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ABSTRACT Recognizing and predicting future three-dimensional (3D) scenes are crucial steps for real-time
vision-based control systems, as these steps enable them to react appropriately in advance. In this study,
a method for predicting the position of a 3D point cloud in the future and simultaneously segmenting the
predicted point cloud is proposed for the first time. The prediction and segmentation tasks are performed
by a novel neural network architecture that extracts both local geometric features and flow features for
joint segmentation and prediction. Furthermore, we propose a new evaluation metric for future point cloud
segmentation to resolve the problem of inconsistency in the order of future point clouds. The results of
experiments conducted using real-world large-scale benchmark datasets revealed that the proposed network

achieves higher prediction and segmentation accuracy than other baseline methods.

INDEX TERMS Point cloud, recurrent neural network, 3D reconstruction, segmentation.

I. INTRODUCTION

As three-dimensional (3D) vision data can provide abun-
dant spatial information, it is being widely used in many
areas, including autonomous driving and mobile robots [1].
With recent advances in LIDAR technology that enable quick
collection of 3D point clouds with high density and accu-
racy [2], recognition of point clouds has become a significant
research topic. However, direct processing of point clouds
has been a big challenge because the point cloud acquired by
LiDAR is irregularly sampled, unstructured, and unordered
in general. Since the introduction of PointNet [3], which was
designed to directly extract unordered point cloud features
by a symmetric structure, many researchers have proposed
PointNet-based deep neural network models that directly
utilize point clouds for various tasks including classification,
segmentation, and detection. However, all of the existing
studies focused on static point clouds in the past/current time
frame [4]-[7].
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In applications such as autonomous driving, it is crucial
that the vehicle quickly responses to changes in the external
environment. In order to respond to future events in advance,
systems should be equipped with the ability to predict and
understand future scenes. Therefore, joint prediction and
segmentation of the future 3D point cloud is a critical task
in such practical applications. Recently, Fan ef al. proposed
PointRNN [8], which predicts point clouds in the future.
However, although it can perform future scene prediction,
it does not have the ability to segment the predicted scenes.
Scene point cloud sequence forecasting [9] has also been
proposed to reconstruct and predict object trajectories using
point clouds; however, its trajectory prediction is limited to
a road agent, and the trajectories of other important objects
such as roads and obstacles are not predicted. To provide a
better understanding of future 3D scenes, this paper intro-
duces a method that accomplishes joint segmentation and
prediction of future point clouds by utilizing a novel DNN
model that can simultaneously predict future point clouds and
perform semantic segmentation of the predicted point clouds.
The proposed model aims not only to track the movement of
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FIGURE 1. Joint segmentation and prediction of point cloud. Our method
directly outputs the point-wise segmentation labels (C1, C2, C3,...) as
well as predicted coordinates of the future point cloud(T+1,...), based on
the past point cloud(..., T-1, T).

each point in the sequential point cloud, but also to extract
crucial semantic information.

To achieve this goal, the proposed model is equipped
with both hierarchical geometric feature extraction and flow
extraction abilities for segmentation and prediction, respec-
tively. In addition, it employs a recurrent neural network
(RNN) structure to record the extracted geometric and flow
features from the previous input frames, and predict the
corresponding geometric and flow features for the upcoming
frames. Based on the predicted geometric features and flow
features, the proposed model can predict point-wise relative
displacement and semantic segmentation labels. Addition-
ally, the proposed model follows the PointNet-based symmet-
ric design [3], [7] so that it can handle an input point cloud
with irregular order.

Similar to FlowNet3D [10], the flow extraction func-
tion substitutes the embedding flow between two continu-
ous frames into an RNN to construct the point-wise relative
displacement. The hierarchical geometric feature extraction
structure implemented in the proposed model is introduced
by PointNet++ [7], which extracts the global feature of the
point cloud through a symmetric operation after obtaining the
local features of different sampling levels. After extracting
hierarchical geometric features and flow features from dif-
ferent past continuous frames, the proposed model embeds
these features as time-based sequences and predicts corre-
sponding feature embeddings for the upcoming frames by
using an RNN unit. Then, the feature embeddings are used
for prediction and segmentation by the feature propagation
operations [10].

We used real LIDAR scan datasets, SemanticKITTI [12],
and Argovernse [13] to train and evaluate our proposed
model. The experimental results revealed that our model
performs segmentation and prediction with higher accuracy
than other baseline methods. The key contributions of this
paper are as follows:

« To the best of our knowledge, this is the first time a task
of joint segmentation and prediction of the future point
cloud has been introduced.

o The paper proposes the first complete neural network
architecture for joint segmentation and prediction of
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point clouds by introducing two segmentation and pre-
diction constraints.

« We introduce a novel training method for the joint pre-
diction and segmentation task, and show that our trained
network can achieve a better performance than other
methods on real-world LIDAR benchmarks.

Il. RELATED WORK

A. POINT CLOUD SEMANTIC SEGMENTATION (PCSS)
PCSS generates semantic labels for each point [14] through
supervised learning structures. As the raw point cloud is
difficult to deal with directly because of its disordered char-
acteristics, several existing methods convert point clouds
into different representations such as multi-view [15], voxel
[16], [17], or range images [18]-[20] to regularize and dis-
cretize point clouds. Then, the regularized representations
can be processed using the conventional convolutional neural
network for semantic segmentation.

However, these methods incur large computational over-
head owing to the introduction of redundancy in the regu-
larization process, and they also cause the resolution to be
lost owing to the discretization operation. Qi et al. proposed
a concise and effective semantic segmentation approach that
directly processes raw points using PointNet [3]. PointNet
uses a symmetric operation to extract bottleneck global fea-
tures from the disordered point cloud, which are then used to
perform classification or segmentation tasks. Since the intro-
duction of PointNet, researchers have proposed several other
methods that outperform PointNet on various benchmark
datasets. One category of studies [4]-[7] focused on opti-
mizing local features to improve segmentation performance.
There are also approaches that use the recurrent network
structure to obtain more effective global features. Meanwhile,
recent studies have indicated that the graph network architec-
ture can make good use of the geometric topology of the point
cloud to extract dynamic features and enrich the representa-
tion power of the point cloud. It should be noted that the above
direct PCSS methods are all based on the retained bottleneck
framework, that is, they have to generate global features
[21]-[23]. Although the proposed methods [24], [25] also
inherit this structure to complete segmentation, the difference
is that the proposed method generates a global feature of the
predicted frame instead of the current frame.

B. POINT CLOUD GENERATION

A point cloud generation task generates a point cloud from
a given set of features that represent a point cloud in the
high-dimensional latent space. As for the prediction case,
the task generates a point cloud of future scenes from fea-
tures extracted from past frames. As mentioned in the PCSS
subsection, extraction of the bottleneck features relies on
a symmetric operation, which makes determining the order
of the generated point cloud difficult. Although a fully
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FIGURE 2. Overall architecture of joint segmentation and prediction. It is based on a hierarchical seq2seq architecture that contains a
stack of set abstraction layers and RNN units for multi-scale feature extraction, and a stack of feature propagation layers for
propagation from high-level features to point-wise features. At the end of the architecture, two MLP branch are employed for

segmentation and prediction.

connected layer has the ability to rebuild a specific
order [26]-[29], the network built by this method requires
a considerable matrix to store weights. To solve these prob-
lems, some studies [28], [30] have proposed methods that
obtain the order of points in the reconstructed point cloud
through a lightweight 2-dimensional plane. PointAE [31]
introduces bias into the network so that the network can
activate bias through the bottleneck feature to determine the
output order of the point cloud. In other studies [8], [10],
the order of the input point cloud has been maintained through
a skip link. However, these methods are applicable when the
input point cloud is given. Moreover, the features generated
from PointRNN [8] are only able to establish flow estimation
and not segmentation. To resolve this problem, we designed
a joint segmentation and prediction network that can extract
not only the flow features but also the geometric features for
segmentation.

lIl. PROBLEM STATEMENT

This paper introduces a new joint segmentation and predic-
tion task, which predicts the future sequence and the cor-
responding label of each point in a point cloud. Pa; and
L, are obtained based on the input point cloud sequence P,
and the features F; of the point cloud, where t € [-T +
1,. . .0] denotes the frame timestamp ¢ in the past and
At € [1,...AT]denotes the frame timestamp in the future.
P, = {p;}flzl denotes an N-length point set of a specific
timestamp with pﬁ eRYandi = 1, ... N. Here, we only

AN
focus on the Euclidean space such thatd = 3. F; = { f } -

denotes the input feature set with the same length and or]der
as the input point set P; and f/ € R¥, where k is the dimension
of the feature vector. F; can be an additional RGB color or the
LIDAR intensity. In this study, we use F; as a point-wise
semantic label of the corresponding input point set. Finally,

SN
La: = {l]m}. ' denotes the predicted future semantic labels
. J= .
with the same order and size as the reconstructed feature
points Pa;. Therefore, our goal was to learn a function
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FIGURE 3. Temporal Seq2Seq architecture. The bottom RNN units require
point sets and their corresponding labels. The upper RNN units receive
the output from the lower RNN units as input to generate more global
features (blue flow). As the time goes (from left to right), each RNN unit
leverages their states from last timestamp to update current states

(red flow).

[P Xl}?:l—T —> {Pa; LAt}ﬁthl that maps the past points
and features to the points and semantic labels in the future
frames.

IV. JOINT SEGMENTATION AND PREDICTION NETWORK
A. ARCHITECTURE

For joint prediction and segmentation, we introduced a
hierarchical architecture with several various components,
as shown in Fig. 2. First, for each timestamp, a set abstraction
(SA) layer is applied for down-sampling and local feature
extraction, and the RNN unit is utilized for fusing the cur-
rent feature with previous features and encoding a single
local feature. Alternate stacking of these two units generates
global features. Then, to infer point-wise features, the subse-
quent feature propagation (FP) layers combine and propagate
the features with different scales in each layer of the fea-
ture extraction stage. Finally, two independent shared-weight
multi-layer perceptron (MLP) branches [3] are adopted on
the point-wise features, which are used for prediction and
segmentation for the next timestamp. Figure 3 shows the
proposed architecture expanded in a temporal sequence.
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FIGURE 4. Architecture of the RNN Unit. The RNN unit requires current coordinates and corresponding labels as the input and adopt
flow embedding layer with two constraints(flow feature constraint & geometric feature constraint) to extract and fuse flow feature

and local geometric feature and update its state.

B. RNN UNIT

As the model needs to extract flow and local geometric
features for prediction and segmentation, we use an RNN
unit with flow embedding (FE) layers [7] as shown in Fig.4.
The RNN unit extracts features from the neighboring regions
in previous frames around centers formed by current input
points. Therefore, our model can obtain the relative geomet-
ric and semantic information that benefits the joint task of
prediction and segmentation.

Other existing models, such as FlowNet3D [10] and
PointRNN [8], also use the FE layers for flow voting.
However, we found that this layer can also be effectively
used to vote for local geometric features for segmentation.
Based on this observation, we used the FE layer to collect
points and features from the previous frame and vote for
the flow and local geometric information based on these
collected features. Specifically, we activated the FE layers
to extract semantic features from the collected points by
introducing constraints into the network that FlowNet3D and
PointRNN do not provide. The constraint was introduced
by adding additional MLP layers at the end of the network,
and forcing the output of the last MLP layer to be the seg-
mentation labels. To obtain higher segmentation accuracy,
the FE layer needs to achieve better voting for local geometric
features as much as possible to match this geometric con-
straint. Because the FE layer can also complete the extrac-
tion of the current and previous frame point flow, the final
output becomes a fusion of the flow and local geometric
features.

For timestamp ¢, the current frame data is given by the
input (P;;, Fy ), and the the previous frame data is
the state (P;—i1,S;—1,;) stored in the RNN unit, where
the / indicates the [-th RNN unit. The FE layer deter-
mines the center point piy ; in P;; and extracts neighbors

p’t_l ; € Npt71.1@§ ;) from the P;_;; point set around it.
Naturally, the neighbor set sampled from the previous frame
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. s . ; , can be used to vote for local
{leJ’ l71’l}j‘p1r—l,l€NPt—],l(p;.l)
geometric features. Meanwhile, the flow features can be gen-
erated from the point-wise .displacement pL], ; — Py with
respect to the center point p} ;. Then, fusion of the geometric
and flow features is performed by combining the features fti I

of the corresponding p! ; and state s,_, ; carried by p,_, ,

sti= MAX  (he (f), 5Jz—1,1717i—1,1 -, (D
Py €NE 0

where h is a non-linear function with shared parameters ®¢,
and MAX is the channel-wise max pooling operation. Hence,
the final extracted features will include local geometric infor-
mation and flow information.

C. DOWN-SAMPLING AND UP-SAMPLING

To achieve effective segmentation, local features and global
features need to work together in the model. However, as the
proposed RNN unit is designed to obtain local information,
abroad range of global features is difficult to extract. To better
extract the global features, we built a hierarchical structure
based on the structure proposed in PointNet++-. Because the
point cloud is irregular and disordered, PointNet++ uses a
combination of SA, which is designed for down-sampling
and grouping, and FP, which is designed for up-sampling and
feature propagation. With these key layers, PointNet++4- per-
forms the extraction of features of various scales, from local
(low level) to global (high level) features, and establishes
segmentation at the static points.

In PointNet++-, the SA layer uses fastest-point sampling
(FPS), which samples n regions in P; ;| from the previous
layer to generate the subset P; ; formed by the centers of these
regions, where / indicates the /-th SA layer. With each point
p;" ; € P11 as the center, the features of the points Np, ,_, (p;" N
contained in the surrounding region can be extracted by the

VOLUME 9, 2021



C. Wencan, J. H. Ko: Segmentation of Points in Future: Joint Segmentation and Prediction of Point Cloud

IEEE Access

T+1 T+2

T+3 T+4 T+5

Ground Truth

Output

PointRNN+
RandLA-Net

®car o road parking @ sidewalk @ building e vegetation

FIGURE 5. Visualization of the segmentation and prediction output on the SemanticKITTI benchmark. The colors indicate the different semantic

labels of each point.

SA layer with the following symmetric function:

= MAX (h®s(ﬂ],1—1’1’;,1—1 o N0 )
i1 €N @)

After [-th level down-sampling is done by the /-th SA layer,
the /-th RNN unit fuses the flow and geometric features of the
I-th level. These two steps are repeated several times to make
the point set continually sparser. The features it packs become
more global as a result.

After the multi-scale feature has been extracted, it is
necessary to propagate the feature from a high level back
to a low level, and infer the point-wise feature for the
final segmentation and prediction. PointNet++ uses the
FP layer that interpolates features of the high-level points
(sparse) at the coordinates of the low-level points (dense).
Pointet++ utilizes the FP layer to complete segmentation,
and FlowNet3D [10] and PointRNN [8] also implement
reconstruction based on the FP layer.

k J
fir= M where w;(p)= ——.
Zj:l wi(x) ||Pf,1,17],,l+1||2
3
D. TRAINING

In a joint prediction and segmentation task, the order of the
predicted point cloud can be different from that of the ground
truth point cloud.

To eliminate this influence of the order variance,
we define two independent training losses for prediction and
segmentation.

VOLUME 9, 2021

1) PREDICTION LOSS

As the prediction of point clouds can be regarded as a recon-
struction, we consider commonly used loss functions for the
disordered point cloud reconstruction, the chamfer distance
(CD) [32] loss and the earth mover’s distance (EMD) [33]
loss. They all measure the relative distance between two sets
of point clouds in an arbitrary order and try to minimize the
distance between the points.

The CD loss measures the distance between each point in
one point set and its closest target point in the other point
set; therefore, its action is independent of the order of the
points. Assuming P and P* as the ground truth and predicted
point cloud, respectively, the CD loss between these two point
cloud sets is defined as

Lep =) min |Ip" =ply+ 3 minllp* =plly. ()

peP p*eP*

In practice, the CD loss can produce reasonably high-
quality results. However, because it focuses on the nearest
neighbor, point cloud reconstruction using the CD loss can get
stuck in local minima, causing the aggregation phenomenon
from a visual perspective. To avoid this problem, we use the
EMD loss as a supplement.

The EMD loss solves an optimization problem to obtain
the optimal point-wise bijection mapping between a pair of
point sets. This mapping guides the computation of distance
measuring for two point sets by computing the Euclidean
distance of the points at both ends of this mapping. The EMD
loss is defined as

L — . * * 2, 5
wup = min 10" = (")} 5)
where ¢ : P* — P is the optimal bijection.
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Because the bijection mapping is optimal, it ensures that
the mapped point for each point in P* is unique. Therefore,
the order of points is irrelevant for mapping.

2) SEGMENTATION LOSS

As mentioned above, the order of the predicted points may be
inconsistent with the order of the ground truth points. Mean-
while, the order of the predicted segmentation labels is bound
to the predicted points because of the point-wise calculation
of MLP layers. Therefore, the order of the predicted label
can be inconsistent with the ground truth label. Consequently,
computing the point-wise segmentation loss of the disordered
point cloud requires aligning the ground truth and the pre-
dicted segmentation labels. To tackle this challenge, we used
the relative positional relationship between the predicted and
ground truth points. To achieve this alignment, we adopted
the k-nearest neighbor(kNN) algorithm that takes the majority
vote of the segmentation label for each predicted point among
the k-nearest neighbor points from the well-labeled ground
truth points around it. Then, we can generate the aligned
labels by

1"t = argmax
gmax
@', 1He(P,L)

Iv=1%. (6)

This operation forces the learning objectives to align the
labels and the predicted points in the same order. Then,
the loss of the predicted labels can be measured by the fol-
lowing element-wise softmax cross-entropy function, which
is commonly used for segmentation tasks.

N
Lspc = Z pt log s/*
j=1

N

. U
HE=—2=
ko
ZkN:I o

By combining the aforementioned loss functions, the total
loss of our proposed end-to-end prediction and segmentation
network is

L(Px,P) = Lcp + aLeup + BLsEG, (®)

where o, 8 > 0 are the hyperparameters that balance the loss
terms.

V. EXPERIMENTAL RESULTS

A. EXPERIMENT SETTINGS

We evaluated the performance of the proposed model imple-
mented as in Table 1, using large-scale real LIDAR datasets,
SemanticKITTI [12], and Argoverse [13]. We conducted our
experiments on an NVIDIA RTX2080Ti GPU with Tensor-
Flow. For training, we used the Adam optimizer [34] with its
suggested default parameters of betal = 0.9 and and beta2 =
0.999, and a learning rate « = 0.00001. In addition, the batch
size was set to 2, and the balancing hyperparameters in (8)
were fixed to 1.0. At the same time, for the loss computation
of the segmentation branch during training, the k& value of
kNN was set to 1 so that the predicted label would be bound
to its nearest neighbor of ground truth. The input/output
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TABLE 1. Implementation specifications. Each layer contained four types
of hyperparameters: search radius (r), the number of sampling neighbors
(k), sampling rate, and the number of output channels. SA represents the
set abstraction layer. RNN FE represents the flow embedding layer of the
RNN unit from PointNet++. FP represents the proposed feature
propagation layer, and MLP indicates the element-wise MLP layer.

Layer type r k | samplerate | channel
SA 0.5 - 0.5X 128
RNN [ FE - 24 - 128
SA 1.0 | - 0.5X 128
RNN [ FE - 24 - 128
SA 20 | - 0.5X 128
RNN [ FE - 24 - 128
FP - 3 2X 128
FP - 3 2X 128
FP - 3 2X 128
MLP, MLP - - - 3,C

sequence length was set to 5 except for one experiment
(Fig. 6), where the length was set to 10.

For comparison, we used two baseline models: Input
Alignment and PointRNN+RandLLA-Net. 1) Input Align-
ment. Because of the order of the input and output
point clouds of the network is consistent, this baseline
model directly outputs the input coordinates and segmenta-
tion labels. 2) PointRNN+RandLA-Net. RandLLA-Net [4]
achieves a state-of-the-art performance in segmentation tasks
using real LIDAR points. We applied it to the output point
cloud predicted by PointRNN to obtain the corresponding
segmentation labels.

B. EVALUATION METRICS

Because the CD (4) and EMD (5) loss functions intuitively
describe the distance between the predicted point cloud and
the ground truth point cloud, we directly employed these two
distance metrics to evaluate the performance of the network
prediction branch. For the performance evaluation of the
segmentation branch, we defined two metrics: the overall
point accuracy and the category point accuracy.

Overall segmentation accuracy (OSA) was used to mea-
sure the difference between the overall predicted labels
and the aligned ground truth labels generated by kNN (6).
Suppose that the predicted labels are L* and the aligned
ground truth labels are LT, then, the OSA can be computed
by the following equation:

ll;fll I(li* — llT)

OSA(L*, L1 =
( ) 7]

C))

Category segmentation accuracy (CSA) measures the dif-
ference between the labels and aligned ground truth labels
separately in each instance included in the ground truth labels.
This ensures that instances consisting of a larger number
of points that occupy the most of the scene frame, such as
road and sidewalk, with the same weight as the instances
that contain a small number of points, such as vehicles and
pedestrians when computing accuracy. The CSA is defined
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by the following equation.

1 = Ty ; ;
Z"S:b;T(L I Zl_il—SET(L i 10 = Z’T)

|LT]

CSAL*, L") =

’

(10)

where SET(-) is a function that extracts non-repeating ele-
ments from the input set.

C. EVALUATION ON SEMANTICKITTI

1) SEMANTICKITTI DATASET [12]

The SemanticKITTI dataset is currently the most commonly
used dynamic point cloud segmentation dataset based on a
real-world LIDAR scan. SemanticKITTI describes the street
scenes of moving vehicles with 22 annotated LIDAR scan
sequences of 43,552 frames of LIDAR data. Among them,
we used ten sequences of 23,201 full 3D frames for training,
and one sequence of 4,071 frames for verification. Each frame
has collected a large-scale point set with up to 100,000 points
in the range of 160 x 160m. The computation of the loss
function of the network prediction requires a large matrix
of size N2, where N is the length of the predicted point set,
in order to determine the neighbor points. Therefore, if we
input a larger number of points, the required computational
resources will increase exponentially during training, but a
broader prediction range will be achieved with a consistent
density as well. In order to maintain the balance between the
computation and the prediction range, we cropped each frame
to the range of 10 x 10m, and randomly sampled 4096 points
to the proposed network.

TABLE 2. Segmentation performance on SemanticKITTI. The P(Phase)
indicates the i-th frame output from proposed network.

0 Ours PointRNN + Input

= RandLA-Net Alignment

~ [T OSA CSA OSA CSA OSA CSA
1| 89.6% | 787% | 59.6% | 42.4% | 87.2% | 79.8%
2 | 87.0% | 71.8% | 59.6% | 40.1% | 80.2% | 69.7%
31 84.7% | 66.0% | 53.8% | 38.5% | 74.5% | 61.7%
4 1 822% | 608% | 53.8% | 36.8% | 69.6% | 55.0%
51 796% | 56.7% | 50.0% | 35.0% | 65.8% | 50.2%

2) SEGMENTATION RESULTS

Table 2 summarizes the segmentation performance compar-
ison using the SemanticKITTI dataset. The table shows that
the proposed model achieves a higher segmentation accuracy
than the baseline models over every phase of the future
frames. The table also shows that owing to the characteristics
of the prediction of the proposed network, relatively good
results can be obtained by directly using the input because the
input and output order of the network is consistent. However,
the PointRNN-+RandLA-Net method that directly input the
predicted coordinates into the segmentation network exhibits
a poor performance. This is because the prediction network
produces errors, which reduce the performance of the seg-
mentation network. The proposed network directly uses the
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TABLE 3. Prediction performance on SemanticKITTL. The Phase indicates
the i-th frame output from the proposed network.

Our PointRNN + Input
Phase urs RandL A-Net Alignment
CD EMD CD EMD CD EMD
1 0.146 | 0.796 | 0.172 | 0.847 | 0.482 | 0.782
2 0.191 | 0.925 | 0.205 | 0.955 | 0.403 | 1.048
3 0.246 | 1.034 | 0.237 | 1.032 | 0.343 | 1.245
4 0.309 | 1.150 | 0.292 | 1.129 | 0.331 | 1.401
5 0.379 | 1.257 | 0.350 | 1.221 | 0.379 | 1.522
10 100% e Align 5
- @ = Align 10
° 08 5 906 —e—0Ours 5
§ 06 | &aq / 2 5 oo —e-Ouwsi0
2 -o--o--.-::z g § -
£oa 2 2> —e—Align5 % 2o TSNl
S 02 | 2= e I e
00 - = Ours 10 o4 See.
12 3 45 6 7 8 9 10 123 456 78 910
Phase Phase

FIGURE 6. The segmentation and prediction performance comparison in
terms of various input and output sequence lengths on the SemanticKITTI
dataset.

features of the bottom layer of the point cloud, thereby
retaining the advantages of consistent order and reducing the
negative impact of the prediction errors. We also evaluate
the class-wise segmentation accuracy as shown in Table 4.
The table shows that our model achieves better accuracy than
other methods for most of the classes. Especially, the pro-
posed method outperforms other models for ‘car’, ‘road’,
and ‘sidewalk’ classes, which are critical classes for practical
applications such as autonomous driving.

3) PREDICTION RESULTS

Table 3 shows the prediction performance of the pro-
posed network on the SemanticKITTI dataset. Theoretically
because the segmentation structure of the proposed network
is similar to the PointRNN structure, the RNN unit with the
geometric feature constraint will reduce the network predic-
tion performance. However, the performance reduction is not
significant, and the prediction in the first two frames even
outperforms the baseline network.

4) GENERALIZATION OF SEQUENCE LENGTHS

Fig. 6 shows the performance comparison of the input/output
sequence length of 5 and 10 when the k value of kNN is
fixed to 1. The result represents that the test with a 10-frame
sequence shows a slight performance loss than the test with a
5-frame sequence. This is due to the fact that the model has
to learn additional 5 frames with the limited model capacity.
However, our model still achieves better performance than the
direct input alignment even with the 10-frame sequence.

D. EVALUATION ON ARGOVERSE

1) ARGOVERSE DATASET [13]

Argoverse is a large-scale LIDAR dataset designed for
autonomous vehicle perception tasks. Argoverse provides
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TABLE 4. Class-wise segmentation performance on SemanticKITTI. Note that, the ratio is the overall average ratio of specific class points over the entire
testing set. ‘P+R’ indicates the PointRNN+RandLA-Net.

Class Unlabeled Car Road | Sidewalk | Building | Fence | Vegetation | Terrain Pole
Ratio 1.9% 28% | 21.8% 18.1% 7.6% 8.6% 27.9% 9.4% 1.8%
Ours 54.9% 85.9% | 95.4% 87.6% 90.0% | 75.9% 91.5% 68.7% | 58.5%
1| P+R 12.0% 44.6% | 83.6% 49.9% 56.1% 24.2% 65.5% 29.7% | 11.4%
Align 69.4% 84.4% | 94.5% 78.8% 92.7% 75.4% 90.3% 66.0% | 66.4%
Ours 40.5% 79.9% | 94.2% 86.0% 86.4% | 68.4% 88.9% 62.0% | 40.0%
2 | P+R 11.8% 357% | 81.1% 44.6% 56.7% 22.3% 68.1% 29.5% | 10.9%
Align 53.9% 71.4% | 91.7% 69.3% 88.3% 63.8% 84.1% 53.9% | 50.5%
Ours 28.6% 72.4% | 93.5% 84.0% 82.7% | 62.8% 86.0% 584% | 25.1%
3 | P+R 11.6% 30.7% | 79.7% 42.0% 54.4% 21.6% 66.8% 292% | 10.1%
Align 42.8% 59.8% | 89.5% 64.2% 83.7% 552% 78.7% 457% | 38.7%
Ours 21.6% 63.4% | 92.7% 82.1% 78.1% | 57.3% 83.2% 54.0% | 14.6%

4 [ P+R 10.7% 26.5% | 78.9% 40.1% 51.2% 20.2% 65.7% 29.1% 9.0%
Align 33.4% 50.4% | 87.5% 54.8% 80.0% 48.6% 74.3% 40.0% | 259%
Ours 15.3% 58.7% | 91.8% 79.3% 74.6% | 53.6% 79.6 % 49.0% 8.1%

5| P+R 9.8% 2277% | T1.8% 37.6% 47.7% 18.9% 65.1% 28.8% 6.9%
Align 26.5% 43.5% | 85.6% 50.3% 76.5% 44.5% 70.9% 37.0% | 16.8%

13,122 LIDAR frames for training and 5,015 frames for
verification. Each frame is in the range of 200m and contains
up to 107,000 points. However, Argoverse contains only the
annotated bounding boxes of tracking objects. To apply this
dataset to our task, we use annotated bounding boxes to
select points from point cloud and assign their point-wise
labels. We assign the ‘background’ label to remain points
except tracking objects. Similarly, to ensure consistency with
semanticKITTI, we cropped points in the range of 10 x 10m
from the large-scale point cloud and used random sampling
to form the final point set containing 4,096 points.

TABLE 5. Segmentation and prediction performance on Argoverse.

contributes to the final segmentation, we introduced a con-
trolled trail in which the FE layers only follow the flow
feature constraint. We designed a completely consistent net-
work based on the architecture introduced in Section IV-A.
However, the calculation of the loss and gradient propagation
was inconsistent with the proposed network. The loss of
the segmentation branch and the prediction branch of the
controlled trail are calculated independently of each other.
In addition, the gradient of the prediction branch propagated
to all variables except the MLP layers of the segmenta-
tion branch, and the gradient generated by the segmentation
branch will only updated its own MLP variables.

TABLE 6. Prediction performance on SemanticKITTI. Our model with a

Phase 1 2 3 4 S flow feature constraint and local geometric constraint performs better
OSA | 98.0% | 97.5% | 97.0% | 96.3% | 95.7% than the controlled trail with only a flow feature constraint, which only
g OSA’ | 90.6% | 88.0% | 85.7% | 82.3% | 79.8% works for points prediction.
@) CD 0.301 0.305 0.368 0.448 0.549
EMD | 0901 | 1.072 | 1.208 | 1.353 | 1.513 Phase 1 2 3 4 5
g [ OSA [ 975% | 96.3% | 953% | 942% | 942% » | OSA | 89.6% | 87.0% | 84.7% | 82.2% | 79.6%
g [[OSA" [ 935% | 883% | 83.2% | 78.5% | 14.7% L. CD | 0146 | 0.191 | 0246 | 0.309 | 0.379
.E‘J CD 0.525 0.459 0.427 0.452 0.549 EMD | 0.796 0.925 1.034 1.150 1.257
< [EMD | 0771 | 1.102 | 1.381 1.601 1.778 S| OSA | 59.6% | 59.6% | 53.7% | 53.7% | 50.0%
§ CD 0.135 0.173 0.225 0.281 0.342
2) RESULTS O | EMD | 0.777 0.906 1.019 1.117 1.219

Table 5 shows the segmentation and prediction performance
of the proposed network on the Argoverse dataset. Since most
of the points in Argoverse are classified as ‘background’,
the input alignment method can easily achieve a high perfor-
mance. Nevertheless, the table shows that our model achieves
a better performance than the input alignment. In order
to clearly evaluate the segmentation performance, we re-
computed the OSA accuracy with the ‘background’ points
removed (marked as OSA’ in Table 5).

E. ABLATION STUDY

1) GEOMETRIC FEATURE CONSTRAINT

To verify whether the geometric feature constraint can enable
the FE layer to obtain local geometric information that
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According to the experimental results shown in Table 6,
the geometric feature constraint can activate the extraction
ability of the local geometric feature of the FE layer, improv-
ing the segmentation accuracy. Although it can sacrifices a
part of the flow feature extraction performance while obtain-
ing local geometric features, using this constraint increases
segmentation accuracy by at least 30% while reducing the
prediction accuracy by only approximately 0.5%. Therefore,
it can be inferred that the strategy of introducing a geometric
feature constraint is effective.

2) NUMBER OF NEIGHBOR POINTS
As we group more neighbor points, the SA layer can extract
stronger local features. Therefore, the number of neighbor
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points will significantly affect the performance of prediction
and segmentation. However, increasing neighbours requires
more computational cost. To evaluate the effect of the neigh-
bor size, we conducted experiments with the number of
neighbors as 8, 16, and 24, as shown in Fig. 7. Compared
to the model with 8 neighbors, the model with 16 neighbours
shows a significant improvement in terms of both segmenta-
tion and prediction performance. However, as we increase the
size further, we get only marginal performance enhancement.
Therefore, we set the number of neighbors as 24 for local
feature extraction in this work.

100% =t 3 neighbors OSA ros
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et 24 neighbors OSA
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FIGURE 7. The segmentation and prediction performance comparison in
terms of various number of neighbours on SemanticKITTI dataset.

TABLE 7. Runtime and model size. The input sequence length is 5 and
the number of input points is 4096. The speed is measured by the
average frame rate over the entire SegmentKITTI dataset.

Methods Speed (fps)  Parameters
PointNet [3] 21.2 0.8M
PointNet++ [7] 0.41 0.97M
RandLA-Net [4] 22.0 1.24M
Ours 5.17 0.39M

3) RUNTIME AND MODEL SIZE

As the joint prediction and segmentation task is newly intro-
duced task, there is not a similar reference to compare. There-
fore, we compared computational time with representative
static segmentation models, as shown in Table 7.The com-
putational time of the proposed model for segmentation and
classification is 0.967s for one stream (5 frames), which is
5.17 frames per second (fps). Because our model performs
prediction as well as segmentation, it takes more computation
time than other static segmentation models. Nevertheless,
real time applications can benefit from our approach since
it can predict the feature scene and respond in advance.
It should also be noted that the proposed model requires less
parameters than other models even with the added prediction
capability.

VI. CONCLUSION

In this paper, we introduce a joint deep neural network
architecture for simultaneously segmenting and predicting
point cloud of the future scenes, as the first work that shows
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the success in solving a joint segmentation and prediction
task with the future point cloud. To implement the joint
segmentation and prediction network, we employed the FE
layer for both local geometric feature and flow features
extraction and proposed a new training method for future
point segmentation. Based on the experiments with various
real-world LIDAR scan benchmarks, the proposed network
shows better performance than other baseline methods. In the
future, we will focus on accelerating the proposed network
while improving the prediction performance that benefit the
segmentation as well.
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