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ABSTRACT It is widely known that the total variation regularization model preserves the edges well in the
restored images but has some staircase effects. We consider using non-convex high-order total variation and
overlapping group sparsity as a hybrid regularization to present a new denoising model. The proposed model
can well preserve edges and reduce the staircase effect in the smooth region of the restored images. In order to
solve the proposed hybrid model, we develop an efficient alternating minimization method. Compared with
other models for removing Cauchy noise, numerical experimental results demonstrate that the superiority of
the proposed model and algorithm, both in terms of visual and quantitative measures.

INDEX TERMS Non-convex high-order total variation, overlapping group sparsity, Cauchy noise.

I. INTRODUCTION
Image restoration mainly includes image denoising and
deblurring, which is an important problem in image process-
ing. We all known that image restoration is a typically linear
inverse problem [1]. The objective of image restoration is to
establish an appropriate image degradation model, and then
make a reasonable estimate of the original image by solving
the inverse problem. In mathematics, the image degradation
model can be described as follows:

f = u+ τ, (1)

where u ∈ Rn×n is the original image, f is the observed image,
τ denotes the noise. The objective of noise reduction is to
estimate the true clean image u from its noisy observation f .
To deal with this problem, adding some regularization terms
to energy is usually considered. Tikhonov regularization [2]
is one of the commendable regularization method, where
Tikhonov et al. use a quadric functional of the L2 norm of
the gradient magnitude ‖∇u

∥∥ i.e. ‖∇u
∥∥2
2 as the regulariza-

tion term. However, this model produces over-smoothness

The associate editor coordinating the review of this manuscript and

approving it for publication was Yilun Shang .

while removing noise. In order to overcome this drawback,
Rudin et al. [3] proposed the following total variation (TV)
regularization model(also known as ROF model)

argmin
u

1
2

∥∥u−f ∥∥22 + λ∥∥∇u∥∥1,
where λ > 0 is a regularization parameter. Although the
classical TV regularization model has the ability of preserv-
ing the edges, it also suffers from the well-known staircase
artifacts. In order to reduce the staircase artifacts, one choice
is using high-order total variation (HTV) [4], [5] as a reg-
ularization. Although HTV regularization can alleviate the
staircase effect, it may reduce the ability of edges-preserving.
More recently, Liu et al. proposed a new model using the
overlapping group sparsity (OGS) regularization [6] to reduce
staircase artifacts. By combining TV and HTV regulariza-
tion, some hybrid regularization models are proposed [7],
[8] to overcome the staircase effects and preserve edges
simultaneously.

The above models have a good effect in processing Gaus-
sian noise, but have poor processing ability for non-Gaussian
noise, such as Rician noise, Gamma noise and Cauchy noise.
In this paper, we focus on restoring images with Cauchy
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noise, which usually appeared in radar and sonar, biomed-
ical images, atmospheric and underwater acoustic [9]–[12].
In recent years, many methods have been proposed to remove
Cauchy noise. In [13], Chang et al. considered an image
restoration method with Cauchy noise based on the recur-
sive recovery algorithm of Markov random field model.
Achim et al. [14] removed Cauchy noise using a bivariate
maximization posterior estimation in the complex wavelet
domain. In [15], Wan et al. proposed a novel segmentation
method for color images to remove Cauchy noise. Based
on TV regularization and non-convex data-fidelity term,
Mei et al. [16] proposed a non-convex model for Cauchy
noise removal. Due to the nonconvexity and nonsmoothness
of the proposed model, they developed a specific alternating
direction method of multiplier to solve it. Although, they
proved that their method converged to a stationary point,
the restored results by their method strongly depends on
the initializations. To overcome this disadvantage, Sciacchi-
tano et al. [17] proposed the following convex variational
model by adding a quadratic penalty function to the noncon-
vex data-fidelity term

argmin
u

α

2

(〈
log
(
γ 2
+ (u− f )2

)
, 1
〉
X
+ µ

∥∥u− u0∥∥2F)
+
∥∥∇u∥∥1, (2)

where u0 denotes the image obtained by applying the median
filter to the noisy image f , 〈·, ·〉X denotes the standard inner
product, 1 is an n × n matrix of ones, µ > 0, α > 0
are the parameters. In order to reduce staircase artifacts and
preserve edges, Yang et al. [18] replaced TV regularization in
the model (2) by TV and HTV regularization and proposed a
hybrid convex variational regularization model (‘‘HTVAM’’
for short). Moreover, they also introduced an efficient alter-
nating minimization algorithm which can adaptively select
regularization parameters. By combining total variation with
overlapping group sparsity, Ding et al. [19] proposed the
following convex variational model (‘‘OGSTVL1’’ for short)
for eliminating Cauchy noise:

argmin
u

α

2

(〈
log
(
γ 2
+ (u− f )2

)
, 1
〉
X + µ

∥∥u− u0∥∥2F )
+φ

(
∇u
)
, (3)

where, φ(∇u) is the OGS-TV regular function. They uti-
lized the alternating direction method of multiplies(ADMM)
and majorization minimization(MM) method to propose an
efficient algorithm to solve the model (3). The numeri-
cal experiments showed that their method maintains the
edge-preserving property of the TV method and overcomes
staircase effects effectively.

On the other hands, the l1 norm regularization terms in
TV-based image restoration gives rise to over-smoothing
problem. Compared with l1 norm, lp (0 < p < 1) norm can
measure sparsity better. In order to overcome this disadvan-
tage, many non-convex lp norm regularization are introduced.
In [20], Chartrand first proposed a non-convex optimization
problem using lp norm as the objective function and he

gave the theoretical lp reconfigurable conditions for arbitrary
sparse signals. In addition, Wen et al. [21] further theo-
retically demonstrated the superiority of the lp norm-based
method. In [22], Zhang et al. proved that non-convex lp norm
regularization in TV-based image restoration lead to even
better edge preservation when compared to the convex l1
norm regularization in their numerical experiments.

Motivated by the above studies, we propose the following
hybrid model combining non-convex HTV and OGS-TV reg-
ularization for removing Cauchy noise:

argmin
u

α

2

(〈
log
(
γ 2
+ (u− f )2

)
, 1
〉
X
+ µ

∥∥u− u0∥∥2F)
+ω

∥∥∥∇2u
∥∥∥p
p
+ φ(∇u), (4)

where α > 0, µ > 0 and ω > 0 are regularization
parameters, p ∈ (0, 1). To the best of our knowledge, this
is the first time that non-convex HTV and OGS-TV regu-
larization as a hybrid regularization term is considered for
Cauchy noise. The main contributions of this paper are as
follows:(1) We first combine non-convex HTV and OGS-TV
regularization together in Cauchy noise removal model. This
hybrid regularization model is beneficial to improve the
OGS-TV sparsity and effectively remove the Cauchy noise in
the degraded image. (2)Using the technique of variable sub-
stitution, we develop a new algorithm under the framework of
alternating direction method of multipliers (ADMM) to solve
the proposed model. (3)We conduct extensive experiments to
demonstrate that our proposed method has superior perfor-
mance over the state-of-the-art methods in Cauchy denoising.
By adding OGS-TV term to non-convex lp regularization,
the edges and texture of the restored image are enhanced
significantly. At the same time, this method greatly reduces
the staircase artifacts caused by total variation.
The structure of the paper is as follows. In Section II,

we give the definitions of second-order TV function and
OGS-TV function. In Section III, we propose an efficient
alternating minimization algorithm for solving the proposed
model. In Section IV, we give some numerical results to
demonstrate the effectiveness of the proposed model and
algorithm. Finally, we conclude this paper in Section V.

II. PRELIMINARY
In this section, we introduce some preliminaries that will be
used in this paper.

A. TOTAL VARIATION OF THE MATRIX
u ∈ Rn×n is a gray image. We introduce the following
first-order forward and backward difference operators:

(
∇
+
x u
)
i,j =

{
ui+1,j − ui,j i < n,
u1,j − un,j i = n,(

∇
−
x u
)
i,j =

{
u1,j − un,j i = 1,
ui+1,j − ui,j i > 1,
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(
∇
+
y u
)
i,j =

{
ui,j+1 − ui,j j < n,
ui,1 − ui,n j = n,(

∇
−
y u
)
i,j =

{
ui,1 − ui,n j = 1,
ui,j+1 − ui,j j > 1.

According to the above operators, we can defined the
second-order difference operators as(
∇
−+
xx u

)
i,j =

(
∇
−
x
(
∇
+
x u
))
i,j,

(
∇
−+
yy u

)
i,j =

(
∇
−
y
(
∇
+
y u
))
i,j,(

∇
++
xy u

)
i,j =

(
∇
+
y
(
∇
+
x u
))
i,j,

(
∇
++
yx u

)
i,j =

(
∇
+
x
(
∇
+
y u
))
i,j,

where ui,j represents (i, j)th pixel in the image, i, j =
1, · · · , n. Then, we can obtain the discrete TV and HTV of u
as:

TV (u) = ‖∇u‖1 =
∑
i,j

|(∇u)i,j|,

HTV (u) = ‖∇2u‖1 =
∑
i,j

|(∇2u)i,j|,

∇
2u =

(
∇
−+
xx u ∇++xy u
∇
++
yx u ∇−+yy u

)
.

B. OGS-TV
For any vector t ∈ Rn, Selesenick and Chen [23] define a
K-point group as

ti,K =
{
x(i), x(i+ 1), · · · , x(i+ K − 1)

}
.

And then, they use ti,K to define a group sparsity regularizer
for one-dimensional case as

ϕ(t) =
∑
i

∥∥ti,K∥∥22.
Similarly, for the two-dimensional image matrix u ∈ Rn×n,
Liu [6] define a K -square-point group as

û
(
i, j
)
K =

 ui−m1,j−m1 . . . ui−m1,j+m2
...

. . .
...

ui+m2,j−m1 . . . ui+m2,j+m2

 ∈ RK×K ,

where m1 =
⌊K−1

2

⌋
, m2 =

⌊K
2

⌋
,
⌊
x
⌋
denotes the largest

integer not more than x. Arranging the K × K of û
(
i, j
)
K

in lexicographic order, we obtain a vector u(i, j)K . Then,
we can defined the overlapping group sparsity functional of
the two-dimensional array as

ϕ(u) =
∑
i,j

∥∥∥u(i, j)K∥∥∥2. (5)

Consequently, the regularization functional φ(∇u) in (3) can
be given as:

φ
(
∇u
)
= ϕ

(
∇
+
x u
)
+ ϕ

(
∇
+
y u
)
.

III. PROPOSED METHOD
In this section, we develop an efficient alternating minimiza-
tion method to solve our proposed nonconvex model (4). By
introducing three auxiliary variables t, q,w, the minimization
problem (4) can be changed into the following equivalent
form

arg min
u,z,v,q

α

2

(〈
log
(
γ 2
+ (v− f )2

)
, 1
〉
X + µ

∥∥v− u0∥∥2F)
+ω ‖q‖pp + φ(z)

s.t. z = ∇u, q = ∇2u, v = u (6)

Firstly, we define the following augmented Lagrangian func-
tion of (6):

L
(
u, z, v, q, λ1, λ2, λ3

)
=
α

2

(〈
log
(
γ 2
+ (v− f )2

)
, 1
〉
X + µ

∥∥v− u0∥∥2F)
+ω

∥∥q∥∥pp + φ(z)+ β12 ∥∥z−∇u− λ1β1 ∥∥22
+
β2

2

∥∥q−∇2u−
λ2

β2

∥∥2
2 +

β3

2

∥∥v-u− λ3
β3

∥∥2
2, (7)

where β1, β2, β3 > 0 and λi, i = 1, 2, 3 are penalty param-
eter and the lagrange multipliers, respectively. Based on the
classical ADMM, starting at u = uk , z = zk , v = vk , q = qk

and λi = λki , i = 1, 2, 3, the iterative scheme is implemented
via the following subproblems:

uk+1← argmin
u

L(u, zk , vk , qk , λk1, λ
k
2, λ

k
3),

zk+1← argmin
z

L(uk+1, z, vk , qk , λk1, λ
k
2, λ

k
3),

qk+1← argmin
q

L(uk+1, zk+1, vk , q, λk1, λ
k
2, λ

k
3),

vk+1← argmin
v

L(uk+1, zk+1, v, qk+1, λk1, λ
k
2, λ

k
3),

λk+11 ← λk1 − β1(z
k+1
−∇uk+1),

λk+12 ← λk2 − β2(q
k+1
−∇

2uk+1),
λk+13 ← λk3 − β3(v

k+1
− uk+1).

(8)

In the following, we solve the subproblems in (8) in the detail.
(a) u-subproblem

uk+1

= argmin
u

L
(
u, zk , vk , qk , λk1, λ

k
2, λ

k
3

)
= argmin

u

β1

2

∥∥∥zk −∇u− λk1
β1

∥∥∥2
2
+
β2

2

∥∥∥qk −∇2u−
λk2
β2

∥∥∥2
2

+
β3

2

∥∥∥vk-u − λk3
β3

∥∥∥2
2

(9)

By using the direct differential method, the Euler-Lagrange
equation of (9)is given as follows:(

β1∇
T
∇ + β2

(
∇

2)T
∇

2
+ β3I

)
uk+1

= β1∇
T
(
zk −

λk1
β1

)
+ β2(∇2)T

(
qk −

λk2
β2

)
+β3

(
vk −

λk3
β3

)
. (10)
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Under the periodic boundary conditions for u, the solution of
equation (10) can be obtained by using fast Fourier transform
operation F and inverse fast Fourier operation F−1

uk+1 = F−1
( M

F
(
β1∇T∇ + β2(∇2)T∇2 + β3I

)), (11)

whereM = F
(
β1∇

T (zk−
λk1
β1
)+β2(∇2)T (qk−

λk2
β2
)+β3(vk−

λk3
β3
)
)
.

(b) z-subproblem

zk+1 = argmin
z

L
(
uk+1, z, vk , qk , λk1, λ

k
2, λ

k
3

)
= argmin

z

β1

2

∥∥∥z− (∇uk+1 + λk1
β1

)∥∥∥2
2
+ φ(z) (12)

It is easy to see that we can use majorization minimiza-
tion (MM) method [6] to solve the problem (12).

(c) q-subproblem

qk+1 = argmin
q

L
(
uk+1, zk+1, vk , q, λk1, λ

k
2, λ

k
3

)
= argmin

q

β2

2

∥∥∥q− (∇2uk+1 +
λk2

β2

)∥∥∥2
2
+ ω ‖q‖pp

(13)

In order to minimize problem (15), we use the iteratively
re-weighted l1 algorithm (IRL1) [24]. First, we use the similar
strategies in [24] to approximate the lp minimization prob-
lem (13) to the following weighted l1 problem

qk+1=argmin
q

β2

2

∥∥∥q−(∇2uk+1+
λk2

β2

)∥∥∥2
2
+

∑
i=1

ηi|qi| (14)

where the weight ηi is given by the following updating
scheme

ηi =
ωp(

|qki | + ε
)1−p ,

with ε being a small positive number to avoid division by

zero. Let xk+1 = ∇2uk+1 +
λk2
β2
, then minimization prob-

lem (14) can be given by one-dimensional shrinkage

qk+1 = max
{∣∣xk+1∣∣− ηi

β2
, 0
}
· sign

(
xk+1

)
. (15)

(d) v-subproblem

vk+1

= argmin
v

L
(
uk+1, zk+1, v, qk+1, λk1, λ

k
2, λ

k
3
)

= argmin
v

α

2

(〈
log
(
γ 2
+ (v− f )2

)
, 1
〉
X + µ

∥∥v− u0∥∥2F)
+
β3

2

∥∥∥v− uk+1 − λk3
β3

∥∥∥2
2

(16)

If we denote

G(v) =
α

2

(〈
log
(
γ 2
+ (v− f )2

)
, 1
〉
X + µ

∥∥v− u0∥∥2F)
+
β3

2

∥∥∥v− uk+1 − λk3
β3

∥∥∥2
2
,

The gradient and Hessian matrices of G(v) are given by the
following equations,

G′(v) =
α(v− f )

γ 2 + (v− f )2
+ αµ

(
v− u0

)
+β3

(
v− uk+1

)
− β3λ

k
3,

G′′(v) =
α(γ 2

− (v− f )2)
(γ 2 + (v− f )2)2

+ αµ+ β3.

The solution of problem (16) can be obtained by Newton’s
method

vk+1,l+1 = vk+1,l − G′(vk+1,l )
G′′(vk+1,l )

, (17)

where k + 1 and l + 1 are the numbers of outer iteration and
Newton iteration, respectively.

(e) Updating multipliers via λ1, λ2, λ3
Finally, three Lagrange multipliers in (8) are updated as

follows:

λk+11 = λk1 − β1
(
zk+1 −∇uk+1

)
,

λk+12 = λk2 − β2
(
qk+1 −∇2uk+1

)
,

λk+13 = λk3 − β3
(
vk+1 − uk+1

)
. (18)

The whole algorithm for removing Cauchy noise is given in
Algorithm 1.

Algorithm 1 The Proposed Method for Solving Model (4)

Initialize u0 = f , v, q, z, ω, Group size K , Max iteration N ,
α > 0, λ01, λ

0
2, λ

0
3, k = 0, the number of iterations of MM

algorithm Nit-inner ,
1.While ‘‘not converged’’, Do
2. Compute uk+1 according to (11);
3. Compute zk+1 according to (12);
4. Compute qk+1 according to (15);
5. Compute vk+1 according to (17);
6. Update λk+1i , i = 1,2,3 according to (18);
7. End Do
8. Output u.

IV. EXPERIMENTS AND DISCUSSION
In this section, we present several numerical results to demon-
strate the effectiveness of the proposed model and method.
All test images are shown in FIGURE 1, which are gray
images with the size of 256 × 256. All the numerical exper-
iments are implemented under Windows 10 and Matlab
R2018a running on a laptop equipped with 2.60 GHz Inter(R)
Core(TM) i5-3230M and 4GB memory.

A. EXPERIMENT SETTING
In the following experiments, we use the following degrada-
tion equation to generate the noisy image f

f = u+ τ = u+ ξ
τ1

τ2
.

where ξ > 0 represents the noise level, τ1 and τ2 are
independent random variables and follow from the Gaussian
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FIGURE 1. Test images: (a) Peppers, (b) Boats, (c) Starfish, (d) Lena, (e) Cameraman, (f) Babyface, (g) Parrots,
(h) Man.

FIGURE 2. Top row: the PSNR and SSIM values with respect to the regularization parameter α.
Bottom row: the PSNR and SSIM values with respect to the parameter µ.

distribution with mean 0 and variance 1. It is the same as
the parameter setting in [19], we set γ =

√
ξ for all the

experiments in this paper.
The peak signal-to-noise (PSNR) and the structural sim-

ilarity index measurement (SSIM) are used to measure the
quality of the restored images. The PSNR is given by the
following formulation:

PSNR = 10 log10
2552

1
n2
‖u− ũ‖22

,

where u and ũ are the ideal image and the recovered image,
respectively. Generally, the larger PSNR values imply that
the restored images are better. The SSIM [25] is defined as
follows:

SSIM =
(2µuµũ + C1)(2σũu + C2)

(µ2
u + µ

2
ũ + C1)(σ 2

u + σ
2
ũ + C2)

,

where µu, µũ, σu and σ̃u represent the mean values and the
standard variance of images u and ũ, σũu is the covariance
of u and ũ, C1 and C2 are two positive constants. Note that
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FIGURE 3. Top row: the PSNR, SSIM and CPU time values with respect to the Group Size K . Bottom row: the PSNR, SSIM and CPU time values
with respect to the number of iterations Nit-inner .

FIGURE 4. The PSNR and SSIM values with respect to ω,p.

SSIM is between 0 and 1, if the values of SSIM is closer to 1,
the features of the restored images are similar to the original
image.

The stopping criterion for all of the tested algorithms was
set to ∥∥uk+1 − uk∥∥F∥∥uk∥∥F < 10−5,

where uk is the restored image in the k-th iteration. Through-
out all the experiments, we set the penalty parameters β1 =
30, β2 = 2.5, β3 = 10 for the noise level ξ = 0.02;
and β1 = 50, β2 = 9.5, β3 = 10 for the noise
level ξ = 0.04.

B. PARAMETER DISCUSSION
In this subsection, we show how to select the best values for
parameters α,µ, ω, p,K ,Nit-inner for different test images.
The images ‘‘Peppers’’, ‘‘Boats’’ and ‘‘Starfish’’ are used
to study the choice of these parameters. Cauchy noise with
the noise level ξ = 0.02 is added into these three tested
images.

In order to find out how the parameters α and µ impact
the performance of our proposed method. We first fix other
parameters and let α to vary continuously from 3 to 6.
Next, we use the same method to tune the parameter µ.
The changes of PSNRs and SSIMs versus different values
of parameters α and µ in FIGURE 2. It is easy to see
that the performance of the proposed method achieves the
best with α in 4.5 nearby. We set α = 4.6 in the fol-
lowing experiments. It can also be observed that the max-
imum values of PSNR and SSIM are obtained when the
parameter µ ∈ [6, 12] and µ > 25. From FIGURE 2,
we can observe that the values of PSNR and SSIM are stable
when µ > 25. However, the calculation time increases with
the increase of µ. Then, in the following experiments, we
set µ = 6.
Next, we test how to select a good value of the

group size K and the number of MM inner iterations
Nit-inner . We carry out experiments to compute the val-
ues of PSNR, SSIM, CPU Times with respect to K and
Nit-inner . From FIGURE 3, we can see that the highest
PSNR and SSIM values are obtained at K = 3. Therefore,
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FIGURE 5. Denoising results of three methods at ξ = 0.02. First column : Noisy images; second column : Restored image by
OGSTVL1 method third column : Restored image by HTVAM method last column : Restored image by our method.

we choose K = 3 for in the following experiments. From
FIGURE 3, we can also observe that the values of PSNR
and SSIM tend to be stable when the iteration number
Nit-inner ≥ 10, increasing the MM iteration Nit-inner does
not dramatically effect the PSNR, SSIM, but, the algorithm
takes more time. Therefore, we set Nit-inner = 10 in our
experiments.

Finally, we plot the values of PSNR and SSIM obtained by
our algorithm against different values of parameters ω, p in
FIGURE 4. It can be observed that that the highest PSNR and
SSIM values are obtained when ω = 0.57, p ∈ (0.6, 0.8).
Then we empirically choose ω = 0.57, p = 0.7, in the
following experiments.

C. DENOISING
To demonstrate the superior performance of the proposed
method, we compare it with other two state-of-the-art meth-
ods: OGSTVL1 [19] and HTVAM [18].

Experiment 1: We corrupt the images(as shown in FIG-
URE 1) adding Cauchy noise with the noise level ξ = 0.02.
FIGURE 5 shows the denoising results by three different
methods. It is not difficult to see that our proposed method
outperforms the others in terms of both noise removal and
detail preservation. To intuitively compare the local details of
the restored images, we enlarged the red box region of images
in FIGURE 5. Comparing to OGSTVL1 and HTVAM, our
proposed method can preserve details and edges very well in
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FIGURE 6. The zoomed regions of the recovered images in FIGURE 5. First column : Noisy images; second column : Restored images
by OGSTVL1 method; third column : Restored images by HTVAM method; last column : Restored images by our method.

the restored images while removing most of the noisy pixels.
In TABLE 1, we lists the values of PSNR and SSIM for the
restored images by different methods. It is easy to see that
the values of PSNR and SSIM for the restored images by our
method are higher than the other two methods. It is consistent
with the visual comparison. Moreover, our proposed method
needs less time than the other twomethods. Thenwe conclude
that our proposed method behaves much better than the other
two methods.

Experiment 2:We restore the images ‘‘Babyface’’, ‘‘Lena’’
by three different methods under the noise level ξ = 0.04.
The restored images are shown in FIGURE 7. In order to

illustrate the differences between the restoration given by
different methods, we shows the zoomed regions of the recov-
ered images in FIGURE 8. From the recovered images, it is
easy to see that the HTVAM method and OGSTVL1 method
yields staircase artifacts in the denoising results, while our
proposed method overcomes this drawback. The restored
image obtained by the algorithm in this paper is closer to
the original image, and the smoothness of the local area is
more prominent. We also report the values of PSNR and
SSIM obtained by these three methods in TABLE 2. From
the table, we observe that our proposed method can get better
restoration results than the other two methods, in terms of
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FIGURE 7. Denoising results of three methods at ξ = 0.04. First column : Noisy images; second column : Restored image by
OGSTVL1 method third column: Restored image by HTVAM method last column : Restored image by our
method.

FIGURE 8. The zoomed regions of the recovered images in FIGURE 7. First column : Noisy images; second column : Restored
image by OGSTVL1 method; third column : Restored image by HTVAM method; last column : Restored image by our
method.

the PSNRs and SSIMs. From FIGURES 7,8, and TABLE 2,
we conclude that our proposed method behaves better than
the HTVAM method and OGSTVL1 method.

D. THE CONVERGENCE OF THE PROPOSED METHOD
In this subsection, we plot the convergence curve to ver-
ify the convergence of our proposed methods experimen-
tally. Here, we tested six images of ‘‘Peppers’’, ‘‘Boats’’,

‘‘Lena’’, ‘‘Babyface’’, ‘‘Parrots’’ and ‘‘Man’’ degraded by
Cauchy noise with the noise level ξ = 0.02 and ξ =
0.04. The values of PSNR, SSIM and Relative error ver-
sus iteration numbers are presented in FIGURE 9. From
FIGURE 9, It is not difficult to see that the curves of
PSNR value, SSIM value and the Relative Error value
are flat when the number of iterations increases a certain
value.
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FIGURE 9. Top row: the convergence of the proposed method versus the iteration numbers with the noise level ξ = 0.02. Bottom row:
the convergence of the proposed method versus the iteration numbers for different images with the noise level ξ = 0.04.

TABLE 1. The values of PSNR and SSIM for different methods (ξ = 0.02).

TABLE 2. The values of PSNR and SSIM for different methods (ξ = 0.04).

V. CONCLUSION
In this paper, we proposed a new Cauchy noise removal
model by combining nonconvex lp norm regularization with

OGS-TV regularization. The proposed model inherited the
advantage of both theHTV andOGS-TV to effectively reduce
the stair casing artifacts while preserving sharp edges well.
Based on ADMM method, IRL1 method and MM algo-
rithm, we developed an efficient alternating minimization
algorithm. Numerical results demonstrated that the proposed
model and method performed better both quantitatively and
qualitatively.
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