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ABSTRACT Attention has been diffusely used in many tasks since it can guide network concentrating on
the most important regions of an input pattern. Nevertheless, many advanced works focus on first-order
attention design, e.g. channels and spatial attention, but ignore higher-order attention mechanisms. In this
work, we propose the Mixed High-Order Attention (MHA) module to model the complex and high-order
information in the attention mechanism, which captures the subtle texture and outputs the discriminative
attention map. Besides, the region of the convolution is local, which can’t capture global context and
long-range dependencies. Therefore, we propose a non-local block to obtain global attention features.
We also propose the Mixed High-Order Non-local Attention Network (MHNAN) to improve the richness
of attention. Extensive experiments are conducted to demonstrate the superiority of our MHNAN for
super-resolution over several state-of-the-art models.

INDEX TERMS Super resolution, deep neural network, deep learning.

I. INTRODUCTION
Single image super-resolution (SISR) has attracted a lot
of attention. The task of SISR is to recovery clear
high-resolution (HR) images given its low-resolution (LR)
images. Nevertheless, many high-resolution solutions can
map to any LR input, thus this is an ill-posed problem.
Therefore, researchers proposed a lot of SR models, ranging
from model-based and interpolation-based [1]–[3], to current
learning-based methods [4]. These conventional methods are
efficient, but they still exist some drawbacks: the accuracy
may quickly decrease; these methods are time-consuming.

Deep learning has achieved unexpected results in many
different fields [5], [6]. Recently, a lot of CNN-based SR
models concentrate on learning to map HR images given
LR images. CNNs have obtained satisfactory results in SISR
[7]–[16] through exploiting the image patterns. Dong et al.
[7] first try to employ CNN to tackle SISR. They proposed
a CNN-based model named SRCNN to learn a non-linear
transformation from LR to HR images. [10], [17] proposed
much deeper networks through integrating recursive learning
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and residual learning, obtaining significant results over the
SRCNN. Nevertheless, the above methods use the interpola-
tion method to firstly upscale an low-resolution image to the
desired output size and then fed it into the network, thus suf-
fering from reconstruction artifacts and extra computational
cost. In order to deal with this problem, some researchers pro-
posed new methods, which upscale the final low-resolution
feature in the tail of the network. Dong et al. [8] proposed
a deconvolution module at the tail of the architecture to
upsample the final LR information. Shi et al. [18] proposed
a novel upscale module named sub-pixel convolution layer
to upsample the LR feature to the HR feature at the tail of
the network. Therefore, more and more researchers employ
this efficient post-processing method, which not only reduces
computational load but also deepens the network. Recently,
Lim et al. [9] proposed a network by integrating residual
learning, named EDSR, which won the NTIRE2017 [19] SR
Challenge championship [19].

Nevertheless, a lot of CNN-based super-resolution models
still have some drawbacks: (1) most of the CNN-based mod-
els ignore the high-order information, leading to not get the
utmost out of the information from the blurry LR pattern, thus
resulting in unsatisfying performance; (2) the region of the
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convolution is local, which can’t capture long-range depen-
dencies and rarely exploiting the global feature correlations,
thus limiting the learning ability of CNNs.

In order to tackle the above issues, we introduce a deep
Mixed High-Order Non-local Attention Network (MHNAN)
for mixed high-order feature extraction. Especially, a mixed
high-order attention (MHA) module is introduced to extract
and mix high-order information. Through exploiting mixed
high-order feature information, our MHA adaptively learns
feature inter-dependencies. Such MHA guides our network
to focus on the significant pattern and improve performance.
Besides, a non-local enhanced group (NEG) is proposed to
integrate non-local operations tomodel long-range dependen-
cies. We extract the pattern from the LR images by stacking
the non-local residual channel attention groups (NRCAG)
structure. To sum up, our contributions are as follow:
• We introduce a Mixed High-Order Non-local Attention

Network (MHNAN) to tackle the image super-resolution
task. Extensive experiments on multiple datasets show that
our MHNAN is superior to many advanced models.
• We propose mixed high-order attention (MHA) mod-

ule, which is deep plug-and-play and can adaptively capture
features through considering feature information higher than
first-order. Thus, this MHA mechanism makes the network
enhance discriminative learning ability and concentrate on
the more important features.
• We propose a non-local enhanced group (NEG), which

further integrates non-local operations to extract long-range
pattern information.

II. MIXED HIGH-ORDER NON-LOCAL
ATTENTION NETWORK
A. NETWORK FRAMEWORK
As can be seen from Figure 2, our MHNAN primarily com-
prises the following parts: shallow feature extractor, non-local
enhanced group (NEG), up-scale layer, and reconstruction
layer. Give ILR and ISR as the input and output of our
MHNAN. Following the [9], [20], we use a convolution layer
to extract the shallow featureF0 from the low-resolution input

F0 = HSF (ILR) (1)

where HSF stands for the convolution operation. Then we
feed the shallow feature F0 in NEG, which obtains the deep
feature as

FDF = HNEG(F0) (2)

where HNEG denotes the NEG based non-local enhanced
group, which comprises multiple non-local residual channel
attention groups to extract the long-range information and
channel information. Then the deep featureFDF is upsampled
by the upscale layer through

F↑ = H↑(FDF ) (3)

where F↑ and H↑ are upsampled feature and upsample layer
respectively. We have many methods to apply as an upscale

module, like deconvolution [8], ESPCN [18]. We embed
the upscaled module in the tail of the network to achieve
high performance. This method is preferable in current
super-resolution models [8], [9], [20]. The upscaled feature
fed in one convolution layer to reconstruct high-resolution
information

ISR = HR(F↑) = HMHNAN (ILR) (4)

where HR, H↑, and HMHNAN are the reconstruction layer,
upsample layer, and the function of MHNAN, respectively.

Then we use a loss function to optimize MHNAN. There
are some widely used loss functions, such as L2, L1, percep-
tual loss. To demonstrate the effectiveness of our MHNAN,
we use the L1 loss. Given a training set with N low-resolution
images and high-resolution images denoted by {IHR, IHR}N ,
the purpose of the MHNAN is to optimize the loss function:

L(2) =
1
N

N∑
i=1

||IHR − ISR||1 (5)

where θ denotes the parameter of MHNAN. We apply Adam
optimizer to minimize the loss.

B. NON-LOCAL ENHANCED GROUP (NEG)
We here describe the proposed non-local enhanced group
(NEG) (see Figure. 1). The NEG is composed of several
non-local residual channel attention groups (NRCAG) and an
MHAmodule. The non-local block can extract the long-range
feature. Each NRCAG further containsM simplified residual
channel attention blocks [4].

We here detailedly describe the non-local block.We give an
input image with shape (H , W , Cin). For simplicity, we have
omitted the batch dimension. It can be expressed as:

Oh = Softmax(
(XWq)(XWk )T√

dhk

)(XWv) (6)

whereWq,Wk ∈ RCin×dhk andWv ∈ RCin×dhv transform the X
to values V = XWv, keys K = XWk , and queries Q = XWq
through learned linear transformations.

Stacking several blocks may be a helpful and simple way to
improve network [9], [11]. However, the network constructs
in this method would result in training difficulty and perfor-
mance bottleneck due to the problem of gradient exploding
and vanishing. Simply stacking repeated blocks may not
achieve better results. To handle this problem, we propose
the NEG to bypass abundant low-frequency features and
facilitate the training of the network. Then NRCAG in the
g-th group can be denoted as:

Fg = Hg(Fg−1) (7)

where Hg is the operation of the g-th NRCAG. Fg, Fg−1
represent the output and input of the g-th NRCAG. Then deep
feature can be extracted as:

FDF = F0 + Fg (8)
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FIGURE 1. Framework of the proposed Mixed High-Order Non-local Attention Network (MHNAN).

C. MIXED HIGH-ORDER ATTENTION
Attention is a tool that biases the allocation of available
resources towards the most useful part of the pattern. In CNN,
it is widely used to weight convolution response graphs to
highlight significant parts and suppress irrelevant informa-
tion, like channel [21]and spatial attention [22]–[28]. Given
input image X ∈ RC×H×W ,We briefly formulate spatial and
channel attention to a general case:

F = A(I )� I (9)

where � represents the Hadamard Product,
A(I ) ∈ RC×H×W . As A(I ) serves as a attention map, the A(I )
is in the range [0, 1]. Considering the representation of
attention, we describe A(I ) with many ways. For example,
if A(I ) = rep[V ]|H ,W where rep[V ]|H ,W means copy this
scale vector along width and height dimensions byW and H
times respectively and V ∈ RC is a scale vector. Therefore,
Eq. 9 is the implementation of channel attention. And if
A(I ) = rep[M ]|C where rep[M ]|C means copy this spatial
mask M along channel dimension by C times and M ∈

RH×W is a spatial mask. Therefore, Eq. 9 represents the
implementation of spatial attention.
Nevertheless, channel attention or spatial attention cannot

learn the high-order information, leading to failure in captur-
ing the subtle texture in the image. Therefore, we concentrate
on modeling A(I ) with high-order feature representation.

A(i) = sigmoid(
R∑
r=1

α̂r
T
σ (zr )) (10)

where αr is the weight vector and σ represents an non-linear
activation function, like ReLU function. We denote R as the
number of order. A(i) in Eq.10 is used as the required mixed
high-order attention feature for the i.

III. EXPERIMENTS
A. SETUP
Following [9], [15], we use 800 training images from DIV2K
dataset [19] as training data. In order to demonstrate the
performance of our MHNAN, we use 5 public datasets: Set5,

Set14 BSD100, Urban100, andManga109. TheMatlab resize
function with the bicubic operation was adopted by us as a
degradation model. The PSNR and SSIM were evaluated as
SR results.
In the training stage, the LR images are augmented by

horizontally flipping and randomly rotating 90◦, 180◦, 270◦.
We set R as 4, which means our MHA with order {1, 2, 3, 4}.
We set 16 low-resolution image patches with the size of
48× 48 as mini-batch. The ADAM algorithm was applied to
optimize MHNAN with β1 = 0.9, β2 = 0.99, and ε = 10−8.
The learning rate was initialized as 10−4 and then reduced to
half every 200 epochs.

B. IMPLEMENTATIONS
Wefix the NRCAG number asG = 18 in the NEG and embed
two MHA modules at the head and tail of NEG. In each
NRCAG, we set M = 10 residual channel attention blocks.
In addition to the shallow extract layer and upscale layer,
we set the number of the filter as C = 64. For the upscale
layer, we follow the works in [4], [15] and use sub-pixel
convolution [18] to upscale and reconstruct the deep feature,
followed by a 1 x 1 convolution with three filters to output
RGB images.

C. ABLATION STUDY
As can be seen from Figure 1, our MHNAN contains
two primary components, including non-local enhanced
group (NEG) and mixed high-order attention (MHA) mod-
ules. To demonstrate the effectiveness of the variousmodules,
we train and test MHNAN with its variants for comparison.
Specific results are shown in Table 1.

TABLE 1. Effects of different modules. We report the best PSNR (DB)
values on BSD100 (4X) in 5.6 X 105 iterations.
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FIGURE 2. Illustration of Mixed High-Order Attention (MHA) modules.

We set Rbase as a basic baseline, which only contains the
convolutional layer containing 18 residual channel attention
groups RCAGs and 10 residual channel attention blocks [4]
in each NRCAG. It can be found that the performance of
the Rbase only reaches 27.43 PSNR. When we embed the
MHA module before NEG, the performance of Ra reaches
27.57 PSNR. If we only embed the MHA module after
NEG, the performance of Rb reaches 27.59 PSNR. This
phenomenon demonstrates the effect of our MHA from the
results of Ra and Rb. Specifically, Rc means that non-local
blocks are employed to capture long-range dependencies by
a self-attention mechanism. It can be found that the perfor-
mance of the Rc can reach 27.61 PSNR when we employ
the non-local block to our model. Re means that the result
of both applying MHA before and after NEG. It can be found
that both of Re achieve better results than methods of Ra to
Rc, which reach 27.69 PSNR. When we combine MHA and
non-local block, Rd can reach 27.75 PSNR.

D. RESULTS WITH BICUBIC DEGRADATION (BI)
We conduct a comparison test with model 14 state-of-the-
art CNN-based SR methods: SRCNN [7], FSRCNN [8],

VDSR [10], LapSRN [14], UDM-F3 [29], MemNet [13],
HDRN [30], EDSR [9], SRMD [31], DBPN [32], RDN
[15], RCAN [4], SAN [20] and ESRN [33] to verify the
effectiveness of MHNAN. Table 2 demonstrates the quan-
titative results for each scaling factor. Compared to other
models, our MHNAN achieves the best performance. Com-
pared to RCAN, our MHNAN has satisfactory perfor-
mance for datasets with rich texture information, It should
be noted that textures are higher-order information with
more complex statistical properties. However, edges are
first-order information. Therefore, our MHA based on
mixed high-order feature information and non-local opera-
tors works better on images with higher-order information
(such as textures).

As can be seen from Figure 3, we show the visualiza-
tion of different methods. Many super-resolution models fail
to reconstruct the lattice and have severe blurring artifacts,
but our MHNAN achieves sharper results and reconstructs
more texture details. In the case of ‘‘img005’’, most models
output severe blurring artifacts. Compared to ground-truth,
MHNANcan restoremore image details and getmore reliable
results. Although recovering high-frequency texture on the
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TABLE 2. Quantitative results with bi degradation model.

input information of the limited LR is hard, our MHNAN
can make the best use of the limited low-resolution pattern
to transfer mixed high-order non-local attention and has a
more powerful pattern representation, which results in more
accuracy.

E. COMPONENT ANALYSIS
To explore the effect of the different number of orders in
the MHA module, we perform quantitative comparisons on
MHNAN. As shown in Table 3, we can observe that MHNAN
enhances the performance of the model for single image
super-resolution tasks over both RCAN and SAN. Especially,
comparing MHNAN-2 with RCAN and SAN, it can be found
that using higher-order attention patterns indeed enhances the

TABLE 3. Effect of attention modules. MHNAN-R denote the number of
order for the MHA module.

learning ability of the network. Moreover, the performance
will further improve with the number of order. When increas-
ing the number of order 2 to 4, the performance ofMHNAN-4
is higher than MHNAN-2. This phenomenon demonstrates
that employing a more large number of order to MHNAN is
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FIGURE 3. Visual comparison for 4× SR with BI model on Urban100 dataset.

beneficial to capture high-order information, and MHNAN-4
outperforms all the baseline models, showing the effective-
ness of our network. Nevertheless, when increasing the num-
ber of order to 6, there was little performance improvement.
Therefore, we’re not reporting here.

F. MODEL SIZE ANALYSES
Table 4 shows the model size and performance of the current
CNN SR model. In these methods, MemNet and NLRG
contain far fewer parameters, which reduces performance.
Not only doesMHNANhave fewer parameters than RDN and
RCAN, but it also gets the better performance, which means
that MHNAN can achieve a good performance compromise
between model complexity and performance.

TABLE 4. Computational and parameter comparison (2X) set5).

G. INFERENCE ANALYSES
Figure 4 shows the speed comparison for 2× scale factor
with several state-of-the-art models on the Set5 dataset. It can
be found that our MHNAN achieves best results compared
with other models. Moreover, the inference time of MHAN

FIGURE 4. Speed comparison for 2× SR with BI model on Set5 dataset.

is largely reduced compared with EDSR. Although the infer-
ence time of MHAN is a little slower than RCAN [15]
and SAN [20], our MHNAN achieves better results, which
demonstrates our MHNAN obtain a trade-off between infer-
ence time and performance.

H. VISUAL ANALYSES OF MHA
In order to demonstrate the effectiveness of our proposed
MHA, we visualize the average feature maps for the input
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FIGURE 5. The visual of average feature maps on MHA.

and output of MHA. As can be seen from Figure 5, we can
find the bottom line, the visual of the output of the MHA has
more rich texture than the input of MHA, which indicates our
proposed MHA can extract high-order feature, like texture.
Besides, we can find the visual of the output of the MHA
have more negative values than the input, which indicates our
proposed MHA can suppress smoothness, such that extract
more texture.

IV. CONCLUSION
In this work, we propose the mixed high-order atten-
tion (MHA) module to further enhance the discrimina-
tion of attention proposals through capturing the complex
and high-order information. We also propose the Mixed
High-Order Non-local Attention Network (MHNAN) to
tackle the SISR task. Importantly, MHNAN achieved promis-
ing results through applying the MHA module and NEG to
single image super-resolution task. Extensive experiments
demonstrate our superiority of our MHNAN.
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