
Received March 19, 2021, accepted March 25, 2021, date of publication March 29, 2021, date of current version April 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069585

Detecting and Analyzing Nonlinearity-Caused
Oscillations in Process Control Systems
Using an Improved VNCMD
LOUYING FAN1, WEIHUA SHEN1, GANFEI LOU1, AND WENYAN CI 2
1College of Engineering, Lishui University, Lishui 323000, China
2College of Engineering, Huzhou University, Huzhou 313000, China

Corresponding author: Wenyan Ci (wenyantz@126.com)

This work was supported by the Science and Technology Project of Lishui Science and Technology Bureau under Grant 2018zdhz13.

ABSTRACT Nonlinearity-caused oscillations are a frequent issue in process control systems. Its incidence
degrades the product quality, stability and safety of the plant. Therefore, it is important to detect and analyze
the nonlinearity-caused oscillations to maintain the control performance. In this study, we propose a novel
oscillation detection and analyze method based on an improved variational nonlinear chirp mode decompo-
sition (VNCMD) algorithm. Specifically, the original VNCMD needs to manually set the mode number in
advance, which is a challenging task in practice. To tackle this problem, an improved VNCMD (IVNCMD)
is proposed by utilizing the approximate entropy of instantaneous frequency. Then a novel IVNCMD-based
detector is developed to detect and analyze the nonlinearity-induced oscillations by revealing the harmonic
content of process variable. Besides detecting the nonlinearity problem, the IVNCMD-based method can
contribute in locating the root cause for nonlinearity-caused unit-wide oscillations. The proposed method
is model-free and data-driven thus requiring no prior knowledge about the process dynamics. Compared
with the latest related methods, the proposed method is able to process nonstationary oscillations and
providing corresponding time-frequency information. The effectiveness and advantages are demonstrated
through simulations as well as industrial applications.

INDEX TERMS Nonlinearity-induced oscillation detection, variational mode
decomposition, signal decomposition, control performance assessment.

I. INTRODUCTION
Oscillations are one of the most common problems in pro-
cess control systems [1]. Oscillation behavior will seriously
affect the control system performance, such as reducing
the product quality and uniformity, increasing the energy
consumption, wasting the raw materials and even causing
the plant down [2]. It is reported that over 30% control
loops are oscillating because of the presence of nonlinearity
problems [3], [4]. The nonlinearity-induced oscillations can
be confused with other causes of malfunction, such as
poor controller tuning, multi loop interactions. In addition,
this kind of oscillation cannot be completely eliminated
by controller tuning or by the action of digital valve

The associate editor coordinating the review of this manuscript and

approving it for publication was Juntao Fei .

positioners [5]. Therefore, it is essential to detect and analyze
the nonlinearity-caused oscillations [6].

With the development of research in control performance
assessment, many methods have been proposed to detect and
analyze the nonlinearity-induced oscillations. Herein, a brief
overview is provided as follows.

Horch [7] first presented an automatic approach for
detecting nonlinearity-caused oscillations based on the
cross-correlation function, which utilized the relationship
between the process variable (PV) and controller output (OP).
However, this method is limited to deal with non-integrating
process. To address this limitation, Horch [8] utilized the
probability distribution of the second-order derivative of
the controlled variable to detect the nonlinearities in inte-
grating processes. Because the valve position (MV) does
not change even though OP changes if nonlinearity prob-
lems occur in control valves, it is effective to detect the
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FIGURE 1. The proposed workflow for detecting and analyzing the nonlinearity-caused oscillations based on the improved VNCMD.

FIGURE 2. ApEn value versus mode number. The black dotted line
represents the threshold. It is observed that when mode number is larger
than 3, the ApEn value will be higher than the threshold. According to
Algorithm 1, the mode number should be set as 3.

nonlinearity through investigating the behaviour of the
MV against the OP. For example, the sticking-valve
positions-based [9], parallelogram-based [10], and qualita-
tive analysis-based [11] methods are successively devel-
oped by utilizing the relationship between the OP and the
Choudhury et al. [12] used an ellipse to fit the filtered PV
and OP signals to detect the nonlinearity. Thornhill [13]

formulated a statistic based on a three-sigma test, which
considered the prediction errors for the surrogates as a ref-
erence probability distribution. Choudhury et al. [14] devel-
oped a bicoherence-based metric of nonlinearity measure
to distinguish the linear and nonlinear oscillations. Besides,
the pertaining approaches include the area peak [15], curve
fitting [16], bihocerence [17], and so forth. However, these
traditional methods are only applicable to stationary process,
thus restricting their utility.

Recently, signal decomposition methods have been widely
introduced into detecting and analyzing oscillations [18].
These signal decomposition-based techniques are able to
process signals contaminated by nonstationarity and noise.
Although empirical mode decomposition (EMD) [19], [20],
intrinsic time-scale decomposition [21], [22], and local
mean decomposition [23] have been used for detecting
oscillations, these methods do not diagnose the oscillation
type. Babji et al. [24] applied the EMD to detect the
nonlinearity-induced oscillations. Nevertheless, this method
only provided the qualitative description. Aftab et al. [25] fur-
ther presented an EMD-based measure to quantify the sever-
ity of nonlinearity. But it is subjected to mode-mixing and
end-effect. To remedy these issues, Aftab et al. [26] utilized
the dyadic filter bank property of multivariate EMD (MEMD)
to automatically detect the nonlinearity-induced plant-wide
oscillations [27]. The above signal decomposition methods
are empirically established thus lacking theoretical basis.
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FIGURE 3. The instantaneous frequency obtained from the proposed IVNCMD. It is observed that the proposed method is able to
accurately capture the instantaneous frequencies contained in the original signal.

FIGURE 4. The decomposition performance of the proposed IVNCMD. Red and blue represent the estimated mode and true
mode, respectively. It can be seen that the proposed method can correctly extract the modes contained in the original signal.

Variational mode decomposition (VMD) [28] pioneered
the optimization-based signal decomposition method, which
has been a research hotspot. Chen et al. [2] proposed
an improved VMD to detect the nonlinearity-induced
oscillations. The VMD-based method displays satisfac-
tory performance in noise robustness and anti-mode-mixing
ability [28]–[30]. However, it is only suitable to analyz-
ing the time-invariant oscillations and cannot provide the
time-frequency information. Recently, Chen et al. [31] pre-
sented a novel time-frequency analysis approach, termed as
variational nonlinear chirp mode decomposition (VNCMD).
VNCMD is inspired by the principle of VMD but is able
to process nonstationary, time-varying, and wide-band sig-
nals [32]. It first demodulates the wide-band signal into
the narrow-band signal through demodulation techniques.
Then, a variational objective function is established by esti-
mating the bandwidth of demodulated signals. In the end,

a joint-optimization scheme based on alternating direction
method of multipliers (ADMM) is developed to accurately
capture signal modes and the corresponding instantaneous
frequencies. VNCMD has shown powerful effect in early
fault-detection andmulti-feature extraction [31]. However, its
requires users to provide the mode number in advance, which
is a challenging task in practice [33]. At present, there are few
reports on this issue.

To tackle issue, this paper proposes an improved
VNCMD (IVNCMD) algorithm by utilizing the approximate
entropy of instantaneous frequency. The proposed IVNCMD
is able to adaptively determine the mode number and provid-
ing the decomposition modes with instantaneous frequencies.
Based on the decomposition results of IVNCMD, a novel
oscillation detector is presented by combining the normal-
ized cross-correlation coefficient and regularity index. The
cross-correlation coefficient is used to discard the spurious
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FIGURE 5. The decomposition performance of the original NCMD with K = 2. It is clear that the decomposition results suffer
from mode-mixing issue, which is due to the fact that the total mode number is set too small.

FIGURE 6. The decomposition performance of the original NCMD with K = 4. It is observed that the decomposition results are
subjected to significant end-effect issue and the time-varying component cannot be extracted.

TABLE 1. The transfer functions for the four-input-four-output control system under consideration.

modes and regularity index can measure the oscillation
degree. Inspired by the fact that the nonlinearity-caused
oscillations contain higher order harmonics [26], [34], thus
the presence of harmonics can be used as an indicator of

nonlinearity problems. Then, a nonlinearity-caused oscilla-
tion analysis algorithm is proposed through calculating the
frequency relationship between modes. The contributions of
this work are as follows,
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FIGURE 7. The decomposition performance of EMD, which cannot correctly capture the sub-signals. Red and blue represent the
estimated mode and true mode, respectively.

FIGURE 8. The decomposition results of VMD, whose performance is degraded by the time-varying component. Red and blue
represent the estimated mode and true mode, respectively.

(i) An improved VNCMD (IVNCMD) is proposed to adap-
tively determine the mode number parameter;

(ii) An IVNCMD-based oscillation detector is developed
by combing the normalized correlation coefficient and regu-
larity index to capture the oscillating components of process
variables;

(iii) A novel nonlinearity-caused oscillation analysis
approach is developed through studying the frequency rela-
tionship between modes obtained from IVNCMD;

(iv) The proposed method is data-driven and can auto-
matically detect and analyze the oscillation type for process
control systems. Compared with the VMD-based [2] and
EMD-based [26] methods, the proposed method can process
both time-invariant and time-varying data, and improve the
detection reliability and accuracy.

The rest of this paper is organized as follows. The
original VNCMD is briefly described in Section II.

Section III elaborately introduces the proposed improved
VNCMD and its application in detecting nonlinearity-caused
oscillations. Simulations and industrial cases are provided in
Section IV and V, respectively, followed by conclusions.

II. OVERVIEW OF VNCMD
VNCMD [31] assumes the nonstationary signal g (t) consists
of several nonlinear chirp modes, expressed as

g (t) =
K∑
k=1

uk (t)

=

K∑
k=1

ak (t) cos
(
2π
∫ t

0
fk (τ ) dτ + ϕk

)
+ e (1)

where uk (t) = ak (t) cos
(
2π
∫ t
0 fk (τ ) dτ + ϕk

)
represents

the nonlinear chirp mode. a (t) and f (t) stands for the
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TABLE 2. The detection and analysis results of the four-input-four-output control system based on IVNCMD.

FIGURE 9. The structure diagram of a four-input-four-output control
system under consideration. The nonlinearity unit is a valve stiction
model [42].

instantaneous amplitude and instantaneous frequency,
respectively. Both a (t) and f (t) are assumed to be smooth
function and vary much slower than the phase function. ϕ is
the initial phase. e typifies the decomposition error. Through
demodulation techniques, (1) can be reformulated as

g (t) =
K∑
k=1

xk (t) cos
(
2π
∫ t

0
f̃k (τ ) dτ

)
+yk (t) sin

(
2π
∫ t

0
f̃k (τ ) dτ

)
+ e (2)

where f̃k stands for the estimated instantaneous frequency.
xk (t) and yk (t) are two demodulated parts, expressed as,

xk (t) = ak (t) cos
(
2π
∫ t

0

(
fk (τ )− f̃k (τ )

)
dτ + ϕk

)
,

(3)

FIGURE 10. ApEn value versus mode number for Loop 1. The black dotted
line represents the threshold. The mode number should be set
as 1 according to Algorithm 2.

yk (t) = −ak (t) sin
(
2π
∫ t

0

(
fk (τ )− f̃k (τ )

)
dτ + ϕk

)
.

(4)

The demodulated signals are assumed to be smooth func-
tion, whose bandwidth are relative narrow. There a variational
objective function can be established byminimizing the band-
width of xk (t) and yk (t) as

min
{xk (t)},{yk (t)},

{
f̃k (t)

}
{

K∑
k=1

∥∥xk ′′ (t)∥∥22 + ∥∥yk ′′ (t)∥∥22
}

s.t.

∥∥∥∥∥g (t)−
K∑
k=1

xk (t) cos
(
2π
∫ t

0
f̃k (τ ) dτ

)
+yk (t) sin

(
2π
∫ t

0
f̃k (τ ) dτ

)∥∥∥∥
2
≤ ε (5)

where ‖·‖22 denotes the square of l2-norm, which is used to
estimate the bandwidth. ε is an upper bound determined by
the noise level. (5) can be effectively solved by the alternating
direction method of multipliers, thus extracting the desired
modes and instantaneous frequencies. The detailed solution
procedures are provided in [31].
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Algorithm 1 Approximate Entropy of Instantaneous
Frequency
1: Denote the instantaneous frequency of mode
uk (t) as fk (t), whose discrete form is
[fk (t1) , fk (t2) , . . . , fk (tN )], where N is the data
length,

2: Let the sub-segment be Fk (i) =

[fk (ti) , fk (ti+1) , . . . , fk (ti+d−1)], which represents
d consecutive values, starting with the i-th point, for
i = 1, 2, . . . ,N−d + 1,

3: Calculate the distance between two sub-segments Fk (i)
and Fk (j) as

dist [Fk (i) ,Fk (j)] = max
h=1,2,...,d∣∣fk (ti+h−1)− fk (tj+h−1)∣∣

(6)

4: For a given Fk (i), count the number for
j = 1, 2, . . . ,N−d + 1, j 6= i under the
condition dist [Fk (i) ,Fk (j)] < r , denoted as
num {dist [Fk (i) ,Fk (j)] < r},

5: Cd
r (i) measures the frequency of patterns similar to

the one given by the window d within a tolerance r ,
expressed as

Cd
r (i) =

num {dist [Fk (i) ,Fk (j)] < r}
N−d + 1

, (7)

6: Calculate the natural logarithm of each Cd
r (i) and aver-

age them over i, shown as

0d (r) =
1

N−d + 1

N−d+1∑
i=1

lnCd
r (i), (8)

7: Let d = d + 1 and repeat step 2-6 to get the 0d+1 (r),
8: The ApEn value is calculated as ApEn = 0d+1 (r) −
0d (r).

III. PROPOSED METHOD
VNCMD is able to process both time-invariant and
time-varying signals, and it has been successfully applied
to mechanical fault diagnosis [31]. However, the original
VNCMD requires users to know the mode number K in
advance, which is a challenging task in practice. In order
to tackle this issue, an improved VNCMD (IVNCMD)
algorithm is developed in this section using the approxi-
mate entropy (AE) of instantaneous frequency. IVNCMD
can adaptively determine the mode number K and decom-
pose the process variable (PV) into a series of modes.
It is effective to detect and analyze the process oscillations
through investigating the oscillation information contained
in these modes. Thus a novel nonlinearity-caused oscilla-
tion framework is developed based on the IVNCMD in the
end.

Algorithm 2 Improved VNCMD
Input: Input signal g (t) and initialize the mode number

K = 1, ApEn (0) = 0;
Output: Modes uk (t) and instantaneous frequencies fk (t)

for k = 1, 2, . . . ,K ;
1: while ApEn (K − 1) < 0.1 do
2: Apply the VNCMD to g (t) with mode number K to

obtain the modes uk (t) and instantaneous frequencies
fk (t) for k = 1, 2, . . . ,K ;

3: Calculate ApEn value for each instantaneous fre-
quency fk (t) by Algorithm 1, denoted as ApEn (k);

4: Update the mode number K = K + 1;
5: end while
6: Determine the optimal mode number K = K −2 and run

VNCMD to obtain the desired modes and instantaneous
frequencies.

A. APPROXIMATE ENTROPY
Approximate entropy (ApEn) can quantitatively describe the
complexity of time series by calculating the marginal proba-
bility distribution [35]. It has been widely used to measure
the randomness and irregularity of sequences. The general
procedures for estimating the ApEn are listed in Algorithm 1,
where d = 2 and r = 0.2 is recommended [36].
It is well-established that a smaller ApEn value corre-

sponds to a more regular time series; while a larger ApEn
value indicates the sequence is random and irregular. With
respect to the instantaneous frequency, if it is extracted from
the significant mode, its ApEn value should be small, because
VNCMDassume the instantaneous frequency is smooth func-
tion; on the contrary, if the instantaneous frequency sequence
is obtained from the noise, the corresponding curve must be
irregular thus shows a relative larger ApEn value.

B. IMPROVED VNCMD
Because the ApEn value of instantaneous frequency can indi-
cate whether this instantaneous frequency is extracted from
the significant mode, it is reasonable to use this index to
determine the mode number of VNCMD. More specifically,
we first set the mode number K as 1 and apply the VNCMD
to the input signal. Then, calculate the ApEn value of instan-
taneous frequency of the extracted mode. If the ApEn value
is smaller than the predefined threshold, it is claimed that this
mode is significant and repeat the VNCMD with K = k + 1;
On the contrary, a larger ApEn value indicates this mode is
likely to be obtained from noise, which means the mode num-
ber setting exceeds the actual value. The detailed procedures
of the proposed IVNCMD is provided in Algorithm 2.

C. DETECTING AND ANALYZING NONLINEARITY-CAUSED
OSCILLATIONS
The proposed IVNCMD is able to extract K modes from
the input signal. The next procedure is to confirm whether
these modes are oscillating components. It is reasonable to
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FIGURE 11. The decomposition results of the IVNCMD for Loop1.

identify the significant modes before investigating oscillation
behaviors, because IVNCMD may produce pseudo modes.
According to the definition in (1), the generated modes are
orthogonal, thus the significant mode will be strongly corre-
lated with the input signal; while the correlation relationship
between pseudo components with input signal should be
weak. Herein, the cross-correlation coefficient [37], [38] is
adopted to quantify the relationship, shown as

λk =
Cov (g, uk)
σgσuk

(9)

for k = 1, 2, . . . ,K , whereCov (·) and σ· stand for the covari-
ance and standard deviation, respectively. For convenience,
the cross-correlation coefficient is normalized using

αk=
λk

max {λ1, λ2, . . . , λK }
(10)

for k = 1, 2, . . . ,K . Generally, if αk > αµ, the correspond-
ing mode uk can be distinguished as significant component
and retained for the following analysis, where αµ=0.15 is
suggested by [26].

According to the definition in [3], oscillation should show
a periodic variation that is not completely hidden in noise.
Therefore, the regularity statistic is adopted to measure the
periodic variation [39]. Because the auto-covariance func-
tion (ACF) displays the same oscillating period as the original
oscillation signal, but is not influenced by noise, the signif-
icant modes are converted to the ACF. Denoting 1t as the
time interval between two successive zero crossings of ACF,
the average time period is calculated as

Pk =
2
Z

Z∑
i=1

1ti (11)

where Z typifies the interval number and is set as 10. The
regularity statistic is determined using the relationship,

βk =
1
3
Pk
σPk

(12)

FIGURE 12. ApEn value versus mode number for Loop 2. The black dotted
line represents the threshold. The mode number should be set
as 1 according to Algorithm 2.

where σPk represents the standard deviation of the time inter-
vals between zero crossings. The modes with βk > βµ = 1
are regarded to be oscillating [26].

To sum up, the oscillations are reported if the decomposi-
tion modes satisfy the condition αk > αµ and βk > βµ.

When the oscillation is detected, we can analyze whether
it is caused by nonlinearity problems by investigating the
frequency relationship between modes. More specifically,
the presence of nonlinearity-caused oscillations can be
indicated by identifying the higher order harmonics [26].
Algorithm 3 is developed to automatically capture the har-
monics to identify the oscillation type. The complete work-
flow for detecting and analyzing the nonlinearity-caused
oscillations are provided in Figure 1.

IV. SIMULATIONS
In this section, a numerical example and a four-input-four-
output control system are used to validate the effectiveness
and advantages of the proposed method.
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FIGURE 13. The decomposition results of the IVNCMD for Loop 2.

TABLE 3. The IVNCMD-based detection and analysis results for the industrial refinery separation unit.

A. NUMERICAL EXAMPLE
Firstly, a numerical example is tested to show the effec-
tiveness and advantages of the proposed IVNCMD. Signal
(13) consists of three sub-signals, including two sinusoidal
components and a time-varying mode.

g (t)=cos (2π t)+2 cos
(
2t2 + 10t

)
+1.5 cos (2π35t)+e

(13)

where e ∼ N (0, 0.2) is noise. The trend of ApEn value
versus mode number K is plotted in Figure 2. It is observed
that when mode number is larger than 3, the ApEn value
will be higher than the threshold. According to Algo-
rithm 1, the mode number should be set as 3. The instanta-
neous frequencies and decomposition modes are provided in
Figure 3 and 4, respectively. It can be seen from Figure 3
that the estimated instantaneous frequencies are completely
consistent with the true frequency curves, which indicates
the proposed IVNCMDcorrectly captures the time-frequency
information. The decomposition results shown in Figure 4
also demonstrates the IVNMCD is able to extract the
sub-signals contained in the original signal (13). There-
fore, it is claimed that the proposed IVNCMD can process
the complex nonstationary signal and providing accurate
time-frequency information.

FIGURE 14. ApEn value versus mode number for Loop 3. The black dotted
line represents the threshold. The mode number should be set as 2
according to Algorithm 2.

Besides, we apply the original NCMD to signal (13) with
inappropriate mode number. Taking k = 2 and 4 as examples,
the decomposition performances of NCMD is shown in Fig-
ure 5 and 6, respectively. It can be seen that NCMD suffers
from severe consequences, such as mode-mixing and end-
effect, due to the inappropriate mode number setting. With
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FIGURE 15. The decomposition results of the IVNCMD for Loop 3.

TABLE 4. The VMD-based detection and analysis results for the industrial refinery separation unit. ωk is the oscillation frequency obtained from VMD.
The wrong results have been highlighted in bold.

FIGURE 16. ApEn value versus mode number for Loop 4. The black dotted
line represents the threshold. The mode number should be set as 1
according to Algorithm 2.

respect to the traditional methods, such as EMD [40] and
VMD [28], the corresponding decomposition outputs are dis-
played in Figure 7 and 8, respectively. It is observed that both
EMD and VMD meet fateful difficulties. Specifically, EMD
is subjected to mode-splitting problem [41] and VMD is
influenced by the time-varying factor. Therefore, it can be

concluded that the proposed method outperforms NCMD,
EMD and VMD in adaptively decomposing nonstationary
signals, which would guarantee the detection performance of
process oscillations in the following.

B. CONTROL SYSTEM
A four-input-four-output control system is taken from [42],
[43] to validate the effectiveness of the IVNCMD-based
detector. The structure diagram is shown in Figure 9. The
corresponding transfer functions are listed in Table 1. In this
system, four single-loop PI controllers are utilized with
Kc
{
1+

(
1
/
Tr
) [
1T

/(
1− q−1

)]}
, where Kc is the propor-

tional gain, 1T is the controller sampling time and Tr
is the integral time. The controller parameters are Kc =
[0.816, 0.625, 0.184, 0.37] and Tr = [20, 16, 2.86, 5],
respectively. In order to generate the nonlinearity-induced
oscillations, a valve stiction model [42], [44] is embedded
into the third loop to simulate the nonlinearity problem.
Because the loops are connected with each other, the oscil-
lations generated in Loop 3 will propagate to other loops.
Herein, we apply the proposed IVNCMD to these four pro-
cess variables in succession.

For the first loop, its process variable is plotted in the first
row of Figure 11. According to the ApEn value in Figure 10,
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FIGURE 17. The decomposition results of the IVNCMD for Loop 4.

Algorithm 3 IVNCMD-Based Detector for
Nonlinearity-Caused Oscillations
Input: Process variable g (t);
Output: Whether this oscillation is caused by nonlinearity

problems;
1: Decompose the process variable g (t) intoK modes using

Algorithm 2;
2: Detect the oscillating modes according to αk > αµ and
βk > βµ, for k = 1, 2, . . . ,K ; Assume there are J
significant oscillating modes retained.

3: Calculate the average oscillation period Pj using (11) and
the corresponding upper and lower limits are obtained as
PUj = 1

/(
Pj − σPj

)
and PLj = 1

/(
Pj + σPj

)
, respec-

tively;
4: Regard the most correlated mode (according to the nor-

malized cross-correlation coefficient (10)) as the fun-
damental oscillation component and the corresponding
average oscillation period is the base frequency;

5: Let n represent an integer. i corresponds to the index of
the most correlated mode and j 6= i

6: if nPi ∈
[
PLj ,P

U
j

]
,j = 1, 2, . . . , J then

7: The n-th order harmonic is detected, which demon-
strates the presence of nonlinearity-caused oscillations

8: else
9: The oscillation is not caused by nonlinearity problems.
10: end if

the mode number should be set as 1. Figure 11 provides
the decomposition result of IVNCMD. The corresponding
detection results are listed in the first row of Table 2. It is
claimed that only one oscillating mode with frequency about
0.02 Hz is detected, i.e., there is no higher order harmonic.
Therefore, Algorithm 3 reports this oscillation is not caused
by nonlinearity problems. In light of the presetting fault,
the oscillation in this loop is transmitted from other loops

FIGURE 18. Refinery separation unit showing the locations of flow
composition, and temperature control loops. This is a simplified diagram,
which does not display the upstream and downstream pressure control
loops PC1 and PC2.

rather than caused by nonlinearity. Thus, the analysis result
is consistent with the facts.

Similar to Loop 1, Figure 12 and 13 display the ApEn
curve (according to Algorithm 2) and decomposition out-
puts of the process variable of Loop 2, respectively. The
detailed information detected by Algorithm 3 is listed in
the second case of Table 2. In terms of these informa-
tion, the detected oscillation is identified as linear type
by Algorithm 3 because no higher order harmonics are
captured. This result is in accordance with the actual
situation.

With respect to Loop 3, the mode number is determined
as 2 because the ApEn value (shown in Figure 14) exceeds the
threshold when the mode number is larger than 2. According
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FIGURE 19. The decomposition results of the IVNCMD for AC1 in the refinery separation unit.

FIGURE 20. The decomposition results of the IVNCMD for FC1 in the refinery separation unit.

FIGURE 21. The decomposition results of the IVNCMD for PC1 in the refinery separation unit.
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FIGURE 22. The decomposition results of the IVNCMD for PC2 in the refinery separation unit.

FIGURE 23. The decomposition results of the IVNCMD for TC1 in the refinery separation unit.

FIGURE 24. The decomposition results of the VMD for FC1 in the refinery separation unit.
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FIGURE 25. The decomposition results of the VMD for TC1 in the refinery separation unit.

FIGURE 26. The decomposition results of the EMD for AC1 in the refinery separation unit.

to Figure 15 and Table 2, the process variable is distinguished
as nonlinearity-caused oscillation, because a third order har-
monic is detected. This analysis results conform to the fact
that a valve nonlinearity is embedded into this loop, which
leads to the loop oscillating.

The detection and analysis results for the last Loop are
given in Figure 17 and Table 2. It is observed that the detected
oscillation is not classified as nonlinearity-caused oscillation
because it is an external disturbance from Loop 3. This case
is similar to Loop 1 and 2.
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FIGURE 27. The decomposition results of the EMD for FC1 in the refinery separation unit.

FIGURE 28. The decomposition results of the EMD for PC1 in the refinery separation unit.
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FIGURE 29. The decomposition results of the EMD for PC2 in the refinery separation unit.

In addition, because different parts of a plant tends to act
as low pass mechanical filters, which can filter out the higher
harmonics as we move away from the source of nonlinearity.
Therefore, it is reasonable to regard Loop 3 as the oscillation
source since it shows the highest order harmonic according
to Table 2.

To conclude, the proposed method is able to accurately
detect the process oscillation and correctly analyze whether
the oscillation is caused by nonlinearity problems. The
obtained results also can contribute to root cause analysis for
unit-wide oscillations.

V. INDUSTRIAL CASE
This section considers a more complex case study, where
time trends from an Australian refinery separation unit
are tested [45]. The simplified structure diagram is shown
in Figure 18. This data set includes the steam flow, analyser

and temperature measurements (PV). Measurements from
the upstream and downstream pressure controllers PC1 and
PC2 are also contained. The sampling time is 20s. It is
well-established that this plant displays a unit-wide oscilla-
tion in a distillation column. The time trend of the analyzer
indicates the composition of the product leaving the top of
column was varying in an undesirable behavior. It is known
that there was a nonlinearity problem in the steam flow loop
FC1 [46]. It was an orifice plate flow meter but there was no
weep-hole in the plate, which had the effect that condensate
collected on the upstream side until it reached a critical level,
and the accumulated liquid would then periodically clear
itself by siphoning through the orifice. Another disturbance
is presented in PC1 and PC2, whose root cause is likely
to be due to a controller interaction between the two pres-
sure loops. The oscillations contained in PC1 and PC2 are
linear [37].
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FIGURE 30. The decomposition results of the EMD for TC1 in the refinery separation unit.

The process variables and decomposition outputs
of IVNCMD for these loops are provided in Fig-
ure 19, 20, 21, 22, and 23, respectively. It is observed that
except for the loop FC1, which has two oscillating modes,
the rest loops only have one mode. Based on the information
provided in Table 3, it is reported that the second harmonic is
detected in Loop FC1 and there is no higher order harmonic
in other loops. According to Algorithm 3, the oscillations in
loop FC1 should be caused by nonlinearity issues, which
is consistent with the actual situation [46]. With respect
to the oscillations in loop AC1 and TC1, their oscillation
frequency is about 0.0024 Hz, which is the same as that of
loop FC1. Due to the low-pass filter effect, the higher order
harmonics contained in loop FC1 are filtered out during the
transmission process. Therefore, it is referred that both oscil-
lations contained in loop AC1 and TC1 is transmitted from
loop FC1. In addition, measurements from the upstream and
downstream pressure controllers PC1 and PC2 show different
oscillation frequency, thus these two oscillations are likely to
be caused by other factors rather than nonlinearity problem.
The analysis results tally with the previous studies [46].

For comparisons, we apply the latest VMD-based
method [2] to this dataset. The corresponding results are pro-
vided in Table 4. It is observed that the VMD-based method
does not correctly decompose the signals collected from
loop FC1 and TC1. Specifically, the second order harmonic
contained in loop FC1 is falsely extracted and the oscillation
frequency of loop TC1 obtained from VMD is not consistent
with the prior. Figure 24 and 25 displays the incorrect decom-
position results of VMD for loop FC1 and TC1, respectively.

Therefore, it is claimed that the proposedmethod outperforms
the VMD-based approach [2] in detecting and analyzing the
nonlinearity-caused oscillations for process control systems.

In addition, the EMD-based decomposition results of this
industrial case are also provided in figure 26, 27, 28, 29,
and 30. It is evident that the EMD decomposition results
suffer from mode-mixing and end-effect issues. These issues
destroy the effective information extracted by EMD. There-
fore, it can be concluded that the proposedmethod is effective
and shows better performance than the EMD-based method
in practice.

VI. CONCLUSION
In this paper, we propose an improved variational nonlinear
chirp mode decomposition (IVNCMD) algorithm, which
utilizes the approximate entropy of instantaneous frequency
to adaptively determine the mode number of NCMD. Com-
pared with EMD and VMD, the proposed IVNCMD shows
better performance in decomposing nonstationary signals
and providing accurate time-frequency information. Then,
a novel IVNCMD-based detector is developed to extract the
oscillations from process variables. Through investigating
the instantaneous frequency relationship between modes,
a novel nonlinearity-caused oscillation analysis algorithm is
presented. In the end, the effectiveness and advantages of the
presented method are demonstrated by simulations as well as
industrial cases. More specifically, the industrial case study
reports that the proposed method is able to correctly identify
the nonlinearity-induced oscillations, while the VMD-based
method fails. In addition, the results obtained from
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EMD are subject to severe mode-mixing and end-effect
issues, which make the decomposition results meaningless.
Therefore, it can be concluded that, in contrast to the existing
methods, such as VMD and EMD, the results obtained from
the proposedmethod is more reliable and accurate in practice.
In the future, we will further study the plant-wide oscillation
detection.
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