthetic data augmentation) need to
be considered to improve the classification performance
[89], [91], [105], [118]. Pre-processing of CXRs helps
in improving the quality of input image by eliminating
noise, adjust low or high frequencies, adjusting image
contrast, etc. Using data augmentations helps in avoid-
ing overfitting, increase the training set by producing
realistic samples as well as helps to improve the model
robustness.

• The majority of the existing works have only used
frontal radiographs. To improve the detection accu-
racy, lateral view radiographs should also be considered
[26], [168]. It is shown that in frontal views, up to 15%
of the lung can be hidden by cardiovascular structures
and the diaphragm thus lateral views may provide infor-
mation on 15% of the lung that is hidden from frontal
views [168].

• In the current literature, the majority of work has
been done on normal human lung anatomy (with-
out any structural deformities) however there is a
need for an intelligent pneumonia identification sys-
tem that can consider pathological deformities such
as deformed lungs due to accidents, disease, or post-
surgical alterations, e.g., pneumonectomy or lobec-
tomy [169] into consideration. Moreover, the algorithms
developed for the segmentation of lung regions are
based on adult chest x-rays datasets [1] and may not
perform well on pediatric CXRs [2] due to the dif-
ferences in lung appearance and sizes between adults
and pediatrics [169], [170].

• Few authors have incorporated nonimage features, such
as patient age, sex information, to the CXR data.
Including a patient’s records is expected to improve the
classification performance and reduce the false positives
rate. For example, pneumonia would be an appropriate
term for a patient of pulmonary abnormality with a

history of fever and cough rather than less specific terms
such as infiltration or consolidation [26], [171].

• The majority of the ML-based pneumonia identifica-
tion systems lack transparency on how the data split
was performed. Most of the datasets are divided into
training and testing sets randomly. The studies must
include descriptions of how the training and testing
split was being selected. Furthermore, distinct datasets
should be used for training and testing to evaluate the
diagnostic accuracy and generalizability of the proposed
algorithms [109].

• Several models for pneumonia detection can perform up
to 99% accuracy, however, often the sensitivity or speci-
ficity of the models are not promising. Thus, to evaluate
the model performance all matrices such as sensitiv-
ity, specificity, AUC, and F1 measure should be taken
into consideration. Moreover, the models were able
to perform well for binary classes, but not for multi-
class classification (viral/bacterial pneumonia/normal/
COVID-19) [142]. Therefore, researchers should focus
on building new methods for intelligent disease detec-
tion from CXRs using lightweight algorithms that can
efficiently identify pneumonia and other chest-related
diseases across different datasets.
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