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ABSTRACT Real-world datasets, particularly Electronic Health Records, are routinely found to be mixed
(comprised of both categorical and continuous variables) and/or missing in nature. Such datasets present
peculiar challenges related both to their clustering and the evaluation of the clusterings obtained. In this
paper, we discuss these challenges in detail, as well as the solution approaches applied to them in the
literature. We then apply some of these approaches to a multi-racial Chronic Kidney Disease (CKD) dataset
comprising of 20 continuous and 12 categorical variables with an over 30% missingness ratio, evaluating
our results through external and internal validation as well as cluster stability testing. From the results of
our study, the Ahmad-Dey distance measure consistently outperformed Gower’s distance on our mixed and
missing dataset. In addition, our results show that advanced imputation methods like multiple imputation,
which take into consideration the uncertainty inherent in imputation, should be explored when clustering
missing datasets. Three clusters were identified from our dataset which were significantly differentiated by
age, sex, estimated Glomerular Filtration Rate (eGFR), creatinine, urea, and hemoglobin, but not by race
or blood pressure. The fact that, through proper cluster analysis, we were unable to identify five clusters
corresponding to the five CKD stages usually used to classify CKD patients indicates that datasets with
more than the usual four/six variables used for computing eGFR may contain a latent structure different
from this five-group structure, the identification of which will provide valuable insights peculiar to each
cohort for medical practitioners.

INDEX TERMS Chronic kidney disease, cluster analysis, electronic health records, missing data, mixed

data, Gower’s distance, Ahmad-Dey distance.

I. INTRODUCTION

Data clustering is an important approach which can be used
to, in an unsupervised way, decipher some inherent and prac-
tically relevant structure in a dataset. With more than 404,000
documents related to cluster analysis in the literature [1], this
approach has been widely used to extract meaning from data
in the scientific literature over the years, with applications
ranging from data compression, tumor categorization, video
segmentation, and recommender systems to the grouping of
galaxies by their shape [2]. In simple terms, clustering is
the segmentation/partitioning of a dataset into groups. Two
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major desirable characteristics of the resultant grouping are
homogeneity, which maximizes intra-cluster compactness or
similarity, and heterogeneity, which seeks to achieve as much
separation as possible between clusters. In essence, we desire
to partition a body of data into groups that are as distinct as
possible.

Clustering real-world datasets poses several challenges
because they do not present in as ideal a format as would
make for easy clustering. Apart from complexities introduced
by high dimensionality, noise, and outliers, missingness and
a combination of multiple variable types within a single
dataset are significant challenges that are routinely encoun-
tered when clustering real-world datasets. Though several
clustering algorithms have been proposed in the literature to
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handle missing or mixed datasets, it is more difficult to find
approaches which are designed to properly cluster data which
is both mixed and missing.

An important aspect of data clustering is cluster evaluation,
where we seek to either obtain some level of confidence
regarding the reliability of the results obtained from cluster
analysis (validation), or select the most suitable algorithm
from a set of algorithms available for a given problem (com-
parison) [2]. Cluster evaluation of mixed and missing datasets
also has its unique challenges. A widely-used approach to
clustering mixed and/or missing data in the literature is the
application of mixture models, which view the dataset as
being comprised of a mix of multiple parameterized probabil-
ity distributions which are seen to correspond to clusters, with
the major aim of discovering the parameters which describe
these distributions [3]. These approaches do not inherently
apply a sense of pairwise distance per se as is the case
with most internal validation measures, and thus, performing
internal validation on their results is impractical. A special
class of validation measures, e.g. the Bayesian Information
Criterion and Akaike Information Criterion [4], which take
advantage of the probabilistic nature of the distributions, can
be used to evaluate these methods, as is usually done in the
literature. However, this does not help, either, as the question
of fairness in comparing them with internal validation scores
obtained for other algorithms based on the computation of
Euclidean or other distances arises [5].

Electronic Health Record (EHR) data are prime exam-
ples of data which can usually be found to be both miss-
ing (especially due to attrition in longitudinal studies) and
mixed — containing both demographic information like sex,
age, and weight, and laboratory measurement or treatment
intervention indicators, which are either categorical or contin-
uous in nature. Thus, a bid to properly and reliably perform
cluster analysis on such datasets pits the researcher against
the challenges earlier alluded to. In this paper, we discuss
and apply some solutions existing in the literature to tackle
these challenges, particularly with regards to our Chronic
Kidney Disease (CKD) dataset, presenting some compara-
tive analyses of a number of these approaches, and insights
which can be drawn from them. Based on the outcome of
our comparisons of these methods, we present analyses of
the clustering obtained. This paper is structured as follows:
Section II presents a review of the approaches existing in
the literature for clustering mixed, missing, and mixed and
missing datasets, cluster evaluation for mixed and missing
data, as well as some studies which have applied cluster
analysis to EHR data and the results they obtained. Given the
wide range of clustering and cluster evaluation approaches
available in the literature [2], Section III presents our con-
siderations and justifications for the selections we made in
our specific CKD case study. We also present an overview
of our dataset in this section. In Section IV, we present the
results of our experiments and a discussion of our inferences
from them. Section V presents a conclusion of the study, its
implications, and suggestions for future research.
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II. LITERATURE REVIEW

A. CLUSTERING MIXED DATA

Mixed data clustering is a highly active field of research,
given that it presents unique challenges due to the presence
of categorical variables, which, being non-numeric, do not
lend themselves to arithmetic operations like addition, sub-
traction, squares/square roots, etc. These operations are inte-
gral to the computation of Euclidean or other distances. Put
another way, categorical variables convey value/meaning in
a non-numerical sense, or at least, in a sense which is diffi-
cult to quantify numerically. Thus, as Christian Hennig puts
it, “Buclidean intuition is irrelevant in ... clustering prob-
lems with categorical variables or non-Euclidean dissimilar-
ities [5, p. 58]. This immediately discountenances the naive
practice of simply converting categorical variable values to
integers and treating them as numerical, one which is not
uncommon, at least not among those who are less statistically
inclined. Thus, the major and widely-known methods for
approaching this challenge in the literature include either
converting variables from categorical to continuous or con-
tinuous to categorical, developing new distance measures
suitable for mixed data, and applying mixture models [3], [6].

1) VARIABLE CONVERSION

Converting continuous variables into categorical ones
generally involves binning into a pre-determined number of
representative categories, which then allows for the applica-
tion of clustering methods developed for categorical data such
as CACTUS [7], Squeezer [8], Clarke et al.’s [9] ensemble
method, and a plethora of others [10]. However, this form
of discretization results in loss of information and poses a
new non-trivial challenge of selecting an appropriate dis-
cretization scheme, a critical choice that directly determines
the resulting similarity matrix and/or clustering [3]. One of
the most popular methods of converting from categorical to
continual variables is dummy coding, where each category is
converted into a binary variable, with a value of 1 indicating
the allocation of that category level to a record, and zero,
otherwise. This is also known as one-hot-encoding in the
machine learning community. Once this is done, the entire
data is (optionally) scaled, and Euclidean intuition can be
used. However, Foss et al. [11] show through theoretical
calculations and simulations that apart from the high dimen-
sionality and consequent high computational burden this
introduces to the clustering process, the domain-specific
meaning conveyed by such transformed variables is lost.
Furthermore, dummy-coded variables tend to get dominated
by continuous variables during clustering, and no weighting
scheme can overcome this generally. Another conversion
approach which has been proposed and used in the literature
to overcome some of these shortcomings leverages dimen-
sionality reduction. In some cases, dimensionality reduc-
tion is performed solely on the categorical variables, after
which the resulting principal components (now numerical)
are combined with the continuous part of the mixed data, and

VOLUME 9, 2021



P. A. Popoola et al.: Cluster Analysis of Mixed and Missing CKD Data in KwaZulu-Natal Province, South Africa

IEEE Access

clustering is done. In other cases, the entire mixed dataset
undergoes dimensionality reduction, and the resulting top
d components are selected and used for clustering. This
approach, where dimensionality reduction is done as a sep-
arate process preceding clustering, is known as the tan-
dem approach [3]. For example, Factor Analysis of Mixed
Data [12] can be applied as a dimensionality reduction
technique, followed by k-means, hierarchical clustering, etc.
However, apart from the fact that the selection of d presents a
separate optimization problem given that it invariably deter-
mines the cluster results, this approach leads to a problem
known as cluster masking. The cluster masking problem
arises because each of these two steps — dimensionality
reduction and clustering — optimize a different objective, and
in some cases, dimensionality reduction hides the underlying
cluster structure. To address this problem, solutions have been
proposed in the literature which optimize a combination of
these two objectives [13]. However, it is important to note
that both approaches depend heavily on the amenability of
the dataset to dimensionality reduction where a few principal
components account for a high percentage of variability in
the dataset. Where this is not the case, these methods cannot
be reasonably applied.

2) HYBRID DISTANCE MEASURES

The extension of distance measures to accommodate mixed
data is an area of active research in the literature, as ‘““finding
an appropriate similarity measure and cost function to handle
mixed data remains a challenge in partitional clustering algo-
rithms.” [6, p. 11]. One of the most popular of such hybrid
distance measures is Gower’s distance [14], [15], which is
widely used for clustering mixed datasets in the literature, and
is given as follows:

27 Wil %))
Z,"n:1 wj
where fi(xj,y;)) = |x; — yj|/rj if j is continuous (7; being
the sample range of variable j), and simple matching if j is
categorical, m is the number of variables, and wj is the weight

associated with each variable.

As can be seen from (1), Gower’s distance measure com-
putes distances for continuous and categorical variables sepa-
rately, summing the results. In simple matching, 1 is returned
when the categorical values are the same, and 0 otherwise.
The weight, w; is user-defined both to help balance the
contributions of both continual and categorical variables,
and to implement any expert knowledge regarding variable
importance. A key weakness associated with this weighting
approach in general is that the choice of optimal weights is
a difficult/impossible one, in addition to the fact that, in the
case of Gower’s distance in particular, wrongly-specified
weights by the user will invariably lead to inaccurate clus-
tering results, given the fact that the weights strongly affect
the clustering outcome. This is more evident for categorical
variables, where, being multiplied by 1, the weight is essen-
tially the variable value. Foss et al. [15] also point out that

8¢ (X,Y) = (1
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when Gower’s distance is combined with Partitioning Around
Medoids (PAM), the distance function produces unchanging
values even with changing cluster-specific underlying cate-
gorical level probabilities. They also show that the distance
is dominated by the weight, even in cases where the weight
gives no information about cluster membership.

Huang’s [16] distance measure for mixed datasets was
developed to be used in conjunction with the k-prototypes
clustering algorithm. Being a centroid-based method, dis-
tance/similarity is measured from each data point to its
pre-determined cluster prototype, and is given as follows:

my 2 me
on (X 00 =Y (¥ —aj) +v Y (5ap) @
j=1 j=1

where X; and Q; are the ith data point and the prototype for
cluster [, respectively, m, and m, are the number of continu-
ous and categorical variables, respectively, y; is a weight for
cluster [’s categorical variables, ql’j is the mean, and qu, the
mode value for attribute j in cluster /.

In a similar fashion to Gower’s distance, Huang’s distance
computes continuous and categorical distances separately
and sums the results, using Euclidean distance for continu-
ous variables, and simple matching for categorical variables.
Notably, the weight, y; is here applied on a cluster-by-
cluster, rather than variable-by-variable basis, as is the case
with Gower’s distance. y; is also automatically computed as
part of the k-prototype algorithm. This is probably aimed
at addressing some of the weaknesses of Gower’s distances
mentioned earlier. However, in doing so, the flexibility of
portraying and specifying varying variable importance is lost,
and this is more so given that the weights are only associated
with categorical variables. Ahmad and Dey [17] also point out
another weakness associated with the use of the mode as the
prototype for categorical variables, explaining that it leads to
loss of information, especially in cases where the differences
in frequency between categorical levels are small. In addition,
since distances are computed with respect to cluster proto-
types, a square distance matrix reflecting pairwise distances
between all data point cannot be obtained from associated
k-prototype algorithm, leading to difficulties in applying
internal validation indices which generally require a distance
matrix. However, taken alone, the distance function can be
easily modified to replace cluster centroids with another
data point, making pairwise distance computations achiev-
able. Modha and Spangler [18] proposed a distance measure
which sought to address the issue of balancing the contri-
bution between categorical and continuous variables through
a brute-force approach which adaptively assigns weights to
either variable type based on the quality of their underlying
cluster structure, that is, their contribution to the separation
and compactness of the resulting clusters. Their algorithm
and its associated mathematical formulations are summa-
rized in [15]. Though Foss et al. [15] assert that in most
cases, the Modha-Spangler approach is able to balance the
contributions of both variable types, leading to great results,
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Ahmad and Dey [17] point out the computational bur-
den associated with the method due to its brute force
approach. Foss and Markatou [19] also identify another
weakness of the method which lies in its inability to up-
or down-weigh individual variables, given that it uses a
single weight value to balance categorical vs continuous
variable contributions. A number of other hybrid distance
measures are highlighted in [15] and [17], but we lastly
discuss Ahmad and Dey’s [17] distance measure, due to its
unique approach to computing categorical distances based on
their co-occurrence. Their distance function, an extension of
Huang’s distance measure is as follows:

9= 8aldi. C) 3)
i=1

where
my me 2
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where m, and m, are the number of categorical and continu-
ous variables, respectively, C; is the closest cluster center to d;
and w, is a weight associated with each continuous variable.

Though the Ahmad-Dey distance measure adopts a very
similar approach to Huang’s in that distances are computed
from cluster centers and categorical and continuous distances
are computed separately, a key difference is that they do
not compute categorical distances as simple binary match-
ing. Categorical distances are computed as a function of
the overall distribution of categorical values in a variable,
as well as their co-occurrences with other categorical variable
values. By so doing, they provide a richer value spectrum
for categorical variables, removing the narrow limitations of
binary values. Similarly, the weights for numeric variables
are automatically computed based on value co-occurrence,
though this computation necessitates the discretization of the
continuous values. The authors of the algorithm emphasize,
though, that this discretization only occurs during weight
computation, and the original continuous values are used in
computing squared Euclidean distance. The idea for the use
of co-occurrence in computing categorical distance, which
was taken from Stanfill and Waltz [75], has also been applied
in [7]. One weakness of this approach, however, is the com-
putational burden associated with computing co-occurrence
for all combinations of categorical values and variables.

3) MIXTURE MODELS

As has been earlier mentioned, a statistical approach to mixed
data clustering involves viewing the dataset as a mixture
of parametric distributions, also known as a finite mixture
model. That is, assumptions are made about underlying/latent
distributions in the data, and methods (usually variants of
EM) are used to estimate the parameters that describe those
distributions, each of which corresponds to a cluster [20].
Upon convergence, these methods produce estimations of
cluster membership probability for each data point [21],
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which can then be converted into crisp cluster memberships
by assigning each data point to the cluster with the maximum
associated conditional probability. These mixtures are gener-
ally modelled as

K

f (i) =Y mifiis 61) )

k=1

where Zszl mr=1,0 < m, < 1Vk, 6y is the parameter
vector, ¢ = (0, ), and K is the number of distributions.

In (5) above, m; will eventually represent the probabil-
ity of data point x; being in cluster k upon convergence.
Viewing the data as a mixture of homogenous distributions
allows both simple and complex components to be modeled.
In addition, mixture models are usually able to achieve a
good balance between continuous and categorical variables.
However, such methods can perform poorly when parametric
assumptions are violated. Moreover, some of the weaknesses
of the EM algorithm like its tendency to get stuck on local
optima and the possibility of intractable integrals in the E
step [15] are also associated with this approach, given that
EM is its most widely used method. A number of studies and a
review on finite mixture models are listed in [21], and studies
applying finite mixture models to clustering mixed data in
particular are reviewed in [6]. We briefly highlight two which
are somewhat popular in the literature. The KAy-means for
Mlxed LArge datasets (KAMILA) algorithm borrows ideas
from the classical k-means algorithm as well as Gaussian-
multinomial mixture models [11]. Thus, it is able to balance
categorical and continuous variable contributions and avoid
the weaknesses of the k-means algorithm without making the
strong parametric assumptions required by mixture models.
It achieves the relaxation of these assumptions by comput-
ing its density estimator directly from the data. From the
extensive tests carried out on both simulated and real-world
datasets by the authors, they showed that their algorithm
performs well on elliptical and non-elliptical data, and was
the only algorithm to perform well across all test conditions,
outperforming the Modha-Spangler method, which failed to
achieve a good balance between categorical and conditional
variables in some cases. Another popular clustering algo-
rithm which applies mixture modelling is McParland and
Gormley’s [22] ClustMD, which consists of a suite of six
latent variable mixture models with varying levels of parsi-
mony achieved by imposing varying constraints on the model
parameters, all of which are assumed to be Gaussian — includ-
ing categorical variables, which are assumed to arise from a
latent Gaussian continuous model. The method also assumes
diagonality of the covariance matrix for the models, implying
conditional independence of the variables. This assumption,
generally known as the local independence assumption, is
universal to mixture models involving both categorical and
continuous data [20]. Apart from the fact that this assumption
imposes restrictions on the generalizability of the model,
the ClustMD model’s computational efficiency decreases
rapidly with the addition of more categorical variables. They

VOLUME 9, 2021



P. A. Popoola et al.: Cluster Analysis of Mixed and Missing CKD Data in KwaZulu-Natal Province, South Africa

IEEE Access

performed simulations to evaluate the performances of the six
parsimonious models over a range of component numbers,
and the VII model with two components, which was derived
by constraining the sum of all cluster volumes associated
with categorical (nominal) variables to 1, outperformed all
others. No explanation was provided for the meaning of the
acronyms like VII and EVI used to represent the six models.
When tested on a real-life prostate cancer dataset, the EVI
model performed best. The formulation of the EVI model,
as well as the other four, is detailed in their report.

B. CLUSTERING MISSING DATA

Missingness in a dataset has been classified in the literature
as Missing Completely At Random (MCAR), Missing At
Random (MAR), and Missing Not At Random (MNAR) [23].
The MCAR missingness pattern describes missingness which
is independent of observed or missing data points within the
dataset. Thus, any observation is as likely to be missing in one
variable as the other [24]. The MAR missingness pattern is a
step less restrictive than MCAR, in that it assumes that the
missingness in the dataset is dependent only on the observed
data. For a dataset to be MNAR, however, the probability
of missing values occurring in a particular variable must be
dependent on those same unobserved values [25]. In practice,
the MCAR condition is more difficult to prove, given its
strong assumptions. On the other hand, the MNAR condi-
tion, though requiring the weakest assumptions of the three,
is much more difficult to handle, given that the underlying
probability model for missingness must first be found, and
that the MNAR condition itself can be difficult to prove,
since it depends on values which are not observed [25]. MAR
is, thus, the condition which lies reasonably between these
two in practical applications, and there are ways through
which its assumptions can be made even more plausible from
the data [26]. More so, the MAR assumption subsumes the
MCAR assumption. This has led most state-of-the-art miss-
ingness treatment algorithms to hold MAR as an assumptive
basis for their computations [25].

The various missingness treatment methods in the litera-
ture can be broadly classified as either deletion, or imputa-
tion, or direct estimation methods. The two known deletion
methods, complete-case analysis and pair-wise deletion are
strongly discouraged in the literature, as at best, they lead
to a reduction in statistical power, and at worst, introduce
serious bias into analysis results. This is due to the fact
that they depend on the MCAR assumption. Complete-case
analysis, in particular, is almost always violated with EHR
data [27], and thus, is almost guaranteed to introduce bias into
statistical/research inference. A plethora of imputation-based
methods exist in the literature, including single and multiple
imputation methods. However, the most popular and “‘state-
of-the-art” method is Multiple Imputation (MI), due to its
relative ease of implementation, as well as its modelling
of the uncertainty that is inherent in data imputation [28].
MI is carried out in three major steps: imputation, analysis,
and pooling. In brief, these steps involve the imputation of
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m independent values for each missing data point, resulting in
m imputed datasets; the individual and independent analysis
of each of these datasets to obtain the desired statistic; and
the subsequent pooling/combination of the m results into
one final desired analysis result/statistic [29]. It is the inde-
pendent analyses and subsequent pooling of analysis results
that distinguish MI from SI as taking into consideration the
uncertainty associated with imputed values.

In the context of clustering, there are two major approaches
to handling missingness: one which treats missingness first
and then carries out clustering on the resultant complete
dataset, and another which merges the two problems into
one, performing both clustering and missingness treatment
simultaneously. These two approaches can be referred to
as multi-stage and direct ways of clustering missing data,
respectively.

1) MULTI-STAGE CLUSTERING

Under multi-stage approaches, Zhang and Fang [30] car-
ried out a study which showed the superiority of MI over
SI or non-imputation in fuzzy clustering accuracy, while
Goel and Tushir [31] showed the superiority of linear inter-
polation (single) imputation combined with the incorpora-
tion of the Mahalanobis distance in the clustering step over
some other fuzzy clustering approaches. In a similar vein,
Tuikkala et al. [32] had earlier reported the superiority of
advanced imputation techniques to basic ones like mean
imputation in clustering gene expression data. However,
Souto et al. [33] later argued that from their experiments, this
superiority is non-existent, backing up their conclusion with
the rationale that gene expression being highly correlated and
characterized by very close values, imputing with a mean
will have minimal effect on the shape of the data’s distri-
bution. Lgkse et al. [34] introduced a new kernel function
which learns the similarities between data points from the
data’s fitted mixture models, inherently taking care of the
missing value problem. They then use this kernel function
for spectral clustering, performing k-means clustering on the
spectral clustering output. They show that their approach
outperforms other baseline imputation methods in clustering
accuracy. Finally, Yu er al. [35] use optimally designed varia-
tional encoder networks and high-order fuzzy c-means to first
perform clustering, after which missing values are recovered
from the clustering results.

2) DIRECT CLUSTERING

Direct approaches to clustering in the face of missingness
can be divided into those that extend existing methods like
k-means, and those that modify existing distance measures
to produce novel ones which are designed to compute dis-
tances on missing data. Among the extension approaches,
Chi et al. [36] introduced k-POD, a method which lever-
ages an underlying assumption of k-means that every mem-
ber of a cluster is a noisy instance of the cluster centroid
to develop a simple majorization-minimization algorithm
which, in a manner similar to expectation-maximization,
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iteratively improves both imputation and clustering quality.
They show from their experimentations that k-POD produces
comparably accurate (externally validated) clustering results
with much faster times than multi-stage approaches which
combine imputation and clustering time, and that this advan-
tage becomes more evident with higher dimensionality and
missingness rates. They note, however, that, given that it is a
k-means-based algorithm, k-POD has the same weaknesses
that k-means. The essence of this statement also applies
to all extension methods in this context — they generally
possess the same weaknesses as the original/classical meth-
ods they extend to handle missingness. A similar approach
is used by Li et al. [37], who, in a bid to overcome the
uncertainty associated with imputing missing values, modify
the clustering objective function to incorporate a representa-
tion of missing data as intervals. They then incorporate an
adversarial factor into the k-means and k-medoids clustering
algorithms to produce ‘robust’ clustering decision makers.
They show that their algorithm performs better than other
clustering approaches which they tested on some datasets.
Wang et al. [38] propose an extension to k-means similar
to k-POD which iteratively re-computes cluster centroids
and fills in missing values from their corresponding centroid
values. They report that their method outperformed other
multi-stage approaches involving zero and mean imputation,
Expectation Maximization (EM), and KNN filling.

Lithio and Maitra [39] defined a new distance measure
for the k-means algorithm which ignores missing feature
values, forming a new clustering algorithm called k,,-means.
Their comprehensive simulation experiments showed that
kn-means was significantly faster than k-POD in almost all
instances, while maintaining a high level of accuracy. Their
algorithm also performed better than two-stage clustering
methods where EM and MI were first used for imputation,
followed by k-means for clustering. Datta et al. [40] propose
a modification to the Euclidean distance measure for missing
data called Feature Weighted Penalty Based Dissimilarity
where a penalty weight is assigned to each missing feature.
They then use the new distance measure both on k-means
and hierarchical clustering, showing that their method out-
performs existing two-stage imputation-based methods, espe-
cially in the sense that it performs well with all missingness
mechanisms, whereas each two-stage method they tested
was only able to perform well on some specific missingness
mechanisms. Finally, AbdAllah and Shimshoni [41] modify
the classical Euclidean distance for missing data to com-
pute distances based on mean and variance for MCAR, and
conditional mean and variance for MAR and MNAR. They
also extended the centroid/mean computation required for
k-means to accommodate missing values, and proposed a
way of integrating their new distance measure into mean shift
clustering. They reported that their algorithms outperformed
all compared algorithms in most cases on six datasets from
the Signal and Image Processing Unit.

From these reviewed studies, we note that in most, if not
all cases, external validation, specifically the Adjusted Rand
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Index (ARI), was the method used to compare clusterings.
Even algorithms which extended classical distance measures,
and hence, would be able to evaluate their results using
internal validation, chose to use external validation. This may
simply be due to the need to compare with methods which do
not make their distance measures externally available (where
they are used for clustering) or with classical methods like
k-means which do not accept distance matrices as input.
It is also worthy of note that most direct clustering methods
are compared with, and shown to outperform, multi-stage
methods in terms of computational efficiency. This is an
expected outcome considering that, generally, multi-stage
methods inherently involve more computation than direct
methods.

C. CLUSTERING MIXED AND MISSING DATA

As is evident from the preceding sections, a significant
amount of research effort has been devoted to clustering data
which is either solely mixed, or solely missing. However,
at least not as much attention has been given to scenar-
ios — which are fairly common — where the dataset to be
clustered both has missing values and is made of a mix-
ture of categorical and continuous variables. Most methods
which can cluster mixed data do not accept missing data,
and most methods which cluster missing data directly do
not accept mixed datasets. This could be, in part, due to the
fact that these two challenges can be handled individually
and sequentially, with missingness being first dealt with, and
the resulting complete dataset used as an input to methods
which cluster mixed data. However, this multi-stage approach
robs the researcher of the advantages associated with miss-
ingness clustering treatment methods which do not directly
impute values into the dataset, while also subjecting them
to the disadvantages associated with multi-stage methods,
major among which is high computational complexity. At the
implementation level, however, some of the more popular
mixed data clustering methods earlier discussed have been
made amenable to missing data. For example, in R [42], the
daisy function of the cluster [43] package handles missing
values in its Gower’s distance implementation by assigning a
weight of 0 to variables which are missing in the ith distance
computation (a form of pairwise deletion or available case
analysis). This approach is also used in the kproto function of
the clustMixType [44] package which implements Huang’s
distance measure and the k-prototypes algorithm. As has
been earlier pointed out, this approach has been shown in the
literature to have the potential of introducing bias into the data
analysis process.

From the previous sections, it will be noticed that one
method which is common to both mixed and missing data
clustering is EM. An algorithm which takes advantage of this
phenomenon is MixAll [45], which applies mixture models
to cluster categorical-only, continuous-only data, and mixed
data, utilizing EM both for estimating the mixture models,
as well as for imputing missing values. It provides support for
Gaussian, Poisson, and Gamma distributions. The package
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vignette explains the algorithm in more detail. Similarly,
the study by Revillon and Mohammad-Djafari [46], achieves
the clustering of both mixed and missing data through the
use of mixture models. They handle missing data by taking
advantage of properties of the multivariate normal distribu-
tion to obtain a distribution for missing values™ [46, p. 3].
They applied their approach to the clustering and classifica-
tion of radar emitters for electronic warfare, comparing its
results with those of k-means, k-nearest neighbors (kNN),
random forests (RF), and neural networks (NN). In addition,
varying percentages of missingness were introduced into the
dataset as part of the evaluation process. Specifically, the
clustering results of their algorithm was compared with those
of a multi-stage clustering process involving mean/mode
imputation followed by k-means, and cluster number selec-
tion was done using a lower bound measure which was intro-
duced by the authors, as well as Average Silhouette Width
(ASW). However, they did not specify how they were able to
apply k-means, which only classically works on continuous
data, to the mixed dataset. Be that as it may, they report
that their approach outperforms the multi-stage approach at
higher levels of missingness in the dataset.

From the above review, it is clear that a plethora of clus-
tering methods are available in the literature, each with its
pros, cons, and applicability given the nature of the problem
and dataset at hand. Selecting the suitable one will require
evaluating the clustering results obtained in terms of desir-
able qualities such as computational efficiency, quality, and
reliability. These considerations form the thrust of the next
subsection.

D. CLUSTER EVALUATION FOR MIXED AND MISSING DATA
The quality of a clustering result essentially has to do with
how well the underlying clusters in a dataset have been iden-
tified, and this is directly tied to the purpose and application
of the clustering task at hand [15]. Hennig [5] posits that
there are two approaches to clustering — a ‘constructivist’
approach and ‘realist’ approach. The realist seeks to identify
the structures that are within the dataset in an objective man-
ner, independent of any input from the researcher, while the
constructivist argues that the underlying structures are only
deciphered as they are constructed/seen by the researcher —
they only make sense because the researcher attributes sense
to them from his/her previous experience, expertise, and/or
research requirements. It seems reasonable that a compromise
between the two approaches is most appropriate. That is,
to some extent, we seek to identify structures which truly
underly the data, but these structures are only as good as
they are applicable to the problem at hand, and as such,
the researcher’s input is indispensable in the clustering pro-
cess. Clearly defining where one falls on this divide is cru-
cial, as it largely forms the researcher’s clustering goals, and
hence, the methodology adopted in selecting the appropriate
clustering results from those available through a plethora of
clustering methods. It also informs the interpretation of the
selected results are interpreted.
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Broadly, cluster evaluation methods fall into two cat-
egories: external and internal. In external validation,
the derived clustering is compared with an existing ‘ground
truth’. That is, there already exists an observable categorical
variable in the dataset which divides the data into groups, and
the clustering process aims to identify these groups exactly,
and is evaluated on how well it is able to do so. As has been
observed earlier, this is an approach which is widely used
in the literature for comparing the performance of clustering
algorithms. However, it could be argued that this is as far as
the utility of external validation goes, because they require
an ‘“‘artificial situation” which does not apply in real world
clustering problems. The major aim of clustering in the real
world is to identify unknown groupings within a dataset,
and as such, a variable with true cluster assignments is not
available. Moreover, the ‘trueness’ of these labels where they
are available in such artificial situations is contestable, given
the constructivist-realist dilemma earlier alluded to — there
may be other arguably valid underlying structures which are
different from those reflected by the provided labels. Thus,
external validation methods may not be sufficiently informa-
tive in selecting an appropriate clustering approach [5], [47].
External validation measures still have their place in cluster
evaluation, however, especially in cases where internal vali-
dation is not feasible, which is the case with many clustering
methods for mixed or missing data. They have been divided
into three categories in the literature: counting pairs, set-
matching, and information theory [48]. While counting pairs
basically evaluates clusterings by counting the corresponding
pairs of labels on which they agree, set-matching evaluates by
comparing pairs of clusters, and information-theoretic valida-
tion methods use probability theory to express the amount of
relative information contained in the clusterings [49]. These
methods are discussed in greater detail in the referenced
studies, and we provide further information on the rationale
behind those selected for our study in the Materials and
Methods section.

Internal validation methods provide insights into the intrin-
sic quality of a clustering, since they are able to variously pro-
vide a measure of its compactness and/or separation. Though
these are the major criteria for evaluating a clustering, they
are just two among the desirable characteristics of a clustering
which are listed in [5], one or more of which each internal val-
idation method is designed to evaluate. In addition, given that
the majority of internal validation methods available in the
literature perform at varied levels on clusterings depending on
their shape, noisiness, density, skewness, and the presence of
sub-clusters — Liu ef al. [50] have grouped internal validation
measures based on these features — they can be used to infer
these characteristics for the clusters generated. In addition,
they can be used to obtain insights on the performance of vari-
ous clustering algorithms in light of these characteristics [51].
Some of the measures which evaluate cluster separation
are the s-index, the Davies-Bouldin index (DB), Modified
Hubert statistic (I'), and the R-squared index (RS). Two
measures which evaluate cluster compactness include the
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root-mean-square standard deviation (RMSSTD) and the
widest within-cluster gap (w-gap). Some indices which mea-
sure the balance between cluster compactness and separation
are the Calinski-Harabasz (CH), Dunn (D), and Xie-Beni
(XB) indices, as well as the ASW and Clustering Validation
index based on Nearest Neighbours (CVNN). Comprehensive
discussions of these internal validation measures and others
can be found in [50]-[52]. One important internal validation
metric which is often overlooked in cluster analysis studies
is cluster stability [53], which seeks to evaluate how similar
the clusterings produced by an algorithm are when small per-
turbations are made to the dataset. Specifically, this measures
the reliability and generalizability of the clusterings, as a clus-
tering which changes significantly when a little perturbation
is made to the dataset cannot be trusted as showing the ‘true’
underlying structure of the dataset [47], [51]. Generally, this
involves resampling the dataset a number times, clustering
the resulting datasets using a chosen methodology, comparing
the resulting clusterings (either among themselves or to the
original clustering) using the Jaccard index and evaluating
instability as a function of the mean Jaccard distance between
the clusterings.

Conducting internal validation on mixed and missing data
clusterings poses a challenge due to the fact that most internal
validation methods were designed for Euclidean data, and
do not work on missing data [54]. A good number of them,
however, work on dissimilarity data, making methods which
accept mixed data and produce dissimilarity matrices using
hybrid distance measures an available means through which
the required dissimilarity matrices can be created. As aresult,
clustering methods which accept dissimilarity data can be
evaluated by internal validation methods that also do so,
handily solving the dilemma of internally evaluating mixed
data. Some such hybrid distance measures like Gower’s dis-
tance work for mixed and missing data, but for others, like
Ahmad and Dey’s distance which only work for mixed data,
imputation can be performed as an initial step (though at a
higher computational cost). Though Huang’s distance also
works with mixed and missing data, its use of centroids as
a reference point for distance computation does not allow
for pairwise dissimilarities. As was stated earlier, this could
be trivially overcome by changing the centroid term in the
distance equation to another candidate point, but the fact that
weights are associated with clusters and automatically calcu-
lated as part of the k-prototypes clustering algorithm restricts
our ability to derive a dissimilarity matrix which is purely
data-derived, and not dependent on the clusters which are
variable (in size, number, etc.), and thus, computation-driven.
In addition, changing terms in the distance measure raises the
question whether we could still refer to it as Huang’s measure,
given the peculiar rationale behind its development. Similar
restrictions and considerations apply to the Modha-Spangler
method. On the other hand, the Ahmad-Dey distance measure
has no weights, and thus, can and has been adapted to produce
pairwise dissimilarity matrices [55].
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E. RELATED WORKS

In this section, we highlight a few studies which have applied
cluster analysis specifically to EHR, providing some practical
context for our study and the cluster analysis results we pro-
vide. Foguet-Boreu et al. [56] performed hierarchical cluster
analysis on an EHR dataset with 322,328 multimorbidity
patients’ records who were over 64 years old. Ward’s Linkage
was used to combine clusters, which were first created by
using the Jaccard index to compare patient diagnoses and
determining the number of clusters using the CH and other
indices. Patients were subsequently assigned to the clusters to
which one or more of their diagnoses belonged. Some form
of cluster stability testing was also done to access cluster
quality. They were able to identify three clusters which were
separated by age group. The first cluster had patients both in
the 65-79 and > 80 age group and was made of two diagnoses:
hypertensive disease and metabolic disorders. The second
cluster, consisting of patients aged 65-79 years, had three
diagnoses, and the third, consisting of patients who were aged
over 80, had five diagnoses. They concluded that some of
the clusters identified were new in the literature and should
guide clinical measures for the population. However, though
the data was made of mixed variables, e.g. age and number of
diagnoses (numerical), and sex and diagnoses (categorical),
it was not clearly stated how clustering was done in light of
the unique challenges posed by mixed data. Also, it was not
stated if there were any missing data, and how that missing-
ness was handled, if it existed. A similar methodology to that
adopted in this study was used by Guisado-Clavero et al. [57]
who reported the use of the tandem approach (Multiple Cor-
respondence Analysis or MCA, for dimensionality reduction,
and k-means for clustering). They also conducted cluster
stability evaluation using the Jaccard index. However, miss-
ingness ratio and missingness handling methods were not dis-
cussed. Kneppers et al. [58] performed hierarchical clustering
on data for patients with Chronic Obstructive Pulmonary
Disease (COPD) whose dimensionality had been reduced
using Principal Component Analysis (PCA). Median values
were imputed in place of missing values, and ASW was used
to select the number of clusters. Their clustering analysis
produced two clusters, and p-values were used to evaluate
the significance of differences in variable values between the
clusters. They report that the first cluster showed more pro-
nounced changes in autophagy, myogenesis, glucocorticoid
signaling, oxidative metabolism regulation, etc. in reaction to
pulmonary rehabilitation than the second one.

Yu et al. [59] used a heatmap and hierarchical clustering
with Ward’s Linkage to perform clustering analysis on a
dataset of 2287 Chronic Kidney Disease (CKD) patients.
Variables with > 10% missingness ratio were excluded from
the analysis, and missingness in the remaining 23 variables
was handled using EM. Their cluster analysis produced three
clusters, with cluster one comprised of patients with CKD
Stage 1, cluster two of patients with CKD Stage 2, and cluster
three, of patients with CKD Stages 3-5. The methodology
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through which this number of clusters was arrived at is
unclear, as no details were given on internal validation
measures adopted. In addition, though it was stated that
Euclidean distances were used in heatmap and hierarchical
clustering, it is not clear how this was achieved, given the
mixed nature of their dataset. A similar claim was made in
Lenart et al. [60] who also performed cluster analysis on a
mixed and missing longitudinal CKD dataset with 10 vari-
ables. Of 10,014 observations, missingness was handled by
complete case analysis which resulted in the analysis being
performed on 2,696 observations. K-means, k-medoids, and
hierarchical clustering were explored, and k-medoids with
four clusters finally selected. It is not clear how this selec-
tion was made, as no internal validation methods were men-
tioned. However, a Cluster Progression Score (CPS) was
calculated and used to track patients’ progression over time
from one cluster to another, with a negative score indicating
progress to a favorable cluster, and a positive score, the
converse.

From the studies reviewed, it is clear that cluster analysis is
of benefitin analyzing patterns in EHR data. However, a num-
ber of these studies failed to clearly indicate how clustering
was done in light of the mixed nature of their datasets, with
some indicating the use of Euclidean measures. The use of
Euclidean dissimilarity on mixed data not practicable (as has
been explained earlier in this study) barring some conversion
from categorical to continuous or vice versa, which was
not reported. It is also possible that a simple direct conver-
sion of categorical values to numerical was done, in which
case, the meaning behind those categorical variables would
have been lost, raising questions about the validity of the
results reported. Finally, a number of the studies used basic
methods for missingness handling like complete-case analy-
sis or mean, median, or mode imputation which have been
shown in the literature to stand a significant chance of falsely
altering the data distribution and introducing bias into the
results [61].

lIl. MATERIALS AND METHODS

A. DATA

The dataset used for the study was derived from a longitudinal
observational study conducted at the Inkosi Albert Luthuli
Central Hospital, KwaZulu-Natal, South Africa over the
course of three years (2007-2009) on a cohort of mixed-racial
CKD patients at CKD stages ranging from 1 to 5. Demo-
graphic data such as age, sex, and race were recorded,
and laboratory measurements were performed at six-month
intervals. Variables measured include blood creatinine, pro-
teinuria, uric acid, serum urea, Magnesium, and Phosphate.
In addition, records were taken of interventions admin-
istered during patient visits including statins, carvedilol,
angiotencin-converting enzyme inhibitor ACE(I) / angio-
tencin receptor blockers (ARBs), and non-dihydropyridone
ca channel blocker (NDCCB). Estimated Glomerular Fil-
tration Rate (eGFR) was computed using the Chronic
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Kidney Disease-Epidemiology Collaboration (CKD-EPIeat)
equation [62]:

eGFR = 141 x min(Scr/x, 1)® x max(Scr/k, 1)~12%
x 0.9934€° 5 1,018 [if female] x 1.159 [if black],
(©)

where Scr is serum creatinine, « is 0.7 for females and 0.9 for
males, a is —0.329 for females and —0.411 for males, min
indicates the minimum of Scr/k or 1, and max indicates the
maximum of Scr/k or 1.

The CKD-EPI e, equation was used as implemented in
the transilplantr package [63]. CKD stage was then computed
from the eGFR scores as specified in. Thus, the dataset con-
sists of binary and nominal (categorical) as well as continuous
variables. Each measurement/intervention was recorded five
times with an interval of six months between measurements.

After preliminary data cleaning, variables with > 80%
missingness ratio were removed from the dataset, resulting
in an overall missingness ratio of 35.2% for the dataset
with 280 records. Missingness was then treated using both
multiple and single imputation. Multiple imputation was car-
ried out using the mice package [64], with the m imputed
datasets aggregated into a single dataset by taking median for
continuous values and mode for categorical variables. This
aggregation was done as an approximation of the pooling
stage of MI, since carrying out cluster analysis before pooling
is largely impracticable for cluster analysis. Thus, we carried
out pooling (in the form of data merging) before analysis
(clustering). Single imputation was proxied by simply select-
ing one of the m datasets obtained from MI as the candidate
for clustering (i.e., no pooling was done). Due to the fact that
the clustering of longitudinal datasets is outside the scope of
this study, only the measurements taken during the second
time block formed part of the cluster analysis performed. This
resulted in 32 variables — 12 categorical and 20 continuous.

B. EXPERIMENTAL SETUP

All experiments were carried out on a Core i7-7500U HP
Zbook 14u G4 laptop which has four processors running at
approximately 2.7GHz and 20GB RAM. Only one processor
was used for the experiments, however. All experiments were
conducted using R [42].

Given that there is no such thing as a generally best cluster-
ing algorithm [47], [65], we explored a number of clustering
algorithms in our analysis in a bid to find the one which
would best suit our dataset. Most of our experimentation was
focused on mixed data clustering approaches, as missingness
in the dataset had already been treated as earlier outlined.
No direct conversion from categorical to continuous or vice
versa was done due to the highlighted disadvantages associ-
ated with that approach, Approaches involving dimensional-
ity reduction were also not applicable to our dataset due to the
fact that the ‘principal components’ derived explained little
of the variability in the dataset — the top five components
explained, cumulatively, just 32.9% variability. For mixture
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TABLE 1. Clustering algorithms used in the study.

Algorithm Type Parameters
(default)

PAM Partitional -

DIANA Heirarchical Linkage:
average

AGNES Hierarchical Linkage:
average

Genie Hierarchical Gini Threshold:
0.3

models, KAMILA and ClustMD were tested through the
packages kamila [19] and clustMD [66], respectively. Hybrid
distance measures were also explored — Huang’s distance,
Gower’s distance, and the Ahmad-Dey distance, as imple-
mented in the clustMixType [44], cluster [43], and Dis-
imForMixed [55] packages, respectively. The Ahmad-Dey
distance was slightly modified in our experiments. As was
earlier alluded to, Huang’s distance could only be explored
through the k-prototypes algorithm as implemented in the
clustMixType package.

For the Gower and Ahmad-Dey distances, which could be
accessed directly, their dissimilarity matrices were computed
and used as input to four clustering algorithms: PAM, DIvi-
sive ANAlysis clustering (DIANA), AGglomerative NESting
(AGNEYS), and Genie clustering. PAM, DIANA, and AGNES
are comprehensively described in [72], and are implemented
in the cluster [43] package. The Genie algorithm is pre-
sented in [73], and implemented in the genie function of the
geniclust [74] package. The need to find algorithms which
accepted distance matrices, allowed for the specification of a
k value for the number of clusters, and had a readily available
implementation in R limited our choice of clustering algo-
rithms for experimentation. These criteria were necessary for
conducing comparisons using our internal validation method-
ology as has been discussed in the Literature Review section.
A brief summary of these algorithms is presented in Table 1.
The default values set for all algorithms parameters in their
implementation were maintained. Thus, there was no param-
eter tuning conducted. Internal validation was not feasible
for some of the methods above, and the reasons have been
discussed in preceding sections of this study. In those cases,
external validation was done, with CKD stage used as the true
label, necessitating that the number of clusters be restricted to
five. Meila [48] reports that the best counting pairs external
validation criterion is the Adjusted Rand Index (ARI), which
is widely used in the literature. Also reported to be widely
used in the literature are the Normalized Mutual Information
(NMI), and Variation of Information (VI), as well as the
Misclassification Error (H) [48]. Following popular practice,
thus, we adopted these metrics for external evaluation, but
used Normalized Variation of Information (NVI) in place of
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VIbecause all indices were to be aggregated. Also, Meila [48]
recommended that H be used only with cluster numbers
less than 5-6. Thus, we replaced it with the F-measure. All
external validation methods were used as implemented in the
external_validation function of the clusterR [67] package.

Where internal validation was feasible, one index
evaluating compactness (w-gap), one evaluating separation
(s-index), and one evaluating both compactness and separa-
tion (ASW) were used. These three internal validation meth-
ods were used as implemented in the cqcluster.stats function
of the fpc package [68]. We added a second and relatively
new index, CVNN, because it has been shown to perform
well on clusters that are skewed, arbitrarily shaped, noisy,
and containing sub-clusters [50]. CVNN is implemented in
the cvnn function of fpc with a correction explained in [54].
For each clustering approach, we tested two to five numbers
of clusters, evaluated by all four internal validation criteria.
Cluster stability was also evaluated using a bootstrap resam-
pling scheme with 100 samples and the Jaccard index for
comparison, implemented in the clusterboot function of fpc.

For both internal and external validation, each cluster-
ing approach was tested on both the singly and multiply
imputed datasets, and where a method accepted missing data
(k-prototypes and Gower’s distance), the unimputed dataset
was also used. Thus, a synopsis of our methodology
is as follows: data treatment is followed by clustering
(done separately for externally and internally validated
approaches). After clustering, external and internal validation
are performed, and the clustering produced from both is then
analyzed statistically analyzed. A graphical summary of this
general methodology is provided in Figure 1.

IV. RESULTS AND DISCUSSION

We first present the results of KAMILA, ClustMD, and
k-prototypes clustering on our dataset, as shown in Table 2,
and summarized in Figure 2. As earlier stated, each algorithm
was used to perform clustering on both multiply imputed and
singly imputed datasets (represented with “_mi”” and “_si”
suffixes, respectively). The k-prototypes algorithm was also
used cluster the missing dataset, since it accepts missing val-
ues. Overall, ClustMD performed best on three external val-
idation indices (ARI, F-measure, and NMI), while KAMILA
performed best on NVI. This was the case both on the SI and
MI datasets, though it generally performed better on the MI
than the SI datasets. This behavior can also be observed with
KAMILA, which consistently performed better on the MI
than SI dataset for all external validation measures. However,
k-prototypes performed better on the ST and missing datasets
than on the MI dataset. It is worthy of note that the highest
ARI value across all measures is 0.46 (less than 0.5), for the
F-measure, it is 0.60, and the same goes for NMI.

Though all clustering algorithms tend to perform better
in terms of NVI, the best average value of all external val-
idation measures was 0.56. This shows clearly that all the
clustering results produced failed to track/align with the pre-
scribed 5-class grouping that is espoused by the CKD stage.
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FIGURE 1. Flowchart showing the general methodology adopted for cluster analysis of our mixed and missing CKD dataset.
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FIGURE 2. Clustered bar chart showing results of external validation
conducted on missing and imputed datasets for k-prototypes, ClustMD,
and KAMILA.

In other words, they give an indication that, taken together, all
variables describing this dataset may form a latent structure
which is not captured by the CKD stage. We now proceed
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TABLE 2. External validation*.

F-
ARI measure  NVI NMI Average
Kamila_mi 03117 0.5172 0.6623 0.5049 0.4990
Kamila_si 0.2169 0.4527 0.7166 0.4416 0.4570
ClustMD_mi 0.4621 0.6001 0.5690 0.6024 0.5584
ClustMD_si 0.4083 0.5632 0.5979 0.5736 0.5358
kProto_mi 0.3742 0.5049 0.6865 0.4773 0.5107
kProto_si 0.4167 0.5457 0.5966 0.5748 0.5335
kProto miss 0.4255 0.5104 0.6417 0.5275 0.5263

*All indices are to be maximized, best values in bold

to other algorithms where we were able to perform internal
validation to obtain further insights on the latent structure of
our dataset.

Table 3 shows the results of internal validation through
the w-gap, s-index, ASW, and CVNN. Ordinarily, the w-gap
index should be minimized because it reflects the maximum
widest within-cluster gap across the three clusters, which we
would want to be as small as possible to achieve compact and
homogenous clusters. However, together with s-index and
ASW, it’s values were standardized towards maximization
and into a [0,1] range.
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TABLE 3. Internal Validation*.

GOWER AHMAD-DEY
PAM DIANA AGNES GENIE PAM DIANA AGNES GENIE
2 0.5620 0.6136 0.6300 0.6297 | @.7910 0.7910 0.7910 2.7910
3 0.5620 0.6107 0.6300 0.6297 |e.7910 0.9425 0.9425 0.7910
w-gap 0.5620 0.6060 0.6300 0.6297  |0.9425 0.9425 0.9425 0.7910
5 0.5738 0.6060 0.6128 0.6207  |0.9425 0.9547 0.9736 0.7910
2 0.1849 0.1995 0.4483 0.2314 | 0.0027 0.0030 0.1300 0.0027
index 0.1502 0.1959 0.2715 0.2274  |e.0011 0.0101 0.1327 0.0014
S-index , 0.1566 0.1947 0.2734 0.2235  |o.0080 0.0101 0.0146 0.0010
5 0.1460 0.1652 0.2658 0.2204  |0.0083 0.0116 0.0159 0.0011
MI 2 0.1347 0.1499 0.2392 0.0243 | 0.8288 0.8319 0.8376 0.7963
3 0.0860 0.1148 0.1401 0.0673  |0.6459 0.8427 0.8199 0.4138
ASW -, 0.0859 0.0993 0.0782 0.0645 |0.689%0 0.8256 0.8139 0.1138
5 0.0805 0.0958 0.0707 0.0388  |0.5860 0.8247 0.8055 0.1612
2 1.6465 1.2760 2.0000 1.6251  |1.0100 1.0100 2.0000 1.1007
3 1.8604 1.9901 1.9739 1.5725 | @.7958 1.7686 1.9301 1.2229
CWNN -, 1.9403 1.9834 1.9711 1.7807 | 1.4318 1.7211 1.3034 2.0000
5 1.8752 1.9330 1.9613 1.9254  |1.3393 1.7082 1.3010 1.6460
2 0.5852 0.5698 0.4738 0.5852 | 0.7857 0.7857 0.9412 0.7857
3 0.5852 0.5698 0.4738 0.5852 | 0.7857 0.9412 0.9412 0.7857
w-gap 0.5708 0.5698 0.4738 0.5852 | 0.7857 0.9412 0.9412 0.7857
5 0.5708 0.5698 0.4738 0.5852  |0.9412 0.9412 0.9728 0.7857
2 0.1771 0.2096 0.3767 0.2354 | 0.0035 0.0032 0.3410 0.0024
index 0.1651 0.2088 0.3323 0.2160  |0.0017 0.0102 0.0117 0.0013
s-index , 0.1725 0.1835 0.3193 0.2154  |e.0011 0.0104 0.0130 0.0011
5 0.1719 0.1838 0.2504 0.2156  |e.0079 0.0120 0.0145 0.0011
St 2 0.1039 0.1440 0.1696 0.0732  |0.8078 0.8211 0.8935 0.7898
3 0.0872 0.1110 0.0949 0.0300 |0.7207 0.8297 0.8262 0.4203
ASW 0.0638 0.0901 0.0502 0.0389  |0.5462 0.7776 0.7800 0.0679
5 0.0649 0.0861 0.0731 0.0258  |0.6245 0.6975 0.7718 0.1531
2 1.4669 1.3779 1.9630 1.4736 | 1.0098 1.0468 2.0000 1.0356
3 1.6016 1.6891 1.9560 1.4872  |e.7634 1.8069 1.3633 1.2024
CWNN -, 1.8037 1.6441 1.9907 1.7618 | 0.7833 1.7408 1.3568 2.0000
5 1.9244 1.9429 1.9436 1.0495  |1.3347 1.7180 1.3557 1.5736
2 0.6650 0.6669 0.6520 0.8250 |- - - -
3 0.6439 0.6466 0.6454 0.8250 |- . . .
W-gap 0.6521 0.6444 0.5861 0.8250 - - - -
5 0.6308 0.6444 0.5861 0.8250 |- - : :
2 9.1761 0.1876 0.2373 0.0874 |- - - -
index 0.1518 0.1851 0.2345 0.0813 - - - -
s-index , 0.1163 0.1631 0.2284 0.0718 y y . .
) 5 0.1056 0.1581 0.2295 0.0618 - - : -
Miss 2 0.1225 0.1743 0.2206 0.2451 - - - -
3 0.0800 0.1536 0.1635 0.2670 - - - -
Asw -, 0.0811 0.1113 0.1197 0.3105 y y . .
5 0.0723 0.1036 0.0949 0.2615 : . - :
2 1.3351 1.2963 1.7059 1.1455 - - - -
3 1.7720 1.9812 1.9190 1.1018 - - - -
CUNN- 1.8558 1.9420 1.9411 0.9595 - - - -
5 1.9137 1.9193 1.9743 1.7200 - - - -

*All internal validation indices are to be maximized, except CVNN, which is to be minimized. Best values for each box in bold.

These three indices have been used to find a good number
of clusters in the literature [65], [68]. On the MI dataset,
AGNES clustering using Gower’s distance shows the best
w-gap value of the three clustering algorithms, which is
the same for cluster numbers 2-4 (0.6300). However, much
higher values are achieved by all clustering approaches using
the Ahmad-Dey distance, with DIANA achieving the highest
with five clusters (0.9547). Similarly, on the SI dataset, the
Ahmad- Dey distance produces much better w-gap values
than Gower’s distance, but in this case, AGNES posts the
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highest value with four and five clusters (0.9728). On the
missing dataset, only results for Gower’s distance are shown
because the Ahmad-Dey distance does not accept missing
values. However, Genie shows the highest w-gap value here
(0.8250), as is the case with the SI dataset (0.5852). It is
interesting to note that this is the highest w-gap value achieved
across all three imputation and clustering approaches for
Gower’s distance. This suggests that the missingness han-
dling method adopted by Gower’s distance could be adopted
and perform well for clustering. In conclusion, we note that,
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FIGURE 3. A comparison of CVNN (A) and ASW (B) values by imputation method, clustering algorithm, distance measure, and number of clusters ranging

from 2 to 5. For CUNN, smaller is better, while for ASW, larger is better.

with respect to w-gap, five clusters have generally shown
the best values in our experiments, the Ahmad-Dey distance
outperformed Gower’s distance in all cases, the SI dataset
showed better values than the MI dataset, and hierarchi-
cal clustering methods performed better than PAM. On the
MI dataset, AGNES with Gower’s distance achieved the
best s-index of 0.4483 (on two clusters), also achieving
the best value with the Ahmad-Dey distance (on three clus-
ters), though this was much lower at 0.1327. This is also
the case on the SI dataset, where AGNES with the Ahmad-
Dey distance on two clusters, being the best among the
three clustering methods (at 0.3410), is outperformed by its
Gower’s distance counterpart which was the best of the three
at 0.3767.

On the missing dataset, AGNES with two clusters outper-
formed the three other clustering approaches (with Gower’s
distance) at 0.2373. In summary, for the s-index, the MI
dataset outperformed the two others, hierarchical clustering
(AGNES in particular) outperformed PAM, Gower’s distance
outperformed the Ahmad-Dey distance, and a smaller num-
ber of clusters (2-3) showed better results. The two internal
validation indices evaluated so far show a trend (observable
from Table 2), that smaller cluster numbers lead to more
well-separated clusters, while larger cluster numbers lead
to more compact clusters. This trend has been similarly
observed in the literature [54].

‘We now examine the results of the two internal validation
indices which evaluate both separation and compactness.
As Table 3 shows, for the MI dataset, AGNES with Gower’s
distance performs best of the three clustering approaches with
an ASW of 0.2392 (two clusters).
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TABLE 4. Stability testing*.

GOWER A-D
PAM | DIANA | AGNES | GENIE | PAM | DIANA | AGNES | GENIE
2 1| 0.68 0.85 0.99 0.26 0.99 0.94 0.98 0.88
2 | 0.59 0.91 0.59 0.71 0.96 0.79 0.57 0.79
1| 0.48 0.22 0.92 0.38 0.82 0.99 0.91 0.65
3 2| 0.57 o.61 0.24 0.66 0.93 0.92 0.61 0.78
3 |1 0.53 0.86 0.68 0.41 0.94 0.70 0.63 0.93
1| 0.40 0.23 0.90 0.47 0.74 0.98 0.96 0.71
Mz | & 2| 0.56 0.28 0.33 0.30 0.90 0.82 0.86 0.70
3 | 0.42 0.66 0.32 0.64 0.91 0.62 0.66 0.77
4 | 0.46 0.50 0.75 0.48 0.69 0.58 0.58 0.42
1| 0.49 0.24 0.89 0.40 0.76 0.91 0.93 0.76
2| 0.47 0.28 0.37 0.36 0.66 0.76 0.88 0.71
5 3| 0.54 0.56 0.33 0.59 0.93 0.59 0.63 0.80
4 | 0.50 0.49 0.48 0.26 0.81 0.59 0.65 0.49
5 | 0.55 0.44 0.64 0.50 0.68 0.62 0.57 0.80
2 1| 0.71 e.91 0.97 0.31 0.99 0.97 0.98 0.89
2 | 0.72 0.82 0.26 0.70 0.97 0.85 0.56 0.80
1| 0.64 0.78 0.94 0.43 0.81 0.98 0.93 0.68
3 2| 0.61 0.62 0.27 0.42 0.94 0.84 0.47 0.86
3 |10.57 0.34 0.34 0.46 0.81 0.68 0.65 0.88
1| 0.59 0.64 0.89 0.41 0.53 0.97 0.93 0.71
2 | 0.58 0.62 0.29 0.40 0.65 0.81 0.54 0.80
SI| 4 3| 0.51 0.42 0.17 0.20 0.83 0.77 0.62 0.76
4 | 0.360.45 0.48 0.43 0.62 0.58 0.74 0.46
1| 0.54 0.59 0.85 0.42 0.80 0.93 0.88 0.70
2 | 0.59 0.59 0.39 0.39 0.71 .79 0.59 0.70
5 3| 0.48 0.39 0.34 0.31 0.93 0.76 0.59 0.74
4 |1 0.39 0.49 0.33 0.42 0.61 0.63 0.80 0.51
5] 0.39 0.21 0.48 0.17 0.57 0.58 0.56 0.76

*Higher is better. Best results for each box in bold

However, with the Ahmad-Dey distance, DIANA performs
best with a much higher value of 0.8427 (three clusters). For
the SI dataset, with Gower’s distance, AGNES outperforms
others at an ASW value of 0.1696 (two clusters), but once
again, its Ahmad-Dey counterpart, which also outperforms
the two others, is much better at 0.8935 with the same
number of clusters. On the missing dataset, Genie with four
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FIGURE 4. Scatterplots of all clustering results for SI with the Ahmad-Dey distance measure. On each row, from top to bottom: PAM, GENIE,
DIANA, AGNES. Cluster numbers from 2 to 5, left to right. Selected clustering highlighted in green.

clusters performs best at 0.3105. Overall, we observe that
the Ahmad-Dey distance significantly outperforms Gower’s
distance in all cases, AGNES with the Ahmad-Dey distance
on two clusters achieves the highest overall ASW value,
and the SI dataset produced better performance than the MI
dataset. The CVNN index appears to tell a different story,
though. On the MI dataset, PAM achieves the best value with
two clusters and the Ahmad-Dey distance at 0.7361. The best
result obtained from Gower’s distance is from DIANA with
two clusters, but at a significantly higher value of 1.2760 than
that of PAM with Ahmad-Dey (lower is better for CVNN).
On the SI dataset, we find an even better result with a three-
cluster Ahmad-Dey and PAM (0.7634) than that obtained
from MI with the same set up. Gower’s distance performs
worse with a two-cluster DIANA set up at 1.3779 (which
outperforms both PAM and AGNES), also worse than both
best results obtained from the SI and missing datasets. A four-
cluster Genie set up performed best on the missing dataset
with Gower’s distance at 0.9595. In summary, for both ASW
and CVNN, the Ahmad-Dey distance outperforms Gower’s
distance, and SI outperforms both MI and missingness. How-
ever, though ASW favours two clusters with AGNES, CVNN
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favours three with PAM. Figure 3 gives a picture of the
results discussed here, showing more clearly, the observable
disparities between CVNN and ASW, as well as between
Gower and Ahmad-Dey. It also shows that, generally, the val-
ues of these internal validation indices decline with increasing
cluster numbers, and that SI performed best of the three miss-
ing data treatment approaches. The two best results which can
be conclusively selected from the internal validation carried
out so far, are, therefore, the two-cluster AGNES, and three-
cluster PAM, both with ST and the Ahmad-Dey distance mea-
sure. We now examine the results of cluster stability testing
as presented in Table 4. The table shows the mean Jaccard
similarities between each original cluster and the clusters
obtained from the 100 resampled datasets for each number of
clusters. That is, each cluster within the k-clustering obtained
on a resampled dataset is compared to its corresponding
cluster in the original clustering. This produces 100 Jaccard
similarity values for each cluster, which are then averaged.
Generally, a Jaccard similarity value, J > 0.75 is accepted as
indicating a stable cluster, and J > 0.85 indicates a highly
stable cluster. / < 0.50 indicates a clustering that is unreli-
able, and J between 0.60 and 0.75 indicates some pattern in
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TABLE 5. Cluster baseline characteristics.

Complete data Cluster 1 Cluster 2 Cluster 3
P
n = 280 n = 61 (21.8%) n = 193 (68.9%) n = 26 (9.3%) value*
Demographics
Age 44.00 [31.75-54.25] 46.00 [36.00-55.00] 42.00 [28.00-54.00] 52.00 [43.25-54.75] ns
Race Asian (58.57) Asian (62.30) Asian (57.51) Asian (57.69) ns
Gender Female (61.43) Female (54.10) Female (67.88) Male (69.23) < 0.05
Weight 69.30 [59.15-82.85] 63.6 [57.20-77.00] 70.00 [59.80-84.00] 68.40 [61.20-82.95] | ns
Height 1.60 [1.52-1.68] 1.60 [1.54-1.68] 1.60 [1.51-1.67] 1.66 [1.60-1.70] < 0.05
BMI Obese (34.29) Normal (40.98) Obese (36.27) Normal (46.15) ns
Lab. measurements
778.00 [723.00-
Creatinine 146.00 [76.00-335.25] 418.00 [328.00-505.00] 92.00 [68.00-162.00] 987.20] < 0.05
75.76
eGFR 43.43 [16.07-95.40] 12.34 [9.86-16.18] [40.84-107.38] 5.96 [4.72-6.84] < 9.05
Blood Pressure (sys/dias) < 140/90 (75.00) < 140/90 (78.69) < 140/90 (75.65) < 140/90 (61.54) ns
+ (26.92) &
Proteinuria TRACE (25.71) ++ (26.23) TRACE (30.05) +++ (26.92) < 0.05
Presence of
Atherosclerotic disease No (91.79) No (90.16) No (94.24) No (80.77) ns
Haemoglobin 11.95 [10.90-13.00] 11.20 [10.10-11.70] 12.40 [11.30-13.50] 10.60 [10.03-10.76] | < ©.05
140.00 141.00 [140.00-
Sodium 140.00 [139.00-142.00] 140.00 [139.00-142.00] [139.00-142.00] 142.00] ns
Potassium 4.70 [4.30-5.32] 5.20 [4.60-5.90] 4.60 [4.30-5.10] 5.15 [4.50-5.68] < 0.05
107.00 107.00 [105.00-
Chlorine 107.00 [105.00-110.00] 108.00 [104.00-112.00] [105.00-109.00] 109.80] ns
HCO3 - Bicarbonate 24.55 [21.40-26.43] 20.00 [17.40-24.60] 24.90 [22.90-27.10] 24.60 [19.80-25.40] < 0.05
Urea 9.75 [5.60-17.93] 21.00 [14.60-24.90] 7.30 [4.90-12.40] 18.40 [13.90-25.90] | < 0.05
Calcium 2.27 [2.13-2.35] 2.26 [2.10-2.36] 2.27 [2.15-2.35] 2.24 [2.04-2.34] ns
Phosphate 1.23 [1.08-1.52] 1.44 [1.23-1.90] 1.17 [1.02-1.40] 1.68 [1.40-1.99] < 0.05
Magnesium 0.84 [0.78-0.94] 0.83 [0.76-0.96] 0.84 [0.78-0.91] 0.92 [0.81-1.08] < 0.05
Uricacid 0.40 [0.30-0.50] 0.45 [0.40-0.50] 0.40 [0.30-0.50] 0.58 [0.40-0.60] < 9.05
Ultrasound kidney size Not taken (82.50) Not taken (86.89) Not taken (80.31) Not taken (88.46) ns
IGFR Not taken (41.43) 30-60 (49.18) Not taken (51.30) 30-60 (57.69) < 9.05
Interventions
Iron supplement No (67.86) No (59.02) No (70.98) No (65.38) ns
Diuretics Yes (75.36) Yes (88.52) Yes (68.39) Yes (96.15) < 0.05
ACEI Yes (91.79) Yes (91.890) Yes (90.67) Yes (100) ns
NDCCB No (54.64) Yes (55.90) No (59.59) Yes (61.54) < 9.05
Carvedilol No (85.00) No (75.41) No (88.60) No (80.77) < 0.05
No. of Anti-hypertensives 2 [1-3] 2 [1-3] 2 [1-3] 3 [2-4] < 0.05
Statin Yes (66.07) Yes (67.21) Yes (66.32) Yes (61.54) ns

Data expressed as median [inter-quartile range] for continuous, and mode (%) for continuous variables.

*Significance of between-cluster (clusters 1, 2, and 3) differences assessed by the Kruskal-Wallis test at a 0.05 significance level.

ns = not significant.

the data, but gives no assurance regarding cluster allocations.
Thus, in interpreting the results in Table 3, we ruled out any
clustering where one or more of the clusters had J < 0.75.
Based on this criterion, and selecting the best where more
than one configuration met the condition, the two-cluster
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DIANA + Gower and the two- and three-cluster PAM +
Ahmad-Dey approaches were accepted for both the MI and
SI datasets, and they are highlighted in bold in Table 3.
This automatically eliminated the AGNES + Ahmad-Dey
two-cluster approach favoured by ASW, leaving us with
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the three-cluster Ahmad-Dey 4+ PAM method on the SI
dataset.

A graphical representation of the clusters produced for
all four clustering algorithms on the SI dataset with the
Ahmad-Dey distance measure is presented in Figure 4. From
the graph, it can be observed that all clusterings produced by
the AGNES clustering method are characterized by one or
two singleton clusters. A similar behaviour can be observed
with DIANA clustering. This might explain the relatively
high w-gap and s-index values it showed, and casts a shadow
on these high values, as generally, and more specifically in
our case, singleton clusters are of little practical use, since
we desire to obtain information on the latent structure of our
dataset so as to provide insights which will be relevant to
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nephrologists managing CKD patients. The fact that our inter-
nal validation procedure led to the selection of a three-cluster
solution also confirms the conclusion earlier reached from the
results of external validation that there is a latent structure
in the CKD dataset as described by its constituent variables
which is different from the widely used five-stage CKD
grouping. This is reinforced by the fact that the five-cluster
PAM clustering also contains a singleton cluster.

We now present analysis of the clustering produced by
the three-cluster approach. The baseline characteristics of
these clusters are presented in Table 4, which also shows
the result of a Kruskal-Wallis significance test conducted
to identify the variables on which the three clusters differ
significantly. Significance was tested at a 0.95 confidence
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level. The multi-racial nature of our dataset allows us to
gain insights on whether race was a significant discriminating
factor between the patients in our cohort which comprised
largely of Africans and Asians, with a few White and Colored
individuals. In Figure 4, we have attempted to show the
variables which we believe would be of most interest to the
reader, though all variables and their cluster partitionings
are reflected in Table 5. The charts enclosed in red indicate
variables with no significant difference between the three
clusterings, and it can be immediately seen that the Race
variable is one of them. This indicates that in our multi-
racial CKD cohort, race was not a significantly distinguishing
factor among individuals. The same can be said about blood
pressure — there was no significant separation between the
three obtained clusters based on blood pressure. Taking center
stage in the chart is the eGFR plot, which shows that the
clusters are significantly separated by eGFR values. Clus-
ter 2 comprises of patients with relatively high eGFR values
(IQR: 40.84-107.38).

This indicates that the majority of patients in clus-
ter 2 fall within CKD Stages 1 to 3A (mild CKD). For
Cluster 1, patients are at Stages 4 & 5 CKD (eGFR with
IQR 9.86-16.18), while Cluster 3 comprises patients solely
at Stage 5, but with clearly lower eGFR (IQR: 4.72-6.84).
Stage 5 CKD patients have reached End-Stage Renal
Disease (ESRD), also referred to as kidney failure. Of the
remaining significant variables shown in Figure 4, Cluster 2 is
characterized by relatively younger females with the lowest
urea, lowest creatinine, and highest haemoglobin. Cluster 3 is
made of relatively younger males with the highest creatinine,
higher urea than those in Cluster 2, and lowest hemoglobin.
Also of interest is the fact that relatively, individuals in cluster
two are more likely to have been administered NDCCB.
Individuals in Cluster 1 are mostly females younger than
those in Cluster 3, but older than those in Cluster 2, with
the highest urea, creatinine higher than those in Cluster 2 but
lower than those in Cluster 3, and hemoglobin lower than
those in Cluster 2, but higher than those in Cluster 3. It is
worthy of note that hemoglobin and eGFR show a similar
trend across the three clusters — they both go from highest
to lowest from Cluster 2 to Cluster 1, and to Cluster 3.
Other studies in the literature have also found an association
between kidney function and hemoglobin levels [69], [70].

V. CONCLUSION AND RECOMMENDATIONS
In this study, the unique challenges associated with clus-
tering datasets (particularly EHR) which are both mixed
and missing in nature were discussed extensively, as were
the approaches available in the literature for tackling them.
Cluster analysis was then performed on a multi-racial CKD
dataset obtained from the Inkosi Albert Luthuli Central Hos-
pital, Durban, South Africa, the results evaluated using both
external and internal validation indices, and theoretical and
practical insights obtained.

The theoretical findings from our study are as follows. One,
the Ahmad-Dey distance measure significantly outperformed
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Gower’s distance on almost all internal validation indices and
clustering algorithms (PAM, DIANA, AGNES, and GENIE).
This could be attributed to its unique approach of comput-
ing distances through probabilities associated with variable
co-occurrence, which removes the need for weights and their
associated disadvantages. Secondly, in many cases, SI out-
performed both MI and direct analysis on a missing dataset,
though in some cases it was outperformed by the others. This
indicates that though the pooling stage of MI may not be nec-
essary for cluster analysis, it should be explored, and where
clustering can be performed directly on missing data, that
should also be done. The results can then be compared to find
the most suitable approach on a case-by-case basis. More gen-
erally, and with respect to missingness treatment, a compar-
ative analysis of both advanced and simple methods should
be carried out to find out the most appropriate approach,
as opposed to an off-hand adoption of simple missingness
treatment methods like complete- or available-case analysis.
Furthermore, it stands to be questioned if the appropriateness
of such simple missingness treatment methods truly lies in
how good their internal/external validation and cluster stabil-
ity scores are, in light of the fact that they have been shown to
introduce significant bias into a dataset, especially when the
missingness ratio is more than 5% [61], [71]. By implication,
they stand a chance of altering the latent structure which
we seek to discover in our datasets. Thus, our ability to
discover these altered structures may be irrelevant at best,
or misleading at worst.

On the practical side, our results indicate a latent three-
cluster structure in our CKD dataset, in opposition to the
five-stage CKD categorization which is normally used for
CKD patients. Though the methodology of this study does
not allow for outright generalizations, this indicates that CKD
datasets which are comprised of more than the four to six
variables used for computing eGFR may have some underly-
ing structure which deviates from the usual five CKD stages,
and such structures should be explored, as they could provide
valuable insights into the characteristics of the cohort being
studied. That is, clustering which leverages internal validation
should be used more as against simply performing external
validation based on these five stages.

Given that the Ahmad-Dey distance measure does not
accept missing values, it would be interesting to find ways
of extending it to do so, as the methods which actually
perform direct cluster analysis on mixed and missing datasets
(Huang’s k-prototypes [16] and Gower’s distance [14]) didn’t
perform competitively on our dataset. In addition, we hope
to perform cluster analysis on our dataset in its original
longitudinal form, which we weren’t able do in this study
due to its constraints. It would be interesting to examine the
challenges that this additional (longitudinal) constraint will
pose to clustering, and how they can be addressed. Finally,
it would be interesting to examine the relative performances
of hierarchical and centroid-based clustering methods to
identify any patterns in performance with respect to data
structure.

52141



IEEE Access

P. A. Popoola et al.: Cluster Analysis of Mixed and Missing CKD Data in KwaZulu-Natal Province, South Africa

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F. Murtagh and M. J. Kurtz, “The classification society’s bibliography
over four decades: History and content analysis,” J. Classification, vol. 33,
no. 1, pp. 6-29, Apr. 2016, doi: 10.1007/S00357-016-9196-4.

C. Hennig and M. Meild, “Cluster analysis: An overview,” in Hand-
book Of Cluster Analysis, vol. 9, C. M. Hennig, M. Meila, F. Murtagh,
and R. Rocci, Eds. Boca Raton, FL, USA: Chapman & Hall, 2016,
pp. 1-19.

M. van de Velden, A. Iodice D’Enza, and A. Markos, ‘‘Distance-based
clustering of mixed data,” Wiley Interdiscipl. Rev., Comput. Statist.,vol. 11,
no. 3, p. 1456, May 2019, doi: 10.1002/Wics.1456.

S. I. Vrieze, “Model selection and psychological theory: A discussion of
the differences between the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC),” Psychol. Methods, vol. 17, no. 2,
pp. 228-243, 2012, doi: 10.1037/A0027127.

C. Hennig, “What are the true clusters?”” Pattern Recognit. Lett., vol. 64,
pp. 53-62, Oct. 2015, doi: 10.1016/J.Patrec.2015.04.009.

A.Ahmad and S. S. Khan, “Survey of state-of-the-art mixed data clustering
algorithms,” IEEE Access, vol. 7, pp. 31883-31902, 2019, doi: 10.1109/
Access.2019.2903568.

V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS—clustering categor-
ical data using summaries,” in Proc. 5th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 1999, pp. 73-83.

Z.He, X. Xu, and S. Deng, “Squeezer: An efficient algorithm for clustering
categorical data,” J. Comput. Sci. Technol., vol. 17, no. 5, pp. 611-624,
Sep. 2002, doi: 10.1007/bf02948829.

S. Amiri, B. S. Clarke, and J. L. Clarke, “Clustering categorical data via
ensembling dissimilarity matrices,” J. Comput. Graph. Statist., vol. 27,
no. 1, pp. 195-208, Jan. 2018, doi: 10.1080/10618600.2017.1305278.

S. Naouali, S. Ben Salem, and Z. Chtourou, “Clustering categorical data:
A survey,” Int. J. Inf. Technol. Decis. Making, vol. 19, no. 1, pp. 49-96,
Jan. 2020.

A. Foss, M. Markatou, B. Ray, and A. Heching, ‘A semiparametric method
for clustering mixed data,” Mach. Learn., vol. 105, no. 3, pp. 419-458,
Dec. 2016, doi: 10.1007/s10994-016-5575-7.

H. A. L. Kiers, “Simple structure in component analysis techniques for
mixtures of qualitative and quantitative variables,” Psychometrika, vol. 56,
no. 2, pp. 197-212, Jun. 1991, doi: 10.1007/Bf02294458.

M. Vichi, D. Vicari, and H. A. L. Kiers, “Clustering and dimension reduc-
tion for mixed variables,” Behaviormetrika, vol. 46, no. 2, pp. 243-269,
Oct. 2019, doi: 10.1007/S41237-018-0068-6.

J. C. Gower, “A general coefficient of similarity and some of its proper-
ties,” Biometrics, vol. 27, no. 4, p. 857, Dec. 1971, doi: 10.2307/2528823.
A. H. Foss, M. Markatou, and B. Ray, “Distance metrics and clustering
methods for mixed type data,” Int. Stat. Rev., vol. 87, no. 1, pp. 80-109,
Apr. 2019, doi: 10.1111/Insr.12274.

Z. Huang, “Clustering large data sets with mixed numeric and categorical
values,” in Proc. Ist Pacific-Asia Conf. Knowl. Discovery Data Mining
(PAKDM), 1997, pp. 21-34.

A. Ahmad and L. Dey, “A K-mean clustering algorithm for mixed numeric
and categorical data,” Data Knowl. Eng., vol. 63, no. 2, pp. 503-527,
Nov. 2007, doi: 10.1016/J.Datak.2007.03.016.

D. S. Modha and S. W. Spangler, “Feature weighting in K-means clus-
tering,” Mach. Learn., vol. 52, no. 3, pp. 217-237, 2003, doi: 10.1023/
A:1024016609528.

A. H. Foss and M. Markatou, “Kamila: Clustering mixed-type data in
R and Hadoop,” J. Stat. Softw., vol. 83, no. 13, pp. 1-45, 2018, doi:
10.18637/Jss.V083.113.

G. Celeux and G. Govaert, “Latent class models for categorical data,” in
Handbook Of Cluster Analysis, vol. 9, C. M. Hennig, M. Meila, F. Murtagh,
and R. Rocci, Eds. Boca Raton, FL, USA: Chapman & Hall, 2016,
pp. 173-193.

L. Hunt and M. Jorgensen, “‘Clustering mixed data,” Wiley Interdiscipl.
Rev., Data Mining Knowl. Discovery, vol. 1, no. 4, pp. 352-361, Jul. 2011,
doi: 10.1002/Widm.33.

D. McParland and I. Claire Gormley, ‘“Model based clustering for
mixed data: ClustMD,” 2015, arXiv:1511.01720. [Online]. Available:
http://arxiv.org/abs/1511.01720

L. Peng and L. Lei, “A review of missing data treatment methods,” Intell.
Inf. Manage. Syst. Technol., vol. 1, no. 3, pp. 412419, 2005.

R. J. A. Little and D. B. Rubin, Statistical Analysis With Missing Data.
Hoboken, NJ, USA: Wiley, 2019.

52142

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

(45]

[46]

K. J. Lee, G. Roberts, L. W. Doyle, P. J. Anderson, and J. B. Carlin,
“Multiple imputation for missing data in a longitudinal cohort study:
A tutorial based on a detailed case study involving imputation of missing
outcome data,” Int. J. Social Res. Methodol., vol. 19, no. 5, pp. 575-591,
Sep. 2016.

T. D. Pigott, “A review of methods for missing data,” Educ. Res. Eval.,
vol. 7, no. 4, pp. 353-383, Dec. 2001, doi: 10.1076/edre.7.4.353.8937.

B. J. Wells, K. M. Chagin, A. S. Nowacki, and M. W. Kattan, “Strategies
for handling missing data in electronic health record derived data,” Egems,
vol. 1, no. 3, p. 1035, 2013, doi: 10.13063/2327-9214.1035.

W. Young, G. Weckman, and W. Holland, “A survey of methodologies for
the treatment of missing values within datasets: Limitations and benefits,”
Theor. Issues Ergonom. Sci., vol. 12, no. 1, pp. 15-43, Jan. 2011, doi:
10.1080/14639220903470205.

D. B. Rubin, Multiple Imputation for Nonresponse in Surveys. Hoboken,
NJ, USA: Wiley, 2004.

Z. Zhang and H. Fang, “Multiple-vs non-or single-imputation based
fuzzy clustering for incomplete longitudinal behavioral intervention data,”
in Proc. Ist Int. Conf. Connected Health, Appl., Syst. Eng. Technol.,
Jun. 2016, pp. 219-228.

S. Goel and M. Tushir, “A new iterative fuzzy clustering approach for
incomplete data,” J. Statist. Manage. Syst., vol. 23, no. 1, pp. 91-102,
Jan. 2020, doi: 10.1080/09720510.2020.1714150.

J. Tuikkala, L. L. Elo, O. S. Nevalainen, and T. Aittokallio, “Missing
value imputation improves clustering and interpretation of gene expression
microarray data,” BMC Bioinf., vol. 9, no. 1, p.202, Dec. 2008, doi:
10.1186/1471-2105-9-202.

M. C. de Souto, P. A. Jaskowiak, and I. G. Costa, “Impact of missing
data imputation methods on gene expression clustering and classification,”
BMC Bioinf., vol. 16, no. 1, p. 64, Dec. 2015, doi: 10.1186/S12859-015-
0494-3.

S. Lgkse, F. Maria Bianchi, A.-B. Salberg, and R. Jenssen,
“Spectral clustering using PCKID—A probabilistic cluster kernel
for incomplete data,” 2017, arXiv:1702.07190. [Online]. Available:
http://arxiv.org/abs/1702.07190

X. Yu, H. Li, Z. Zhang, and C. Gan, “The optimally designed variational
autoencoder networks for clustering and recovery of incomplete multime-
dia data,” Sensors, vol. 19, no. 4, p. 809, 2019, doi: 10.3390/S19040809.
J. T. Chi, E. C. Chi, and R. G. Baraniuk, “K-POD: A method for K-means
clustering of missing data,” Amer. Statistician, vol. 70, no. 1, pp. 91-99,
Jan. 2016, doi: 10.1080/00031305.2015.1086685.

J. Li, S. Song, Y. Zhang, and Z. Zhou, ‘“Robust K-median and
K-means clustering algorithms for incomplete data,” Math. Problems Eng.,
vol. 2016, Dec. 2016, Art. no. 4321928, doi: 10.1155/2016/4321928.

S. Wang, M. Li, N. Hu, E. Zhu, J. Hu, X. Liu, and J. Yin, “K-means
clustering with incomplete data,” IEEE Access, vol. 7, pp. 69162-69171,
2019, doi: 10.1109/Access.2019.2910287.

A. Lithio and R. Maitra, “An efficientk-means-type algorithm for cluster-
ing datasets with incomplete records,” Stat. Anal. Data Mining, ASA Data
Sci. J., vol. 11, no. 6, pp. 296-311, Dec. 2018, doi: 10.1002/Sam.11392.
S. Datta, S. Bhattacharjee, and S. Das, “Clustering with missing features:
A penalized dissimilarity measure based approach,” Mach. Learn.,
vol. 107, no. 12, pp. 1987-2025, Dec. 2018, doi: 10.1007/S10994-018-
5722-4.

L. Abdallah and I. Shimshoni, “Clustering algorithms for incomplete
datasets,” in Recent Applications in Data Clustering, H. Pirim, Ed.
London, U.K.: Intech, 2018.

R. Core and R. Team, A Language and Environment For Statistical
Computing. Vienna, Austria: Foundation For Statistical Computing, 2019.
[Online]. Available: https://www.r-project.org/

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik.
(2021). Cluster: Cluster Analysis Basics and Extensions: R Foundation
for Statistical Computing. [Online]. Available: https://cran.r-project.org/
package=cluster

G. Szepannek, “ClustMixType: User-friendly clustering of mixed-type
datain R,” R J., vol. 10, pp. 200-208, Dec. 2018, doi: 10.32614/Rj-2018-
048.

S. lovleff. (2019). Mixall: Clustering and Classification Using Model-
Based Mixture Models: R Foundation For Statistical Computing. [Online].
Available: https://cran.r-project.org/package=mixall

G. Revillon and A. Mohammad-Djafari, “A complete classification and
clustering model to account for continuous and categorical data in pres-
ence of missing values and outliers,” Proceedings, vol. 33, no. 1, p. 23,
Dec. 2019, doi: 10.3390/Proceedings2019033023.

VOLUME 9, 2021


http://dx.doi.org/10.1007/S00357-016-9196-4
http://dx.doi.org/10.1002/Wics.1456
http://dx.doi.org/10.1037/A0027127
http://dx.doi.org/10.1016/J.Patrec.2015.04.009
http://dx.doi.org/10.1109/Access.2019.2903568
http://dx.doi.org/10.1109/Access.2019.2903568
http://dx.doi.org/10.1007/bf02948829
http://dx.doi.org/10.1080/10618600.2017.1305278
http://dx.doi.org/10.1007/s10994-016-5575-7
http://dx.doi.org/10.1007/Bf02294458
http://dx.doi.org/10.1007/S41237-018-0068-6
http://dx.doi.org/10.2307/2528823
http://dx.doi.org/10.1111/Insr.12274
http://dx.doi.org/10.1016/J.Datak.2007.03.016
http://dx.doi.org/10.1023/A:1024016609528
http://dx.doi.org/10.1023/A:1024016609528
http://dx.doi.org/10.18637/Jss.V083.I13
http://dx.doi.org/10.1002/Widm.33
http://dx.doi.org/10.1076/edre.7.4.353.8937
http://dx.doi.org/10.13063/2327-9214.1035
http://dx.doi.org/10.1080/14639220903470205
http://dx.doi.org/10.1080/09720510.2020.1714150
http://dx.doi.org/10.1186/1471-2105-9-202
http://dx.doi.org/10.1186/S12859-015-0494-3
http://dx.doi.org/10.1186/S12859-015-0494-3
http://dx.doi.org/10.3390/S19040809
http://dx.doi.org/10.1080/00031305.2015.1086685
http://dx.doi.org/10.1155/2016/4321928
http://dx.doi.org/10.1109/Access.2019.2910287
http://dx.doi.org/10.1002/Sam.11392
http://dx.doi.org/10.1007/S10994-018-5722-4
http://dx.doi.org/10.1007/S10994-018-5722-4
http://dx.doi.org/10.32614/Rj-2018-048
http://dx.doi.org/10.32614/Rj-2018-048
http://dx.doi.org/10.3390/Proceedings2019033023

P. A

Popoola et al.: Cluster Analysis of Mixed and Missing CKD Data in KwaZulu-Natal Province, South Africa

IEEE Access

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

5

C. Hennig, “Clustering strategy and method selection,” in Handbook of
Cluster Analysis, vol. 9, C. M. Hennig, M. Meila, F. Murtagh, and R. Rocci,
Eds. Boca Raton, FL, USA: Chapman & Hall, 2016, pp. 703-730.

M. Meild, “Criteria for comparing clusterings,” in Handbook Of Cluster
Analysis, vol. 9, C. M. Hennig, M. Meila, F. Murtagh, and R. Rocci, Eds.
Boca Raton, FL, USA: Chapman & Hall, 2016, pp. 619-635.

M. Meild, “Comparing clusterings—An information based distance,”
J. Multivariate Anal., vol. 98, no. 5, pp. 873-895, May 2007.

Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu, “Understand-
ing and enhancement of internal clustering validation measures,” IEEE
Trans. Cybern., vol. 43, no. 3, pp. 982-994, Jun. 2013, doi: 10.1109/
Tsmcb.2012.2220543.

C. Hennig, “Cluster validation by measurement of clustering character-
istics relevant to the user,” 2017, arXiv:1703.09282. [Online]. Available:
http://arxiv.org/abs/1703.09282

M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” J. Intell. Inf. Syst., vol. 17, no. 2, pp. 107-145, Dec. 2001.
U. Von Luxburg, Clustering Stability: An Overview. New York, NY, USA:
Now, 2010.

M. Halkidi, M. Vazirgiannis, and C. Hennig, “Method-independent indices
for cluster validation and estimating the number of clusters,” in Hand-
book Of Cluster Analysis, vol. 9, C. M. Hennig, M. Meila, F. Murtagh,
and R. Rocci, Eds. Boca Raton, FL, USA: Chapman & Hall, 2016,
pp. 595-618.

H. A. Pathberiya. (2016). Disimformixed: Calculate Dissimilarity Matrix
For Dataset With Mixed Attributes [Computer Software Manual]:
R Foundation For Statistical Computing. [Online]. Available: https://cran.
r-project.org/package=disimformixed

Q. Foguet-Boreu, C. Violdn, T. Rodriguez-Blanco, A. Roso-Llorach,
M. Pons-Vigués, E. Pujol-Ribera, Y. Cossio Gil, and J. M. Valderas, “Mul-
timorbidity patterns in elderly primary health care patients in a south
mediterranean European region: A cluster analysis,” PLoS ONE, vol. 10,
no. 11, Nov. 2015, Art. no. e0141155, doi: 10.1371/Journal.Pone.0141155.
M.  Guisado-Clavero, A. Roso-Llorach, T. Ldpez-Jimenez,
M. Pons-Vigués, Q. Foguet-Boreu, M. A. Muifioz, and C. Violan,
“Multimorbidity patterns in the elderly: A prospective cohort study with
cluster analysis,” BMC Geriatrics, vol. 18, no. 1, p. 16, Dec. 2018, doi:
10.1186/S12877-018-0705-7.

A. E. M. Kneppers, R. A. M. Haast, R. C. J. Langen, L. B. Verdijk,
P. A. Leermakers, H. R. Gosker, L. J. C. Loon, M. Lainscak, and
A. M. W.J. Schols, “Distinct skeletal muscle molecular responses to pul-
monary rehabilitation in chronic obstructive pulmonary disease: A cluster
analysis,” J. Cachexia, Sarcopenia Muscle, vol. 10, no. 2, pp. 311-322,
Apr. 2019, doi: 10.1002/Jcsm.12370.

C.-S. Yu, C.-H. Lin, Y.-J. Lin, S.-Y. Lin, S.-T. Wang, J. L Wu, M.-H. Tsai,
and S.-S. Chang, “Clustering heatmap for visualizing and exploring com-
plex and high-dimensional data related to chronic kidney disease,” J. Clin.
Med., vol. 9, no. 2, p. 403, Feb. 2020, doi: 10.3390/Jcm9020403.

M. Lenart, N. Mascarenhas, R. Xiong, and A. Flower, “Identifying risk
of progression for patients with Chronic Kidney Disease using clustering
models,” in Proc. IEEE Syst. Inf. Eng. Design Symp. (SIEDS), Apr. 2016,
pp. 221-226.

K. M. Lang and T. D. Little, “Principled missing data treatments,” Pre-
vention Sci., vol. 19, no. 3, pp. 284-294, Apr. 2018.

A. S. Levey, L. A. Stevens, C. H. Schmid, Y. Zhang, A. F. Castro,
H. I Feldman, J. W. Kusek, P. Eggers, F. Van Lente, T. Greene, and
J. Coresh, “A new equation to estimate glomerular filtration rate,” Ann.
Internal Med., vol. 150, no. 9, pp. 604-612, 2009, doi: 10.7326/0003-
4819-150-9-200905050-00006.

J. Asher. (2020). Transplantr: Audit and Research Functions For Trans-
plantation: R Foundation For Statistical Computing. [Online]. Available:
https://cran.r-project.org/package=transplantr

S. Van Buuren and K. Groothuis-Oudshoorn, ‘“Mice: Multivariate imputa-
tion by chained equations in R,” J. Of Stat. Softw., vol. 45, no. 3, pp. 1-67,
2011. [Online]. Available: https://www.jstatsoft.org/v45/i03/

C. Hennig and T. F. Liao, “How to find an appropriate clustering for mixed-
type variables with application to socio-economic stratification,” J. Roy.
Stat. Soc., Ser. C Appl. Statist., vol. 62, no. 3, pp. 309-369, May 2013, doi:
10.1111/1.1467-9876.2012.01066.X.

D. Mcparland and I. C. Gormley. (2017). Clustmd: Model Based Cluster-
ing For Mixed Data: R Foundation For Statistical Computing. [Online].
Available: https://Cran.R-Project.Org/Package=Clustmd

VOLUME 9, 2021

[67]

[68]

[69]

[70]

(71]
[72]

(73]

(74]

[75]

B

L. Mouselimis. (2020). Clusterr: Gaussian Mixture Models, K-Means,
Mini-Batch-Kmeans, K-Medoids: R Foundation For Statistical Computing.
[Online]. Available: https://Cran.R-Project.Org/Package=Clusterr

C. Hennig. (2020). FPC: Flexible Procedures For Clustering: R Foun-
dation For Statistical Computing. [Online]. Available: https://Cran.R-
Project.Org/Package=Fpc

B. Zhu, W. Liu, D. Yu, Y. Lin, Q. Li, M. Tong, and Y. Li, “The association
of low hemoglobin levels with IgA nephropathy progression: A two-center
cohort study of 1,828 cases,” Amer. J. Nephrol., vol. 51, no. 8, pp. 624-634,
2020, doi: 10.1159/000508770.

V. F. Feteh, S.-P. Choukem, A.-P. Kengne, D. N. Nebongo, and
M. Ngowe-Ngowe, “Anemia in type 2 diabetic patients and correlation
with kidney function in a tertiary care sub-saharan african hospital:
A cross-sectional study,” BMC Nephrol., vol. 17, no. 1, p. 29, Dec. 2016,
doi: 10.1186/S12882-016-0247-1.

J. R. Cheema, “A review of missing data handling methods in education
research,” Rev. Educ. Res., vol. 84, no. 4, pp. 487-508, Dec. 2014.

L. Kaufman and P.J. Rousseuw, Finding Groups in Data: An Introduction
to Cluster Analysis, 99th ed. New York, NY, USA: Wiley, 2009.

M. Gagolewski, M. Bartoszuk, and A. Cena, “Genie: A new, fast, and
outlier-resistant hierarchical clustering algorithm,” Inf. Sci., vol. 363,
pp. 8-23, Oct. 2016, doi: 10.1016/j.ins.2016.05.003.

M. Gagolewski. (2021). Geniclust: The Genie++ Hierarchical Clustering
Algorithm with Noise Points: R Foundation for Statistical Computing.
[Online]. Available: https://cran.r-project.org/package=genieclust

C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Commun.
ACM, vol. 29, no. 12, pp. 1213-1228, Dec. 1986, doi: 10.1145/7902.7906.

PETER A. POPOOLA received the B.Sc. degree
in computer science from the University of Jos,
Nigeria, in 2014, and the M.Sc. degree (cum laude)
in computer science from the University of
KwaZulu-Natal, Durban, in 2016, where he is
currently pursuing the Ph.D. degree in computer
science. His research interests include clustering,
missing data treatment methods, soft computing,
healthcare, and machine learning.

JULES-RAYMOND TAPAMO (Member, IEEE)
is currently a Professor of computer science
and engineering with the School of Engineer-
ing, University of KwaZulu-Natal, South Africa.
His research interests include image processing,
computer vision, machine learning, biometrics,
intelligent monitoring, activity recognition, sur-
face characterization, and formal methods. He is
a member of the IEEE Computer Society, IEEE
Signal Processing Society, IEEE Geoscience and

A

Remote Sensing Society, IEEE Computational Intelligence Society, and the
ACM.

ALAIN G. ASSOUNGA received the Ph.D. degree
in immunology and molecular biology. He is the
Head of the Department of Nephrology, Nelson
R. Mandela School of Medicine, University of
KwaZulu-Natal, and the Chief Specialist at the
Department of Health, Inkosi Albert Luthuli Cen-
tral Hospital. Originally from Congo-Brazzaville,
he received his medical training in Brazzaville,
nephrology and immunology training in France
and USA. He lectured and practiced medicine in

PR

the Congo and Botswana before moving to Durban, South Africa, where
he teaches nephrology and immunology and leads a research team. He has
trained over 20 nephrologists. He is the Editor-in-Chief of African Jour-
nal of Nephrology, and the Official Journal of the African Association of
Nephrology.

52143


http://dx.doi.org/10.1109/Tsmcb.2012.2220543
http://dx.doi.org/10.1109/Tsmcb.2012.2220543
http://dx.doi.org/10.1371/Journal.Pone.0141155
http://dx.doi.org/10.1186/S12877-018-0705-7
http://dx.doi.org/10.1002/Jcsm.12370
http://dx.doi.org/10.3390/Jcm9020403
http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
http://dx.doi.org/10.1111/J.1467-9876.2012.01066.X
http://dx.doi.org/10.1159/000508770
http://dx.doi.org/10.1186/S12882-016-0247-1
http://dx.doi.org/10.1016/j.ins.2016.05.003
http://dx.doi.org/10.1145/7902.7906

