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ABSTRACT This paper investigates the control issue of Euler-Lagrange systems (ELSs) subject to dynamic
uncertainties and external disturbances under input and output constraints, and develops two neuroadaptive
control schemes, i.e., direct neuroadaptive approximation method and indirect neuroadaptive approximation
method. In the control design, a smooth saturation function called Gaussian error function is used to replace
the saturation model, which is applied to solve the input saturation issue. Moreover, a new function is
used to guarantee that the output does not violate the restricted boundary. The uncertain dynamic of the
ELSs is reconstructed by the direct or indirect neuroadaptive method, and then a virtual-parameter learning
method is proposed to reduce the computational load of control schemes. With the aid of Lyapunov stability
theory, it is proven that all signals in the closed-loop control system are bounded and the tracking error
of ELSs converges to zero under the proposed neuroadaptive control schemes. The simulations on a robotic
manipulator illuminate the effectiveness and preponderance of the developed neuroadaptive control schemes.

INDEX TERMS Euler-lagrange system, dynamic uncertainty, input and output constraints, neuroadaptive
control.

I. INTRODUCTION
In recent decades, Euler-Lagrange systems (ELSs) have
attracted more andmore attention from researchers since they
can model the dynamics of a large class of physical systems,
like surface vehicles [1], [2], robotic manipulators [3], [4],
aircrafts [5], underwater vehicles [6], [7], etc. Due to its
wide applications in engineering, a rich collection of control
schemes can be captured to implement tracking control on
the ELSs in existing literature (see, e.g, [?], [8], [10] and
references therein). In real world applications, the dynam-
ics of ELSs are highly nonlinear and inevitably suffer from
parametric and nonparametric uncertainties. Besides, another
challenge for the tracking control of ELSs is that these control
schemes may fail their goal when the actuator cannot provide
adequate power caused by its inherent physical limitations or
the system output violates the operational space constraint,
i.e., input saturation nonlinearities and output constraints.
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Hence, referring to the engine control environment, it is sig-
nificant that the above problems should be stressed elegantly
in the control design.

For the uncertain ELSs with parameterized decomposition
conditions, the adaptive control schemes [11]–[15], espe-
cially the adaptive sliding mode control (SMC) schemes [16],
[17], were proposed to ensure the tracking error asymptotical
or exponential convergence. In [18], the tracking error asymp-
totical convergence was also achieved by a recursive robust
integral of the sign of the error control method for mechani-
cal servosystems with mismatched uncertainties. In contrast,
when the nonparametric uncertainties and external distur-
bances exist in the ELSs, the control methods mentioned in
[11]–[17] are inapplicable. In this context, combining neu-
ral network (NN) with adaptive technique, the neuroadap-
tive control schemes were developed for uncertain robotic
manipulators neglecting external disturbances and the issue
of operational space constraint [19], [20]. Different from
[19], [20], the external disturbance and operational space
constraint were taken in account, and [21], [22] employed the
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NNs to approximate the lumped unknown nonlinear function
vector caused by the unknown dynamic and the external dis-
turbances and the log-type barrier Lyapunov function (BLF)
is used to solve the output constraint issue. Similarly, the
log-type BLF was also applied to handle the time-varying
output constraint of uncertain ELSs in [23], [24]. Based on
the concept of BLF, the output constraint problem of surface
vehicle [25], [26], underwater robot [27] and robot manipu-
lator [28] was resolved by using the tan-type. Furthermore,
the asymmetric BLF (ABLF) was also established to handle
the output constraint problem of aircraft [29], surface ship
[30], etc. However, a practical factor-input saturation-is not
taken into account in the establishment of the closed-loop
system in [21]–[29], such an operation may lead to the failure
of control objective.

The input saturation is a potential problem for all actuators
of control systems, which may lead to unexpected control
result or instability. Hence, for the control problem of uncer-
tain ELSs, it is essential to handle the effect of input satura-
tion in the control design. In the literature, several research
efforts have been made on the tracking control of ELSs
under input saturation. In [31], a finite-time tracking control
solution was presented for robot manipulators with actuator
saturation, whereas the dynamics of plant were required to
be accurately known, and the input saturation effect was not
compensated in the control design. Obviously, such a solution
is unsuitable for the uncertain ELSs. In [32], an adaptive
neural impedance control for uncertain robotic manipulator
under input saturation was presented, where an auxiliary
dynamic system (ADS) was constructed for compensating
the effect of input saturation. Using the same ADS as [32],
the tracking control issue of uncertain robotic manipulators
under input saturation was resolved under the adaptive neu-
ral tracking control scheme [33] and robust adaptive model
reference impedance control scheme [34]. Different from the
ADS in [32], for the tracking control problem of mechanical
systems, [35] adopted the auxiliary filter, whose input is
the non-executable part of actuator, to eliminate the input
saturation effect. Another method is used a smooth function
to replace the saturation model, which is also applied in the
tracking control issue of marine surface vehicles [36], [37].
Although the operational space constraint and the inherent
physical limitation issue have been fully considered in [21]–
[29] and [31]–[37], respectively, these two limitations often
exist simultaneously in practice.

Considering both of two limitations, i.e., the constraints
both in input and output, several control solutions had been
presented for the plants described by ELSs in the existing
works. In [38], an auxiliary filter and a log-type BLF were
employed to handle the issues of constraints both in input
and output for the flexible mechanical systems. [39], [40]
presented the fault tolerant control solutions for spacecrafts
subject to state constraint and input saturation, where the
ADS and tan-type BLF were used to solve the constraints
in input and output, respectively. Also, the issue of the con-
straints both in input and output were taken into account

and effectively handled for unmanned surface vessels in
[41]. However, the control solution proposed in [41] required
the accurate knowledge of ship model. Whereafter, such a
requirement was overcome in [42], [43]. Specially, in terms
of dealing with the output constraint issue, the BLF-based
method was replaced by a constrained transform approach in
[43]. Meanwhile, this method was extended to solve the for-
mation control for waterjet unmanned surface vessels under
constraints both in input and output in [44]. The work in
[45] paid attention to the control issue of the uncertain robot
manipulators (RMs) under input saturation and time-varying
output constraints, where ADS and ABLF were used to
deal with the constraint issues. Although the works in [38]–
[45] had presented many meaningful solutions to the plants
described by ELSs, these control solutions can only guarantee
that the tracking error of the plants is bounded, i.e., the
zero tracking error cannot be obtained. Further research on
the zero tracking error of the uncertain ELSs simultane-
ously with input and output constraints brings forward the
challenge.

Inspired by the above-mentioned discussion, this paper
attempts to develop two neuroadaptive control schemes
for uncertain ELSs simultaneously with input and output
constraints. In the control design, a smooth function is
applied to replace the non-smooth nonlinearly. Furthermore,
the Nussbaum function is introduced to handle the issue
of time-varying gain caused by the smooth function. For
the output constrain issue, this work discards the BLF used
in [21], [22], [26], [43], which is replace by a new func-
tion. In addition, RBF NNs are applied to approximate the
unknown nonlinear function vector caused by the uncertain
dynamic, directly. And then, in the combination with virtual
parametric technology, a direct neuroadaptive control scheme
is developed. Moreover, in the second scheme, a RBF NNs is
applied to approximate the norm of unknown nonlinear func-
tion vector. In this context, a indirect neuroadaptive control
scheme is developed. The main contributions of this work can
be summarized as:

1) Compared with the works [21]–[29] and [31]–[37],
where [21]–[29] take the output constraint issue
account into the control design and [31]–[37] take the
input saturation issue account into the control design,
the proposed neuroadaptive control schemes can simul-
taneously solve constrains both input and output for
uncertain ELSs, and guarantees that the constrains both
input and output are not violated.

2) Compared with the works [21]–[22], [32]–[33]
and [41], where a number of adaptive regressors are
employed to update the unknown ideal weight, only
one unknown parameter needs to be learned online
under the proposed direct/indirect neuroadaptive con-
trol schemes. As a result, the computational load is
greatly reduced.

3) Compared with the works [38]–[45], which can only
guarantee the boundedness of the output tracking error
of plants, the proposed direct/indirect neuroadaptive
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control schemes guarantee that the tracking error con-
verge to zero as t →∞.

This paper is organized as follows. Sections 2 address the
problem formulation and preliminaries. Section 3 presents
the control design process and the stability analysis.
Section 4 provides the simulation results. Section 5 draws the
conclusions.
Notations: In this paper, || · || represents the 2-norm of a

matrix or vector. λmin(·) represent the minimum eigenvalue
of a matrix. sgn(·) is the sign function. (·̃) = (·)− (·̂) denotes
the error between the unknown parameter (·) and its estimate
value (·̂).

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
In general, the ELSs with the second-order dynamics can be
described as follows:

M(q)q̈+ C(q, q̇)q̇+ G(q)+ F(q, q̇) = τ + τd (1)

where q, q and q̇ ∈ Rn denote the position, velocity and
acceleration of Lagrangian coordinates. M(q), C(q, q̇), G(q)
and F(q, q̇) denote the inertial matrix, the matrix of Coriolis
and centripetal matrix, the gravity vector, and the friction vec-
tor, respectively. τ d = [τd,1, · · · , τd,n]T denotes the external
disturbance vector and τ = [τ1, · · · , τn]T is the control input
vector. In practice, due to the physical limits of the actuator,
the input saturation nonlinearity can be expressed by

τi =

{
sgn(τi,c)τi,m, if τi,c > τi,m

τi,c, if τi,c < τi,m
i = 1, · · · , n (2)

where τc = [τ1,c, · · · , τn,c]T denotes the command control
vector calculated by the control law and τi,m > 0 represents
the maximum control input provided by the ith actuator.
Considering the safe operation, the output of system (1) are
subject to |q1,i| < κc,i, i = 1, · · · , n, where κc,i is the
constraint boundary of ith component of the system output.

In this work, we make the following standard assumptions:
Assumption 1: τd is bounded, that is, ||τd || ≤ τ̄d with τ̄d >

0 being an unknown constant.
Assumption 2: The matrixes M(q), C(q, q̇), G(q) and

F(q, q̇) are completely unknown.
Assumption 3: The desired trajectory qd = [qd,1, · · · , qd,n]T ,

and its first and second order derivatives are bounded. In addi-
tion, qd,i satisfies |qd,i| ≤ κd,i < κc,i with κd,i being known
positive constants.

The control objective of this paper is to design a robust
adaptive NN tracking control law τc for the uncertain EL
system (1) subject to input and output constraints under
Assumptions 1-3 such that the output q of the system (1)
tracks the desired trajectory qd , and the output constraints are
never violated (i.e. |q1,i| < κc,i, for ∀t ≥ 0). Meanwhile, all
signals in the closed-loop control system are bounded.

From (2), τi is a non-smooth function with respect to τi,c,
i = 1, · · · , n, and is featured by a non-smooth nonlinearity.

Here, the saturation function defined in (2) is replaced by the
following function:

ξi(τi,c) = τi,mF
(√

πτi,c

2τi,m

)
(3)

where F(·) is a Gaussian error function defined as F( ) =
2
√
π

∫ 
0 e
−t2d . In view of (2) and (3), one can get

τi(τi,c) = ξi(τi,c)+ εi(τi,c) (4)

where æi(τi,c) is approximation error satisfying |εi(τi,c)| =
|τi(τi,c)− ξi(τi,c)| ≤ Ei,m with Ei,m ∈ R+.
Utilizing the mean-value theorem, ξi(τi,c) is rewritten as

ξi(τi,c) = ξi(τ ′i,c)+ %i(τi,c − τ
′
i,c) (5)

where %i = exp

(
−

(√
πτ ı

i,c
2τi,m

)2
)
and τ ı

i,c = ıτi,c+ (1− ı)τ ∗i,c

with ı ∈ (0, 1). Let τ ′i,c = 0, and then we have

τi(τi,c) = %iτi,c + εi(τi,c) (6)

Remark 1: From the expression of %i, we know that ξi is
a non-increasing function, that is, %i is bounded and satis-
fies %i ∈ (0, 1] for ∀τi,c ∈ R. In addition, according to
|εi(τi,c)| ≤ Ei,m, ||E(τ c)|| ≤ Eε holds, where E(τ c) =
[ε1(τ1,c), · · · , ε3(τn,c)]T and Eε is a positive constant.

In the light of Eqs.(1) and (6), we have

M(q)q̈+ C(q, q̇)q̇+ G(q)+ F(q, q̇) = %τ c + τε (7)

where % = diag(%1, · · · , %n) and τε = τd + ε. According
to Assumption 1 and ||E(τ c)|| ≤ Eε , ||τε || ≤ d̄ with d̄ > 0
being an unknown constant.

B. PRELIMINARIES
Definition 1 [46]: For any continuous function N (ζ ) : R →
R, the function is a Nussbaum function if it has the following
properties:

lim
t→∞

sup
1
s

∫ s

0
N (ζ )dζ = +∞ (8)

lim
t→∞

inf
1
s

∫ s

0
N (ζ )dζ = −∞ (9)

In existing literature, commonly used Nussbaum functions
include ζ 2 cos(ζ ), eζ

2
cos

(
π
2 ζ
)
, ζ 2 sin(ζ ), etc. In this work,

we choose the Nussbaum function as ζ 2 cos(ζ ).
Lemma 1: [46], [47] LetV (·) and ζ (·) be smooth functions

defined on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N (·) is
an even Nussbaum-type function. If the following inequality
holds

V (t) ≤ c0 + e−ιt
∫ t

0
(g( )N (ζ ( ))+ 1) ζ̇ ( )eιd,

∀t ∈ [0, tf ) (10)

where c0 is a suitable constant, ι > 0 is a constant and g( ) is a
time-varying parameter which takes the value in the unknown
interval 5 = [f −, f +] with 0 /∈ 5. Then, ζ (t), V (t) and∫ t
0 g( )N (ζ ( )+ 1)ζ̇ ( )d must be bounded on [0, tf ).
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Lemma 2: [48], [49] Let A be a n× n symmetric matrix,
and y ∈ Rn be a nonzero vector, denote that a = yTAy

yT y .
Then, there exists at least one eigenvalue of A in the internal
(−∞, a] and at least one in [a,∞).
Lemma 3: [48], [49] Any real matrix can be expressed as

the sum of a symmetric matrix and a skew ones.
Lemma 4: [50] For any x ∈ R and y ∈ R, the following

inequality holds

xy ≤
mp

p
|x|p +

1
mqq
|y|q (11)

where m > 0, p > 1 and q > 1 are constants that satisfy
(p− 1)(q− 1) = 1.
Lemma 5: [36], [43] For a nonlinear function ϕ(Z) :

Rn→ R defined on a compact set Z ⊂ �Z ∈ Rn, there exists
a radial basis function NN ϑ∗Tβ(Z) such that the following
equation holds

ϕ(Z) = ϑ∗Tβ(Z)+ ε (12)

where approximate error ε satisfies |ε| ≤ ε∗ with ε∗ > 0
being constant, β(Z) = [β1(Z), · · · , β`(Z)]T is the basis
function vector, ϑ∗ = [ϑ∗1 , · · · , ϑ

∗

` ]
T is the ideal weight

vector, and ` > 1 is the node number. The basis function
ξi(Z ), i = 1, · · · , `, is the Gaussian function, that is,

βi(Z) = exp

[
−
(Z− ci)T (Z− ci)

σ 2
i

]
(13)

with ci = [ci,1, · · · , ci,`]T and σi being the receptive field’s
center and the width of basis function.
Lemma 6: For any scalar κ ∈ R+ and z ∈ R, the following

inequality holds in the interval |z| < κ:

log
κ2

κ2 − z2
≤

1
2

(
κz

κ2−z2

)2
(14)

Proof: Please see Appendix A.

III. CONTROL DESIGN FOR STATIC CONSTRAINT
In this section, two adaptive neural tracking control laws are
designed to solve the tracking control problem of uncertain
ELSs subject to static output constraint and input saturation,
in which one is the direct approximationmethod and the other
one is the indirect approximationmethod. In addition, we also
present the detailed stability analysis utilizing the Lyapunov
stability theory for the Euler-Lagrange closed-loop tracking
control system.

Let x1 = q and x2 = q̇. Then, Eq.(7) can be rewritten as{
ẋ1 = x2
ẋ2 = f (x)+ g(x)%τ c + dx

(15)

where x = [x1T , x2T ]T , f (x) = −M−1(x1)
(
C(x1, x2)x2 +

G(x1)+F(x1, x2)
)
, g(x) = M−1(x1) and dx = M−1(x1)τε .

According to Remark 1, there exists unknown constant
%0 satisfying 0 < %0 ≤ λmin(%). Further, note that M(q)
is a symmetric and positive-definite matrix, so is M−1(q).

Then, all eigenvalues of the gain matrix g(x)% are positive.
It should be pointed that g(x)% is asymmetric. With Lemma 3,
ḡ(x) = g(x)% can be decomposed as

ḡ(x) = ḡ1(x)+ ḡ2(x) (16)

where matrices g1(x) =
1
2 (ḡ

T (x) + ḡ(x)) and ḡ2(x) =
1
2 (−ḡ

T (x) + ḡ(x)) are symmetric and skew-symmetric. Fur-
ther, from Lemma 2, for any given non-zero vector y ∈ Rn,
we have

yT ḡ(x)y = yT
(
ḡ1(x)+ ḡ2(x)

)
y = yT ḡ1(x)y (17)

Then, we obtain

yT ḡ(x)y = a(t)yT y (18)

with a(t) > 0. Recalling the property of ḡ(x) and
Lemma 2, there exist positive constants a1 and a2 such that
a1 ≤ a(t) ≤ a2.
Remark 2: From (16)-(18), the control problem of uncer-

tain nonlinear systems with the asymmetric gain g(x)% has
been transformed into that one with a time-varying control
gain a(t), equivalently. However, in the control design and
analysis, the biggest obstacle is how to deal with time-varying
control gain a(t). In this context, inspired by [46] a powerful
tool, i.e., Nussbaum-type function, is employed to overcome
the obstacle.

Define the tracking error vector e1 = x1 − xd with
xd = qd . Further, we have e2 = ė1 = ẋ1 − ẋd from
(1). Furthermore, introduce the new variable χ ∈ Rn to
implement the transformation of output constraint as follows

χ = e2 + ψ(e1)e1 (19)

where

ψ(e1) = diag

(
δ1

κ21 − e
2
1,1

, · · · ,
δn

κ2n − e
2
1,n

)
(20)

with δi, i = 1, · · · , n, being a design constant and κi being
the bound of tracking error e1,i. According to the condition
of output constraint |q1,i| < κc,i and Assumption 3, κi can be
calculated as

κi = κc,i − κd,i (21)

Lemma 7: If |q1,i(0)| < κc,i holds ∀i and the boundedness
of χ is ensured for ∀t ≥ 0, the constraint condition |q1,i| <
κc,i will never be violated.
Proof: Please see Appendix B.
The time-derivative of χ is given by

χ̇ = ė2 + ψ̆(e1)ė1 (22)

where

ψ̆(e1) = diag

(
δ1(κ21 + e

2
1,1)

(κ21 − e
2
1,1)

2
, · · · ,

δn(κ2n + e
2
1,n)

(κ2n − e
2
1,n)

2

)
(23)

Using e2 = ẋ1− ẋd and Eq. (15), Eq.(21) can be rewritten
as

χ̇ = f (x)+ g(x)%τ c + dx − ẍd + ψ̆(e1)e2 (24)

VOLUME 9, 2021 51943



C. Wang, T. Kuang: Neuroadaptive Control for Uncertain ELSs With Input and Output Constraints

A. DIRECT APPROXIMATION METHOD
In the view of Assumption 2, f (x) ∈ Rn is unknown.
Considering Lemma 5, f (x) can be approximated using RBF
NN, and then we have

f (x) = ϑ∗Tβ(x)+ ε (25)

where ε ∈ Rn satisfies ||ε|| ≤ ε̄ with ε̄ ≥ being a constant,
ϑ∗ = diag(ϑ∗T1 , · · · ,ϑ

∗T
n ) withϑ∗i = [ϑ∗i,1, · · · , ϑ

∗

i,`]
T is the

ideal weight matrix, and β(x) = [β1(x), · · · ,βn(x)]
T with

β i(x) = [βi,1(x), · · · , βi,`(x)]T is the basis function vector of
NNs. Further, according to ||τ|| ≤ d̄ and the property ofM(q)
[37], there exists an unknown positive constant dτ satisfying
||dx|| ≤ dτ . In addition, considering Assumption 3, we have
||ε + dx − ẍd || ≤ dx with dx being an unknown positive
constant.

Let f̄ (Z) = f (x) + dx − ẍd + ψ̆(e1)e2 with Z =
[xT , e1T , e2T ]T . Taking the following transformation for
f̄ (Z) yields

||f̄ (Z)|| ≤ ||ϑ∗||||β(x)|| + ||ψ̆(e1)e2|| + ||ε + dx − ẍd ||

≤ 2ς (Z) (26)

where ς (Z) = ||β(x)|| + ||ψ̆(e1)e2|| + 1 and 2 =

max{||ϑ∗||, ||ε + dx − ẍd ||, 1}.
Remark 3: In 2 = max{||ϑ∗||, ||ε + dx − ẍd ||, 1}, ||ϑ∗||

is the norm of the ideal weight matrix, which is not of the
clear physical significance. Similarly, ||ε+dx− ẍd || is not of
the clear physical significance even if ẍd has a clear physical
significance. Therefore, the unknown constant 2 is also not
of the clear physical significance. Here, 2 is called virtual
parameter. By utilizing online learning method, the estima-
tion of 2 can be obtained, which is called virtual-parameter
learning technique.
Synthesizing Eqs.(24) and (26), one can get

χT χ̇ ≤ χT g(x)%τ c +2||χ ||ς (Z) (27)

Using Lemma 4, we have

2||χ ||ς (Z) ≤ 2||χ ||2ς2(Z)+
2

4
(28)

Substituting Eq.(28) into Eq. (27) yields

χT χ̇ ≤ χT
(
g(x)%τ c +2χς2(Z)

)
+
2+ 1

4
(29)

Design the control law for ELSs (1) as follows

τ c = N (ζ )ηχ (30)

ζ̇ = χTχη (31)

η = k + 2̂ς2(Z) (32)
˙̂
2 = ρχTχς2(Z)− σ2̂ (33)

where k > 0, ρ > 0 and σ > 0 are design constants and
ζ ∈ R is the Nussbaum variable.

Consider the following Lyapunov function

V =
1
2
χTχ +

1
2ρ
2̃2 (34)

Taking the time-derivative of V , and using Eqs. (18), (30)
and (31), one can obtain

V̇ ≤ N (ζ )ηχT g(x)%χ + χT2χς2(Z)+
2+ 1

4
−

1
ρ
2̃
˙̂
2

=

(
N (ζ )a(t)+ 1

)
ζ̇ − kχTχ +

σ

ρ
2̃2̂+

2+ 1
4

≤

(
N (ζ )a(t)+ 1

)
ζ̇−kχTχ −

σ

2ρ
2̃2
+
σ

2ρ
22
+
2+ 1

4

= −cV +
(
N (ζ )a(t)+ 1

)
ζ̇ + d (35)

where c = min{2k, σ } and d = σ
2ρ2

2
+

2+1
4 .

Solving Eq.(35) yields

V (t) ≤
d
c
+V (0)+e−ct

∫ t

0

(
N (ζ )a(tι)+ 1

)
ζ̇ectιdtι (36)

where V (0) is the initial value of V (t).
Based on the above analysis, the main results are given by

the following theorem.
Theorem 1: Consider the uncertain ELSs (1) under

Assumptions 1-3, if the initial condition of q satisfies
|q1,i(0)| < κc,i for ∀i, then the designed control law (30) with
the adaptive laws (31) and (33) is able to make the following
properties hold

1) All signals in the closed-loop tracking control system
are bounded.

2) The output q of ELSs (1) will never violate the output
constraint condition, i.e., |q1,i| < κc,i, ∀i ∈ {1, · · · , n}.

Zero-error
3) tracking control is achieved, i.e., e1→ 0 as t → 0.
Proof: 1) Boundedness of all signals. According to

Lemma 1 and Eq.(36), V (t), ζ (t) and
∫ t
0

(
N (ζ )a(tι)+ 1

)
ζ̇dtι

are bounded if |q1,i(0)| < κc,i for ∀i. Further,χ and 2̃ are also
bounded from (34), and 2̂ is also bounded due to 2̃ = 2−2̂.
In addition, considering Eq. (33) and the boundedness of 2̂
and χ , ς (x) is also bounded. Furthermore, τc is also bounded.
From Lemma 6 and the boundedness of χ , e1 is bounded and
|e1,i| < κi. Further, e2 is bounded from Eq. (18). Therefore,
all signals in the closed-loop tracking control system are
bounded. Recalling Lemma 6, the output constraint condition
|q1,i| < κc,i always holds.
2) Uniform continuity of all signals. According to (30),

we have

τ̇ c =
∂τ c

∂η

∂η

∂2̂

˙̂
2+

∂τ c

∂η

∂η

∂ς (Z)
∂ς (Z)
∂Z

Ż

+
∂τ c

∂N (ζ )
∂N (ζ )
∂ζ

ζ̇ +
∂τ c

∂χ
χ̇ (37)

Owing to (3), the actual control input τ is continuous and
bounded. Moreover, from the boundedness of dx e1, e2 and
τc, the boundedess of ẋ2 can be determined, together with
Assumption 3,(22) and (37), Ż and χ̇ are continuous and
bounded. Furthermore, according to (33) and (35), we can
obtain that ˙̂2 and ζ̇ are continuous and bounded. Therefore,
τ̇ c is also continuous and bounded, i.e., all signals in the
closed-loop control system are uniformly continuous.
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3) convergence of tracking erroes. According to Eqs.(31)
and (32), one can obtain ζ̇ = χTχ (k + 2̂ς2(Z)) ≥ kχTχ .
Furthermore, k

∫ t
0 χ

Tχ ≤ ζ (t) − ζ (0). Due to the bound-
edness of ζ (t), χ ∈ L2. In addition, χ is bounded, then
χ ∈ L2 ∩ L∞. Using Barbalat Lemma, we can get χ → 0
as t →∞. Furthermore, recalling Eq.(60), we can get Ve =
χTχ
16ρ +

(
Ve(0) −

χTχ
16ρ

)
e−4ρt . Hence, χ → 0 as t → ∞,

Ve → ∞, that is, log
(

κ2i
κ2i −e

2
1,i

)
→ 0, which indicates that

ei,1 → 0 can be achieved. Therefore, zero-error tracking
control is achieved.
Remark 4: From Eq.(24), to reconstruct the unknown

nonlinear function vector f (x), n RBF NNs are involved.
Although through the transformation (26), only one unknown
parameter2 needs to be updated online, the heavy computa-
tional burden is still not completely lifted due to the use of
multiple RBF NNs. In order to solve the problem, we adopt
the indirect approximation method, in which only one RBF
NN is applied to handle the unknown nonlinear function
vector f (x).

B. INDIRECT APPROXIMATION METHOD
In this subsection, the indirect approximation method is used
to reduce the heavy computational burden of control law (30).

Recalling Eq.(23), f (x) ∈ Rn is unknown. Here, let
L(x) = ||f (x)||, which can be approximated by a RBF NN,
that is,

L(x) = ϑ∗Tβ1(x)+ ε (38)

where ε ∈ Rn is the approximation error satisfying |ε| ≤ ε̄′,
ϑ∗ ∈ R` is the ideal weight vector and β1(x) ∈ R

` is the basis
function vector. Then, taking the following transformation for
f̄ (Z) yields

||f̄ (Z)|| ≤ L(x)+ ||dx − ẍd || + ||ψ̆(e1)e2||

≤ ||ϑ∗||||β1(x)|| + ε̄
′
+ ||dx − ẍd || + ||ψ̆(e1)e2||

≤ θς̄ (Z) (39)

where ς̄ (Z) = ||β1(x)|| + ||ψ̆(e1)e2|| + 1 and θ =

max{||ϑ∗||, ε̄′ + ||dx − ẍd ||, 1}.
Remark 5: According to (25) and (38), themain difference

between them is that only one RBFNN is employed to handle
the unknown nonlinear function f (x) in the subsection B
(indirect approximation method). Obviously, such an opera-
tion in this subsection can reduce the number of neurons such
that the computational burden is decreased.

Recalling Eqs. (23) and (26), one has

χT χ̇ ≤ χT g(x)%τ c + θ ||χ ||ς̄ (Z) (40)

Design the control law for ELSs (1) as follows

τ c = N (ζ )η̄χ (41)

ζ̇ = χTχ η̄ (42)

η̄ = k1 + θ̂ ς̄2(Z) (43)
˙̂
θ = ρ̄χTχ ς̄2(Z)− σ̄ θ̂ (44)

where k1 > 0, ρ̄ > 0 and σ̄ > 0 are design constants and ζ
is the Nussbaum variable.

Consider the following Lyapunov function

V1 =
1
2
χTχ +

1
2ρ̄
θ̃2 (45)

Taking the time-derivative of V1, and using Eqs. (18), (40)
and (41), one can obtain

V̇1 ≤ N (ζ )η̄χT g(x)%χ + χT θχ ς̄2(Z)+
θ + 1
4
−

1
ρ̄
θ̃
˙̂
θ

≤

(
N (ζ )a(t)+ 1

)
ζ̇ − k1χTχ −

σ̄

2ρ̄
θ̃2 +

σ̄

2ρ̄
θ2 +

θ + 1
4

= −c1V1 +
(
N (ζ )a(t)+ 1

)
ζ̇ + d1 (46)

where c1 = min{2k1, σ̄ } and d1 = σ̄
2ρ̄ θ

2
+

θ+1
4 .

The main results are given by the following theorem.
Theorem 2: Consider the uncertain ELSs (1) under

Assumptions 1-3, if the initial condition of q satisfies
|q1,i(0)| < κc,i for ∀i, then the designed control law (41) with
the adaptive laws (42) and (44) is able to make the following
properties hold

1) All signals in the closed-loop tracking control system
are uniformly bounded.

2) The output q of ELSs (1) will never violate the output
constraint condition, i.e., |q1,i| < κc,i, ∀i ∈ {1, · · · , n}.

Zero-error
3) tracking control is achieved, i.e., e1→ 0 as t → 0.
Proof: The proof of Theorem 2 can follow the same

approach as Theorem 1.

IV. SIMULATION
To verify the effectiveness of the proposed neuroadaptive
control schemes, a two-link RM and its dynamics described
by (1) is given as followings

M(q) =
[
m1l21 + m23+ µ1 + µ2 m∗

m∗ m2l22 +52

]
(47)

C(q, q̇) = −m2L1l2 sin(q2)
[
q̇2 q̇1 + q̇2
−q̇1 0

]
(48)

G(q) =
[
(m1l1 + m2L1)g cos(q1)+ m2l2g cos(q1 + q2)

m2l2 cos(q1 + q2)

]
(49)

F(q, q̇) = 0.5
[

tanh(q̇1)
tanh(q2) cos(q1 + q2)

]
(50)

τd = 0.25
[

cos(0.1π t) sin(0.5t)
0.5 sin(0.15t) sin(t/3) cos(0.02t)

]
+ τ$

(51)

where mi, Li and ϑi denote the mass, length and inertia
moment of the ith link, respectively; li denotes the distance
from the base of the ith link to its center ofmass, and g denotes
the gravitation constant. m∗ = m2(l22 ) + L1l2 cos(q2) + ϑ2
and 3 = L21 + l

2
2 + 2L1l2(l2 + cos(q2)). In simulation, m1 =

1.6kg, m2 = 0.8kg, L1 = 0.4m, L2 = 0.3m, l1 = 0.25m,
l2 = 0.15m, µ1 = 0.0853kg · m2, µ2 = 0.024kg · m2 and
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FIGURE 1. Tracking performance.

FIGURE 2. Tracking error.

g = 9.81 m/s. τ̇$,i + τ$,i = νi$ , where $ is the Gaussian
white noise (GWN) and νi is the amplitude of GWN.
In simulation, the desired trajectory is set as qd =

[sin(0.05π t); cos(0.05π t)]. The saturation limits are given by
τi,m = 25(N · m), i = 1, 2. The initial states are q(0) =
[0.2rad, 1.1rad]T , q̇(0) = [0, 0]T , ζ (0) = 0.1, $ (0) = 0
and θ̂ (0) = 2̂ = 0. The design parameters are selected as
k = k1 = 16, kc,1 = 1.22, kc,2 = −1.22, ρ = ρ̄ = 2,
σ = σ̄ = 0.01, ν1 = 1.2, ν2 = 1.0 and δi = 0.3. The
RBF NNs for ϕ(Z ) contain 20 nodes with the centers evenly
spaced in the range [−2, 2] ×

...
4 × [−2, 2] and the widths

σj = 2 (j = 1, · · · , 20).
The simulation results under our proposed two neuroad-

aptive control schemes are presented in Figs. 1-5, respec-
tively. Fig. 1 presents the tracking control results under the
direct/indirect neuroadaptive control law, which implies that
the direct/indirect neuroadaptive control law can force the
output q of RM to track qd with satisfactory performance
and the output q does not violate the constraint boundaries.
Fig. 2 give the curves of tracking errors e1 and the results
indicates that the designed control law can force the tracking

FIGURE 3. Control input.

FIGURE 4. 2-norms of θ̂ and 2̂.

error e1,i converges to zero as t → ∞, i.e., e1,i → 0 as
t → ∞. Fig. 3 shows the curve of control input τ , which
are bounded and reasonable. The estimation values 2̂ and θ̂
are drawn in Fig. 4, which implied that 2̂ and θ̂ are bounded.
Fig. 5 shows that the Nussbaum functionN (ζ ) and its variable
ζ are bounded. The simulation results indicate that all signals
in the closed-loop tracking control system under our proposed
schemes are bounded, and the tracking error e1 converges to
zero.

In addition, to further analyze the difference between the
direct and indirect neuroadaptive control laws, the perfor-
mance indices on the tracking error e1 and the control input τ
are summarized in Table 1, where IAE =

∫ tı
0 |e1,i|dt denotes

the integrated absolute error and MIAC = 1
tı−0

∫ tı
0 |τi|dt

denotes the mean integrated absolute control. From the index
of IAE, the control accuracy of the direct and indirect neu-
roadaptive control law is basically the same, which indicates
that the number of NN do not affected the control accuracy.
In addition, the index of MIAC under the two control laws is
also the same. Therefore, the quantitative indicators IAE and
IMAC show that the proposed indirect neuroadaptive control
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FIGURE 5. Settling time comparison between three schemes.

scheme not only can ensure the control performance, but
also can reduce the computational load of control algorithm.
Hence, the simulation and quantitative results demonstrate
the desirable features of the proposed control scheme as
proved Theorem 1.

To illuminate the superiority of our proposed direct/indirect
neuroadaptive control scheme, simulation comparisons with
the finite-time terminal SMC scheme proposed in [20] is
carried out. In simulation, the design parameters of the
finite-time terminal SMC law are samewith those in [20], and
the initial states θ (0) and θ̇ (0) are identical to the counterparts
for the simulations under our proposed tracking control
schemes. The finite-time terminal SMC law is given by

τsm = −ASh − ϑ̂
T
β(x)− uδ (52)

˙̂
ϑ = 8β(x)ST (53)

uδ =


(υ + ῡ)S
||S||

0
(54)

TABLE 1. Performance comparison.

The simulation results under the SMC schemes are plotted
using dotted line in Figs. 1-3, respectively. It is obvious from
Fig.1 that the SMC scheme can also force the output q of
RM to track qd . From Fig. 2, the SMC law exhibits the fast
response performance, but the tracking control accuracy is
poorer than that of our proposed control schemes. In addi-
tion, it can be clearly seen form Fig. 3 that there exists
severe chattering in the curve of control input τ . Therefore,
the simulation comparisons further show that the proposed
direct/indirect neuroadaptive control schemes are effective
and the computation is inexpensive, meanwhile the control
accuracy can also be ensured.

To verify that the output constraint capability of the pro-
posed control schemes, simulation comparisons are carried
out with the direct/indirect approximation method without
output constraint. From (19), if the output constraint is not
considered in the control design, the variable χ can be writ-
ten as χ = e2 + δe1 with δ = diag(δ1, δ2). For the
direct/indirect approximation method without output con-
straint (DAMWOOC/IAMWOOC), the structure of control
law is the same as that one in this work. In addition, the design
parameters on the control laws without output constraint
are identical to the counterparts for the control laws (30)
and (41). The simulation results are shown in Fig. 6, from
which we can find that the output qi (i = 1, 2) under
DAMWOOC/IAMWOOC violates the constraint boundary,
which show that the output constraint capability of the pro-
posed control schemes is verified.

FIGURE 6. Simulation comparison results.
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V. CONCLUSION
In this paper, we have addressed the neuroadaptive tracking
control problem for ELSs in the simultaneous presence of
uncertain dynamics, unknown disturbances and constraints
both in input saturation. The direct/indirect adaptive NN
and virtual-parameter learning method are taken into the
control design to handle the internal and external uncertain-
ties. In addition, the Gaussian error function is applied to
replace the non-smooth input saturation nonlinearity. And
then, the Nussbaum function technology is used to solve the
time-varying gain issue cause by the Gaussian error function.
The theoretical analysis indicates that under the proposed
direct/indirect neuroadaptive tracking control schemes, all
signals in the closed-loop Euler-Lagrange tracking control
system are bounded and the zero tracking error is achieved.
The simulation results show that the tracking control is
reached with zero tracking error. In the further, we will inves-
tigate the zero tracking control issue under the event-triggered
mechanism.

APPENDIX A
PROOF OF LEMMA 6
For any z satisfies |z| < κ , the item

(
κz

κ2−z2

)2
in Eq. (14) can

be rewritten as( κz
κ2 − z2

)2
= log

(
exp

( κz
κ2 − z2

)2)
(55)

Using Taylor expansion, Eq.(55) can be rewritten as

( κz
κ2 − z2

)2
= log

1+
( κz
κ2 − z2

)2
+

∞∑
n=2

((
κz

κ2−z2
)2)n

n!


≥ log

(
1+

( κz
κ2 − z2

)2)

≥ log

 κ4(
κ2 − z2

)2


= 2 log
(

κ2

κ2 − z2

)
(56)

Therefore, Lemma 6 is proved.

APPENDIX B
PROOF OF LEMMA 7
Consider the Lyapunov function as follows

Ve =
1
2

n∑
i=1

log

(
κ2i

κ2i − e
2
1,i

)
(57)

The time-derivative of Ve is

V̇e =
n∑
i=1

e1,iė1,i
κ2i − e

2
1,i

= e1T ψ̄(e1)ė1 (58)

where ψ̄(e1) = diag( 1
κ21−e

2
1,1
, · · · , 1

κ2n−e
2
1,n
).

From e2 = ė1, Eq.(19) and Lemma 4, one can get

V̇e = e1T ψ̄(e1)
(
χ − ψ(e1)e1

)
≤ −e1T ψ̄(e1)ψ(e1)e1 + e1T ψ̄

2
(e1)e1 +

χTχ

4

= −

n∑
i=1

(δi − 1)e21,i
(κ2i − e

2
1,i)

2
+
χTχ

4

= −

n∑
i=1

δi − 1

κ2i

(
κie1,i

κ2i − e
2
1,i

)2

+
χTχ

4
(59)

Further, using Lemma 5, Eq.(59) can be rewritten as

V̇e ≤ −2
n∑
i=1

[
δi − 1

κ2i
log

(
κ2i

κ2i − e
2
1,i

)]
+
χTχ

4

≤ −4ρVe +
χTχ

4
(60)

where ρ = min{ δi−1
κ2i
, i = 1, · · · , n} with δi > 1.

From Eq.(60), if |q1,i(0)| < κc,i holds ∀i and χ is bounded
for ∀t ≥ 0, then Ve is bounded. Further, e1 is also bounded
and |e1,i| < κi, that is, |x1,i − xd,i| < κi. Considering
Assumption 3, on can obtain

−κi−kd,i ≤ −κi+xd,i<x1,i < κi+xd,i ≤ κi + kd,i (61)

Recalling Eq.(20), we have −κc,i < x1,i < κc,i, that is,
|q1,i| < κc,i always holds. Therefore, Lemma 7 is proved.
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