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ABSTRACT This paper presents a novel Arabic Sign Language (ArSL) recognition system, using selected
2D hands and body key points from successive video frames. The system recognizes the recorded video signs,
for both signer dependent and signer independent modes, using the concatenation of a 3D CNN skeleton
network and a 2D point convolution network. To accomplish this, we built a new ArSL video-based sign
database. We will present the detailed methodology of recording the new dataset, which comprises 80 static
and dynamic signs that were repeated five times by 40 signers. The signs include Arabic alphabet, numbers,
and some daily use signs. To facilitate building an online sign recognition system, we introduce the inverse
efficiency score to find a sufficient optimal number of successive frames for the recognition decision, in order
to cope with a near real-time automatic ArSL system, where tradeoff between accuracy and speed is crucial
to avoid delayed sign classification. For the dependent mode, best results were obtained for dynamic signs
with an accuracy of 98.39%, and 88.89% for the static signs, and for the independent mode, we obtained for
the dynamic signs an accuracy of 96.69%, and 86.34% for the static signs. When both the static and dynamic
signs were mixed and the system trained with all the signs, accuracies of 89.62% and 88.09% were obtained
in the signer dependent and signer independent modes respectively.

INDEX TERMS Arabic sign language, OpenPose, skeleton, key points, parallel convolutions.

I. INTRODUCTION
Sign Language can be considered as the most preliminary
means of human communication. If someone travels to any
foreign country, ignoring their language completely, he can
easily, and by instinct, find a way to make signs to at least
drink water, eat food, and get a place to sleep. Throughout
this context, deaf and hard of hearing (HoH) people and
their surrounding families have developed, over decades, a set
of hand gestures, facial expressions, and lip movements to
communicate with each other. These signs vary between
different countries and languages, though they have some
similarities.

Nowadays, researchers have conducted many advanced
studies in sign languages to help the deaf in their daily
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life. In addition, through the emergence of the video calls,
the deaf society and HoH are no more clustered and
pouched in their bulbs, but contribute actively in many
domains.

Although, the task of recognizing signs in videos could be
similar to recognizing actions and gestures it is actually more
complex. The complexity comes from detecting singular ges-
tural boundaries in long sequences. This full recognition pro-
cess is dependent on what is recognized instantly, as a part of
an independent sign, or as a boundary between two successive
signs. The first point is the absence of a clear stopping sign.
In theory, the conventional ‘‘hands down’’ can be used as a
stop sign like a ‘‘silent pause’’ in speech. However, this pause
might not come at every second, and the length of successive
signs may undergo an un-deterministic duration. Moreover,
some signers have their own way of stopping or pausing
that is more related to the signer fatigue. Many sign experts
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TABLE 1. Arabic sign language datasets.

may stop signing for a short instant, ‘‘time to recall the next
sign’’, to recapitulate the idea in their heads and continue,
but the pause is not unified between signers, and does not
appear to be a pause if one is not aware of it in advance.
It is a similar approach to pauses in speech, but the hands
are still used, unlike the speech, where speech sound stops
for a short instant (time to take a breath or even drink some
water in long discourses). From our discussions with Arabic
Sign language (ArSL) experts, signers do this approach to
make pauses, and care more about the next idea in the sign
discussion.

The second point is the inclusion of the facial expressions,
including the lips and the eyebrows movement, which lead
to additional vectors or modalities in the sign recognition
process. Mouth closure is also used as a pause, but more
research still needs to be done in this case. Nevertheless,
many SL research papers simply ignore the face entirely,
either it was not recorded, or recordings did not focus on the
face.

In this paper, we propose a new approach for recognizing
dynamic and static signs. Our approach is a two steps fold,
the first step, we estimate the body joints including the finger
positions from input sequence of frames, in the second step
a point CNN model is used to differentiate between the sign
classes.

In order to select the best number of successive frame
images useful for a fast decision, we introduce the index
inference score (IES), that relates the processing speed of
the system, to the accuracy of the model. This parameter
will determine the optimal number of frames to be fed to the
network to decide and give a result.

The rest of the paper is organized as follows, in section 2,
we develop a literature review of ArSL datasets, methods and
results. In section 3, we present our methodology in recording
the dataset and the proposed methods to recognize automat-
ically the signs. In section 4, we present the experimental
results, while in section 5, we mention the diverse problems
encountered during the ArSL dataset recording stage. Finally,
in the last section, we conclude our research and propose
some extension ideas.

II. LITTERATURE REVIEW
In this part of the research paper, we will introduce the latest
datasets used in ArSL as well as the methods and algorithms
used for the sign recognition, including a detailed section for
the hardware used to record the signs.

A. EXISTING ARSL DATASETS
Most of the previous studies in ArSL recognition have
undertaken to record their own Arabic datasets. Unfortu-
nately, many of these datasets are still not publicly avail-
able, or contain either few signs or enough signs, which
are related to a certain country. In all the previous cases
considered so far, these datasets require more investigation
from authors, when they are not publicly available, or have
modalities deficiencies and cannot be used in comparative
studies.

Due to the lack of a public and rich Arabic Sign Language
dataset (ArSL), many research groups opted for local record-
ings. Although these datasets contain tens or hundreds of
signs, they are in many cases domain-specific or contain few
signs and variations; and research findings need a good adap-
tation effort to be successfully reused. Additionally, some
datasets either contain few words with few repetitions or two
signers with many repetitions.

In general, these signs do not exceed hundreds. Thus,
a generalization process cannot be invoked in both cases.
In addition to the data acquisition and processing methods,
the main bottleneck problem in SL recognition is known as
the long sequences of successive signs over time.

In this paper, we focus specifically on some major ArSL
findings, and the corresponding datasets used for the exper-
imentation, emphasizing the availability of each dataset for
other research groups, as illustrated in TABLE 1, which
presents a short survey of some existing ArSL datasets, from
which, we can notice three points: Firstly, the number of
the signers does not exceed 40 signers, and the number of
recorded signs varies inversely, teams were obliged either to
increase signers or signs. The second point is the variety of
recording devices, which starts from simple cameras such as
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TABLE 2. Devices used in acquiring sign language data.

webcams to RGB+ depth cameras to cameras using infrared.
The third point is that most datasets include words and short
sentences, as sequence or single images cropped around the
hands.

B. SIGN LANGUAGE RECORDING HARDWARE
Throughout our investigation, we noticed that many research
papers on ArSL use very specific hardware sensors and
diverse sets of cameras that are provided with depth sensors
generating cloud points. In Table 2, we present some of the
most known used devices in SL recordings. From which,
we can notice that complexity in the data recording has vary-
ing modalities, ranging from cameras that generate simple
RGB data to cameras or sensors that generate, at the frame
level, multi-type data like RGB images, depth information
and sometimes body skeleton, or devices that generate exclu-
sively raw data of the hands, and the fingers.

C. METHODS USED IN ArSL
The automatic machine learning (ML) algorithms have
allowed diverse SL recognition approaches to be developed
over the last decades. Some recent research papers have used
traditional ML algorithms, such as decision trees, Bayesian
Network and Dynamic Warping [18], SVM [14], HMM [19],
Grabbcut [20], Simple Neural Networks [6], [21], [22],
for SL recognition. Although these algorithms show good
performances on specific recorded datasets, results can-
not be generalized, thus preventing easy deployment and
necessitate full models retraining while adding new unseen
signs. In many SL researches, papers have improved accu-
racies over time and with varying methods [12], [23], [24],
but with some ultimate constraints, such as very selected
datasets and controlled conditions, leading to difficulties in
generalization.

SL is a varying sequential language, where diverse move-
ments of the right and left hands, facial expressions, and
sometimes body direction are used to express a single def-
inition. Sometimes, the recognition could be restricted to a
minimal movement of just one hand to express a number
or a letter, or a more complex sequence of both hands and

face. These details make the problem complicated, as it is not
essentially a full repetitive set of actions that mean the same
thing, but a constructed discourse [25] with verbs and actions,
as well as facial expressions, including happiness, deception,
disappointment, and other impressions that can be driven in
synchronization with the hand movements. Authors of [26],
have recapitulated, in a very organized way, all the methods
categorizing sign language over a full pipeline methodology
recognition process, from the sensor acquisition to process-
ing, and then to recognition methods.

The comparison of the results in ML and specifically in
ArSL is a very tedious task, and one cannot relate to the
true story. Probable reasons for this issue is the lack of a
unified test bench and test data, as per the datasets used in
community challenges, a clear example is the speech NIST
challenge [27], or similar challenges where rules are very
strict and recording conditions are initially known and need
to be taken into account.

Nowadays, sign language can be efficiently handled by
machine learning algorithms, because it is a kind of gesture
recognition, additionally signs can also be easily collected,
because of two reasons: the first is the simplicity to find these
gestural signs. The second reason is the ability to learn these
signs by non-deaf people, allowing students and researchers
to use a simple webcam and record a dataset, which can
include tens of signsmade bymany signers. Table 3 illustrates
some of the latest ArSL datasets and some of their properties,
mentioned within their respective research papers.

Our interest is focused on Arabic SL, readers can refer
to [28], [29], where a very thorough and informative study
has been established. Let us recall that few papers recapitulate
the state of the art in terms of SL recognition, for instance
authors of [30], mentioned previous works from 1995 till
2004. Extended works of [31], and [29] mention deeper
research in the SL field.

In this research paper, we tried to emphasis on some latest
papers in automatic ArSL recognition, and their respective
algorithms. Table 3 presents some of the latest studies in the
ArSL recognition. We can notice that the CNN models are
more related to processing high video frames, and prone to
give results for long time segments. Results from [32] show a
very high accuracy, but the number of signs is still limited to
40 basic signs. Reference [33] use a CNNmodel and obtained
a 90% accuracy on SL letters. Work of [34] shows a very high
accuracy on two signers, with 22 signs. Both [35] and [36]
presented high accuracies but on a restricted set of images.
Reference [37] used a BiLSTMmodel with 98.59% accuracy
on isolated ArSL words.

III. METHODOLOGY
We propose in this research paper a framework for auto-
matic recognition of ArSL. Firstly, we recorded an Arabic
sign language dataset. Secondly, we use a deep learning
method to recognize static and dynamic signs from the set
of recorded videos, mentioning at each step the details of the
experiments.
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TABLE 3. Some algorithms used in the recognition of ArSL.

A. KSU ARABIC SIGN LANGUAGE DATASET
With the lack of an existing ArSL public dataset, cover-
ing sign diversity and numerous repetitions of the video
sequences. We decided to build our own Arabic SL dataset,
by following a defined methodology, where recording pro-
cedures, selection of tasks, and verification methods are
inherited from our previous work on the public KSU Arabic
Speech Dataset [42], [43], hosted in the LDC website [44],
and the KSU speech voice pathology dataset [45], [46].

1) SIGNER AND SIGNS’ SELECTION
We started by investigating and studying deeply different sign
language datasets, specifically some well-known public SL
datasets, namely the RWTH-BostonDataset [47] and theASL
Dataset [48]. Then, we defined the required global recording
parameters according to our resources (static and dynamic
signs, number of signers, speed for making the signs, the
recording cameras, the video storage extension, etc.,. . . ), and
established a procedure for the entire recording

Once all the video recording steps were revised, the team
in charge of the sign’s selection, a specialized sign language
group from the Department of Deaf and HoH at King Saud
University, proposed an initial list of 80 signs, (Arabic Alpha-
bet letters, numbers, and some usual signs used in daily life).
Some of the selected signs were static, like the numbers
and most alphabetical letters. Others were dynamic signs,
i.e., composed of a sequence of successive signs known as
moving signs. The complete list of signs is presented in
TABLE4, selected signs comply to the referenceArSL dictio-
nary [49] and were performed accordingly to this reference.

2) SELECTION OF THE SIGNERS
The recording procedure started with some sample signs.
This initial step allowed us to estimate the time of recording

TABLE 4. Recorded static and dynamic signs.

and tune the cameras. We worked on the signers’ recording
procedure over three-time phases. At phase one, our goal
aimed to record the signs by deaf students from HoH depart-
ment. We did this under the supervision of a sign language
translator, in order to ensure that the recorded signs are not
local to the student and fully conform to the ArSL dictionary.
We arranged this with our colleagues in the department.
Unfortunately, this phase did not proceed as we planned.
We arranged with almost the number of students we desired,
but only five students worked with us in a serious manner.
Regrettably, even with these five students, it was difficult
to complete all the five required sessions, since these deaf
students had a tendency of not accepting sign repetition, and
sometimes were in a very bad mood for what they saw as long
recording times. On average, each session lasted for more
than 20 minutes. Even though, the deaf students were paid
for this recording, which was also done in their department
inside a managed office, they still found it annoying and
boring. Moreover, some of them did not like to repeat and
correct a sign that was not in accordance with the translator’s
dictation. After spending around 50 days on trying to record
deaf students, we decided to search for another solution and
went into the second phase.

At the second phase, an application for sign recording
was launched at the university, as an alternative to the deaf
recordings; About 40 signers were chosen, some of them
were undergraduate, postgraduate, and PhD students. Train-
ing sessions allowed the students to be trained on the selected
signs; this training phase took a couple of weeks, and allowed
the students to replicate confidently the signs. Each signer
revised the recorded signs templates many times. Details
about the non-deaf signers and the recording team are pre-
sented in TABLE 5.

3) RECORDING CONFIGURATION
In video recording and processing, the type of the camera, the
calibration parameters, the room lighting, the distance from
the camera, etc.., affect the quality of the images. To avoid
the specific hardware that cannot be available during the
deployment of the trained models, we selected the Microsoft
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TABLE 5. Recording phases and signers.

FIGURE 1. ArSL dataset video recording setup.

TABLE 6. Devices used in the KSU Arabic sign language.

Kinect cameras, both version 1 and 2, for their low cost and
acceptable resolutions.

The recording setup is presented in Figure 1, where the
signers were asked to position themselves facing the cameras
at a distance of 1 to 2 meters from both cameras and back-
ground wall.

We additionally used a Sony handheld camera as a standby
solution for continuous recording in case the program con-
trolling the two cameras got bugs during live session. The
physical disposition of the cameras was initially inspired
from the RWTH-Boston Dataset for American SL [47],
since they were recording the signers by diverse cameras at
diverse angles. We had to compensate for the side angles
cameras, by including the depth information of the Kinect
cameras. All our cameras were facing the signer. The details
of the cameras and the recording modalities are listed in
Table 6 and additional details of the Microsoft Kinects are
found in [50].

4) ArSL RECORDING STATISTICS
The recording stage started by two to three signers per day,
where each signer took approximately three hours to com-
plete the five required sessions. A quality controller PhD
student oversaw the sign shape and speed. The two Kinects
recorded each sign alone, giving time to the signer and the
team to tune the various parameters, such as the signer posi-
tion, the camera up and down adjustments, and the checking
of the recording.

The team in charge of the recording checked the videos
daily, and made backups at the end of each session. The full
dataset containing the KinectV1 (RGB + Depth), KinectV2
(RGB+Depth+ Skeleton) and handy-cam Sony recordings,
was approximately 450GB. Each signer had 80 videos per
camera, and 40 signers recorded each sign five times, totaling
in 16000 videos per camera. Each video was recorded with
a frame rate of 30 images/sec, inside a classroom with a
light gray background color, and a neon lighting. No clothing
constraint was imposed on the signers (long sleeves, short
sleeves, . . . ), aiming to have a SL dataset as near as possible
to the wearing conditions in real life cases, primarily when
our SL solution will be deployed outside of the lab.

5) POST PROCESSING ON THE KINECT VIDEOS
The videos of each of the 80 signs were checked manually.
The unnecessary start and end waiting frames of each video
were trimmed from the videos, these waiting frames ranged
from two to four seconds (60 to 120 frames).

The KinectV1 and KinectV2 were recorded by the same
program, allowing to have the same starting and ending times.
This hopefully allowed us to process the frames content using
the same index for both videos.

The second phase of the post processing is the checking
of the sign videos content frame by frame. It allows the enu-
meration of the index of the frames containing blurred hands.
Frames were scrolled in a manual way, with the help of super-
posed key points, as described in section VI.A. An example
of some frames from one video recording is shown
in FIGURE 2.

B. PROPOSED SYSTEM
The main bottleneck problem in SL is the detection of the
hands, the arms, the face, and the exact location of the fingers.

Once the output from a camera or a video file is fed to the
OPL network, the hands and body key points are generated,
as shown in the global view architecture of Figure 3.

Each RGB frame is thus converted to a set of 2D key
points. The systemwaits to collect a small sequence of frames
and sends this sequence to the SKN network to generate the
recognized Arabic sign.

1) OPENPOSE NETWORK ARCHITECTURE
One of the state of the art framework in pose estimation is the
OpenPose library (OPL) [51]. The OPL is a very powerful
framework, as it estimates, from a single image, a set of key
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FIGURE 2. Example of the OPL output on the ArSL dataset.

points of one or more persons, and provides with a very high
accuracy, the body, hands and finger joints. This human pose
estimation library was developed in C++ and uses Caffe as a
backbone deep neural network. The second network that will
be used is a point convolution network that will be adapted
and tuned to accept a two-dimensional series of data and will
output the probability of an ArSL sign. OPL has surpassed the
state-of-the-art research in recognizing or estimating the pose
of individuals. The latest version of OPL can generate 21 key
points per hand, 70 key points for the face, and 25 key points
for the body/foot. The body key points might differ depending
on the trained model (COCO, MPI), and the key points can
be generated in real time. The OPL network, when fed by
one or more successive frames, generates for each frame a
set of X, Y coordinates, a probability or confidence score for
each joint of the body, and relevant points within the face.
The initial structure of the OPL is identical to the VGG19

FIGURE 3. General overview of the proposed system.

FIGURE 4. Example of the OPL output on the ArSL dataset, static
sign—joints correctly identified.

network, where input images are fed to the first ten layers of
the VGG19. The output feature maps are then transferred to
a second network consisting of two parallel six stages sub-
networks. OPL generates all the 2D key points from the input
image.

FIGURE 4 and FIGURE 5 show some sample output
images from our KSU-ArSL dataset, where joints are cor-
rectly identified, while FIGURE 6 focuses on some of the
intermediate frames where the OPL could not generate a
valid hand skeleton (No or bad finger candidate key point
generated).

VOLUME 9, 2021 59617



M. A. Bencherif et al.: ArSL Recognition System Using 2D Hands and Body Skeleton Data

FIGURE 5. Example of the OPL output on the ArSL dataset, static
sign—joints correctly identified.

2) ENHANCED PARALLEL SKELETAL DEEP CNN
Originally inspired from [52], the authors of [15] proposed
a skeletal CNN network (SKN) fed by three dimensional
coordinates X, Y and Z, generated by the 3D Intel real
sense depth camera software development kit. This type of
camera generates 3D key points of the hands within a 3D
space. Results from the paper [15] have shown an accuracy
of 91.28% for 14 gesture classes from the DHG [53] dataset,
but had limitations as it dropped by 7%, when doubling the
number of classes to 28.

Our contribution to the modified SKN network dealt
with two major points: Firstly, we simplified the network
architecture to use 2D points instead of 3D points, which
led to 1/3 less computation per network branch. Secondly,
we extended the input layers to use the full body 48 key
points, see Table 7, instead of only the two hands 3D points
generated by the 3D Intel real sense.

Given the selected set of OPL key point coordinates, we fed
these points to a second parallel network that inputs each
key point to three parallel branches, a low-resolution, a high-
resolution, and a pooling branch. The difference between the
network proposed by [15] and the OPN network, is that SKN
convolutions are point convolutions and no connection or
concatenation occurs at mid-stages, a detailed view of the
network is presented in Figure 7. Each of the channels of
the network is a component of a multivariate time sequences.

FIGURE 6. Hand skeleton generation errors, right hand fully/partially
blurred (Dynamic Sign)— finger joints not identified.

TABLE 7. List of body Joints used as input to the SKN.

Variations over each channel are independent and do not par-
ticipate in the update of the weights of the other components.

Each input channel size was modified to accept a two-
dimensional X, Y coordinates generated by the OPL network.
We do not provide nor use the depth information, as in the
original design, but we enrich the input with some additional
selected body joints, instead of the hands only, as per the
original design. Details of our model joints are presented
in Table 7.

IV. EXPERIMENTAL DESIGN & RESULTS
Our experimental methodology is driven by three evaluation
criteria:

The first criterion is to obtain an adequate accuracy for the
different signers, seen or unseen in the training session. This
target is more associated to developing a model that can be
efficient for new signers when deployed in demo mode, or to
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FIGURE 7. Enhanced architecture of the SKN.

new signs when extending the dataset. The second criterion
is to propose a reference benchmark for ArSL comparison.
Our experimental results for the automatic ArSL system are
presented in various metrics, such as class accuracy, f1-
score, recall, and precision. The third criterion is to tune the
system’s parameters and improve the system’s response to
reach real-time recognition. These experiments have been
motivated by the optimization of the time to generate a deci-
sion given an acceptable real-time accuracy. This tradeoff is
very peculiar in the sense that OPL, when fed by a frame,
makes a set of convolutions and concatenations that can be
a bottleneck in real time. In addition, the second network
when fed by the set of reduced points would also require some
milliseconds to generate a decision. Thus, real time might not
be achieved on the fly, but with a small delay, and though
could be optimized through experimental setup.

A. PERFORMANCE METRICS
The problem of identifying signs, within a sequence of
frames, is a classification problem, and the metrics needed
to determine the accuracy on the testing set have included
the precision, the recall and F1-score [54], as well as the
recognition accuracy, but for most of the experiments, we will
only display the recognition accuracy per video sequence, as a
single value. This value is simpler to analyze and compare
to other previous research papers. In addition, we introduce
a new parameter called index inference score to find the

optimal number of frames required by the system, in order
to determine the relevant class in real time situation.

1) ACCURACY METRICS
The used metrics are defined as follows:

precision = TP/(TP+ FP) (1)

recall = TP/(TF+ FN) (2)

F1-score = 2× (precision × recall)/(precision+ recall)

(3)

Accuracy = TP/(TP+ FN) (4)

where, TP, FP and FN are the true positive, false positive and
false negative rates respectively.

2) INDEX INFERENCE SCORE (IES)
The ingredients to achieve real time or near real time sign
recognition are all the composition of hardware and software
that run and execute sequential and parallel processes in few
hundreds of milliseconds. In most cases, the recognition has
to be within the next few seconds. In our case, while input col-
lecting and processing a certain number of frames, a decision
needs to be made on some previous frames. To analyze the
tradeoff of selecting the accurate number of frames required
for the decision making, against keeping an optimal accuracy,
we are exploring the index IES for this analysis.

We recall that in video recognition processing, sending
too many frames to the system impacts additional latency,
whereas sending fewer frames reduces accuracy [55]. This
tradeoff of accuracy against speed problem has been dis-
cussed by [56], and established that the index efficiency score
can be used under certain conditions. This index gives the best
number of frames to send to our system, allowing an optimal
accuracy.

The IES can be computed as per equation (5):

IES =
RT

1− PE
=
RT
PC

(5)

where PE represents the percentage error, PC is the percent-
age of correct answers, and RT is the response or reaction
time. In our case, we propose to map RT to the number of
frames upon which the system decides.

We are basing our consideration on the fact that frames
have similar time to be propagated from the camera through-
out the first OPL network.

The target of the real time can be achieved once the primary
requirement of a powerful GPU is available, as per the OPL
framework requirements for the best frame rates.

The full pipeline delay is the addition of each of the fol-
lowing stages:

a) Frame acquisition
b) OPL (image to key points)
c) Elongation
d) Key points frame stacking
e) SKN network sign decision
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TABLE 8. Signer dependent data splitting.

At run-time, steps one to three have nearly fixed delays,
while step four is directly related to the reaction time, where
the more frames that are stacked, the slower the SKN.
Step 5 generates a decision for the associated sign class.

Once the IEs is computed, it will determine the optimal
number of frames to be fed to the network to decide and give
a result. Less frames might be not sufficient; more frames
would give a bigger delay in the ArSL recognition.

B. TRAINING AND TESTING DATA
The experiments were conducted on signer dependent mode,
where different samples from the same signers are seen in
training and testing, and in signer independent mode, where
signers at training are not seen at testing. Experiments con-
sidered different temporal variations of the central selected
frames for each sign, as explained in section 7.B.

In all the recorded videos, the static signs are mostly
located at the central frames of each video recording, each
sign lasts for one second, (approximately 30 frames), while
dynamic sign range longer frames within the recorded videos.
(approximately two to three seconds per sign). We opted for
an automatic selection of the frames starting from the central
frame of each recorded sign, and some frames around the
central frame were gradually added, depending on the sign
length and type.

When the OPL is fed with a sign video, with a single signer,
it generates 137 triples key points per frame (see Table 7),
where each triple value includes the (X, Y) image coordi-
nates, of each joint and face key points, and the probability
or confidence score of each corresponding key point.

In the signer dependent experiments, we used three record-
ings for training, a fourth recording for validation and the
remaining recording was used for testing. Diverse variants
of signers’ swapping have also been investigated. The dif-
ferent configurations of signers and signers’ sessions used
in the training, validation, and testing are presented in tables
Table 8 and Table 9, respectively.

We trained our signer dependent and independent networks
with approximately the same proportion of samples (75%
training, 25% testing), and we focused on the diversity of the
signers to avoid training and validation with some selected

TABLE 9. Signer independent data splitting.

best signers, as shown in the experiments Ids 0 to 3 of
Table 8 and Table 9, where data is split in different manners.

In the independent signer experiments, we used 24 random
speakers with all their five recordings for training, eight
signers for validation, and eight other signers for testing,
as detailed in Table 9.

C. EXPERIMENTAL RESULTS
Our proposed network requires a fixed length of inputs,
whereas the ArSL does not permit the making of the signs in
a fixed duration, i.e., one cannot make the sign in a specific
fixed time duration, or a set of frames. Thus, we adjusted
the time length of the recorded videos of the signs to have
the same sequence length. We adopted a spline interpola-
tion elongation method, where all the generated OPL sign
sequences are set to a fixed number of frames by a replication
technique. Given a sequence of frame values, the interpola-
tion technique replicates the sequence in one of the following
manners, using a spline filter either by reflection, addition by
appending a constant value, approximating to a nearest value,
mirroring and/or wrapping around central values. In our
experimental design, we opted for reflection to replicate the
values (a b c d) to a longer sequence of the form: (d c b a | a b c
d | d c b a), where (a, b, c, d) are successive frame key points
generated by OPL. The optimal experimental sequence for
the total frames’ elongation was found to be 100, allowing up
to three seconds and more (>90 frames) as input to the SKN
network.

1) DYNAMIC SIGNS RESULTS
The dynamic signs are all the signs that require the contin-
uous movement of one or two hands. Sometimes the head
movements or face expressions can also be part of the sign.
The results of the dynamic signs accuracies are presented
in Table 10 for various number of central frames taken from
each sign video. The best attained accuracy is 98.39% for
61 successive central frames, for approximately two seconds
video duration, before elongation.

In Table 11, the signer independent results are presented,
and it clearly shows that experiment 0 gives best results,
allowing an accuracy of 97.23% for the 100 successive
frames, approximately three seconds time duration at 30 fps.

59620 VOLUME 9, 2021



M. A. Bencherif et al.: ArSL Recognition System Using 2D Hands and Body Skeleton Data

TABLE 10. Dynamic Signs: Signer dependent accuracies (%).

TABLE 11. Dynamic Signs: Signer independent accuracies (%).

TABLE 12. Static Signs: Signer dependent accuracies (%).

The second best accuracy occurs at 61 frames, which can be
more useful if speed is an important factor in the decision.

Most dynamic signs in the signer dependent mode are
recognized with a high accuracy, whereas few signs have
shown lower recognition results, as presented in the confusion
matrix (CM) of FIGURE 8, as confusion appears between the
signs ‘‘Doctor’’, ‘‘ Hello’’, and ‘‘English language’’, where
the signs have similar sign parts in common, this lead to the
full indistinctness.

For the signer dependent mode, the networks over all the
experiments were very sensitive to the selection of the sign-
ers. Additional experiments in section 4, will allow us to focus
on the signers that improved or reduced accuracy.

2) STATIC SIGNS RESULTS
The static signs are all the signs that require a single gesture
or a fixed position of one or both hands in a normal SL dialog.
Therefore, by intuition, the fewer the frames are presented to
the system, the faster the decision can be made.

FIGURE 8. Confusion matrix of the dynamic signs in the signer dependent
mode: Best testing accuracy of (98.39%).

The results of the static ArSL recognition are presented
in Table 12, where it shows that from the average of all
experiments, more than two seconds can be an optimal frame
number for the system to better identify the sign; Best result
occurs at 71 frames with a value of 88.89%, results show
light fluctuations, as accuracy values range from 81.15% to
88.89%, with a standard deviation of +/−1.59%.

We notice, from Table 13, that static signs in the indepen-
dent mode require less frames to be processed, best result
occur at 31 frames (one second duration), with a value of
86.34%. Results show very high fluctuations, as accuracy
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TABLE 13. Static Signs: Signer independent accuracies (%).

FIGURE 9. Confusion matrix of the static signs in the signer dependent
mode, (Best testing accuracy of 88.89%).

values range from 72.50% to 86.34%, with a standard devia-
tion of +/−3.52%. This is very related to the high similarity
of the shapes of the signs, where some numbers and letters
appear to be very similar in many video sequences. The
confusion matrix of best signer dependent mode is illustrated
in FIGURE 9, alphabet letters like ‘‘Haa’’, ‘‘Mem’’, and
‘‘Zero’’, and ‘‘Zai’’, ‘‘Thad’’ and ‘‘Thal’’, with similar spatial
shapes lead to the decrease in the global accuracy.

TABLE 14. IES of the signer dependent and signer independent modes.

TABLE 15. 80 mixed signs accuracies (%).

3) MIXED STATIC AND DYNAMIC SIGNS RESULTS
An optimal system is made of sub-optimal systems; once the
static and dynamic networks are optimal, the concatenation
of both systems is hoped to be optimal. The IES metric is
used in this scenario to find the best trade-off accuracy/speed
(where speed is related to the number of frames fed to the
system upon which this latter generates a recognized sign).
From Table 14, we notice that the smallest IES occurs at the
signer dependent mode, with a value of 0.588, Unfortunately,
the dependent mode cannot be driven to real time, as the
recorded dataset signers are not available all the time while
deploying the system elsewhere.

Thus, the optimal candidate IES value is taken from the
signer independent mode, with a value of 0.599. This would
allow the system to be used by unseen new signers and
optimally use approximately 55 successive frames per sign
in all the next experiments.

When both static and dynamic signs are used together
for training, the static signs have affected the recognition
of the dynamic accuracies, which led to the decrease in the
average accuracy of all the signs. This is best presented
in Table 15 where we can clearly that our system shows some
signer independency, as the average difference in accuracy in
both signer dependent and sign independent is less than 4%,
over all the experiments.

To improve and tune up the system and depict the diffi-
cult signs and signers that were not actively participating in
increasing the accuracies, we compare the best configurations
in the signer dependent mode. The comparison of the average
static and dynamic signs per class test metrics are shown
in Table 16, where clearly dynamic signs are more prone
to be recognized compared to static signs. We confirm also
that alphabet letters have very low metrics, for instance the
precision metric of the numbers and the alphabet are less than
the precision of the dynamic signs by 0.10, spatial similarity
of the numbers and the alphabet contributed to this difference.
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TABLE 16. Average metrics (%) for successive 55 central frames mixed
signs – dependent mode.

TABLE 17. Test results for signers’ shuffling (52 static signs – 55 frames).

Both ArSL alphabet and numbers are signs occurring at
the palm and fingers level, more investigation needs to be
done at this area of the image. In the next section, we will
show the results per signer in the signer independent mode.
This will allow us to determine which signers have positively
participated in increasing/decreasing the accuracy in the sign
recognition process.

4) FOCUS ON SIGNER INDEPENDENT MODE
To validate the results, we developed some additional exper-
iments, focusing only on the independent signers. This is the
typical model for a real scenario when deploying our sign
language recognition solution. The diverse experiments were
oriented to see and find out how some signers have negatively
impacted the quality of the whole dataset recording. In other
words, why the classification deep network could not reach
higher rates of recognition and consequently determine the
signs and signers that were hard to recognize [57]. In some
cases, hard samples are important for research because find-
ing solutions to these cases makes the system more robust.
Splitting ID’s in independent signer’s modes was already
described in Table 9. The per signer test accuracy results are
presented in Table 17, where signers’ splits are detailed for
each experiment individually. The signers used for validation
in some experiments were used as testing in other experi-
ments and vice versa.

TABLE 18. Test results for signers’ shuffling (28 dynamic signs –
55 frames).

TABLE 19. Test results for signers’ shuffling (80 signs – 55 frames).

As expected, some signers such as signers 32, 33, 19,
21, 11, have not been well recognized, leading to a global
decrease of the average accuracy. These signers would require
additional pre-processing and/or frames discarding.

For the dynamic signs results, shown in Table 18, only
signer 23 and 16 have shown accuracies below 95%, other
signers were recognized at very high rates. Example of the
test instances of signer 8, which were fully recognized.

When both static and dynamic signs are mixed, experiment
1 shows better average recognition values with a minimum
value of 86.42% for signer 38 and 92.85% for signer 24, and a
standard deviation of+/−2.30%, while experiment 0 shows a
minimum of 84.28% for signer 34 and a maximum of 94.28%
for signer 33, with a standard deviation of +/−3.01%.
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TABLE 20. Comparison with previous results.

The maximum of all signers occurs at experiment 3 with
a value of 95%, but the worst signer 10 with an accuracy
of 83.57%, increased the range between the maximum and
minimum value to 11.43%, which shows a large sparsity in
the results, and a decrease in the overall average.

5) COMPARISON WITH PREVIOUS WORKS ON THE SAME
ARSL DATASET
In our previous research papers [32] and [58] on the same
dataset, 3D CNN ArSL recognition systems were developed,
but on a restricted set of signs.

These approaches were based on feeding CNN networks
with 2D images as a sequence, with different time stamps
from each video. The result accuracies dealt with only
40 signs of the 80 recorded ones. A comparison, on the
same ArSL dataset is shown in Table 20, from which we can
notice: firstly, that our new proposed system is more robust
to sign independency, as accuracy drops between dependent
and independent systems with an average of 2.3%, which
shows that the models, with unseen data generalize quite
good, compared to the previous work of [32] and [58], where
the drop between dependent and independent models reached
12.84%. Secondly, our model generalizes well in terms of
adding new signs, as the doubling of the signs from 40 to
80 affected our model by a drop of 7.09% for the dependent
mode and 5.2% for the independent mode. Let us recall that
the static signs include the numbers and the alphabet, which
are very hard signs to be recognized in video sequences
containing full body information, as they represent just few
pixels in the image, and differ from each other at the level of
the palm and/or fingers.

V. PROBLEMS & DIFFICULTIES
In this section, we will summarize the diverse problems that
faced us during the dataset preparation, the recordings, as well
as the factors that influenced the recognition rates of some
experiments.

The dataset was recorded in using three separate cameras,
in an office with a gray background. The field of view of
each camera was too large and instead of recording only

the signer, we additionally recorded the whole scene, which
induced extra information in the horizontal direction, leading
to a 2/3 of useless sides pixel information. This could have
been avoided if a focus-like system was used.

In addition, some of the signers that were trained by a
sign language trainer, weeks before the recording sessions,
had difficulties in synchronizing their hands and making the
gestures, identically over the 5 sessions.

The skeleton data of the KinectV2 were not very useful
because the skeleton’s process increased latency—and many
skeletons could not be generated at the same frame synchro-
nization rate, leading to delays in saving the frames and the
skeleton files—and induced some interruptions while record-
ing. The depth of information from both Kinect cameras
required alignments with the RGB, given the calibrated cam-
era parameters, but we mostly relied on the original factory
calibration parameters that were sub-optimal.

For many blurred frames, OPL did not generate accurate
finger key points, mostly for the transient frames (frames
before and after the central sign frames), this was due mainly
to some blurred pixels in the original frames, a faster frame
rate would prevent such blurring and improve OPL finger
detection.

VI. CONCLUSION & FUTURE WORK
This research paper proposed an Arabic sign language auto-
matic recognition framework, which consists of using a new
ArSLDataset recorded at our university premises. The dataset
was recorded with three cameras, a Kinect V1, a Kinect V2,
and a Sony handy cam. The 40 signers recorded each 80 signs,
five times, resulting in a multimodality dataset that comprises
RGB images, Depth images and body skeletons from the
Kinect V2.

In this paper, we investigated exclusively the RGB images
of the Kinect V2 by proposing the concatenation in serial
of two parallel networks, a 2D CNN network for key-points
estimation and a second 1D CNN skeleton network. The
automatic ArSL results are very promising, as our best net-
work configuration recognized 98.39% for dynamic signs and
88.89% for static signs in the signer dependent mode, and
an accuracy of 96.69% for dynamic signs and 86.34% for
static signs in the signer independent mode. When the same
network is trained by both dynamic and static signs, a test
accuracy of 89.62% for the signer dependent and 88.09%
for the signer independent mode were recorded. The use
of the inverse efficiency score showed that with an optimal
number of sufficient frames, as input to our system, the trade-
off between accuracy and speed could be enhanced, if such
models are deployed on production.

A complementary solutionwould be to add a sign boundary
detector or a network that can decide whether the actual shape
is transient gesture or a sign. More investigation will be axed
on the frames between effective signs and their properties in
the continuous ArSL. To enhance the accuracy of each signer
in both dependent and independent modes, more research
would be made on detecting the minimal set of distinguishing
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frames and/or key points that represent a sign by clustering
the generated frame key points into representative reduced
clusters, so that the deep model can be compact and lighter
on mobile devices. Another additional point is to improve
delay removal in the whole pipeline via convolution sup-
pression and optimal data propagation, aiming to reduce the
network size and optimize the classification speed. Some
other improvements would be to zoom on fingers and add an
automatic technique to detect the palm orientations because
we noticed that the drop in accuracy was mainly due to the
difficulty to detect the similar signs that shapely resemble
each other, but differ by one finger or by the palm orientation.
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