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ABSTRACT In this work, an including the switched evolution process discrete model of a DC–DC converter
feeding a switched constant power load is proposed based on the Poincaré mapping rule and matrix exponent
method. Numerical simulations of the bifurcation scheme based on the proposed discrete model reveal the
period-adding bifurcation structures of the system as multiple devils’ staircases. Further, the calculation
of the stable regions of the multiple-period orbits of the nested period-adding bifurcation structures are
illustrated. The experimental results verify the validity of the discrete model and analytical accuracy of the
period-adding bifurcation characteristics of the system. The proposedmodel solves the difficulties associated
with discrete modeling for power electronic nonlinear switched systems. The introduction of the switched
evolution process in the proposed discrete model provides a specific mathematical model for studying the
influence of the switched evolution process on the dynamics of power electronic nonlinear switched systems.
This study is expected to be a foundation for the theory and further research on such power electronic
nonlinear switched systems.

INDEX TERMS Chaos, constant power load, DC–DC converter, discrete model, period-adding bifurcation.

I. INTRODUCTION
Cascaded DC–DC converters have a wide range of applica-
tions in distributed power systems comprising a variety of
renewable energy [1], [2]. In these systems, the rear convert-
ers can often be treated as the constant power loads (CPLs)
on the front converter [3], [4]. The CPL exhibits a negative
incremental impedance [5], [6], which tends to destabilize
the systems, consequently inducing strong nonlinearities [7],
such as bifurcation and chaos, in the entire cascaded DC–DC
converter system. These nonlinear behaviors of the DC–DC
converters feeding CPLs may cause unstable operation in
renewable energy systems. Therefore, it is necessary to study
themechanisms of their nonlinear behaviors. Besides the ana-
lyzing and controlling of the instability for DC–DC convert-
ers feeding CPLs shown in [1]–[6], the non-linear behaviours
of these systems have also attracted wide attention in recent
years [7]–[10].

In [7] the stability and the low-scale bifurcation phenom-
ena at the equilibrium point of a power factor correction
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converter feeding a CPL were studied by a low-frequency
small-signal model. But the more complex nonlinear phe-
nomenon in the system, such as the fast-scale instability like
period-doubling bifurcation and chaos, cannot be revealed by
this low-frequency small-signal model. In [8] the stability,
Hopf bifurcation and catastrophic bifurcation phenomena of
a Buck converter feeding a CPL in a photovoltaic-battery
hybrid power system were investigated based on the small
and large-signal models. In [9] the stability and the complex
non-linear behaviours of a DC–DC bidirectional converter
feeding a CPL in an islanding microgrid were studied by the
reduced large-signal model. To simplify the nonlinear term
in the study model, the CPL was equivalently linearized as a
negative resistance with constant resistance at the equilibrium
point both in [8] and [9]. According to the electrical character-
istics of CPL, it can be known that this equivalent model is not
suitable for studying the global bifurcation characteristics of
the system other than the equilibrium points. Previous studies
have shown that the discrete mapping model was suitable
for the study of the global bifurcation analyses of power
electronics systems [10]–[14]. In [12] a new discrete-time
model was proposed to investigate the bifurcation behavior
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of the boost converter feeding a CPL in the transportation
system. However, there are too many intermediate variables
and procedures involved in the modeling method, which
cause the discrete model too complex for practical. In [13]
and [14] the discrete mapping model for one source boost
converter (SBC) paralleled with multi-CPLs was established.
The bifurcation behaviors and the coexisting fast-scale and
slow-scale instabilities of the system were analyzed in these
two papers. In these two works, the CPLwas equivalent to the
circuit composed of a constant current source parallel with
a negative resistance at the steady-state, but this equivalent
circuit could not reflect the real dynamics of CPL perfectly.
Therefore, the discrete mapping proposed in [13] and [14]
cannot precisely describe the dynamics of a DC–DC con-
verter feeding with CPLs.

Moreover, the reported literature on switched systems
has shown that the switched evolution processes may
influence the dynamic characteristics of the switched
systems [15], [16].

As a typical switched system, the dynamics and stability of
a DC–DC converter feeding a CPL are obviously affected by
the switched evolution processes. However, very few exist-
ing models on power electronic switched nonlinear systems
discuss the switching evolution process; hence, the dynamic
characteristics obtained from these models cannot reflect the
influence of the switched evolution process on the system
characteristics. To study this influence in detail, a specific
mathematical model of the switched evolution process is
needed in the model of the power electronic switched non-
linear system.

To overcome the problem that the equivalent model of CPL
is only applicable to the equilibrium point in above-given
models and the modeling difficulty of the switched evolu-
tion processes of power electronic system, a discrete model
including the switched evolution process for DC–DC con-
verters feeding switched CPLs (SCPLs) is established in
this work. Here, the so-called SCPL is a CPL that may
exhibit switching behaviors such as hopping, removal, or cut-
in under different conditions [17], e.g., a constant power
electrical brake system [18].

The remainder of this paper is organized as follows.
Section 2 presents the system model and state equations of a
buck converter feeding an SCPL. Section 3 proposes the new
discrete model including the switched evolution process for
DC–DC converters feeding an SCPL. Section 4 presents the
simulation results based on the proposed discrete model and
discusses the period-adding bifurcation of the system. The
results of the experiments are discussed in Section 5. Finally,
the conclusions are presented in Section 6.

II. MATHEMATICAL MODEL OF A BUCK CONVERTER
FEEDING AN SCPL
This study considers a buck converter feeding an SCPL as
an example to discuss the modeling method to include the
switched evolution process in the discrete model of the power

FIGURE 1. Buck converter feeding an SCPL.

electronic switched nonlinear system. The schematic of a
buck converter feeding an SCPL is shown in Fig. 1.

The front converter in the schematic is a voltage-controlled
continuous conduction mode (CCM) buck converter, and the
rear cascaded SCPL is modeled using a dual-loop controlled
CCM boost converter that is controlled by switch Sp. The
starting reference and output voltages of the CPL are UCPL
and u02(t) respectively. The other circuit components are as
follows: Uin is the primary voltage source, L is the induc-
tance, C is the capacitance, Re is the integrated equivalent
impedance of the power supply and cable, RLoad is a resistive
load, Ru and Rd are the sampling resistors, r = Rd/(Ru + Rd)
is the voltage sampling coefficient, uC(t) and iL(t) are the
capacitor voltage and inductor current, respectively. The PI
controller in the system is composed of R1, Rf, Cf, and
operational amplifier A1, and its input and output voltages
are u1 = ruC and vcon(t) respectively. Further, Uref is the
reference voltage. vcon(t) is defined as

vcon(t) = kP(u1 − uref )+ kI

∫ T

0
(u1 − uref )dt + uref (1)

where three control parameters of PI controller are described
as kP = R1/Rf, kI = 1/CfRf, kr = Rd/(Ru + Rd).
The sawtooth ramp voltage is described as follows:

Vtri(t1) = VL + (VM − VL)∗t/T (2)

where T is the control period, and VM and VL are the peak
and valley voltages of Vtri(t) respectively.

The state variables of the system are sampled once at the
beginning of each clock cycle. It is assumed that the converter
will experience m (m = 1, 2) switching modes (SMs) in one
cycle, where the switching rules are as follows. First, at the
beginning of each switching period, the system operates in
SM1, where switch S1 is on and diode D1 is off. Then, when
vcon(t) < Vtri(t), S1 is turned off and D1 is turned on, with
the system operating in SM2.

The state equations of the converter are derived as follows:
When vcon(t) ≥ Vtri(t), the system operates in SM1, and the
state equations are

FS1j(uC , iL , b(uC )) :


diL
dt
=

1
L
(Uin − uC )

duC
dt
=

1
C
(iL−

uC
RLoad

−b(uC ) ·
P0
uC

)

(3)
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Here, b(uC) is the control function of Sp. When b(uC) = 0,
Sp is off, and the CPL is cut off; here, j = 1, so (3) can be
expressed as Fs11. Otherwise, when b(uC) = 1, Sp is on, and
the CPL is operational; here, j = 2 and (3) can be expressed
as Fs12.
In SM2, when vcon(t) < Vtri(t), S1 is off and D1 is on, and

the state equations are given as follows.

FS2j(uC , iL , b(uC )) :


diL
dt
=

1
L
(−uC )

duC
dt
=

1
C
(iL−

uC
RLoad

−b(uC ) ·
P0
uC

)

(4)

Here, the meaning of b(uC) is the same as that in (3). When
b(uC) is equal to 1 or 0, (4) can be expressed as Fs21 or Fs22
respectively.

III. MODELING THE DISCRETE MODEL WITH SWITCHED
EVOLUTION PROCESS FOR BUCK CONVERTER
FEEDING AN SCPL
Based on the circuit diagram of the buck converter feed-
ing the SCPL, as shown in Fig. 1, the modeling method
for the approach including the switched evolution process
of the discrete model of the power electronic switched
nonlinear system is described in this section. Accord-
ing to previous studies, the discrete model including the
switched evolution process of a DC–DC converter feeding
a SCPL can be established by connecting different piece-
wise local mappings according to the Poincaré mapping
rule [19]–[21] and matrix exponent method [14]. Hence,
the different piecewise local mappings are derived in detail as
follows.

A. LINEAR SMOOTH PIECEWISE LOCAL MAPPING OF
DC–DC CONVERTER FEEDING A RESISTOR
For smooth piecewise states when the converter feeds a resis-
tor, the system can be modeled discretely using the existing
model as follows [14]:

Xk+1 = FMi1(Xk ,1t1)

= eA11t1Xk + (eA11t1 − I )A−11 B1iUin (5)

Here, X means the state variables matrix of the sys-
tem and X = [iLuC]T , 1t1 is the working time, eA11t1
is the state transition matrix of the system that can be
obtained accurately by the Cayley–Hamilton theorem [22],
A1 and B1i are coefficient matrixes and expressed as
follows

A1 =
[
∂FSi0
∂X

]
=

[
∂FSi0
∂iL

∂FSi0
∂uC

]
=

 0 −
1
L

1
C
−

1
RLoadC

 ,
B1i =

[
∂FSi0
∂Uin

]
i = 1, 2,

∴ B11 =

 1
L
0

 , B12 =
[
0
0

]
where, the subscript i represents different SMs of the former
buck converter, i.e., i = 1 corresponds to SM1 and i = 2
corresponds to SM2.

B. NONLINEAR SMOOTH PIECEWISE LOCAL MAPPING
OF DC–DC CONVERTER FEEDING A CPL
Unlike the linear differential equations of a DC–DC con-
verter feeding a resistor, the state equations of the converter
feeding a CPL are nonlinear. Previous studies have shown
that it is necessary to approximately linearize the nonlinear
differential equation of the system in advance, such that the
discrete model of the system can be established using the
exponential matrix method [14], [16], [21]. Based on this,
the discrete local mapping of a DC–DC converter feeding a
CPL is derived as follows.

For the convenience of discussion, use F(t , X ) to represent
the right side nonlinear functions of (3) and (4) at first.
According to the Newton method [19], [20], F(t , X ) can be
approximately linearized as follows

FL(t,X )=F(t, ϕ(t0))+ A2(t) [X − ϕ(t0)]+ O(t,X ) (6)

where X = [iLuC]T , FL(t , X ) is the linearized function of
F(t , X ), ϕ(t0) = [iL(t0) uC(t0)]T is an arbitrary solution of
the system at any running time t0, O(t , X ) is the higher
order term that can be omitted, and A2(t) is the coefficient
matrix whose elements aij(t) can be obtained by the following
expression.

aij(t) =
∂F(t,X )
∂Xi

∣∣∣∣
X=ϕ(t0)

i, j = 1, 2. (7)

Through solving (6) exactly with the matrix exponent
method [19], [20], [23] and omitting its higher-order term
O(t , X ) at the same time, the general smooth piecewise
discrete mapping of DC–DC converter feeding a CPL can be
obtained as follows

Xn+1=FMi2(Xn,1t)

= eA21t (Xn − ϕ(t0))+(eA21t − I )A
−1
2 F(1t, ϕ(t0))

(8)

where A2(t) = [aij(t)] is the coefficient matrix of A(t) when
X = ϕ(t0) and eA21t is the state transition matrix of the
system.

C. DISCRETE MODEL OF THE SWITCHED EVOLUTION
PROCESS
On the basis of the modeling method of the impact
oscillator [15], [19],[21], [23], the discrete mapping of
the switched evolution process for a DC–DC converter
feeding an SCPL was derived in detail in our pre-
vious work [17]. Thus, the discrete mapping of the
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switched evolution process is used directly and rewritten
as [17], [19], [20]

PZDM : XZDM
= FZDM (iLk, uCk)

=


iLZDM = iLk − F2(X∗)

√
2a∗

√
−
∂H (X )
∂X

1iL = iLk

uCZDM = uCk − F2(X∗)
√
2a∗

√∣∣∣∣−∂H (X )
∂X

1uC

∣∣∣∣
= XCk − F2(X∗)

√
2a∗

√∣∣∣∣−∂H (X )
∂X

(XCk − X∗)

∣∣∣∣ (9)

where X = [iLuC]T , 1X = [1iL1uC]T , 1iL = iL − iL = 0,
1uc = (vcon(t∗)+(1−kP)Uref)/kP−uC, vcon(t∗) is calculated
as vcon(t∗) = Vtri(t∗),X∗= [(vcon(t∗)+(1−kP)Uref)/kP iL(tn)]
is the switched point, andH (X ) is the switching function. The
expression of a∗ is given as

a∗ = (FTi HXX + HXFiX )Fi(X
∗)

= m1 ·
Uin
LC
−
CR2Load + L

LC2R2Load
u∗C −

2b(uC )P0
C2RLoaduC

+m2 · (
1

C2RLoad
+
b(uC )P0
C2u2C

)i∗L −
b(uC )P20
C2u3C

(10)

where m1 = 1 and m2 = 1 when the system is in SM1,
m1 = 0 and m2 = 1 when the system is in SM2, and
m1 = 0 and m2 = 0 when the system is in SM3; b(uC) = 0
if the switching SP is stopped before mode switching and
1 otherwise.

Different mappings of the switched evolution process of
the system can be obtained under different working modes
according to (9) and (10).

For example, when the system state is in SM1 and the load
is switched from a resistor to CPL in parallel with resistor,
the mapping of the switched evolution process of the system
can be obtained according to (9) and (10) as follows:

XZDM1

= FZDM1(Xk ,1t, b)

= (eA11t1Xk+(eA1t1−I )A
−1
1 B1Uin)−FS12(X∗1 )

√
2a∗1

·

√∣∣∣−HX (eA11t1Xk+(eA1t1 − I )A−11 B1Uin−X∗1 )
∣∣∣ (11)

where a∗ and H (X ) aregiven as

a∗ = (FTS11HXX + HXFS11X )FS11(X
∗)

=
Uin
LC
−
CR2Load + L

LC2R2Load
UCPL +

1
C2RLoad

iL (12)

H (X ) = uC − UCPL (13)

D. BOUNDARY VOLTAGES AND WORKING MODES
A DC–DC converter system will undergo different SMs and
loadmodes (LMs) in a switching period under different initial
values. Hence, the system will have different discrete models

for different initial values. To establish the discrete model of
the system, the SMs and LMs of the system in a switching
period must be exactly determined in advance. Previous stud-
ies [14], [17] have shown that these SMs and LMs can be
exactly determined by comparing the initial values of uC to
the boundary voltages of the system. Therefore, deriving the
boundary voltages is of importance for the discrete modeling
of the system. The boundary voltages of the system can be
derived as follows.

1) UBC1 IS THE SWITCHED BOUNDARY
VOLTAGE OF CPL IN SM1
It is assumed that the system is in SM1 and feeding a resistor
at the beginning of the switching period, with initial value
uC(0) = UBC1. Under this condition, after one switching
period, uC increases to uC = UCPL, and the switch Sp is
turned on for the CPL at time t = T . This means that the
LM of the system is switched from a resistor to CPL in
parallel with the resistor in one switching period for the initial
value uC(0) = UBC1. This initial value UBC1 is called the
switched boundary voltage of CPL in SM1. From (10) and
the condition uC(T ) = UCPL, the expression for UBC1 can be
obtained as follows:

UBC1 = (UCPL − (eA1T − I )A−11 B1Uin)e−A1T (14)

2) UBS1 IS THE SWITCHED BOUNDARY VOLTAGE FOR
MODE SWITCHING
It is supposed that the system starts from the initial value
of uC(0) = UBS1 in SM1 at the beginning of the switching
period, and under this initial condition, the output voltage
of the PI controller vcon(t) is equal to Vtri(t) at time T , i.e.,
vcon(T ) = Vtri(T ). Then, the output of A2wouldmove toward
low voltage, which would cause S1 to turn off and the system
to switch to SM2. Here, UBS1 is the switched boundary volt-
age for mode switching. Note that UBS1 is larger than UBC1,
i.e., when switching from SM1 to SM2, the system feeds a
CPL. Therefore, under the initial value condition of uC(0) =
UBS1, the system undergoes the following two states in a
switching period: the system state is SM1 and feeds a resistor;
the system state is SM1 and feeds a resistor in parallel with
the CPL. UBS1 can be obtained by the following steps. First,
according to the conditions of the system described by (10),
when t < 1t1 and uC(1t1) = UCPL, the following expression
is obtained:[

UCPL
iL1

]
=eA11t1

[
UBS1
iL0

]
+ (eA1t1 − I )A−11 B1Uin (15)

Second, according to (15) and the condition
vcon(T ) = Vtri(T ). The expression 1t1 can be obtained as

1t1 = T −
VM − uref − kP(krUCPL − uref )

kI (krUCPL − uref )
(16)

where kr = Rd/(Rd + Ru).
Lastly, UBS1 can be obtained numerically

using (15) and (16).
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3) UBC2 IS THE SWITCHED BOUNDARY
VOLTAGE OF CPL IN SM2
In this case, it is assumed that the system starts from the
initial value uC(0) = UBC2 and undergoes the following
states: working in SM1 and feeding resistor only, working in
SM1 and feeding CPL in parallel with resistor, andworking in
SM2 and feeding CPL in parallel with resistor. In this switch-
ing period, uC first increases and then decreases, finally set-
tling at uC(T ) = UCPL at the end of the switching period. This
initial value UBC2 is called the switched boundary voltage of
CPL in SM2 and can be obtained as follows. First, under the
condition uC(1t1) = UCPL, the state of the system working
in SM1 and feeding a resistor is described by (15). Second,
by inserting (2), (15), vcon(1t1+1t2) = Vtri(1t1+1t2), and
1t = 1t2 in (9), the state equation of the system working in
SM1 and feeding a CPL in parallel with the resistor within
1t2 is obtained as[
uC2
iL2

]
=eA11t2 (

[
UCPL
iL1

]
− ϕ(t0))+ (eA11t2 − I )A−11

×FS1(1t2, ϕ(t0), 1) (17)

Third, inserting (2), (17), uC(T ) = UCPL, and 1t =
1t3 = T -(1t1 +1t2) in (9), the state equation of the system
working in SM2 and feeding a CPL in parallel with a resistor
is obtained as[

UCPL
iL3

]
= eA2(T−1t1−1t2)(

[
uC2
iL2

]
− ϕ(t0))

+ (eA2(T−1t1−1t2) − I )A−11

×FS2((T −1t1 −1t2), ϕ(t0), 1) (18)

According to (1), (2), and condition vcon(T ) = Vtri(T ),
the expression of 1t2 can be obtained as

1t2 =
VM − uref − kP(krUCPL − uref )

kI (krUCPL − uref )
(19)

Lastly, UBC2 can be obtained numerically using (15)-(19).

4) WORKING MODE
It can be observed from the above description that when the
initial values belong to a certain boundary region, the system
undergoes the same SMs and LMs during different switching
periods. Therefore, the working states of the system between
different boundary regions can be defined as the following
working modes (WMs).

WM F1: if uC(0) < UBC1, the system will undergo
SM1 and feed only a resistor in a given switching period.

WM F2: if UBC1 < uC(0) < UBS1 in a given switching
period, the system remains in SM1 but undergoes two LMs,
i.e., the load of the system switches from a resistor to a CPL
in parallel with a resistor at the time uC ≥ UCPL.
WM F3: if UBS1 < uC(0) < UBC2 in a switching

period, the system undergoes the following states: remaining
in SM1 with the LMs switching from only a resistor to a CPL
in parallel with a resistor; remaining in SM2 and feeding a
CPL in parallel with a resistor.

WM F4: if UBC2 < uC(0) < UBS2 in a switching
period, the system undergoes the following states: remaining
in SM1 with the LMs switching from only a resistor to a CPL
in parallel with a resistor; remaining in SM2 with the LMs
switching from a CPL in parallel with a resistor to only a
resistor.

5) MODELING THE SWITCHED EVOLUTION PROCESS
INCLUDED IN THE DISCRETE MODEL
The local smoothmappings of the system under different SMs
and LMs are defined by Pi as follows:
P1: in SM1 and feeding only a resistive load.
P2: in SM1 and feeding a CPL in parallel with a resistive

load.
P3: in SM2 and feeding a CPL in parallel with a resistive

load.
P4: in SM2 and feeding only a resistive load.
The global Poincaré mapping P of the system can be

described as follows [19]–[21]:

P = Pi+1 ◦ PZDMi ◦ Pi ◦ · · · ◦ PZDM1 ◦ P1 (20)

When the system is in different WMs, there will be dif-
ferent Pi and PZDMi included in (20). According to (20), the
discrete model with switched evolution process of a DC–DC
converter feeding a SCPL can be described as

Xn+1=XMi = GMi(Xn)

=Fi+1(FZDMi(Fi(· · · ,F1(1t1, b1),1ti, bi)),

×1ti+1, bi+1) (21)

where FZDMi are the discrete models of the switched evo-
lution processes of the systems in (9) and (11), and Fi are
the different local smooth piecewise discrete models of the
systems in (5) and (8).

IV. PERIOD-ADDING BIFURCATION STRUCTURE
A DC–DC converter feeding a CPL is rich in non-
linear dynamics, such as low-frequency bifurcation [7],
Hopf bifurcation, Catastrophic bifurcation [8], Saddle-node
bifurcation, T-singularity bifurcation [9], border colli-
sion bifurcations [10], period-doubling bifurcation, coex-
istence of fast-scale and slow-scale instabilities state and
chaos, Neimark-Sacker bifurcation [13], [14], etc. Besides,
a period adding bifurcation of a buck converter feed-
ing an SCPL were studied by numerical simulation and
preliminary theoretical analysis based on the proposed
model.

In the numerical simulations, P0 is considered as the bifur-
cation parameter and varies in the range of P0 ε [0 W, 40 W].
The values of the remaining parameters used in the simulation
are as follows: Uin = 30 V, C = 67 µF, L = 1 mH,
C1 = 5 × 10−3µF, Re = 0.3 �, Ru = 90 k�, Rd = 10 k�,
R = 20 �, R2 = 9 k�, Uref = 0.88 V, UCPL = 8.84 V, and
UM = 1 V.
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FIGURE 2. Bifurcation diagrams of uC with P0 as the bifurcation
parameter: (a) global bifurcation diagram; (b) local enlargement of
bifurcation diagram.

A. BIFURCATION STRUCTURE
Based on (21), the numerical bifurcation diagram of uC for
P0ε [0 W, 40 W] is as shown in Fig. 2(a).

With the increasing of P0, there are abundant bifurca-
tion phenomena, e.g., state jumping, period-doubling bifur-
cation, Periodic Windows, Coexistence of periodic orbits,
period adding bifurcation, weak chaos, and chaos, displayed
in the bifurcation scheme. Where the state jumping is one
of typical phenomenon of border collision bifurcation. The
period-doubling bifurcation is a traditional bifurcation phe-
nomenon of smooth piecewise. Both border collision bifurca-
tion and period-doubling bifurcation may lead to weak chaos
and chaos of the system. The phenomenon of coexistence of
periodic orbits is caused by the fact that when two stable peri-
odic orbits collide on the boundary, the regions two periodic
orbits do not separate immediately, but overlap in a certain
region, leading to the coexistence of the two stable periodic
attractors in this region [24], as shown in figure 2.

In addition, there is a typical monotonically increasing
periodic sequence named SN1 nested among the global bifur-
cation in Fig. 2(a). SN1 spans from the orbits of cycle-1
to cycle-6 in increments of 1k = 1 in the range P0ε
[0 W, 40 W]. Here, the sequence SN1 are conventional dev-
ils’ staircases whose periodic numbers can be obtained by
the well-known Farey addition rule [25]. Moreover, there
are many different periodic orbits nested between any two
periodic orbits of SN1, and that the periodic numbers of
these periodic orbits are obtained by adding such two peri-
odic orbits of SN1 via a certain period-adding rule. This
bifurcation is called period-adding bifurcation (PAB) [26],
which is a typical bifurcation phenomenon of the switched
system [27]. The reason for this bifurcation phenomenon is
that the unstable periodic orbits collide on the boundary and
result in the topology changing and the merging cascade of
the periodic orbits [28]. As shown in Fig.2, there is another set
of monotonically increasing periodic sequence named SN2.
It can be seen from Fig.2, SN2 is nested in the interval of
cycle-1 to cycle-5 of SN1 and which spans from the cycle-3
to cycle-9 orbits in increments of 1k = 2. Every periodic
orbit of SN2 is nested in two adjacent periodic orbits of
SN1 and whose periodic number is equal to the sum of such
two periodic orbits of SN1. The PBA sequence SN2 is a
conventional devil’s staircase and also obey the well-known
Farey addition rule.

However, the other multiperiodic orbits nested in SN1 are
multiple devils’ staircases; their periodic numbers cannot be
obtained from the Farey addition rule directly [29] but can be
obtained by following rule [22], [29], [30]:

KPABSi = nL + mR (22)

Here, kPABSi are the periodic numbers of the nested multi-
periodic orbits, L and R denote the left and right orbits of any
two adjacent periodic orbits of SN1 respectively, and n andm
are natural numbers.

According to (22), the periodic numbers of SN2 can be
obtained as KPABS2 = L + R, for n = m = 1. This
means that sequence SN2 and the nested multiperiodic orbits
are obtained via the period-adding rule; therefore, sequences
SN1 and SN2 as well as the nested multiperiodic orbits
comprise the PABS.

It can be seen fromFig. 2(a) that asP0 increases, the system
states tend to diverge, and the PABS orbits nested within
SN1 gradually become more complex. After period 5 of
SN1, the multiperiodic orbits of SN2 are no longer present
in the bifurcation structure, and intermittent chaotic orbits
are observed among the nested orbits. Moreover, after the
cycle 6 orbit, there is a short period-doubling bifurcation
that sharply transitions to chaos, and the PABS orbits are no
longer present in this chaos region.

Fig. 2(b) displays the PABS between the cycle - 2 and
3 orbits of SN1 in detail. As shown in Fig. 2(b), there are
several multiperiodic orbits such as cycle - 5, 7, 8, 14, etc.
It can be known from the analysis above that these multiperi-
odic orbits are all PABS orbits brought about by the adding
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of the cycle 2 and 3 orbits, and their periodic numbers can be
obtained by (22). Thus, the periodic number of cycle - 5 is
L+R = 2+3 = 5 and its function can be described as fL · fR;
the periodic number of cycle - 7 is L + (L + R) = 2+ 5 = 7
and its function can be described as fL · (fL · fR); the periodic
number of cycle - 8 is (L+R)+R = 5+3 = 8 and its function
can be described as (fL · fR) · fR; the periodic number of cycle
- 14 is L + L + (L +R)+ (L +R) = 2+ 2+ 5+ 5 = 14 and
its function can be described as fL · fL · (fL·fR) · (fL · fR).

The PABS described above is a special phenomenon of
the switched discontinuous system [22], [24]–[29] that is
caused by the boundary collision of the discontinuous system.
Because of the presence of two different types of switched
boundaries, the SM and LM were switches, and a DC–DC
converter feeding a SCPL displays a more complex PABS
than a normal discontinuous system.

Lastly, many orbits interlacing phenomena also can be
observed among the PABS orbits, in these conditions two
adjacent periodic orbits of the PABS will coexist in a longer
interval. The positions of the periodic points are shifted when
the system parameters change, resulting in interlacing of the
various adjacent periodic orbits of the PABS.

In short, Fig.2 (a) and (b) indicate the influence of
SCPL on the nonlinear dynamics of a DC–DC converter
feeding with an SCPL by bifurcation scheme. As shown
in Fig. 2(a) and (b), with the varying of SCPL’s power, the sys-
tem exhibits complex dynamics, such as the period-adding
bifurcation, period-doubling bifurcation, orbits interlacing,
chaos, etc.

B. CALCULATION OF STABILITY REGION
In this section, the PABS cycle-5 orbit nested within the
cycle-2 and cycle-3 orbits of SN1 are considered as an
example to illustrate the calculation of the stable regions of
different periodic orbits of the PABS.

It is observed from the analysis of the bifurcation scheme
that the PABS cycle-5 orbit comprises the cycle-2 and cycle-3
orbits of SN1, and the periodic number of this PABS orbit can
be obtained from (22) as k = 2+3.Moreover, the mapping of
this PABS cycle 5 orbit comprises the mappings of the cycle
2 and 3 orbits as follows. According to the working principle
of the system, there are two mappings of the cycle 2 orbits:

PC2 = P2 ◦ P1 (23)

Or
PC2 = P1 ◦ P2 (24)

According to (21), PC2 is described as follows:
X2 = FL(Xn)

= FM12(FZDM1(FM11(Xn,1t1), 0, 1),1t2) (25)

Or

X2 = FL(Xn)

= FM11(FZDM1(FM12(Xn,1t1), 0, 1),1t2) (26)

There are also two mappings of the cycle 3 orbits:

PC3 = P3 ◦ P2 ◦ P1 (27)

Or

PC3 = P4 ◦ P3 ◦ P2 (28)

According to (21), PC3 can be described as

X5 = FR(Xn)

= FM21(FZDM2(FM12(FZDM1(FM11(Xn,1t1),

×1t1, 0),1t2),1t2, 1),1t3) (29)

X3 = FR(Xn)

= FM22(FZDM3(FM21(FZDM2(FM11(Xn,1t1),

×1t1, 1),1t2),1t2, 1),1t3) (30)

The mappings of the cycle 5 orbits are obtained as

PC5 = PC2 ◦ PC3 (31)

Or

PC5 = PC3 ◦ PC2 (32)

If there exists a stable region for a periodic orbit, then
there exists a fixed point where the following expressions are
workable

XS = FR(FL(XS )) (33)

Or

XS = FL(FR(XS )) (34)

and {
fL(XS ) < X∗

fR(XS ) > X∗
(35)

Using (27) – (35), the stable region of the cycle-5
orbit comprising the cycle-2 and cycle-3 orbits accord-
ing to the period-adding theory is numerically obtained as
P0 ε [7.7, 7.9] W. This stable region is in good agreement
with that shown in Fig. 2. Similarly, the stable regions of the
orbits of cycle - 2, 3, 4, 5 and 6 of SN1 can be obtained as
[4.9W, 6.0W], [10.6W, 11.3W], [14.6W, 18.9W], [26.3W,
29.3 W] and [35.3 W, 36.3 W] respectively according to the
above numerical method. These stable regions are in good
agreement with those shown in Fig. 2. The stable regions of
other cycle-nLmR orbits also can be obtained by using the
above numerical method.

C. COMPARISON WITH OTHER WORKS
In this section, a comparison is made between the presented
work and previous ones.
Compared with the large and small signal models used in

papers [7]–[9], the discrete model proposed in the presented
work was more suitable for the global bifurcation analysis
of DC–DC converters feeding CPLs not just the bifurcation
analysis of equilibrium points.
Compared with the complex discrete model proposed in

paper [12], the discrete model proposed in this paper has a
clearer physical meaning that can better predict the dynamic
characteristics of the system in different parameter intervals.
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FIGURE 3. Experimental setup.

Compared with the equivalent model of CPL proposed in
papers [13] and [14], the discrete model of this paper obtained
through approximately linearizing the nonlinear differential
state equation at an arbitrary solution can reflect the dynamic
characteristics of CPL in a broader scope including the steady
and unsteady states.

In addition, the switching evolution process included in
the model of this paper was not included in the models of
papers [7]–[9], [12]–[14]. Therefore, based on the model of
this paper, more abundant nonlinear behaviors of DC–DC
converters feeding CPLs can be simulated, such as monotone
increasing period sequence and period adding bifurcation as
shown in Fig. 2.

Above all, for the nonlinearity analyzes of DC–DC con-
verters feeding CPLs, the discrete model of this paper not
only has a broader range but also can reflect more abundant
bifurcation phenomenon than the previous models.

V. EXPERIMENTAL RESULTS
To verify the effectiveness of the proposed discrete model
and validate PABS analysis, an experimental setup of a buck
converter feeding an SCPL was constructed in the laboratory,
shown in Fig. 3 [17].

The main DC–DC converter of the experimental setup
is a PI scheme voltage-mode-controlled Buck converter
and the SCPL is a dual-loop controlled Boost converter.

FIGURE 4. Experimental results of cycle-2 at P0 = 5.8 W (a) the phase
portraits of iL(t)− uC(t) (b) the time waveform of uC (t).

Where the major components of circuit design are as fol-
lows: IRF840 and TLP250 are used as switching device
and gate drive circuit for S1, MUR20100 is used as diode
D1, two LM311 are used as amplifiers A1 and A2 respec-
tively, IRFP460 and TL949 are used as switching device
and gate drive circuit for S2, APT30D60B is used as diode
D2. The other related parameters of the experimental cir-
cuit are presented as follows: Uin = 30 V, C = 67 µF,
L = 1 mH, C1 = 5 × 10.3 µF, Re = 0.3 �, Ru =
90 k�, Rd = 10 k�, RLoad = 20 �, R2 = 9 k�,
Uref = 0.88 V, UCPL = 8.84V, and UM = 1 V, L2 = 1 mH,
C2 = 600 µF, RO2 = 50 �, fB = 5 kHz, DB = [0.45, 0.66],
Uref2 = 2.5 V, Ru2 = 150 k�, Rd2 = 10 k�, K = 0.2,
R3 = 15 k�, RW2 = 10 k�.
The phase portraits of iL(t)-uC (t) and the time waveform

of uC (t) under several P0 values were measured with the
experimental platform, as shown in Figs. 4 to 9.

As shown in Fig.2, the cycle-2 and cycle-3 orbits are
two periodic orbits of the sequence SN1 and appear in two
different regions of P0ε [4.9 W, 6 W] and P0ε [10.6 W,
11.3 W] respectively. To verify the existence of these two
orbits, experiment was carried out in these two regions and
the results were shown in Figs. 4 and 5.

Fig. 4 (a) and (b) show the cycle-2 phase portrait of
iL(t) − uC(t) and the time waveform of uC(t) respectively
at P0 = 5.5 W, which is in good agreement with that of the
system in the region P0ε [4.9W, 6W] shown in the numerical
simulation of the bifurcation scheme based on the proposed
discrete model.
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FIGURE 5. Experimental results of cycle-3 at P0 = 10.6 W (a) the phase
portraits of iL(t)− uC(t) (b) the time waveform of uC (t).

FIGURE 6. Experimental results of cycle-5 at P0 = 7.8 W (a) the phase
portraits of iL(t)− uC(t) (b) the time waveform of uC (t).

Fig. 5 (a) and (b) show the cycle-3 phase portrait of
iL(t) − uC(t) and the time waveform of uC(t) respectively
at P0 = 10.6 W, which is in good agreement with that of
the system in the region P0ε [10.6 W, 11.3 W] shown in the

FIGURE 7. Experimental results of cycle-9 at P0 = 20.6 W (a) the phase
portraits of iL(t)− uC(t) (b) the time waveform of uC (t).

FIGURE 8. Experimental results of cycle-6 at P0 = 36 W (a) the phase
portraits of iL(t)− uC(t) (b) the time waveform of uC (t).

numerical simulation of the bifurcation scheme based on the
proposed discrete model.
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FIGURE 9. Experimental results of chaos at P0 = 38 W (a) the phase
portraits of iL(t)− uC(t) (b) the time waveform of uC (t).

Therefore, the experimental results shown in
Figs. 4 and 5 verify the existence of the cycle-2 and cycle-3
orbits of the sequence SN1.

According to the analysis of section 4, there is a
PAB cycle-5 orbit produced by the period adding rule
k = 2 + 3 nested between the cycle-2 and cycle-3 orbits in
region of P0 ε [7.7 W, 7.9 W]. The experiment was carried
out to verify the existence of this orbit and the results were
shown in Fig.6.

Fig. 6 (a) and (b) show the cycle-5 phase portrait of
iL(t)-uC(t) and the time waveform of uC(t) respectively at
P0 = 7.8 W, which is in good agreement with that of the sys-
tem in the region P0ε [7.7 W, 7.9 W] shown in the numerical
simulation of the bifurcation scheme based on the proposed
discrete model.

Thus, the experiment results of Fig.6 verify the existence
of this PAB cycle-5 orbit.

In addition, three other orbits shown in the bifurcation
scheme are also verified by experiments as follows.

One is the PAB cycle-9 orbit existing in the region
P0ε [20.3 W, 20.9 W], which is produced by the adding of
cycle-4 and cycle-5 orbits of SN1 according to the rule of
K = L + R.
Fig. 7 (a) and (b) show the cycle-9 phase portrait of iL(t)-

uC(t) and the time waveform of uC (t) at P0 = 20.6 W, which
is in good agreement with that of the system in the region P0
ε [20.3 W, 20.9 W] shown in the numerical simulation of the
bifurcation scheme based on the proposed discrete model.

Thus, the experiment results of Fig.7 verify the existence
of this PAB cycle-9 orbit.

Another is the cycle-6 orbit existing in the region
of P0ε [35.3W, 36.3W], which is one of the periodic orbits of
SN1. Fig. 8 (a) and (b) show the cycle-6 phase portrait
of iL(t)−uC(t) and the timewaveform of uC (t) atP0 = 36 W,
which is in good agreement with that of the system in the
region P0ε [35.3 W, 36.3 W] shown in the numerical simula-
tion of the bifurcation scheme based on the proposed discrete
model.

Therefore, the experiment results of Fig.8 verify the exis-
tence of this cycle-6 orbit of SN1.

The last one is the chaotic orbit in the region of
P0 ε [36.5 W, 40 W]. Fig. 9 (a) and (b) show the chaotic
phase portrait of iL(t)−uC(t) and the time waveform of uC (t)
at P0 = 38 W, which is in good agreement with that of the
system at
P0 = 38 W shown in the numerical simulation of the

bifurcation scheme based on the proposed discrete model.
That is to say the experiment results of Fig.9 verify the

existence of chaotic orbit.
It can be known that from the above analysis of the exper-

imental results of Figs. 4, 5 and 8 verify the existence of the
sequence SN1, the experimental results of Figs. 6 and 7 verify
the existence of PBA orbits, all the experimental results verify
the correctness of the bifurcation scheme. Therefore, it can
be concluded that the validity of the proposed model and the
correctness of the analysis of PAB in this work are confirmed
by the experimental results.

VI. CONCLUSION
In this paper, a novel discrete model including the switched
evolution process of a DC–DC converter feeding a switched
constant power load (SCPL) is proposed. The period-adding
bifurcation structure (PABS) of the power electronic non-
linear switched system is studied via numerical simulations
based on the proposed discrete model. The PAB behavior of
the system is demonstrated to be dependent on the border
collision bifurcations, whereby the areas in the parameter
spaces leading to specific PABS cycles are obtained numeri-
cally. The experimental results verify the effectiveness of the
proposed discrete model and validate the PABS analysis. This
work has two innovative contributions: (1) Approximately
linearizing the nonlinear differential state equation of the
system on an arbitrary solution which provides a novel way
for discrete modeling of nonlinear power electronics cascade
system. (2) Deducing the mathematical model of the switch-
ing evolution process provides a reference for describing the
switching evolution process of the power electronics system.
In this sense, the proposed model overcomes the problem of
the previous equivalent model of CPL is only applicable to
the steady-state and the modeling difficulty of the switched
evolution processes of power electronic system.

In the future, the influence of the switched evolution pro-
cess on the dynamics of power electronic switched nonlinear
cascade systems will be analyzed qualitatively and quantita-
tively in detail based on the discrete model with the switched
evolution process proposed in this paper.
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