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ABSTRACT As indispensable components of intelligent transportation systems, traffic detection and surveil-
lance technologies deliver speed monitoring, traffic counting, and vehicle identification and classification.
This paper proposes a normal distribution transform (NDT) algorithm to improve the speed accuracy and
robustness of a laser-based detector. This method can deliver more accurate estimation of vehicle speed,
enabling computation of the parameters of length and height. The results of simulation with different detector
update rates suggest that the average estimation errors of vehicle parameters can be reduced using the
NDT matching method, especially for the low detector update rate. The study also implemented a series
of field experiments using the proposed detector prototype to verify the detector’s measurements of vehicle
parameters. The proposed method is a promising way in which to improve the laser-based traffic detector.
In simulation test, initial experiments show that the accuracy of speed estimation can reach 95%, given the
update rate of 1000 Hz for detector, the average length error can be reduced by approximately 60%. Even
for speeding vehicles traveling at 150 km/h, the estimated speed error is limited to 10 km/h. In field test, for
a vehicle at the speed of 80km/h, the estimation errors are within the threshold of the maximum errors of
simulation, that is, 32 cm for length error and 5.71 km/h for speed error results.

INDEX TERMS Measurement by laser beam, measurement techniques, image matching, image registration,
object detection.

I. INTRODUCTION
One of the critical issues for intelligent transportation sys-
tems (ITS) is the measurement of traffic flow parameters.
This requires the acquisition of reliable real-time traffic infor-
mation from highways, roads, and streets in metropolitan
areas. Intelligent transportation systems (ITS) are highly
dependent on the development of the Internet of Things (IoT)
[1]. Sensor networks provide extensive dynamic and static
traffic information, used to develop adequate traffic strate-
gies, to improve traffic safety, to deliver logistics solutions,
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to increase transportation efficiency, or tomeet civilian needs.
Traffic detection sensors play a fundamental role in the IoT
but are still under development.

An automatic non-intrusive traffic detection system can
be used to acquire traffic information, identifying vehicles
as they pass on a highway without interrupting traffic flow.
The laser traffic detector proposed in this paper is a pat-
tern recognition system that relies on data processing and
feature extraction to recognize vehicle profile features. This
detector can be used in applications such as auditing, man-
ual and automatic fare collection processes, the generation
of detailed vehicle statistics, and bridge/tunnel clearance
verification.
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The various stationary traffic detectors are mainly classi-
fied into two categories: intrusive detectors and non-intrusive
detectors. Intrusive detectors, including a loop detector and
pneumatic road tubes and other weigh-in-motion devices, are
not as easily installed or maintained due to their in-pavement
location [2]. In contrast, non-intrusive detectors, such as
video detection systems, microwave radar detectors, ultra-
sonic detectors, and passive/active infrared sensors, are
installed above ground [3]. Each traffic detection solution
has its own advantages and disadvantages. Considering the
different user requirements, no detector has proved to be the
optimal one.

Ultrasonic, infrared, and video imaging technologies are
vulnerable to external noise. Video detectors are still widely
used, as their cameras can capture abundant information
about passing vehicles (size, color, license number, etc.),
which is useful for vehicle identification. However, their
performance degrades in bad weather conditions [4]. Alter-
natively, microwave radars are utilized as a reliable and cost-
effective solution. Low-cost continuous wave (CW) radar,
such as the road traffic microwave sensor (RTMS), deter-
mines the radial speed vectors of vehicles from the Doppler
effect [5]. However, unless equipped with an auxiliary sen-
sor, the CW Doppler radar sensors cannot detect vehicles
that have stopped. In addition, CW Doppler microwave
sensors perform poorly as volume counters at intersec-
tions where low-speed consecutive vehicles are not properly
separated [6].

Laser sensors are robust in most environmental conditions,
and can collect vehicle information for vehicle speed mea-
surement [7]. It has been proven that detection accuracy by
Lidar sensor alone is better than by camera on its own [24].
However, the laser reflective signal is sensitive to the sur-
rounding environment and vehicle surface material, with the
laser points usually sparse due to sampling frequency. In the
traditional method, vehicle speed is calculated using different
timestamps and predetermined distances between sensors.
However, what remains challenging is how to choose the
appropriate point in the collection of reflective points when
calculating average speed. When using the beginning or end-
ing point, the single point cannot guarantee its noise level: it
is highly possible that the beginning point of the collection
does not indicate the vehicle head edge. For the rest of the
points, the corresponding relationship between two sets of
collection data must be established. That is, a random point in
Set 1 should associate with the point in Set 2 that represents
the same point on the vehicle. Extracting a specific geometric
feature is an alternative approach to solving the robustness
problem in point matching [14]. However, the single line
laser detector has inherent difficulties in acquiring sufficient
features.

The laser detector, employing a laser range finder, has the
capability to conduct vehicle profiling. Satyanarayana et al.
[8] proposed a dual-purpose laser-based sensor configuration
for vehicle classification which can be applied in a heteroge-
neous and lane-less traffic environment. Abdelbaki et al. [9]

proposed a laser intensity image-based algorithm for auto-
matic vehicle classification. Several similar detectors have
been proposed. For instance, Cheng, Shaw et al. developed
a detection system utilizing a pair of retro-reflective laser
sensors [10]. However, the usage of these sensors may induce
errors in practical implementation [11]. Li et al. [12] and
Atluri et al. [13] developed detectors based on transmission-
based laser sensors and delivered results with a high level of
accuracy, but the proposed method is difficult to transform
due to the lack of generalization ability.

In practice, the height of a vehicle is also an impor-
tant parameter for traffic safety. It can be used to detect
over-height vehicle infringements that may lead to incidents
in which vehicles, typically trucks or double-decker buses,
pass under a structure which is lower than the vehicle. Acci-
dental collisions between over-height vehicles and bridge
superstructures are a frequent phenomenon worldwide. The
United States (US) Federal Highway Administration has
reported that the third most common cause of bridge failure
is vehicle or vessel collision [15]. In China, some researchers
have focused attention on strikes caused by over-height vehi-
cles [16]. These strikes lead to traffic delays, damage to
bridge structures, bridge closures, and injuries. In worst-
case scenarios, derailments, immediate collapse of bridge
structures, and fatalities may occur [17].

On the other hand, height information is useful for vehicle
classification. One can see that many classifications have
distinguishable geometric shapes [18]. Urazghildiiev, D. et al.
used two-dimensional (2D) longitudinal sections detected
by a microwave radar sensor to classify vehicles [18]. This
could achieve 95% accuracy in vehicle classification, pro-
vided the precise feature vectors were extracted, thus demon-
strating that range-finder devices can provide precise vehicle
parameters to support vehicle classification.

The current study focuses on the problem, when using a
laser detector, of retrieving vehicle speed information and
then computing the vehicle length. The normal distribution
transform (NDT) method has demonstrated its benefits in
terms of high robustness and efficiency in the range-finding
system in extracting relative translation between contigu-
ous scans [22]. However, the range-finding geometry model
is different to this detector. The traditional NDT matching
method is established on a manifold optimization, the solu-
tion is usually derived from a iteration form, such as Gauss
Newton or Levenberg-Marquardt, the implementation sce-
nario is different from our case. The application of the
algorithm to the vehicle speed measurement is not techni-
cally sound. The NDT matching algorithm is modified to
single variable constrained to measure the vehicle speed
for the laser detector, deriving an approximation solution
for the matching algorithm, with the acquired performance
shown to be promising. Another research field focuses on
three-dimensional (3D) vehicle reconstruction using cameras
based on laser intensity collected by Lidar- Lite v3HP sensors
[19], [20]. However, laser intensity is sensitive to the environ-
ment. If vehicle classification is the only motivation, a video
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camera is neither technically necessary nor does it offer
privacy protection. Moreover, the laser point-based method
is highly dependent on the accuracy of the displacement
measurement. Centimeter-level precision, at the very least,
is required for a vehicle with speed exceeding 80 km/h [21]
when estimating the height information necessary for vehicle
classification. A statistics-based method is more robust and
efficient [23] as it can reduce the contingency of measure-
ment extremum. Inspired by this consequence, a histogram
statistics-based method is developed to extract vehicle height
profile in this study, and to validate the algorithm perfor-
mance using bona fide experiment data. The contributions of
this study are summarized as follows:

1) The developed prototype system, based on laser rang-
ing sensors, couples profiling capability with a dual-detector
configuration to permit speed measurement and vehicle
recognition.

2) A method to infer vehicle speed using simplified
NDT matching estimates the relative movement between two
sensors that are recording.

3) A histogram statistics method is proposed to extract
vehicle height and length profiles.

The remainder of this paper presents details on the
development and analysis processes used in the study.
Section 2 describes in detail the architecture of the pro-
posed laser-based ranging sensor detector. Section 3 mainly
describes the single variable NDT method used to estimate
vehicle speed. A histogram illustrates the statistics technique
for extracting vehicle height. The results of the simulation
and field trials are presented in Sections 4 and 5, respectively.
Finally, Section 6 delivers the concluding remarks.

II. SYSTEM ARCHITECTURE
The focus of the development stage was to realize the design
in a real-world system that could be used for evaluation.

The detector consists of pairs of laser sensors, a microcon-
troller, and an industrial computer with software and Internet
configuration. Every lane needs to deploy at least a pair of
laser sensors, in parallel with vehicle flow. When operating,
the two laser sensors l1 and l2 emit radiation vertically to
measure the distance to the reflected surface in synchroniza-
tion and at a high update rate. The presence of a vehicle will
significantly decrease the measurement value. By simple sub-
traction, the height profiles of vehicles can be acquired. The
proposed detection system architecture is presented in Fig. 1
below.

To meet practical requirements, the laser sensor should
have a considerable operational range and update rate. The
laser range finder used is Lidar-Lite v3HP. It can operate
at a higher update rate (typically greater than 1000 Hz)
over a longer range (> 10 m) than its predecessor [25].
In addition, high-frequency ranging, high-precision timing,
and synchronal processing require a robust processor.

The current study’s intention is also to create a platform
upon which the code could be developed. In the initial pro-
totype design, the system utilizes an open-source Arduino

FIGURE 1. System architecture.

MCU (microcontroller) [26]. The prototype has an auxiliary
module that consists of a SD card data logger. It is func-
tional and works continuously on broad. The MCU records
on microsecond level corresponding to every displacement
measured by the laser sensors, which are connected via stan-
dard I2Cwiring. To achieve synchronal timing, several sensor
pairs need to operate on the same I2C bus. An I2C switch,
the TCA9548A module, is used to assign varied addresses
[27]. Consequently, a newly designed printed circuit board is
applied to connect the MCU to the personal computer (PC).
The microsecond timestamps, t1(n) and t2(n), of the two sen-
sors are recorded, corresponding to every measured altitude,
h1(n) and h2(n), of the vehicle surface. Let n = 1, . . . ,N ,
with N being the number of output samples. The data are
transmitted to the upper computer via a serial port. Simulta-
neously, a PC program is used to estimate vehicle parameters
and to classify vehicles. The problem can be formulated
as follows: given the observations, h1(n), h2(n), t1(n) and
t2(n), estimate the parameters of a vehicle and classify it.
The estimates of vehicle parameters, including speed and
shape, can be acquired in different ways. Due to uncertainty
about the sensor’s update rate, the recorded timestamp may
have a considerable degree of error. For example, estimated
arrival time t(1) will be a little later than the true arrival
time tarrive (see Fig. 2). The same happens when the vehicle
departs. Errors may partly counterbalance each other at both
ends of the detector. Nevertheless, considerable errors may
occur, particularly for high-speed vehicles. Cheng took the
mean value of arrival and departure of the two sensors as the
estimated speed [10], as a response to the detector being able
to recognize only the front and rear of a vehicle.

The vehicle’s acceleration is an optional item to be consid-
ered. Usually, acceleration is negligible during the displace-
ment of one vehicle length. In contrast, the proposed detector
can acquire an entire profile of vehicle height and length. It is
reasonable to believe that additional recognized probe points
of a vehicle’s surface can reduce estimation error.
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FIGURE 2. Detector system operation.

III. METHODOLOGY
The laser detector is a kind of range sensor, with the output
points a set of spatial sample points from a vehicle’s surface.
Using the points to represent a vehicle in a straightforward
way has these limitations: the points for the vehicle’s surface
are insufficient although the detector’s sampling rate is con-
siderable, and points merely mean less without the surface
characteristic.

A. NDT-BASED VEHICLE SPEED ESTIMATION
The normal distribution transform maps cluster points to a
compact smooth surface representation, and then describes
each set of points with probability density functions (PDFs).
The vehicle speed calculation can be transformed into a
maximum probability problem. For the proposed method,
the first step is to divide the points into a grid of cells.
A higher grid resolution can improve the matching accu-
racy and reliability, but it will also increase the computation
required.

Taking the sampling data from the first detector, for
instance, the horizontal axis is the index number of reflective
points, and the vertical axis is the height of the object. No rig-
orous rules or regulations are followed when setting the cell
resolution for a typical NDT implementation. The optimal
resolution is usually achieved after conducting a mass data
test or statistical analysis. In the current study, the authors
consider the following two cases: (1) in many Lidar NDT
tests, the cell size is empirically set to 1 m by 1mwhile, in the
field test, a passenger car of approximately five meters (m) is
used. Therefore, the horizontal axis is divided into five cells.
(2) The 2D space consists of cells some of which are empty
due to the dimensions of the vehicle profile. At a minimum,
half the cells should have data for collection. The y-axis is
divided into five cells by rule of thumb. Finally, the resolution
is assumed to be five by five cells; hence, the data points are
stratified into 25 grids, as shown in Fig. 3. Considering the

FIGURE 3. Sampling points of the first laser sensor.

shape of the vehicle profile, five by five grids can represent
the local point distribution for the detector.

Assuming that the fall of the points in each cell follows a
Gaussian normal distribution, the mean and covariance of the
parameters can be computed by:

µ =
1
m

m∑
k=1

yk (1)

σ =
1

m− 1

m∑
k=1

(yk − µ) (yk − µ)T (2)

where yk=1,2...m represents the positions of laser points in one
cell. For a measured point x, its likelihood is given as:

p(x) =
1

(2π )1/2
√
|σ |

exp(−
(x − µ)Tσ−1(x − µ)

2
) (3)

In each cell, the PDF is the representation of local charac-
teristics, including the center position and distribution trend.
The corresponding confidence ellipses of each cell are shown
in Fig 4. It should be noted that if the points in one cell
are nearly colinear, the covariance σ tends to be singular: it
cannot be invertedwhen calculating the likelihood function p.
Therefore, the cells with less than five points are discarded
and if one of the eigenvalues λ1 is 100 times larger than
another λ2, λ2 is forced λ2 = 0.01λ1 into a matching process.
When using the NDT method for the traditional regis-

tration problem, the 2D information is usually same. For
example, in laser odometer scan matching, x and y represent
the north and east orientation in Cartesian coordinates, with
the range units equivalent to each other. However, in our
research problem, the horizontal orientation is the sampling
index sequence of the detector while, for vertical orien-
tation, it is the height of vehicle. That is, the horizontal
range number is more than a dozen times that of the ver-
tical range number. This can easily cause great differences
in the eigenvalues of the PDF covariance. Hence, in our
algorithm, the authors scale the horizontal number to an
appropriate scope to avoid this issue. The goal of the match-
ing process is to find the pose which transforms the current
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FIGURE 4. Likelihood of ellipses of divided cells.

point position into a reference frame to maximize likelihood.
In this research problem, the authors assume that the vehicle
displacement in vertical orientation can be ignored when
crossing the detected area. The authors do not consider
the rotation parameter. This is reasonable for a typical
0.5-m-length detector as the detector is usually deployed in
a flat place and the vehicle heading orientation is maintained
in a straight line when crossing the detected area. Hence, the
pose transformation between two laser sensors is degenerated
into only horizontal displacement, that is, T (x) = xcur +1x,
where xcur is the sampling point for Laser 2, and 1x is the
number of displacement index numbers to be estimated from
the matching optimization.

For a given (initialization), T (x) makes a transformed
position in 1x the reference frame: the cell grid to which
it belongs can thus be determined, according to the new
position. For a set of points, X = {x1, x2, . . . xm}, after
implementing the transformation T , for each mapped point,
the likelihood can be given by Eq. 6, depending on the normal
distribution parameters of the cell in which it falls. The best
1x is the one that can maximize the objective function below.

max
x ∈ R1 s(x) =

n∑
k=1

p(T (x, x)) (4)

The matching problem is then changed into the optimiza-
tion issue. As 1x is only a one-dimension variable, the max-
imum value can be achieved by using a simple gradient
algorithm. The gradient of s as a function of x is:

g (x) =
∂s
∂p
=

n∑
k=1

xkσ
−1
k

∂T
∂1x

exp(−
1
2
xTk σ

−1
k xk ) (5)

where x̃k = T (x)− µ, ∂p
∂1x is the first-order derivative of the

likelihood with respect to1x. For the given set X , each entry
is a 2D planar point that can be represented as xi =

[
px py

]
,

and as aforementioned in the single variable-constrained
algorithm, the optimization only focuses on the horizontal
component px , with 1x regarded as 1x = [1px 0]; thus:

∂T
∂1x

=

[
∂px
∂1x

∂py
∂1x

]
= [1 0] (6)

Algorithm 1
Single variable-constrained NDT
For two laser sensors’ collection X and Y , scale the horizontal
coordinate to a range of 0–200
1: {Initialization}
2: Divide and allocate 5 by 5 structure B = {b1, b2, . . . b25}
for reference collection Y
3: for all points yk=1,2,...m in Laser 1 collection, do
4: find cell bi that contains yk
5: store the index of bi and yk
6: end for
7: for all cells bi ∈ B do
8: to all points yik in bi, compute the likelihood parameter

9: µ = 1
m

m∑
k=1

yk

10: σ = 1
m−1

m∑
k=1

(yk − µ)(yk − µ)T

11: end for
12: {Matching}
13: 1x = 0
14:While not converged do
15: for all points xk=1,2,...m in Laser 2 collection do
16: determine the cell bi that contains T (x,1x) = xk +1x
17: if bi is empty without µi, σi, return 15
18: compute the gradient gk of each mapped xk
19: get the sum of gradient gsum

∑
gk

20: end for
21: update 1x = 1x − α · gsum(1x)
22: end while
23: convert 1x into the number of samples and then obtain
the vehicle speed.

The desired 1x can be obtained by iterating the single
variable 1x until it converges:

1x = 1x − α · g(1x) (7)

where α is a constant step length that can be empirically
determined: in this algorithm, we set α = 0.1. Once 1x is
obtained, the vehicle speed can be given as:

V =
D

1x ∗1t
(8)

where
D = the distance between the two sensors l1 and l2;
1t = the time interval between adjacent sampling points.
The pseudo code of this algorithm is summarized as fol-

lows:

B. HEIGHT AND LENGTH ESTIMATION
Amore robust vehicle parameter estimation technique, based
on extracting height and length profiles, is proposed in this
paper. The basic idea is to identify vehicles’ potential flat
surfaces to acquire a larger reference point set S from which
to calculate vehicle parameters. The basic assumption is that
the measurement error of h(n) is negligible.
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For each of the two sensors, a frequency histogram of
vehicle height asF(gi), i = 1, 2, . . .F(gi) is created, with this
defined as the percentage of h(n) that is divided in the interval
[gi −1/2,gi +1/2], where 1 = gi+1 − gi. A peak at point
ĝ in the histogram means a flat surface on the vehicle, with
probe points included on this surface. In practice, vehicles
commonly have several flat surfaces which mean that local
peaks occur in frequency histograms. The vehicle height H
can be estimated as:

H =
1
2
×

(
ĝ1 + g2

)
(9)

where ĝ1 and g2 are the surface height of the frequency
histograms of l1 and l2 at the maximized frequency, respec-
tively. In addition, F(H ) ≥ C is required, where C repre-
sents a threshold of the flat surface’s length. Let h(n), n =
M ,M + 1, . . . ,M + K be the observations of the highest
surface (vehicle roof), with this accompanied by the recorded
timestamps t(n). The first and last points, t(M ) and t(M +1),
as well as four quantile points t(M + K/4), t(M + K/2) and
t(M +K × 3/4) are added to reference point set S. The front
and rear of vehicles are also considered. The vehicle speed
can be estimated as Eq. (8). Hence, the vehicle length L can
be estimated as Eq. (10):

L =
1
2
× V × (t1(N )− t1(1)+ t2(N )− t2(1)) (10)

Consequently, after extracting the profiles of the vehi-
cle roof, the estimates of vehicle parameters are obtained,
including speed V , height H , and length L. The vehi-
cle classification can be based on the vehicle shape.
Urazghildiiev, I. R. et al. proposed a classification algorithm
based on the full height and length profiles of vehicles [28].
If the precision of the estimation is sufficient, most vehicles
can be classified, based on height H and length L, when
relatively general classification schemes are introduced [18].

IV. SIMULATIONS
The simulation is designed to verify the NDT speed measure-
ment performance. Errors arose from the timing difference
in the gap between the recorded timestamps and the true
timestamps due to discrete sampling of the laser sensor. These
errors related to the vehicle speed and the update rate of the
laser sensors [11]. When the update rate for the laser sensor is
fixed, if the vehicle travels at a high speed, the result is lower
sampled points for the detector. To evaluate measurement
performance using the proposed methodologies in different
cases, two simulation tests were conducted to study the cor-
relation between the average speed estimate error and the
vehicle speed, under different detector update rates. The first
simulation estimates spot speed and vehicle length, according
to the traditional method by computing the beginning and
ending point time interval. In contrast, the second simulation
estimates the samemeasurements with the proposedmodified
NDT algorithm.

The simulations are configured by MATLAB. The laser
update rate is set to range from 100–1000 Hz with the

constant increment of 10 Hz. To simulate the vehicle tra-
jectory, the arrival of the vehicle is assumed to follow the
Poisson distribution in any millisecond [29]. The sample size
of each simulation is set to 100,000. The vehicle in the sim-
ulation is sampled randomly from a dataset of 206 vehicles
of different sizes. The speed of the vehicle is assumed to
follow an empirical cumulative distribution. The distribution
is based on 50 hours of data obtained by frequency modulated
continuous wave (FMCW) radar on a section of urban arterial
road in Beijing. The vehicle is assumed to travel at a constant
speedwhen passing by the detector, with the distance between
the two lasers, ◦D, set to 0.5 m.

The variables of the above-mentioned random processes
are independent from each other. Our study assumes that the
vehicle roof has a random start position, end position, and
altitude to the hood. The detector operates in an ideal state;
that is, the deviation of displacement measurement by the
lasers is zero, guaranteeing that relatively accurate profiles
can be obtained.

In the first simulation estimates, the average vehicle speeds
and vehicle lengths estimation errors are shown in Fig. 5. This
shows that an increase in the update rate or a decrease in
vehicle speed will lead to a reduction in estimation errors.
A power-law fitting is applied to the samples using the
MATLAB fitting toolbox R2 = 0.99.The long-tail distribu-
tion fitting indicates the errors will drop sharply with the
increase of the update rate, but the errors will still persist. Due
to themaximum update rate of the laser rangefinders, the sim-
ulation indicates the device delivers some speed estimation
errors that is a function of incoming vehicle speed.

Owing to the resolution limitation of the millisecond-level
timer on board, the maximum update rate is 1000 Hz. With
typical vehicles traveling at 80km/h on highways, a 1000 Hz
update rate can hold the average error of vehicle length to less
than 15 cm.

In the second simulation estimates, the same settings were
used for vehicle trajectories and the detector scanning opera-
tion. The NDT matching-based algorithm simulation results
are shown in Fig. 6. Comparing this method’s results to the
traditional method’s results in the first simulation (see Fig. 5),
the algorithm significantly reduces the average estimate error
for both vehicle speed and length. At the same time, the algo-
rithm is more robust against increases in vehicle speed. Given
the update rate of 1000 Hz, the average length error can be
reduced by approximately 60%. Even for speeding vehicles
traveling at 150 km/h, the estimated speed error is limited to
10 km/h (see Table 1).

V. FIELD TESTS
The field experiments were carried out on an urban road
under construction in Cangzhou, Hebei province, China. The
detector was mounted on a horizontal gantry approximately
3.4 meters above the pavement for convenience (see Fig. 7).
A leveling ruler was used, with the laser sensors on both ends,
to ensure that the laser radiation would emit vertically to the
lane below; the ruler was also aligned with the direction of
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FIGURE 5. Results of first simulation: (a) estimated speed error,
(b) estimated length error).

TABLE 1. Maximum errors of second simulation.

the road. An invar caliber rule was then used to measure the
distance between the two sensors, with a laptop used to pro-
cess data and estimate vehicle parameters. The gap, namely,
D, between the two-laser rangefinder is a constant value. As
D is as short as 50 cm, the assumption is reasonable that the
pose of high-speed vehicle is to keep constant when traveling
through the short-length gantry. In the field, a sedan was
traveling straightforward through the narrow width gantry
equipped with a global positioning system (GPS) set and its
antennamounted on top of the vehicle. Particularly, the exper-
iment was focused on the high-speed scenario as the simula-
tions suggest the high-speed scenario that is most adversary
one for speed measurement precision.

FIGURE 6. Results of second simulation. (a) estimated speed error,
(b) estimated length error).

FIGURE 7. Experimental site and detector prototype.

According to the manual of the laser rangefinder,
the update rate can reach 1000Hz. However, the update rate is
subject to the capacity of MCU processing. According to the
time measurement by on-board ceramic resonator, the update
rate is approximately 700 Hz in the field. A GPS module,
NEO-6M (u-blox), was used to record the spot speed of
the passing vehicle [30]. According to the manual of the
manufacturer, the accuracy of GPS speed measurement can
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TABLE 2. Experimental results.

reach 0.1 m/s (equivalent to 0.36 km/h), with this acceptable
as the true value as the vehicle dynamic is relatively low. The
surrounding area has good clearance without major obstacles.
Moreover, as the number of visible satellites is between seven
and eight, and the geometric dilution of precision (GDOP)
is low. The quality of speed measurement results can be
guaranteed.

The vehicle speed and length are estimated by the proposed
method. The average speed error is 2.09 km/h, the average
length error is 27 cm, and the average height error is 17.5 cm
(see Table 2 ). Although the amount of data is not sufficient
to verify the proposed method through the simulation results,
the measurement errors of these tests are to be expected. The
estimation errors are within the threshold of the maximum
errors of simulation, that is, 32 cm for length error and
5.71 km/h for speed error results (Table 1).

In the first height estimation, we use the minimum echo
distance value as the vehicle height, with outliers found in
the estimated height values. With the increase of the ranging
distance, the laser decreases in terms of reflective power
[25]. These factors led to the failure to collect a full vehi-
cle profile. To improve the accuracy and robustness of the
height estimation, another field experiment was conducted,
using the statistic histogram method. A typical example of
height profiles provided by the detector is shown below
in Fig. 8.

The corresponding normalized histograms of the two lasers
are shown in Fig. 9. The histogram’s highest bin repre-
sents the sample data of the vehicle roof. The frequency
threshold C is set to 0.15. For Laser 1, as F

(
ĝ = 145

)
>

F
(
ĝ = 103

)
> C , the bin value ĝ = 145 cm is accepted

as the roof of the vehicle. A similar process is conducted for
Laser 2.

The vehicle parameters are then estimated according to (3)
and (4). Several tests are conducted (see Table 3 ). The
proposed statistic method can significantly reduce estimate
error.

FIGURE 8. Comparison of obtained profiles and vehicle.

FIGURE 9. Comparison of obtained profiles and vehicle: (a) Laser 1,
(b) Laser 2.

TABLE 3. Test results.

VI. CONCLUSION
Intelligent transportation systems (ITS) require various types
of fundamental traffic information. The laser detector has
its advantages in accuracy and cost effectiveness. In the
study described in this paper, a laser-based traffic detector
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has been developed, with a single variable-constrained NDT
matching method proposed. The aim is to aid in computing
vehicle parameters including speed, length, and height, with
these collected to avoid potential over-height vehicle colli-
sions with structures. The device is based on open-source
hardware and, in terms of affordability, can be reproduced.
Moreover, the configuration provides users with versatil-
ity in applying the device. For instance, a single unit can
work independently for a single lane, while multiple units
can be integrated for multiple lanes. The proposed device
enables a common research hardware platform, while the
open-source code demonstrates a transparent algorithm for
vehicle height and length measurement, with the results
able to be used for vehicle classification and for further
enhancement.

The development of advanced laser sensors provides moti-
vation for the improvement of traffic laser detection systems.
The simulation results validate the speed and length esti-
mations showing that the algorithm can significantly reduce
errors, with the average error of vehicle length estimation at
the decimeter level. Our study’s field experiment verified that
the errors of the proposed detector are within the simulated
precision level.

The method is promising for future application. The device
is compact and easily installed. Moreover, the versatile con-
figuration enables the device to be either a one-lane unit or a
multiple-lane unit. As the laser-based detector is based on
open-source hardware, not only it is affordable, but it can
be customized in other studies exploring the development of
localized detectors.

Considering the limited size of these field tests, future
research could scale up the experiments. The next research
step would be to use a reliable source to further evaluate the
detector data and vehicle classifications.

The current open-source platform components need to be
improved in terms of precision and resolution. The current
crystal oscillator on board can only offer a millisecond level
of resolution. The laser sensor failed to measure distance
precisely over a long detection distance or at a high update
rate.More improvements need to bemade to the laser detector
to verify the proposed NDT matching speed measurement
method.

Some external factors, such as the detector’s alignment,
would lead to the downgrading of detector results. Taking
into consideration the application’s convenience, the entire
detector needs to be packaged with its reliability tested in
a harsh environment. In addition, the open-source hardware
provides a compatibility platform for data fusion with dif-
ferent sensors. As the Doppler radar is more appropriate for
higher speed traffic, other future research could involve the
fusion of radar and laser sensors.

ACKNOWLEDGMENT
The authors would like to thank Beijing Zhongjiao Ruida
Technology Company for providing high precision devices
to validate the algorithm results. They would also like to

thank Cangzhou Transportation Bureau, Hebei for its help in
preparing and carrying out the test field experiments.

REFERENCES
[1] A. Gaur, B. Scotney, G. Parr, and S. McClean, ‘‘Smart city architec-

ture and its applications based on IoT,’’ Procedia Comput. Sci., vol. 52,
pp. 1089–1094, 2015, doi: 10.1016/j.procs.2015.05.122.

[2] L. A. Klein, M. K. Mills, and D. R. P. Gibson, Traffic Detec-
tor Handbook, vol. 2, 3rd ed. McLean, VA, USA: Federal High-
way Administration, 2006. [Online]. Available: https://www.fhwa.dot.
gov/publications/research/operations/its/06139/06139.pdf

[3] L. E. Y. Mimbela and L. A. Klein, ‘‘A summary of vehicle detection and
surveillance technologies used in intelligent transportation systems,’’ Dept.
Civil Eng., New Mexico State Univ., Las Cruces, NM, USA, Tech. Rep.,
2007.

[4] Z. Yang and L. S. C. Pun-Cheng, ‘‘Vehicle detection in intelligent
transportation systems and its applications under varying environments:
A review,’’ (in English), Image Vis. Comput., vol. 69, pp. 143–154,
Jan. 2018, doi: 10.1016/j.imavis.2017.09.008.

[5] J. Wang, E. R. Case, and D. Manor, ‘‘The road traffic microwave sensor
(RTMS),’’ in Proc. 3rd Int. Conf. Vehicle Navigat. Inf. Syst., Sep. 1992,
pp. 83–90, doi: 10.1109/VNIS.1992.639938.

[6] J. X. Fang, H. D. Meng, H. Zhang, and X. Q. Wang, ‘‘A low-
cost vehicle detection and classification system based on unmodulated
continuous-wave radar,’’ presented at the IEEE Intell. Transp. Syst.
Conf., vols. 1–2, New York, NY, USA, 2007. [Online]. Available:
https://WOS:000253972100115.

[7] Z. Yuan and M. Y. Feng, ‘‘Design of intelligent transportation system
based on the technology of information and communication engineering,’’
Telkomnika (Telecommun. Comput. Electron. Control), vol. 14, no. 2,
pp. 180–188, 2016, doi: 10.12928/TELKOMNIKA.v14i2A.4373.

[8] G. S. R. Satyanarayana, K. V. Kiran, and S. K. Das, ‘‘A laser curtain
for detecting heterogeneous lane-less traffic,’’ in Proc. 11th Int. Conf.
Commun. Syst. Netw. (COMSNETS), Jan. 2019, pp. 743–747.

[9] H. M. Abdelbaki, K. Hussain, and E. Gelenbe, ‘‘A laser intensity image
based automatic vehicle classification system,’’ in Proc. ITSC. IEEE Intell.
Transp. Syst., Aug. 2001, pp. 460–465.

[10] H. H. Cheng, B. D. Shaw, J. Palen, B. Lin, B. Chen, and Z. Wang,
‘‘Development and field test of a laser-based nonintrusive detection sys-
tem for identification of vehicles on the highway,’’ (in English), IEEE
Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 147–155, Jun. 2005, doi: 10.
1109/tits.2005.848364.

[11] Z. Wang, B. Chen, H. H. Cheng, B. Shaw, and J. Palen, ‘‘Performance
analysis for design of a high-precision electronic opto-mechanical system
for vehicle delineation detection on highway,’’ (in English), J. Mech. Des.,
vol. 125, no. 4, pp. 802–808, Dec. 2003, doi: 10.1115/1.1625401.

[12] H. Q. Li, L. W. Zhu, Z. Y. Zhang, and C. Z. Chu, ‘‘Design of a
traffic detection system based on laser and piezoelectric technologies,’’
Appl. Mech. Mater., vols. 198–199, pp. 1093–1098, Sep. 2012, doi: 10.
4028/www.scientific.net/amm.198-199.1093.

[13] M. Atluri, M. Chowdhury, N. Kanhere, R. Fries, W. Sarasua, and J. Ogle,
‘‘Development of a sensor system for traffic data collection,’’ J. Adv.
Transp., vol. 43, no. 1, pp. 1–20, Jan. 2009.

[14] S. P. Kaufman, A. Savikovsky, C. C. Chagaris, and J. Stave, ‘‘Laser
radar projection with object feature detection and ranging,’’ U.S. Patent
8 582 087 B2, Nov. 12, 2013.

[15] (2019). FHWA-HIF-18-054, Primer on Impact Protection for Crit-
ical Transportation Infrastructure. [Online]. Available: https://rosap.
ntl.bts.gov/view/dot/38075

[16] X. Z. Lu, Y. S. Zhang, J. Ning, J. J. Jiang, and A. Z. Ren, ‘‘Simulation for
the impact between over-high truck and steel-concrete composite bridge,’’
presented at the 9th Int. Conf. Steel, Space Compos. Struct., Singapore,
2007. [Online]. Available: https://WOS:000252961800093

[17] B. Nguyen and I. Brilakis, ‘‘Understanding the problem of bridge and
tunnel strikes caused by over-height vehicles,’’ Transp. Res. Procedia,
vol. 14, pp. 3915–3924, 2016.

[18] I. Urazghildiiev, R. Ragnarsson, P. Ridderstrom, A. Rydberg, E. Ojefors,
K. Wallin, P. Enochsson, M. Ericson, and G. Lofqvist, ‘‘Vehicle classifi-
cation based on the radar measurement of height profiles,’’ (in English),
IEEE Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 245–253, Jun. 2007,
doi: 10.1109/tits.2006.890071.

[19] C. Harlow and S. Peng, ‘‘Automatic vehicle classification system with
range sensors,’’ Transp. Res. C, Emerg Technol., vol. 9, no. 4, pp. 231–247,
2001, doi: 10.1016/S0968-090X(00)00034-6.

VOLUME 9, 2021 53131

http://dx.doi.org/10.1016/j.procs.2015.05.122
http://dx.doi.org/10.1016/j.imavis.2017.09.008
http://dx.doi.org/10.1109/VNIS.1992.639938
http://dx.doi.org/10.12928/TELKOMNIKA.v14i2A.4373
http://dx.doi.org/10.1109/tits.2005.848364
http://dx.doi.org/10.1109/tits.2005.848364
http://dx.doi.org/10.1115/1.1625401
http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.1093
http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.1093
http://dx.doi.org/10.1109/tits.2006.890071
http://dx.doi.org/10.1016/S0968-090X(00)00034-6


H. Qiu et al.: Single Variable-Constrained NDT Matching in Traffic Data Collection Using Laser-Based Detector

[20] K. F. Hussain and G. S. Moussa, ‘‘Automatic vehicle classification system
using range sensor,’’ in Proc. Int. Conf. Inf. Technol., Coding Comput.
(ITCC), vol. 2. Las Vegas, NV, USA: Institute Electrical Electronics Engi-
neers, Apr. 2005, pp. 107–112, doi: 10.1109/ITCC.2005.96.

[21] GARMIN. (2018). Lidar Lite v3 Operation Manual and Technical
Specifications. Accessed: May 6, 2019. [Online]. Available: http://static.
garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_
Specifications.pdf

[22] M. Magnusson, ‘‘The three-dimensional normal-distributions transform:
An efficient representation for registration, surface analysis, and loop
detection,’’ Doctoral dissertation, Centre Appl. Auton. Sensor Syst.,
Örebro Universitet, Örebro, Sweden, 2009.

[23] Y. Tian, H. Liu, and T. Furukawa, ‘‘Reliable infrastructural urban traffic
monitoring via lidar and camera fusion,’’ SAE Int. J. Passenger Cars-
Electron. Electr. Syst., vol. 10, no. 1, pp. 173–180, Mar. 2017.

[24] D. Li, W. Wang, J. Wei, Z. Wu, and L. Mei, ‘‘Real-time 3D vehicle
reconstruction with 1D laser scanner and monocular camera,’’ in Future
Information Technology. Berlin, Germany: Springer, 2014, pp. 361–366.

[25] GARMIN. LIDAR-Lite V3HP Operation Manual and Technical
Specifications 2018. Accessed: May 6, 2019. [Online]. Available:
http://static.garmin.com/pumac/LIDAR-Lite_v3HP_Instructions_EN.pdf

[26] Microchip Technology Inc. (2018). ATmega48A/PA/88A/PA/168A/PA/
328/P megaAVR Data Sheet. Accessed: May 8, 2019. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-
88A-PA-168A-PA-328-P-DS-DS40002061A.pdf

[27] Texas Instruments. (2014). User’s Guide. Accessed: May 7, 2019.
[Online]. Available: http://www.ti.com/lit/ug/slvua73/slvua73.pdf

[28] I. R. Urazghildiiev, R. Ragnarsson, K. Wallin, A. Rydberg, P. Ridderstrom,
and E. Ojefors, ‘‘A vehicle classification system based on microwave
radar measurement of height profiles,’’ in Proc. RADAR. Edinburgh, U.K.:
Institution Engineering Technology, Oct. 2002, pp. 409–413. [Online].
Available: http://dx.doi.org/10.1109/RADAR.2002.1174736.

[29] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, ‘‘Internet traffic tends
toward Poisson and independent as the load increases,’’ (in English), in
Nonlinear Estimation and Classification. New York, NY, USA: Springer,
2003, pp. 83–109.

[30] U-Blox. (2011).NEO-6 Series Versatile U-Blox 6GPSModules. Accessed:
May 8, 2019. [Online]. Available: https://www.u-blox.com/sites/
default/files/products/documents/NEO-6_ProductSummary_%28GPS.
G6-HW-09003%29.pdf

HAIYANG QIU received the B.Sc. and Ph.D.
degrees from Harbin Engineering University
(HEU), China, in 2010 and 2016, respectively.
From 2013 to 2014, he was a Visiting Scholar with
the Queensland University of Technology (QUT),
Australia. He is currently a Faculty with the
School of Electronics and Information Engineer-
ing, Jiangsu University of Science and Technol-
ogy. His major research interests include marine
vehicles navigation, image processing and inertial

aided underwater SLAM, and distributed mapping with multiple agents.

XIANGDI LI is currently pursuing the master’s
degree with the Key Laboratory of Transport
Industry of Big Data Application Technologies for
Comprehensive Transport, Beijing Jiaotong Uni-
versity. His research interest includes integrated
navigation in transportation area.

JUN ZHANG is currently a Master with the
Key Laboratory of Transport Industry of Big
Data Application Technologies for Comprehen-
sive Transport, Ministry of Transport, Beijing
Jiaotong University, China. His research inter-
ests include traffic data analysis and ITS devices
development.

DONGXIAO YU received the bachelor’s and mas-
ter’s degrees from Tongji University, in 2005 and
2008, respectively. He is currently the Vice Pres-
ident of Beijing Zhongjiao Ruida Technology
Company.

LEI YU has been the Dean of the College
of Science, Engineering and Technology, Texas
Southern University, since September 2009. In this
position, he serves as the Chief Academic and
Administrative Officer with the college under the
general direction of the Provost, and provides
leadership in formulating educational policies.
He is responsible for supervising the college’s
daily operations, managing the college’s budget,
and leading fund-raising efforts. Academic depart-

ments under his direction include Aviation Science and Technology, Biology,
Chemistry, Computer Science, Engineering, Environmental and Interdisci-
plinary Sciences, Industrial Technology, Mathematics, Physics, and Trans-
portation Studies. He also oversees a number of significant research centers
and outreach programs in the college.

HUI WANG received the B.Sc. degree from the
Tianjin University of Technology and Education,
in 2008, and the Ph.D. degree from Harbin Engi-
neering University, in 2016.

She currently works with the School of Elec-
tronics and Information Engineering, Jiangsu Uni-
versity of Science and Technology. Her main
research interests include marine radar image pro-
cessing, marine integrated hydrological remote
sensing, and information forecasting technology.

SICONG ZHU was born in Beijing, China,
in 1983. He received the bachelor’s degree from
Tongji University, Shanghai, and the Ph.D. degree
in traffic engineering from The University of
Queensland in 2015.

From 2018 to 2019, he was a Visiting Scholar
with University College London. He is currently
a Lecturer with the College of Transportation and
Traffic, Beijing Jiaotong University, where he has
been a Faculty Member, since 2015. He has col-

laborated actively with researchers in several other disciplines of traffic
engineering, particularly in the field of ITS. His research interest includes
traffic environmental study ranging from gaseous pollutants modeling to
particulate matter monitoring.

53132 VOLUME 9, 2021

http://dx.doi.org/10.1109/ITCC.2005.96
http://dx.doi.org/10.1109/RADAR.2002.1174736

