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ABSTRACT Service clustering is an efficient method for facilitating service discovery and composition. Tra-
ditional approaches based on the self-description documents for services usually utilize service signatures.
In Web service composition, service clustering can also be performed by the invocation relationship between
services. Therefore, based on the successful development of several embedding techniques for words in
several contexts, a novel deep learning-based service embedding using invocation sequences is devised for
service clustering. Moreover, many microservices are being created because of the rapid development of
the Internet of Things (IoT), and edge, and fog computing. Following these developments, Web service
composition based on these environments has emerged in abundance. More efficient lightweight approaches
to analyze large numbers of services are necessary for service clustering. Consequently, a lightweight deep
learning-based approach for the semantic clustering of service composition is presented to address these
requirements. In this paper, we first propose the concept of service embedding to capture semantic informa-
tion from invocation sequences. Second, we suggest using state-of-the-art neural language sequence models
for service embedding and develop a corresponding lightweight Bidirectional Encoder Representations of
Transformers (BERT)-based model. Next, combined with K-means clustering, the semantic clustering of
service composition is evaluated. Finally, the experimental results show that the clustering process can be
effectively performed by the lightweight BERT-based model.

INDEX TERMS Semantic service clustering, service embedding, composition, lightweight BERT.

I. INTRODUCTION

Web services can implement interoperations between differ-
ent software applications over the network. These implemen-
tation mainly rely on some standard technologies, such as
Extensible Markup Language (XML), Web Service Descrip-
tion Language (WSDL), Simple Object Access Protocol
(SOAP), and Universal Description, Discovery and Integra-
tion (UDDI). Web services are widely used in e-business and
are becoming increasingly popular with application develop-
ers. With the dramatic increase in services, it has been a prob-
lem for consumers to obtain ideal services, thus limiting the
development of Web services. To overcome this limitation,
Web service discovery plays an important role.

Web service discovery aims to match the request of customers
to corresponding services. Before the matching process,
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clustering relevant services according to their domains or fea-
tures is an efficient way to boost service discovery or service
composition [1], [2]. Fig. 1 shows the three main steps:
Requirement Analysis, Feature Extraction, and Matcher.
Requirement Analysis helps understand the requests of con-
sumers and passes the expressions to Matcher. Feature
Extraction can represent services with some formatted data
that are understandable for computers. Matcher identifies
target services based on the expression. If a single service
cannot meet the complex requirements of consumers, service
composition is introduced. In traditional service clustering,
WSDL-based approaches, such as keywords, word embed-
ding, Latent Dirichlet Allocation (LDA), and ontology are
used to extract features from WSDL documents [3]-[5], and
then relevant services are clustered by computing these fea-
tures. These approaches usually involve service signatures in
service representation, such as the names of operations and
Inputs, Outputs, Preconditions, and Effects (IOPEs).
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FIGURE 1. Service clustering with service embedding in Web service
discovery.

As another approach, the invocation association between ser-
vices can be considered for service clustering. This approach
reflects the real invocation situation on service execution.
Therefore, in this study, based on the successful develop-
ment of several embedding techniques for words in several
contexts, a novel service embedding method can be devised
for realistic service clustering. In addition, because of the
rapid development of IoT, and edge, and fog computing,
many microservices in the environment are being created for
the environment [6]—[8]. This leads to better quality service
compositions, such as the acceleration of efficient mashup
development [9], [10]. Moreover, service composition has
been frequently implemented on clouding and edge comput-
ing environments. [11]-[15]. In these environments, how-
ever, there are not enough resources to support large-scale
deep learning models. Optimizing and quantizing model
weights can reduce resource costs [16]; thus, more efficient
lightweight approaches to analyze large amounts of services
are necessary for service clustering.

Recently, deep learning approaches in learning sequential
data have greatly improved, such as long short-term mem-
ory (LSTM) and BERT. BERT shows the best state-of-the-art
performance, but it is immature and too heavy. In this
paper, a lightweight deep learning-based approach to per-
form service clustering is proposed. This approach performs
semantic clustering of service composition with a lightweight
BERT-based service embedding model that uses a novel
transformer’s encoder. First, we propose service embedding
to build an informative cyclic framework in Web service
composition that uses neural language networks to learn
service composition sequences. The model can well under-
stand the invocation relationship between services and extract
semantic information from these sequences. Second, the pre-
trained model can generate the representation vectors of all
sequences. The general meaning can be illustrated in the
right part of Fig. 1 and entirely uses deep learning methods
to implement the representation of services. Then, we clus-
ter these representation vectors to obtain different semantic
clusters. The differences between the present and traditional
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TABLE 1. Comparison of Approaches.

Features .
Approach Source Data Extraction Construction
Traditional |WSDL Egyxords’ Integrated
approaches  |documents Ontology etc. system
Deep Service Service Unsupervised
learning-based|sequences  |embedding |learning model

approaches are shown in Table 1. Our contributions can be
summarized as follows:

o We propose service embedding to construct an infor-
mative cyclic framework in service composition and
suggest using neural language models (LMs) to perform
service embedding.

o Considering the complexity of the existing model,
we develop a lightweight deep neural LM in
our approach. Compared with the base model,
the lightweight model has similar performance, but is
faster.

o A deep learning-based approach is proposed to perform
semantic clustering of service composition based on ser-
vice embedding. We then perform comprehensive exper-
iments with a real-world dataset. The results show that
our approach can implement the clustering effectively.

The remainder of this paper is organized as follows.

Section II addresses related works. Section III introduces
service embedding. Section IV illustrates neural LMs and
proposes two service embedding models. Section V presents
the whole semantic discovery of the Web service composi-
tion framework. Section VI describes the data preparation.
Section VII demonstrates and discusses the experiments.
Section VIII concludes the paper.

Il. RELATED WORK

To the best of our knowledge, this is the first work to develop
an entirely deep learning-based approach for service cluster-
ing. Thus, the related works are described based on several
aspects.

A. WEB SERVICE CLUSTERING

Web service clustering considers related services as the same
category based on the features. This approach commonly
captures features from WSDL documents and computes the
similarity of features between different services [17]-[21].
Wu et al. [1] suggested clustering Web services through both
WSDL documents and tags, and Kumara et al. [5] presented
computing the similarity of features with ontology learning.
Shi et al. [3] presented a word embedding augmented LDA
model for service clustering. Zou et al. [4] proposed cluster-
ing services via integrating service composability into deep
semantic features. Differing from computing the similarity
between services based on the service description documents,
we propose using neural LMs to represent services with
representation vectors and perform clustering.

54299



IEEE Access

K. Zeng, 1. Paik: Semantic Service Clustering With Lightweight BERT

B. SEMANTIC WEB SERVICE DISCOVERY

WSDL documents are a type of standard metadata that is
very difficult for machine algorithms to understand from a
semantic aspect. Therefore, semantic Web service discovery
has been presented to address the problem. Several methods
have been proposed to reconstruct service description for
enriching Web services with machine-processable semantics,
such as Web Ontology Language for Web service [22], Web
service modeling ontology [23], and semantic annotations for
the Web services description language [24], [25]. Ontology
shows promising potential [26], [27]. Instead of extracting
semantic knowledge from WSDL documents or construct-
ing the ontology of services based on WSDL documents,
we attempt to reveal semantic information from service
composition sequences because the invocation relationship
between services contains semantic information of services.

C. SOCIAL RELATIONSHIP FOR WEB SERVICE DISCOVERY
The social relationship between services corresponds to a
type of association mechanism. It connects relevant services
in a certain way, enabling service discovery or service
composition. Such a connection is commonly constructed
based on the relationships between services, such as func-
tionality, quality of service, or sociability, and is consid-
ered a promising approach to discover target services [28].
Zakaria et al. [29] developed social networks for Web
service discovery. Chen et al. [30] presented the Global
Social Service Network to connect distributed services. Cor-
bellini et al. [31] proposed mining social Web service reposi-
tories for social relationships to aid service discovery. Instead
of constructing a social network, we adopt the neural network
to learn service composition sequences and extract the invo-
cation relationship for clustering services.

D. DEEP LEARNING FOR APPLICATION PROGRAMMING
INTERFACE (API) LEARNING

To alleviate the burdens on developers, deep learning is
applied to API learning. Gu et al. [32] presented a neural
LM to learn the projection from a natural language query
to an API usage sequence. Bhupatiraju et al. [33] proposed
using the learning program with APIs in a novel neural
synthesis algorithm. Wu et al. [34] proposed automatically
finding answers for API-related natural language questions
from tutorials and stack overflow. These cases demonstrate
that the neural language network can understand not only
natural language sequences, but also API usage sequences.
These works inspire us to utilize neural LMs to learn ser-
vice composition sequences and enable them to extract some
important information for service clustering.

First, various traditional service clustering approaches are
reviewed in this section. These approaches are usually based
on WSDL documents. Then, some existing studies that
perform service discovery based on the social relationship
between services are reviewed. However, these studies did
not consider the invocation relationship. Finally, some cases
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FIGURE 2. Service embedding in Web service composition.

of deep learning for API learning are reviewed and indi-
cate that deep learning models can understand API invoca-
tion sequences well. These studies inspire us to propose a
new approach that performs service clustering with service
embedding using invocation sequences.

IIl. SERVICE EMBEDDING

In this section, the concept of service embedding is pro-
posed in Web service composition. Web service discovery
can provide suitable services for consumers. However, when
a single service cannot meet the complex requirements of
consumers, the discovery task changes to service composition
by combining several services and providing value-added
services. Fig. 2 shows the Web service composition. The
main components are Service Matcher, Composition Gener-
ator and Evaluation Engine. When Composition Generator
receives service requests from customers, it needs to process
the requests and gain relevant services from Service Matcher
to composite these relevant services and then send candidate
service compositions to Evaluation Engine for the test. The
final tested service composition provides value-added ser-
vices that can satisfy the complex functionality required by
consumers. Composition Generator generates service com-
positions based on some rules or knowledge, meaning that
these service sequences contain the invocation relationship.
Determining exact information or knowledge is very helpful
in service clustering. In other words, we can perform ser-
vice clustering based on the invocation relationship. Thus,
as shown in the bottom part of Fig. 2, we present service
embedding in the framework to learn the service composition
sequences by suitable models. Then, the sequences can be
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projected into representative vectors by the pretrained mod-
els. We can determine related services by computing these
representative vectors. The significance of service embedding
can be concluded as follows:

« The representative vectors generated by the pretrained
model can be used to find relevant services.

o The extracted information and knowledge can be used
to contribute to the service composition procedure.

o The model is independent and open in the cyclic frame-
work because the input and output are service composi-
tion sequences and representative vectors, respectively.
Such kinds of data are easy to share and exploit.

IV. SERVICE EMBEDDING WITH DEEP NEURAL
LANGUAGE NETWORKS

Transformer is a state-of-the-art model in neural machine
translation. BERT is the stacked layers of Transformer’s
encoder. In this paper, BERT is used to service embedding.
However, the base model is too heavy and immature. There-
fore, a lightweight BERT-based mode is also developed for
service embedding. This section gives a description of two
models in detail.

A. TRANSFORMER AND BERT

LMs play a vital role in natural language processing (NLP),
such as machine translation, questioning and answering, and
sentiment analysis. LMs are required to represent a word
sequence with the form that is understandable to the machine
and estimate the probability distribution of words, phrases,
and sentences. For a language sequence (wi, wa, ..., Wy),
LMs need to calculate the probability distribution of this
sequence, namely, P(wi, wa, ..., w,). LMs can be divided
into two categories: count-based LMs and continuous-space
LMs. Count-based LMs usually refer to the traditional statis-
tical models. As mentioned previously, when we try to com-
pute the probability of a sequence such as P(wy, wa, ..., wy),
we use the chain rule of probability to obtain (1).

P(wi, wa, ..., wn) = PW)Pwalwi) - - Pwalw}™h (1)

Neural LMs use neural networks to learn the probability,
and there has recently been great improvement. Especially,
transformer and its stacked layers construction BERT demon-
strated excellent capacity for learning language sequences
[35], [36]. As shown in Fig. 3, Transformer relies entirely
on a self-attention mechanism and consists of the Encoder
and Decoder. The main components are Multi-head Atten-
tion, Feed Forward, and Add & Norm. Feed Forward con-
sists of two linear transformations with a Rectified Linear
Unit activation function in between. Add & Norm is residual
connection [37] and layer normalization [38]. Multi-head
Attention is the crucial part that realizes a self-attention
mechanism and is shown in Fig. 4. It consists of sev-
eral attention layers running in parallel. & represents the
number of heads or the parallel layers. The input vectors
query (Q), keys (K), and values (V) are transferred to
Scaled Dot-Product Attention through linear projections. In a
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self-attention layer, all queries, keys, and values come from
the same place. The Scaled Dot-Product Attention can be
formulated as:

T

Vi

The mask operation is used in the Decoder part to make the
current position observe only its previous positions. All the
attention weights are concatenated and transformed with a
linear projection.

BERT consists of the stacked layers of the transformer
encoder, as shown in Fig. 5. The proposal of BERT divides
the NLP procedure into two phases: upstream representation
and downstream tasks. BERT is used in the upstream repre-
sentation. There are two unsupervised tasks to pretrain BERT:

Attention(Q, K, V) = softmax( V. 2)

54301



IEEE Access

K. Zeng, 1. Paik: Semantic Service Clustering With Lightweight BERT

NSP Mask LM Mask LM
_* * *
@ @ [ Tn HT[SEP]][ T .. [TM’ |
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next sentence prediction (NSP) and masked LMs. As shown
in Fig. 5, the input is the concatenation of two masked sen-
tences, and the first position is [CLS]. NSP requires the model
to predict whether the second sentence is the next sentence
of the first sentence. The corresponding output position is
probability. [SEP] is a special separator token of two sen-
tences (e.g., separating questions/answers). Masked LMs pre-
dict the masked token in the input sentences. The pretrained
BERT can be used in multiple downstream tasks. BERT
has demonstrated good performance in machine translation,
Q & A systems, and so on. The self-attention mechanism
can learn an excellent representation of the input sequences
through unsupervised learning. In this research, we pro-
pose using BERT to learn service composition sequences
and capture the invocation relationship with its self-attention
mechanism. In our case, some details have been accord-
ingly adjusted in the model. The NSP task and the segment
embedding are removed, as shown in Fig. 6. The input
is a single masked service sequence, and the embedding
layer consists of two processes: Token Embeddings and Posi-
tion Embeddings. The model performs masked LMs. In the
masked LMs, 15% of the masked token positions are ran-
domly chosen for prediction. For an API invocation sequence
“getText toLowerCase replace split,” if the chosen position
is the last one, the input and label are as follows:

« Input: getText toLowerCase replace [MASK]
o Label: [MASK] = split

The prediction of the model is the label “split.” For the
input sequence, the masked position is replaced with the
[MASK] token 80% of the time, a random API method
10% of the time, or remains unchanged 10% of the time.
We perform mask operation on all input service sequences;
meanwhile, the labels of masked positions can be obtained.
Then, the model will be trained with the samples and can learn
these service sequences by predicting the masked positions.
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B. A NOVEL LIGHTWEIGHT BERT ARCHITECTURE WITH
CONVOLUTIONAL ATTENTION IN TRANSFORMER

As an LM, BERT is usually pretrained with a large dataset
because to maintain a certain model complexity, BERT is
comparatively large. In this study, we propose using BERT
to learn service composition sequences. In comparison to
natural language sequences, service composition sequences
are more simple in creativity, and the dataset is small. There-
fore, developing a comparative lightweight BERT is mean-
ingful in our case. The following description shows that
fully connected layers are heavily used in the architecture
of the transformer encoder and result in a rapid increase in
model size. Convolutional neural networks are used widely
in computer vision, single processing, and NLP [39], [40].
Convolutional attention is also applied to several studies. For
example, convolutional self-attention was presented for text
classification [41] using Conv1D to extract features between
neighboring words. In the transformer encoder, multihead
attention allows the model to attend jointly to information
from different representation subspaces at different positions,
and the different Q, K, and V pairs are generated by lin-
ear projections. In our approach, we use two-dimensional
convolution operations to perform this procedure instead of
pure linear projections. If we assume the input of multihead
attention as Q, K, and V, the new multihead attention can be
illustrated in Fig. 7. The formulation can be given as:

MultiHead(Q,K,V) = Concat(Hy, ..., H,)W°
whereH; = Attention(Q;, K;, V),
01, ..., Qi = Conv2D(QWiinear + b),
Ki, ..., K; = Conv2D(KWiipear + b),
Vi,..., Vi = Conv2D(VWiinear + b) 3)

i is equal to the number of heads 4 and the number of filters.
Wiinear 1s the weight matrix of a linear projection before the
convolution operation because we keep one linear layer to
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enhance the linear capability of the model; the other com-
ponents are the same as those in the original model.

C. COMPARISON OF MODEL COMPLEXITY

In this section, we compare the computational complexities
of the lightweight model and the base model. For neural
network models, the computational complexity can be con-
sidered from two aspects: the time complexity 7 and the
number of parameters P. The time complexity generally rep-
resents multiply-accumulate operations [42], [43]. For the
base BERT model, the computational complexity is given as
follows:

T ~ O((3Ld2 + Ldydg )N + LDd,y,),
P ~ O((3d2 + dwdgy)N + Ddy,). )

L is the maximum sequence length, D is the vocabulary size,
dy, is the embedding dimension, dj is the hidden dimension,
and N is the number of layers. Regarding the new model,
the computational complexity is given as follows:

T ~ O((Ld% + 3M>Ld,, + Ldydg)N + LDdyy,),
P ~ O((d2 + 3M*h + dydg)N + Ddy). Q)

M represents the filter size and & represents the number of
heads.

V. SEMANTIC SERVICE CLUSTERING BASED ON SERVICE
EMBEDDING

In NLP, contextual knowledge is very important for semantic
segmentation [44]. BERT can understand the semantics of
words based on the context and be used to address lexical
ambiguity. In the same way, the same service match with
different services can obtain different service compositions
with different functions. If these composition sequences are
used to pretrain a BERT-based service embedding model,
the model can capture the semantic services and generate
the representation vectors. Thus, we can find similar seman-
tic services and retrieve similar semantic compositions. The
entire procedure can be illustrated in Fig. 8. The semantic
clustering of service composition can be divided into two
stages:
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The first stage is the service embedding. We use service
sequences to pretrain a neural LM and generate the repre-
sentation vectors through the pretrained model. In our case,
BERT-based service embedding models are utilized because
the self-attention mechanism can capture the invocation rela-
tionship between services. Such knowledge contains the
semantic information of services and is already represented
by the embedding process. The second stage is to perform
clustering. In this paper, we use K-means clustering, which is
an unsupervised method for clustering representation vectors.
Then, the semantic clustering model can be obtained. When
a target service is entered into the clustering model, the dif-
ferent semantic clusters are returned.

Vi. DATA PREPARATION

We choose the invocation sequences of Web APIs as the
experimental dataset. We crawled Java source codes from
GitHub, and these codes were developed for implementing
the Twitter APIs. The data preparation is shown in Fig. 9.
First, we parse the source code into abstract syntax trees
to identify all the methods in each calling method or class.
Because the research target is the Twitter API, we need to
determine the Twitter API methods and filter some unrelated
methods. Finally, we can obtain the Twitter API invocation
sequences in a certain definition scope.

In the experiments, we use about 3000 API invocation
sequences as training data, and the number of methods
is about 800. Compared with other NLP datasets, ours
is comparatively small. The reasons for this are twofold:
First, the complexity of the model is low. The base
BERT in NLP has 110M parameters, but our models have
only 1.6M ~ 2.5M parameters. The number of parameters
is far fewer than the base BERT, so a large dataset is not
required. In addition, our model is not a full BERT model, as it
does not learn sentence pairs; instead, we just make it predict
the masked position to embed the sequences, simplifying the
task. Second, the type of dataset is different. Instead of natural
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language, our dataset consists of API invocation sequences,
which are not as complex or creative. Moreover, nearly all
Twitter APIs are almost contained.

VIl. EXPERIMENT AND DISCUSSION

In this section, we observe the following two issues: ser-
vice embedding with the lightweight BERT architecture, and
semantic service clustering. For the former, the computa-
tional complexity and reduction in model size are evalu-
ated. The experimental results of service embedding are also
introduced. For the latter, semantic service clustering with
lightweight BERT-based service embedding by invocation
sequence is discussed through clustering performance.

TABLE 2. Hyperparameters of Models.

Model N Amodel dfys h Filter Size
Base 3 384 768 6 —
lightweight 3 384 768 6 3*9

A. SERVICE EMBEDDING WITH LIGHTWEIGHT
BERT-BASED MODELS

1) CALCULATION OF COMPUTATIONAL COMPLEXITY

The purpose of this experiment is to compare the performance
of the base model of BERT and the lightweight model with
the proposed architecture. For the two models, the hyperpa-
rameters are set as Table 2. The batch size is 12, the maximum
sequence length is 128, the vocabulary size is 800, and the
other configurations reference the original literature [36].
Referring to section IV-C, the computational complexity of
the two models can be calculated. As shown in Fig. 10,
as d,, changes, the time complexity and the number of param-
eters all increased dramatically in the two models. However,
compared with the base model, the lightweight model has
reduced time complexity and a smaller number of parameters.
When the embedding dimension d,, is set as 384, the time
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complexity of the base model is about 322M and the number
of parameters is about 2.5M. For the lightweight model,
the time complexity is about 221M and the number of param-
eters is about 1.6M. The reduction ratio is also computed
and shown in Fig. 11. In the lightweight model, the time
complexity can be reduced by 19% ~ 56%, and the number
of parameters can be reduced by 22% ~ 46%. Theoretically,
it is more lightweight and faster than the base model. In the
service of deep learning-based applications, the response
time that includes transmission delay, scheduling time, and
inference time is a crucial problem. The inference time is
the dominant impact factor [16], [45] because the process of
deep learning inference is computation intensive. Therefore,
when performing the same inference task on edge computing,
the inference time of the lightweight model can be reduced by
19% ~ 56% compared with the base model.

The two models were trained on a GTX 1080 Ti. The base
model took about 10 hours, while the lightweight model took
about 6 hours. The training procedures are shown as Fig. 12.
The results show that the loss of the base model becomes
stable at about 300K steps, while the lightweight model
completes the training at about 150k steps. Consequently,
the lightweight model is trained faster than the base model,
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FIGURE 13. Visualization of the representation vectors.

Nearest points in the original space: Nearest points in the original space:

(1032)setMedia 0.002 (2657)setMedia 0.005
(2106)setMedia 0.002 (2106)setMedia 0.006
(2657)setMedia 0.003 (1032)setMedia 0.006
(2079)setMedia 0.003 (2697)setMedia 0.006
(2697)setMedia 0.003 (2079)setMedia 0.008
(1875)setMedia 0.003 (1875)setMedia 0.009
(2937)setMedia 0.004 (2596)setMedia 0.010
(2596)setMedia 0.004 (2937)setMedia 0.010
(2060)setMedia 0.004 (2060)setMedia 0010

(a) Base model (b) Lightweight model

FIGURE 14. Nearest points of (185)setMedia.

and this is consistent with the previous comparison of the
computational complexity.

2) VISUALIZATION OF SERVICE EMBEDDING

After pretraining, we can obtain the representation vectors
of all sequences through the pretrained models. Principal
component analysis is used to perform dimension reduction
and visualize these representation vectors, and the results are
shown in Fig. 13. The results show that the distribution is very
similar. Overall, the results show that all points have been
divided into several large groups. However, we believe that
this has no clear significance. In addition, there are many
small clusters, indicating that the model shows promising
capability in service embedding.

We compare the results by computing the nearest points of
some target method. For example, when *“(185)setMedia” is
chosen as a target, ‘“185” represents the number of sequences
in the dataset. “setMedia’ is the name of the API method. Its
nearest points in the space can be determined by computing
the cosine distance, as shown in Fig. 14. The results show
that while the order indicates a few differences, the points
are the same. Several target API methods have been used
to compare the difference between the nearest points. The
result is the same as the example. Thus, through measuring
the visualization result, the performances of the two models
are close.

B. SEMANTIC SERVICE CLUSTERING
Our approach aims to realize semantic service clustering.
When consumers input a target service, the clustering model
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FIGURE 15. Example of semantic clustering for “setMedia”.

can return different semantic clusters that contain the target
service. In this experiment, the K-means clustering algorithm
is used to construct a clustering model. K-means clustering is
a kind of unsupervised learning algorithm and is widely used.
For K-means algorithms, the number of clusters K needs
to be determined in advance. Therefore, several values are
used in the experiments with the purpose of comparing the
performance of clustering models in different k values.

For the evaluation of cluster quality [5], [20], purity and
entropy are used. In addition, we accordingly adjust entropy
in our case. Purity shows the purity of a cluster and is defined
as follows:

Purity = lma)cc{nji»}. (6)
n

n is the total number of services in the cluster. maxc{nj’:}
represents the number of semantic class i in cluster j, and only
the maximum value is considered. Entropy demonstrates how
the various semantic classes are distributed within each clus-
ter. A smaller entropy value corresponds to better clustering
quality. The entropy of a single cluster is defined as follows:

9 n nl
E=-—Y Zlog-Z. 7
j= =2 lor ™)
i=1

n’ is the number of services of a semantic class i in cluster
J, and n; is the number of services in a cluster j. The final
entropy value is given as:

G
Entropy = log G Z E;. ®)

j=1

G is the number of clusters.

Semantic clustering of service composition provides differ-
ent semantic categories of compositions when consumers
enter a target service. The semantic category means the
clustered service composition sequences have similar func-
tional descriptions. Here, we show an example with the API
method ““setMedia.” In the previous experiment, the three-
dimensional visualization of service embedding was demon-
strated, and some clusters already appeared, as shown
in Fig. 15. In Fig. 15, three clusters—cluster 1, cluster 2,
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TABLE 3. Sequences in Cluster 1.

TABLE 5. Sequences in Cluster 3.

No. | Invocation sequences in cluster 1 | Functional description

setInReplyToStatusId setLocation
@ setMedia setPossiblySensitive
getStatus contains updateStatus

Twitter client
for Android

setOAuthConsumer
2 setOAuthAccessToken
setMedia updateStatus

Twitter account
logs in and updates

. . Functional
Invocation sequences in cluster 3 L.
description
setMedia getStatus Update status
. . On Start
setMedia setLocation
command

setMedia setInReplyToStatusld Twitter mention

tweets updateStatus channel update

setInReplyToStatusld setLocation
@ setMedia setPossiblySensitive
updateStatus getUserMentionEntities

Twitter
client for Android

setMedia UpdateStatus
inReplyToStatusld updateStatus
setMedia

Update status

Update status

OO O ® =Q*?

getld printStackTrace updateStatus
4 getErrorMessage printStackTrace Media diagnosis setMedia updateStatus Update status
setMedia in background setMedia updateStatus Update
setInReplyToStatusld setLocation Twitter getText getld getld status
@ setMedia getStatus client for Android ” setMedia updateStatus Send task
contains updateStatus getStatus getPlaceld to twitter
. . . Media di i
6 printStackTrace toString setMedia .e 13 Clagnosis
in background
setLocation setInReplyToStatusId Twitter g:: 300 m400 =500 g:z =300 =400 = 500
@ setMedia setPossiblySensitive . . 0.7 0.7
. client for Android 06 06
printStackTrace updateStatus ot oo
8 getText getScreenName setMedia Handle input 504 504
tM tInReplyToStatusId o3 o3
9 getMessage setln eP yToStatus Follow users 02 02
setMedia 0.1 01
o )

TABLE 4. Sequences in Cluster 2.

Functional

Invocation sequences in cluster 2 L.
description

No.
getLocalizedMessage

Send tweets

setMedia getText via Twitter

. Post a tweet
getMessage setMedia .
on Twitter

getErrorMessage
setMedia updateStatus

Media diagnosis
in background
inReplyToStatusId setMedia Post

12
®
getMessage setMedia

updateStatus getText getld getld tweets
Tweet with
getMediaEntities image
15 printStackTrace Media
setMedia printStackTrace diagnosis
16 setInReplyToStatusId Set on click
setMedia listener

and cluster 3—are used to make an explanation. First,
we determine the sequences that contain “‘setMedia,” as
listed in Tables 3 to 5. From Table 3, sequences 1, 3, 5, and
7 have the same functional description: “Twitter client for
Android.” In Table 4, sequences 10, 11, 13, and 14 have
the similar functional description: “Send/Post a Tweet.” In
Table 5, all sequences except for 18 and 24 have the same
functional description: “‘update status.” In each cluster, these
sequences with similar functional descriptions are regarded as
the same semantic category. Based on the presented analysis,
the same semantic category is mostly distributed in the same
cluster. In general, service embedding can effectively capture
the semantic information from the invocation sequences. The
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FIGURE 16. Purity of the models.
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FIGURE 17. Entropy of the models.

presented example is just the simple visualization process.
Then, we apply the K-means clustering algorithm to per-
form semantic clustering and inspect the clustering qual-
ity with previous evaluation metrics. If we inspect all the
clusters with the presented metrics, the workload is very
heavy because it needs to annotate the functional description
of all API sequences. Thus, about 100 sequences that all
contain three Twitter methods—‘“setMedia,” ““getPage,” and
“isVerified”—have been chosen as evaluation samples.

The results are shown in Fig. 16-18. Fig. 16 is the purity of
two models with different numbers of clusters. The results
show that the value of purity is from 50% to 77%, and the
purity values are very similar when the number of clusters
changes from 300 to 500. However, better performance is
always obtained by K = 400 for these two models. Fig. 17 is
the entropy of two models with different numbers of clusters,
and the low value corresponds to better clustering quality.
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FIGURE 18. Comparison of clustering quality (K = 400).

The results show that the best performance is also obtained
by K = 400 in these two models. Therefore, we compare
the performances of the two models at K = 400. As shown
in Fig. 18, the purities of the two models are very similar,
but the entropy of the base model is slightly better than that
of the lightweight model. Generally, the clustering quality of
the two models is approximately the same in the experiment,
and this is consistent with the previous experiment.

C. DISCUSSION

In this section, we discuss our approach from two aspects:
clustering category and specific performance when using
different neural LMs. First, regarding the different clustering
categories, as mentioned previously, traditional approaches
usually involve service signature in service representation,
such as names of operations and IOPEs, and cluster similar
service domains together. As shown in Fig. 19, similar service
domains are clustered by generating the ontologies of service
names [5] such as medical, quantity, and academia. Differing
from traditional approaches, our approach performs service
clustering based on service invocation sequences. As shown
in Fig. 20, the invocation sequences with similar functional
descriptions were clustered together. For example, sequences
1954, 1129, 290, 722, and 1698 were clustered together with
the same functional description “Twitter client for Android.”
Second, through changing different neural LMs, we devel-
oped three service embedding models: a RNN-based
model, a base BERT-based model, and a lightweight
BERT-based model. The RNN-based model is a com-
mon RNN encoder-decoder model [46] and the target sen-
tence only shifts the right position of the input sequence.
In addition, the output vector of the encoder is the represen-
tation vector of the corresponding input token. Referring to
existing studies [5], we use precision, recall, and F-measure to
evaluate our examples and compare the performance of these
three models.

Precision(i. j) NM;; ©)
T )= —
ecision(i, j NM,
Recall(i,j) = ~4 (10)
ecall(i, j) = NI,
. 2 x precision(i, j) x recall(i, j)
F(,)) = — (11)

precision(i, j) 4 recall(i, j)

NM;; is the number of class 7 in cluster j, NM; is the number
of cluster j, and NM, is the total number of class i. In our case,
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TABLE 6. Comparison of different neural LMs.

Precision |Recall |[F-Measure

Model Target
(%) (%) (%)
setMedia 60 34 41
RNN-based
. . getPage 33 20 22
service embedding |- -
isVerified 22 13 16

setMedia| 74.1 61.1 66.9
getPage 63.3 333 43.6
isVerified| 76.6 63.4 68
Light weight |setMedia| 74.1 61.1 66.9
BERT-based getPage | 63.3 333 43.6
service embedding|isVerified| 72.2 63.4 66

Base BERT-based
service embedding

for each target, the three largest clusters are considered, and
the average value is the final value.

The results are shown in Table 6. The two BERT-based mod-
els show far better performance than the RNN-based model.
The lightweight BERT-based model has a similar result as the
base BERT-based model. For the target ““isVerified”, the base
BERT-based model outperforms the lightweight BERT-based
model. This is consistent with previous experiments. For the
two BERT-based models, the recall of the “getPage” is only
33.3%. Based on our analysis, this effect is because of two
reasons: First, the computation process of recall in this paper
is different from the existing literature. Instead of computing
one cluster, we compute three clusters and use their average
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value. Consequently, the final value is low when one of
the three clusters gains low recall. Second, the frequency
of “getPage” is low. When the number of some classes is
comparatively small, there is a large probability one of the
three clusters obtains low recall.

VIIl. CONCLUSION

In this paper, to perform semantic service clustering,
we proposed a novel deep learning-based approach called
lightweight BERT-based service embedding. Moreover,
another novel aspect of our proposal is the much lighter and
faster model for service embedding compared with the base
BERT-based model. The experiment results show that our
approach can effectively perform semantic clustering of ser-
vice composition based on the invocation relationship. Fur-
thermore, the lightweight BERT-based model could obtain
a high clustering quality as good as the base BERT-based
model but with fewer parameters, smaller time complex-
ity, and faster training speed. Consequently, the invocation
relationship between services is vital information in service
clustering. At this stage, one limitation of our approach is the
lack of high clustering precision when some services have
low frequency in the dataset. In future work, we will try to
improve the performance by improving the architecture of
the neural network model, and by combining some traditional
approaches.
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