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ABSTRACT With the development of artificial intelligence technologies, spine-surgery robots have grad-
ually been applied in clinical practice, and they have exhibited favorable development prospects. Force
perception technology can be used to obtain the milling force, quantify the tactile sensation of a surgeon,
and provide feedback or suggestions to the surgeon and robot for safe milling. In this study, a robotic system
is proposed to measure the vertebral lamina milling force by using an ultrasonic bone scalpel to realize a
safe milling strategy. The developed bone recognition model based on the backpropagation neural network is
suitable for robot-assisted vertebral lamina milling using the milling delamination and recognition algorithm
analysis. The model uses the characteristic milling force, milling speed, milling depth, and ultrasonic scalpel
power as inputs to determine whether milling has reached the inner cortical bone to recognize and judge bone
layers. The verification experiment on live animals showed that this model could accurately determine a safe
milling endpoint. In general, this recognition model can significantly improve the safety and reliability of
robot-assisted laminectomy and has significant translational prospects.

INDEX TERMS Bone recognition, force perception, neural network, robot, ultrasonic scalpel, vertebral
lamina.

I. INTRODUCTION
In recent years, there has been an increase in the incidence
of spinal diseases represented by lumbar spinal stenosis
and lumbar disc herniation. At present, surgery is the most
effective treatment to remove spinal lesions and relieve the
related symptoms that seriously affect a patient’s quality
of life [1]–[3]. Generally, spinal decompression surgery is
performed by partially or completely removing the vertebral
lamina to relieve compression on the spinal cord caused
by spinal stenosis, combined with a pedicle screw fixation
system to maintain spine stability. However, the surgeonmust
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perform complex and delicate surgeries in a small surgical
field. In addition, the surgery can be significantly difficult and
risky, with severe complications and extremely high depen-
dency on the surgeon. For improving surgery safety, artificial
intelligence technologies, such as spine-surgery robots with
high accuracies and degrees of freedom, have shown favor-
able development prospects and gradually been applied in
clinical practice [4]–[6]. Studies have shown that the system
error of the Mazor Robotics Renaissance guidance system is
less than 1 mm, and the operation accuracy rate can reach
98.3% [7]. Because there are important spinal cords, nerve
roots, and blood vessels around the vertebral lamina, serious
injury and even paralysis can easily occur if the milling scope
exceeds the edge of the vertebral lamina during operation [8].
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Therefore, it is essential to obtain more information on the
operation status during robot-assisted surgery and recognize
the tissue in contact with the robotic arm end.

In traditional manual surgery, surgeons mainly use their
tactile sensations to judge the nature of the milled tissue. The
force feedback from the surgical instrument combined with
the surgeon’s experience is used to determine the type of the
contacted bone layer. Therefore, some surgical-robot studies
have simulated this judgment process using force perception
technology to determine the milling force, quantify the sur-
geon’s sensation, and provide feedback or suggestions to the
surgeon for safe roboticmilling [9], [10]. The tactile sensation
of the surgeons corresponds to the force control of the surgical
robot. In the field of robotics, researchers have developed
various high-performance force controllers [11]. One of the
most representative controllers is the ‘‘impedance control’’
proposed by Hogan [12], and it establishes the dynamic
relationship between the position and force of the manipula-
tor end-effector. ‘‘Admittance control’’ and various ‘‘hybrid
controllers’’ have been proposed and widely used in robotics
research [13]. Although the application of high-performance
force controllers in robot-assisted spinal surgery will be the
future, it is necessary to design specific force controllers for
different bone tissues because of the complex bone structure
of the vertebral lamina. Therefore, the accurate use of force
perception for bone recognition is the premise of force con-
troller research [14].

Based on the milling force perception, Marco et al. con-
structed a milling force model for an electric drill using
finite element analysis and concluded that the milling force
is positively correlated with bone density for bone tissue
recognition [15]. Hu et al. designed a real-time force sensor
algorithm for measurements during operation and initially
judged the bone layer based on themilling force [16]. In some
studies, the feasibility and effectiveness of bone recognition
models have been verified based on force perception using
artificial intelligence algorithms. Fan et al. used the milling
force in the horizontal direction as a controlled constant
with fuzzy force control logic and milling force in the ver-
tical direction to distinguish the bone layer structure [17].
Kasahara et al. developed a system that determines both the
motion and cutting states from demonstrations using support
vector machines (SVMs) based on the motor current, rota-
tional speed of the cutting tool, and output of an acceleration
sensor [18]. Kais et al. developed artificial neural network
models of bone milling force based on an experimental study
using cancellous bone and validated the models for the spec-
ified bone type, milling parameter range, and milling tool
type [19]. Some studies have also established milling state
recognition and control methods by collecting force data in
real time and calculating the energy attenuation after milling
different bones, to realize the parking control of the milling
endpoint [20]. In other studies, the vibration amplitude at
the end of the drill, frequency and loudness of the milling
sound, temperature of the milling parts, and current change
of the drill were obtained and monitored to indirectly reflect

the mechanical information during bone milling and realize
bone tissue recognition [20]–[23]. However, these studies
did not consider the different operative methods, speed, and
parameter settings of the power equipment, which eventually
affect the perception of the milling force. In addition, these
models were not experimentally verified by using them in a
real surgical environment or on animals.

The aforementioned studies confirmed that the milling
force can reflect the mechanical properties of the local bone
layer in real time and can be used as an important basis
for bone recognition. However, at present, electric drills are
typically used as milling tools in robot-assisted laminectomy,
and in most of the related force-perception studies, the end
force data were collected for modeling. Although electric
drills can quickly mill bone tissue, they have shortcomings
such as large mechanical vibrations, high heat production,
unstable control, and proneness to damaging surrounding
soft tissue. This not only affects the stability of the force
signal and increases the difficulty in bone recognition but
also increases the surgical risk. In recent years, novel ultra-
sonic bone scalpels have gradually been adopted in ortho-
pedic surgery. The principle of the ultrasonic bone scalpel,
which was first developed by Tomaso in 1988, is the use
of high-intensity focused ultrasound to convert electrical
energy into mechanical energy and cut tissue by utilizing
high-frequency ultrasonic vibrations [24]. The working fre-
quency of ultrasonic bone scalpels is generally 25–30 kHz,
which can cause direct mechanical damage to bone tissue
with a high acoustic impedance, and the energy range is only
a few hundredmillimeters. This cannot cut soft tissues such as
muscles, blood vessels, or mucous membranes and, therefore,
has the advantages of accurate bone cutting and prevention of
soft tissue scraping; combined with a pressure sensor, this can
achieve a strong hard-tissue-recognition function [25]–[27].
The swing amplitude of the ultrasonic blade is 60–200 µm in
the horizontal direction and 20–60 µm in the vertical direc-
tion with small and regular vibrations, and the contact area
with the bone tissue is uniform. Compared with electric drills,
the milling force signal from ultrasonic scalpels is smoother,
bone surface after milling is smoother and flatter, and fewer
interference factors exist [28], [29]. However, research on
milling force perception based on ultrasonic power has not
been reported yet.

The purpose of this study is to explore the force per-
ception and bone recognition of ultrasonic bone scalpels
for robot-assisted vertebral lamina milling based on a back-
propagation (BP) neural network to achieve a safe milling
strategy. First, the force signals in vertebral lamina milling
are collected by using a six-axis force sensor and processed
by an applicable wavelet transform denoising method. Then,
a BP neural network is established, which takes the force
information and milling influencing factors as the input and
outputs bone information to realize bone layer recognition
and safe milling. Finally, a live animal experiment is per-
formed to verify the feasibility and accuracy of the proposed
model.
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The rest of the article is structured as follows. Section II
describes the vertebral lamina milling operation with the
ultrasonic scalpel. Section III introduces the strategy and
hardware platform composition of robot-assisted vertebral
lamina milling. Section IV presents a recognition algo-
rithm for the milling system based on force perception.
Section V describes the verification experiments on live ani-
mals. Finally, the conclusions are given in Section VI.

II. VERTEBRAL LAMINA MILLING BY ULTRASONIC
SCALPEL
The bone structure of the vertebral lamina is composed of
the outer and inner cortical bone and inner cancellous bone
in a sandwich-like structure. The cortical bone, which has
a high density, high strength, and smooth surface, acts as
a supporting structure and protects the spinal cord. The
spongy, low-density cancellous bone serves to improve the
structural filling and impact resistance [30], [31]. The den-
sity, strength, and mechanical properties of each bone layers
are different. During the vertebral lamina milling operation,
the end-effector of the manipulator mills the outer cortical
bone, cortical–cancellous bone junction, cancellous bone,
cancellous–cortical bone junction, and inner cortical bone of
the vertebral lamina in a layer-by-layer fashion [32]. A study
by Van Ham et al. found that the average milling force gener-
ated using a drill for bonemilling was exponentially related to
the bone density measured by quantitative computed tomog-
raphy [33]. They also showed that under normal conditions,
the force generated by the device when milling cortical bone
is greater than that during milling bone junctions or cancel-
lous bone. Therefore, we used the strong correlation between
the bone structure of the vertebral lamina and milling force to
analyze the changes in milling force throughout the operation
by collecting real-time force data as the robot milled the
vertebral lamina, thereby realizing real-time recognition of
the milled bone layer.

In terms of milling tool selection, the ultrasonic bone
scalpel has advantages such as precise milling, stability, and
safety. In addition, the improved force signal characteristics
and enhanced bone tissue recognition make it highly suitable
for force perception research in the field of robotics. There-
fore, based on clinical needs and engineering requirements,
an ultrasonic bone scalpel (Beijing Sonicmed Technology)
was selected as the milling tool in the proposed robot-assisted
vertebral lamina milling system [34]. The ultrasonic scalpel
was equipped with a special bone milling handle and milling
drill, which meets the requirements of the proposed milling
strategy.

In this study, a surgeon and engineer decided the scope
of vertebral lamina milling by jointly operating the robot.
The start and end points of the milling path were typically
located medial to the articular processes of the spine. The
milling length was approximately 15–20 mm, depth was
approximately 8–10 mm, and width was 3.5 mm. The robot
was equipped with an ultrasonic scalpel bone milling han-
dle, which automatically performed layer-by-layer milling

within the specified ranges. The single-layer milling opera-
tion was divided into three processes: sinking, feeding, and
back milling. In the sinking process, the ultrasonic scalpel
mills down the specified distance along the normal direction
of the vertebral lamina tangent plane at the starting point
to reach the single-layer milling depth. During the feeding
process, the drill mills at a constant speed in the horizontal
direction from the starting to the ending position to complete
the single-layer milling. In the back-milling process, the drill
mills back from the end to the start positions at a constant
speed in the horizontal direction to clean up bone and residue
that were not milled at the edge of the milling track during
the feeding process to ensure that the milling force signal in
the next layer is not affected by the previous layer (Fig. 1).

FIGURE 1. Operation of single-layer vertebral lamina milling.

III. HARDWARE PLATFORM FOR VERTEBRAL LAMINA
MILLING FORCE
A. VERTEBRAL LAMINA MILLING STRATEGY
The robot milling system in this study adopted the following
safe milling strategy (Fig. 2). Throughout the milling process,
the implemented robot controller acted as the position servo
control system inside the robot, with a control frequency
of 100 Hz. The robotic system used a force sensor to collect
the force signal at the robotic arm end in real time and filter
the force signal of each layer. The calculated average value
was then input into the BP neural network to recognize each
bone layer. The thickness of the inner cortical bone of the ver-
tebral lamina is approximately 1–2 mm. Therefore, the sys-
tem automatically stops when the milling depth reaches a
thickness of 1 mm in the inner cortical bone to ensure that the
vertebral lamina could be removed without being completely
milled. Thus, safe milling is achieved by ensuring that the
spinal cord and nerve roots are not damaged.

B. SYSTEM HARDWARE PLATFORM
The robotic system for vertebral lamina milling was built to
achieve robot-assisted laminectomy andmilling force percep-
tion. This system hardware platform includes a six-degree-of-
freedom robotic arm with a trolley, a six-axis force sensor
with a capture card, and an ultrasonic bone scalpel with a
clamping end (Fig. 3). The theoretical analysis of the control
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FIGURE 2. Safe milling strategy of the robot-assisted vertebral lamina
milling system.

FIGURE 3. Operating platform of the robotic milling system: a) control
computer; b) trolley; c) six-degree-of-freedom robotic arm; d) six-axis
force sensor; e) ultrasonic scalpel milling tool handle and scalpel drill bit;
f) ultrasonic scalpel host.

performance, such as position and force tracking accuracy,
can be justified by using the Lyapunov stability principle [35],
LaSalle invariance principle [36] and Barbalat’s lemma [37],
which are not described in detail in this paper.

The robotic arm realized the bearing and positioning of
the actuator to ensure sufficient working space during milling
to stably and reliably accomplish the instructed movements.
In this study, we used the collaborative Danish Universal
Robots 5 (UR5). The UR5 robotic arm parameters (Table 1)
meet the needs of the vertebral lamina milling tasks, with pro-
tection functions such as collision detection and emergency
stopping to maximize patient safety [38].

The main task in this study was the collection and anal-
ysis of milling force signals. Therefore, the selection of the
force sensor was particularly important. An M8128 force
sensor (US SRI) and supporting digital acquisition card were
selected for the system. This model uses a six-axis force
sensor to simultaneously measure three forces and three

TABLE 1. UR5 parameters.

moments in the inertial coordinate system and collect milling
force signals from various angles. The force sensor consists
of an inner ring, outer ring, force measuring beam, and strain
gauge. When there is a relative force between the inner and
outer rings, the strain gauge detects the generated external
force using the force measuring beam, converts it into an
electrical signal, and outputs it to the acquisition card. The
force measurement accuracy was within 2% FS. The digital
acquisition card used a 24-bit sigma-delta analog-to-digital
converter with a sampling frequency of up to 2 kHz to
discretize the analog output of the force sensor, which was
then sent to the host computer for processing through the
RS232 protocol.

In addition, to facilitate the surgical disinfection process,
the system employed the designed robotic arm end capable
of fast clamping. The arm end could be rigidly connected to
the six-axis force sensor and ultrasonic bone scalpel and was
easy to disassemble, for convenient rapid end replacement
during the operation.With different ends, a variety of surgical
operations can be performed, and the ultrasonic scalpel can be
clamped to the robotic arm end within 5 s after disinfection.

IV. MILLING FORCE PERCEPTION AND BONE
RECOGNITION ALGORITHM
A. ANALYSIS OF VERTEBRAL LAMINA MILLING FORCE
The force signal from the ultrasonic bone scalpel while
milling the vertebral lamina was transmitted to the host
computer through the six-axis force sensor and acquisition
card. Because the sampling frequency of the acquisition card
was 2 kHz, and the force signal data were in the range
of only 0–100 Hz, the original force signal transmitted by
the acquisition card might contain high-frequency noise that
could severely affect the accuracy of the subsequently applied
neural network. Therefore, filtration of the raw force sig-
nal was essential. The force signal in the time domain was
sometimes not intuitive. To perform noise reduction with
frequency division, the frequency domain characteristics of
the signal must first be understood. The Fourier transform is
the most common process used to transform a signal from the
time domain into the frequency domain [39]. For example,
as shown in (1), Fourier transform can be used to analyze
the sine wave component of the signal, which is convenient
for judging the energy characteristics of the signal frequency
band. Therefore, we first performed a fast Fourier transform
on the raw force signal to obtain the corresponding frequency
spectrum (Fig. 4).
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FIGURE 4. Spectrogram of ultrasonic scalpel milling force signal, where
blue and orange lines represent the waveforms before and after filtering,
respectively.

The blue waveform in the figure is the spectrogram of the
original signal, which contains a significant amount of noise
in the range of 100–2000 Hz. This noise should be selectively
filtered out without affecting the force signal in the 0–100 Hz
range.

F(ω) = F[f (t)] =

∞∫
−∞

f (t)e−iωtdt (1)

Although a Fourier transform can extract the frequency
domain information of a signal, the local characteristic infor-
mation cannot correspond to the time domain. Wavelet trans-
form can effectively extract useless noise frequency bands for
processing, has little impact on the time domain characteris-
tics of the effective signal, and protects the signal peaks and
transient signals. Therefore, we used noise reduction based on
wavelet transform threshold processing to reduce the noise of
the original force signal [40].

For discrete signals, DWT discrete wavelet transform pro-
cessing, which is given by (2), is required.

ψj,k (t) = 2−j/2ψ(2−jt − k) j, k ∈ Z , (2)

where ψ(t) is the wavelet function, ψj,k (t) is the discrete
wavelet function group, and j and k are the localization
function parameters of the wavelet transform in the frequency
and time domains, respectively.

Similar to the sine basis function of the Fourier transform,
the wavelet transform also requires the definition of a basis
function to decompose the signal. The output of the decom-
posed signal has two parts: a low-frequency component called
the approximate component, which must be retained, and
a high-frequency component called the detail component,
which is filtered out. According to the Nyquist sampling
theorem, the sampling frequency should be at least two times
the signal frequency. Thus, multilayer wavelet decomposition
is required for the original signal to select the effective fre-
quency band by filtering. Then, the threshold is selected, and
a soft threshold function is used to filter the high-frequency
components. A soft threshold was chosen because denoising
a hard threshold function will cause local jitter in the signal,
whereas denoising a soft threshold function will make the

signal smoother [41]. Finally, the wavelet after threshold
processing is reconstructed to obtain the pure force signal
after filtering.

Based on the aforementioned theory, we established an
applicable wavelet transform denoising method according to
the characteristics of the force signal from ultrasonic scalpel
milling of the vertebral lamina. The basis function of the
system wavelet transform is a Daubechies series of wavelets,
referred to as the dbN wavelet system, because of its good
regularity—the signal reconstruction process is smooth [42].
These wavelet functions usually have no analytical expres-
sions and are generally represented by filter banks. In this
study, db4 was selected as the wavelet function.

The selection of the threshold after wavelet decomposition
is based on (3).

Xn = fn + en, (3)

where Xn is the mixed signal with a length of N , and fn
and en are the data signal and white Gaussian noise signal
N (0,1), respectively, required for using the mixed signal to
evaluate the threshold of eliminable noise in the wavelet
domain. There are many common threshold methods, such
as fixed threshold, extreme threshold, unbiased likelihood,
and heuristic estimation methods. In this study, the Stein
unbiased risk threshold, which are described by (4)–(6), was
selected [36]. The absolute value of each element in signal Xn
was removed and sorted in the decreasing order, and then the
square of each element was acquired to obtain a new element
sequence.

s(k) = (sort(|X |))2. (4)

If the square root of the k-th element with threshold s(k) is
considered, the risk generated by the threshold is as follows.

Risk(k) = [N − 2k +
k∑
i=1

s(i)+ (N − k)s(N − k)]/N . (5)

According to the obtained risk curve Risk(k), the value
corresponding to the minimum risk point is recorded as kmin.
Then, the rigrsure threshold is defined as

λk =
√
s(kmin). (6)

After determining the threshold of white Gaussian noise
in the wavelet domain, it is necessary to use a soft thresh-
old function to filter the detailed components after wavelet
decomposition. Once the parameters of each part are deter-
mined according to the above steps, the frequency domain
characteristics of the signal are continuously adjusted accord-
ing to the number of wavelet decomposition layers. The noise
in the frequency band outside the 0–100 Hz range was found
to be effectively filtered out when the number of wavelet
decomposition layers was 5.

Taking the example of a set of force signals in the
x-direction (vertical), y-direction (horizontal), and z-direction
(vertical feed) from the milling process, we can obtain the
time domain diagrams of the signal before and after wavelet
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FIGURE 5. Original force signal in each direction and the signal after
wavelet transform filtering: (a) x-direction (vertical), (b) y-direction
(horizontal), and (c) z-direction (vertical feed), where the green and blue
lines represent the waveforms before and after filtering, respectively.

transform filtering (Fig. 5), where the green and blue wave-
forms are the original and filtered force data, respectively.
A comparison of these waveforms shows that the signal
characteristics are completely retained after filtering, whereas
the noise from the raw signal is filtered out.

Based on a combination of the bone structure, material
properties, and imaging data of vertebral lamina from several
tests [28]–[30], the most obvious correspondence was found
to exist between the mechanical characteristics and lamina
bone layer in the x-direction. Therefore, according to the
milling strategy, different bone tissues could be recognized
by comparing the mean values of force data of each layer in
the x-direction during milling. The characterized results were
as follows.

1) At 0–11 s, the milling force is relatively large (3–6 N).
According to the structure and milling process of the

vertebral lamina, the milling area during this period can
be inferred to be the outer cortical bone.

2) At 11–15 and 29.5–33 s, the milling force is interme-
diate (approximately 3 N), indicating that the drill bit
is at the junction between the outer cortical bone and
cancellous bone. Therefore, the signal corresponds to a
transitional force.

3) At 15–29.5 s, the milling force is relatively small
(0–3 N), indicating that the area milled during this time
is the cancellous bone.

4) At 33–40 s, the milling force is again large (3–6 N),
indicating that the area milled at this time is the inner
cortical bone.

According to the established milling strategy, the depth of
milling for each layer is 0.5 mm, and therefore milling is
stopped after the inner cortical bone is milled by a maximum
of two layers. To support this judgment, we carried out a
milling experiment on an isolated spinal bone. The gross
findings and CT images confirmed that this strategy could
leave a thin layer in the inner cortical bone of the vertebral
lamina, which meets the requirements of vertebral lamina
milling (Fig. 6).

The time-domain diagram of the force in the y-direction of
the ultrasonic bone scalpel during vertebral lamina milling
shows that the force in this direction is affected by the
milling depth. The peak overall force increases layer by
layer, whereas there is no clear difference among different
bones. In contrast, the time domain diagram of force in the
z-direction has no obvious characteristics and cannot be used
for bone recognition because of small contributions from
lateral vibrations and milling with an ultrasonic bone scalpel.

We enlarged the single-layer milling force signal (red cir-
cle) in the x-direction in Fig. 7 to distinguish the whole
sinking–feeding–back milling process:

1) The wave crest at 0–1.1 s represents the milling force
during sinking; 2) the highest wave crest at 1.1–2.45 s
represents the feeding milling force; 3) the lowest valley
at 2.45–3.6 s represents the force of the back milling pro-
cess. To differentiate between the milling forces of different
bones more accurately, in this study, the milling force in
the x-direction during the feeding process was selected as
the characteristic force for neural network input. From the
above analyses, judging the bone layer in the vertebral lamina
milling process based on the force characteristics is feasible
and only requires verification of the universality of this law
and transformation into a mathematical model for use in
actual milling operations.

B. BONE RECOGNITION ALGORITHM BASED ON BP
NEURAL NETWORK
Because the changes in milling force corresponding to differ-
ent bone tissues belong to a regular model, they are difficult to
explicitly define with general mathematical formulas. A large
amount of experimental data must be used for training and
verification to obtain a suitable model. Among the various
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FIGURE 6. Experimental results of isolated bone vertebral lamina
milling: (a) the photo of vertebral lamina after milling; (b) the CT image of
the vertebral body.

FIGURE 7. Original force signal and wavelet-filtered signal from the
single-layer milling process, where green and blue lines represent the
waveforms before and after filtering, respectively.

algorithmic models, a neural network is the most suitable
model for this study.

In the process of vertebral laminamillingwith an ultrasonic
bone scalpel, a large amount of milling force data can be
collected from the single-layer milling operation. In addition,
these force signals have many influencing factors, such as
milling speed, milling depth, and ultrasonic scalpel power.
If all the force data and influencing factors are input into
the neural network for training, it will greatly increase the
calculation cost and bone recognition difficulty. Therefore,
the proposed system extracts the characteristic force of each
milling layer as the input element for modeling the neural
network. This can simplify not only the training model but
also achieve the expected bone recognition effect.

The modeling steps are as follows.
STEP 1 (Preprocessing the Force Signal):After the system

collects all the force signals in the vertebral lamina milling
process, it performs a wavelet transformation on the signals to
reduce the noise, extracts the force signals in the x-direction
during the single-layer feeding process, and quickly sorts
the data. Then, 20% of the data at beginning and end are
filtered out to remove force signal fluctuations caused by
interference outside the system during milling, such as the
drill bit touching the spinous process, sensor acquiring max-
imum or minimum values, and unintended contact by the
operator. Finally, the average of the remaining force data
is calculated as the characteristic force signal for the layer
(Fig. 8).

FIGURE 8. Processing of milling force data.

STEP 2 (Normalization of Input Data): The input data
for the bone recognition model in this study include the
characteristic single-layer force, milling speed, milling depth,
and ultrasonic scalpel power. Because the four-dimensional
input data are independent, there may be differences in orders
of magnitude between them. Therefore, the data in each
dimension need to be normalized using two main methods:
the maximum and minimum method and the mean-variance
method. In this study, we used the former according to (7).

xk =
xk − xmin

xmax − xk
, k = 0, 1, . . . , n, (7)

where xmin and xmax are the minimum and maximum values
of the data sequence, respectively.
STEP 3 (Establish the BP Neural Network Model): The

neural network was divided into three layers: input, hidden,
and output. During the experiment, the boundary between
the cortical bone and cancellous bone of the vertebral lamina
of living animals was often unclear. This occurred because
the surface of the outer cortical bone is not flat, the inner
side near the spinous process is higher than the outer side,
the articular process side is higher near the upper and lower
vertebral bodies than in the middle, and the outer cortical
bone surface of different vertebral bodies differ greatly with
no clear pattern. The purpose of this study was to realize real-
time, accurate, and safe vertebral lamina milling, with a focus
on determining the endpoint of the milling operation, i.e.,
when the milling layer is the inner cortical bone. Therefore,
we set the neural network model output layer with one output
element and the input layer with four output elements. The
hidden layer was selected according to (8).

h =
√
m+ n+ a, (8)

where h is the number of hidden layers, m is the num-
ber of input layers, n is the number of output layers, and
a is any value between 1 and 10. For minimizing the
model size, the hidden layer was set to have three neurons.
Finally, the algorithm model of the neural network shown
in Fig. 9 was built.

In this model, X1−X4 are the input elements of the neural
network, corresponding to the characteristic milling force,
milling speed, milling depth, and ultrasonic scalpel power,
respectively; H1 − H3 are the intermediate values of the
hidden layer; and Y is the output. For model recognition,
to judge whether the current milling layer is the inner cortical
bone of the vertebral lamina, the output value is set to 0 or 1.
Vv1h− v4h are the weights from the input layer to the hidden
layer, and w11−w31 are the weights from the hidden layer to
the output layer.
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FIGURE 9. BP neural network structure for modeling the milling process.

The forward process of the BP neural network is given by

Hj = σ (
m∑
i=1

vijxi − aj), (9)

Y =
h∑
j=1

[Hjωj − b], (10)

where aj is the hidden layer threshold, b is the output layer
threshold, and σ is the neuron activation function. The sig-
moid function used in this study is given by

σ (x) =
1

1+ e−x
. (11)

After the forward process, the error generated by a sin-
gle process is calculated. Here, the mean square error was
selected as the loss function to calculate the error.

e = (y− ŷ)2 (12)

After determining the error, the error value is fed back
to the neural network for weight correction during the BP
process:
(1) Weight update

vij = vij + ηHj(1− Hj)xiωje

ωj = ωj + ηHje (13)

(2) Threshold update

aj = aj + ηHj(1− Hj)ωje b = b+ e, (14)

where η is the learning rate of the neural network. With
repeated iterative calculations of the forward and BP
processes, v and w are constantly updated until the
optimal conditions are met.

In the neural network propagation process, it is necessary
to introduce an activation function to adapt the model to
nonlinear mapping. When the number of neural network
layers is small, a sigmoidal activation function is the optimal
choice because it has favorable derivative properties and can
map an infinite signal to (0, 1), which is suitable for solving
the classification problem in this research [43]. In addition,
the convergence error of the neural network was set to 10−4,
and the learning rate was set to 0.001.

FIGURE 10. Robot-assisted vertebral lamina milling experiment on live
pigs: (a) the operating room of animal experiment; (b) the operation
process of vertebral lamina milling.

STEP 4 (Set the Threshold Judgment Function of Output
Data): When the data in the test set are introduced into the
neural network, the output of the output layer is not necessar-
ily an integer of 0 or 1. Therefore, a piecewise function was
implemented to set the output intervals of [0, 0.5] and (0.5, 1]
to 0 and 1, respectively:

f (x) =

{
0, x ∈ [0, 0.5]
1, x ∈ (0.5, 1].

(15)

V. ANIMAL EXPERIMENT VERIFICATION
For verifying the feasibility and accuracy of the proposed
model, in this study, we conducted live animal vertebral lam-
ina milling, collected force data, and used the model to test
the untrained data. The accuracy rate of bone recognition was
used as the evaluation standard. Simultaneously, CT images
of the vertebral lamina after milling were acquired to evaluate
the milling effect. The same hardware platform as that in the
isolated bone experiment was used in the animal experiments.
The six-axis force sensor, ultrasonic scalpel holder, and ultra-
sonic scalpel handle were sequentially fixed to the end of the
UR robotic arm, and all components were rigidly connected.
During fixing, the feed and vertical directions of the robotic
arm were set consistent with the x- and y-directions of the
force sensor, respectively.

Since the anatomical structure and bone mechanical char-
acteristics of the pig spine are similar to those of the
human spine, we selected experimental pigs as the research
objects for robot-assisted vertebral lamina milling. This was
approved by the ethics committee of the Peking Union Med-
ical Hospital (no. XHDW-2019-027). In this study, a total
of six Yorkshire miniature pigs were used, three males and
three females, with weights of 35–50 kg and body lengths
of 1.2–1.5 m. All pigs were prevented from eating and drink-
ing the day before the operation. Anesthesia was induced
by intravenous injection of pentobarbital sodium, isoflurane
was administered through inhalation after tracheal intubation
to maintain anesthesia, and the vital signs were monitored
(Fig. 10).

After anesthesia, the pigs were placed in the prone position.
The limbs, chest, back, and buttocks were fixed with ban-
dages to ensure that the position of the spine remained stable
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TABLE 2. Ultrasonic scalpel vertebral lamina milling parameters.

and the spinous process was upright. After shaving, disinfec-
tion, and draping, the surgeon cut the skin along the median
incision on the waist and back. The incision was approxi-
mately 15–20 cm in length. The fascia, muscles, and other
soft tissues were stripped, bleeding was fully stopped, and
the spinal vertebral lamina, spinous process, articular process,
and other structures were exposed. The surgeon determined
the start and endpoints for vertebral laminamilling and placed
the robotic arm end at the starting point, ensuring that it was
not in contact with the bone surface. Then, the system was
started, and layer-by-layer milling was performed according
to the proposed strategy. The milling force signal was trans-
mitted to the PC system on the robotic arm trolley through
the acquisition card, data processing and model recognition
were performed by the system, and the milling process was
terminated by judging the output.

In an actual operation, the surgeon selects different ultra-
sonic scalpel powers and milling speed according to the
specific milling situation. Therefore, to ensure a universal
model that can be applied under various robotic surgery
conditions, we designed different combinations of milling
operation parameters to optimize the model. The most com-
mon power of Sonicmed ultrasonic bone scalpel used in spine
surgery is 80%, and 60% and 100% power are used in a few
cases [44], [45]. There is no standard speed for laminamilling
operation. A high milling speed may cause safety problems,
whereas a lowmilling speed will delay the laminectomy [46].
Based on our observation of the actual operation and consid-
ering the motion parameters of the UR5 robot, we determined
0.5 mm/s and 1 mm/s as the milling speeds (Table 2 ). A total
of six combinations that satisfy the requirements in both real
surgery and engineering experiments were designed. Three
sets of experiments were conducted for each combination,
yielding a total of 18 datasets. Two datasets were selected
for each combination as the training sets and input to the
neural network as training parameters. The remaining set
was used as the test set to verify the model accuracy. The
number in each training set was determined by the number of
milling layers, which was between 15 and 18. Because each
set of experiments was independent, and the test and training
sets were disjointed, the reliability of the final results was
guaranteed.

The milling force was normalized before using the training
set. The output of the test set before the red line in Fig. 11 was
0, i.e., the milling cutter had not reached the inner cortical

FIGURE 11. Force characteristics of the neural network input. The green
and blue lines represent two parallel experiments, and the red line
represents the theoretical junction between the cortical bone and
cancellous bone. The ordinate represents the normalized force signal, and
the abscissa represents the number of milling bone layers. Experimental
conditions: (a) milling speed: 1 mm/s, power of ultrasonic scalpel: 60%;
(b) milling speed: 1 mm/s, power of ultrasonic scalpel: 80%; (c) milling
speed: 1 mm/s, power of ultrasonic scalpel: 100%; (d) milling speed:
0.5 mm/s, power of ultrasonic scalpel: 60%; (e) milling speed: 0.5 mm/s,
power of ultrasonic scalpel: 80%; (f) milling speed: 0.5 mm/s, power of
ultrasonic scalpel: 100%.

bone; the output of the test set after the red line was 1; that
is, milling had reached the inner cortical bone. The output
was judged based on CT images taken after milling and
observation of the cross-section of the vertebral lamina to
ensure correct judgment.

From the output corresponding to the test datasets, the dis-
tribution of model recognition rates is 85%–100% (Table 3 ),
and the error at the junction between the inner cortical bone
and cancellous bone is not more than one layer (Fig. 12).
Considering the number of layers in the training set, this
error may arise from the difference in bone structure between
different vertebral laminas. As the milling depth increases,
the difference in the changes in force between layers grad-
ually decreases, which hampers the ability of the model to
judge the force characteristics at the junction between the
inner cortical bone and cancellous bone.
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FIGURE 12. Output of the neural network, where the red dashed and
blue solid lines represent the forecast value from the neural network and
reference value, respectively. The ordinate represents the output value of
the BP neural network model: 0 indicates that the last layer of cortical
bone has not been milled, and 1 indicates that the last layer of cortical
bone has been milled. The abscissa represents the milling or grinding
depth. Experimental conditions: (a) milling speed: 1 mm/s, power of
ultrasonic scalpel: 60%; (b) milling speed: 1 mm/s, power of ultrasonic
scalpel: 80%; (c) milling speed: 1 mm/s, power of ultrasonic scalpel:
100%; (d) milling speed: 0.5 mm/s, power of ultrasonic scalpel: 60%;
(e) milling speed: 0.5 mm/s, power of ultrasonic scalpel: 80%; (f) milling
speed:0.5 mm/s, power of ultrasonic scalpel: 100%.

TABLE 3. Bone recognition rate by neural network.

The force signal input of the system is an important indica-
tor of when to stop the milling process. During the milling of
each layer, approximately 1200 force signals were collected.
Each group contained approximately 14–18 milling layers,
and thus the amount of force input data in the training sets
was sufficient.

After the experiment, we compared the performance of
robot-assisted and manual milling of the vertebral lamina

FIGURE 13. Animal experiment results: (a) postoperative CT image of the
vertebral body, with robot-assisted milling on the left and manual milling
on the right; (b) photo of vertebral lamina milled with robotic assistance;
(c) photo of manually milled vertebral lamina.

through visual observation and CT imaging (Fig. 13). The
bone surface after ultrasonic scalpel milling with robotic
assistance was smooth and tidy. The CT image showed
that milling occurred in the inner cortical bone. However,
the milling depth was not too shallow or deep to cause spinal
cord injury. In contrast, the bone surface after manual milling
was rough, and the milling path was irregular. The CT image
showed that the milling was too deep, the dura mater had
been exposed, and there was a risk of spinal cord injury.
This comparison shows that the model established in this
study can accurately determine the milling ending point and
realize safe vertebral lamina milling operation. In addition,
the bone recognition rate and milling effect of the model are
satisfactory.

VI. CONCLUSION
Based on the BP neural network, we developed an algorithmic
model suitable for robot-assisted vertebral lamina milling to
realize the perception of milling force and recognition of
bone layers. This model uses the characteristic milling force,
milling speed, milling depth, and ultrasonic scalpel power as
input values and outputs whether milling has occurred in the
inner cortical bone. The endpoint is judged according to the
anatomical structure of the vertebral lamina to achieve safe
milling.

The novelty of this study is the application of the bone
recognition model and animal experimental verification.
First, we used ultrasonic power to establish a bone recog-
nition model based on milling force and optimized the model
using data obtained with different milling operation param-
eters. The achievement not only demonstrates the advanced
nature of this work but also meets the current needs of spinal
decompression surgery and provides robots with a judgment
method that is both versatile and practical. Second, live
animal experiments were used for data collection and model
verification; this is more in line with the actual situation of
decompression surgery. The verification results show that the
model has considerable potential for practical applications.
In summary, the proposed bone recognition model can sig-
nificantly improve the safety and reliability of robot-assisted
laminectomy and has significant research and translational
prospects.
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However, there are some limitations in our study. First,
although the wavelet transform threshold was used as the
optimal filtering and noise reduction method by comparing
with Kalman filter and moving average filter, better filtering
methods for milling force signals may be available. Second,
although the BP neural network used in this study yields a
satisfactory recognition rate, the SVMs and fuzzy control are
also classical pattern recognition methods that may be more
suitable for other milling strategies or different operating
environments. The impact of the different filters and pattern
recognition methods in improving robot-assisted laminec-
tomy will be investigated in future research.
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