
Received March 3, 2021, accepted March 13, 2021, date of publication March 29, 2021, date of current version April 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3068570

A Service Recommendation Algorithm Based on
Knowledge Graph and Collaborative Filtering
BO JIANG1, JUNCHEN YANG 1, YANBIN QIN1, TIAN WANG1,
MUCHOU WANG2, AND WEIFENG PAN 1
1School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
2Wenzhou University Library, Wenzhou University, Wenzhou 325000, China

Corresponding authors: Bo Jiang (nancybjiang@zjgsu.edu.cn), Junchen Yang (19020100041@pop.zjgsu.edu.cn), and Muchou Wang
(wzuwmc@163.com)

This work was supported in part by the Natural Science Foundation of Zhejiang Province under Grant LY21F020002, and in part by the
Key Research and Development Program Project of Zhejiang Province under Grant 2019C01004.

ABSTRACT With the rapid development of the Internet, the number of Web APIs is increasing. How
to recommend accurate and appropriate Web APIs to mashups has become a focus and difficulty in the
field of service computing. The existing methods are mainly based on collaborative filtering technology, but
these methods have problems such as the data sparsity and cold start, which leads to poor recommendation
effects. This paper proposes a service recommendation model based on knowledge graph and collaborative
filtering. In this model, the knowledge graph connects the APIs and mashups related information to mine the
potential relations betweenmashups andAPIs, hence reducing the impact of data sparsity. All the API entities
in the service knowledge graph are embedded into the low-dimensional space through the representation
learning algorithm, then the distances between the API vectors are calculated to recommend the related APIs.
In addition, in order to solve the cold-start problem of recommending APIs to target mashups that have no
APIs usage, the similarities of functional sets extracted from mashups are calculated to recommend APIs for
target mashups. At the same time, the model obtains the Mashup-API usage record, using the technology of
collaborative filtering to recommend appropriate APIs to target mashups. Finally, the similarities of the above
recommended APIs are normalized and sorted to form the final recommendation result. The experimental
results show that our proposed model significantly improves the accuracy of service recommendation.

INDEX TERMS Web API recommendation, knowledge graph, representation learning, collaborative
filtering.

I. INTRODUCTION
Web APIs are applications that do not depend on the specific
operating system. Developers can complete their require-
ments by using specific Web APIs [1]. With the rapid devel-
opment of the Internet, the number ofWebAPIs has increased
rapidly in recent years, which has brought great trouble to
developers [2]. In this case, mashup technology becomes
popular [3]. Mashups can combine Web APIs effectively
according to existing web resources [4]. In addition, mashups
integrate different functions together, which has the advan-
tages of fast development and strong scalability. For example,
the best shop guide is a shopping-themedmashup, which con-
sists of three Web APIs: shopping.com, comamazon product

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Marozzo .

advertising, and ebay. This mashup implements the function
of shopping through the combination of three APIs. It can
be seen that the emergence and development of mashups not
only solve the shortcomings of a single Web API function,
but also make codes related to APIs reusable, which greatly
reduces the workload of developers. Therefore, mashup tech-
nology has been applied in many fields, and has been com-
bined with cloud computing, Internet of things [5] and other
advanced technologies in recent years.

However, the number of Web APIs and mashups is too
large. For example, the number of Web APIs published on
ProgrammableWeb (PWeb for short) has exceeded 18000,
while that of mashups has exceeded 7700, and the number
is growing every year. How to find suitable Web APIs for
a mashup from so many Web APIs has become a difficult
problem in the Service Computing field. There are two ways

50880 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4280-8644
https://orcid.org/0000-0001-6355-1385
https://orcid.org/0000-0001-7887-1314

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

to find required APIs: recommendation and search. In most
cases, developers cannot clearly express the specific infor-
mation of the required API, so it is difficult to obtain the
required API through service search. On the contrary, the ser-
vice recommendation system can personally recommend
suitable APIs based on fuzzy requirements and historical
usage records, which makes service recommendation gradu-
ally become a research hotspot. There are many researches on
service recommendation. Among them, the most widely used
method is collaborative filtering [6], including mashup-based
collaborative filtering [7], service recommendation combin-
ing collaborative filtering and text content [8]. Based on col-
laborative filtering, matrix decomposition [9], [10] is usually
used to improve the quality of recommendation through his-
torical usage records between mashups and APIs. In addition,
researchers have also tried to combine NLP [11], knowledge
graph [12], neural network [13] and other technologies with
collaborative filtering.

Since only a few of the APIs have been used, the ser-
vice recommendation based on collaborative filtering has
the problem of sparsity. In order to alleviate sparsity, [14]
proposed a service recommendation model based on knowl-
edge graph and representation learning. The model analyzes
the relations between APIs to construct a knowledge graph
about users and services. Then representation learning is
used to embed the entities in the knowledge graph into the
low-dimensional space. Finally, the collaborative filtering
is used to recommend suitable APIs for users. However,
this method relies on the description information of APIs.
In reality, the information of the API is often inaccurate
and incomplete, which seriously affects the recommendation
effect. Inspired by the above model, we applied some of the
ideas of the model to recommend APIs for mashups. The
development of a mashup is often the work of a large team,
and it is difficult to accurately recommend APIs based on
the usage records of a single user. Therefore, we added the
relevant information of mashups to the knowledge graph to
make the service knowledge graph more complete. In addi-
tion to recommending APIs through knowledge graph and
representation learning, we also recommended APIs based
on the similarities between the functions of mashup and
Mashup-API invocation matrices. In this way, we solved the
problem of relying only on API information through the
hybrid recommendation.

In view of the shortcomings of the existing recommenda-
tion methods, we propose a service recommendation model
based on knowledge map and collaborative filtering. In this
model, in order to reduce the impact of data sparsity, our
model embeds information related to APIs and mashups
into the knowledge graph to explore the potential relations
between APIs and mashups. Then our model uses the repre-
sentation learning algorithm to convert API entities into low-
dimensional vectors to calculate the distances between API
vectors, and uses collaborative filtering to recommend suit-
able APIs. In addition, the model recommends APIs related
to the target mashup by calculating the similarities between

the extracted functional sets of all mashups, which solve the
cold start problem. At the same time, the historical record of
mashups using APIs is used to recommend APIs for target
mashups to enrich the recommended result. Finally, the sim-
ilarities of above recommended APIs are normalized to form
the final recommendation list.

The main contributions of this paper are as follows:
• We propose a service recommendation model (KGCF-

SR) based on knowledge graph and collaborative filtering,
which can effectively alleviate sparsity and solve the problem
of cold start.
•We embed mashups and APIs into neo4j graph database

to build a complete service knowledge graph. Compared with
the existing service knowledge graphs, the service knowledge
graph we constructed contains the complete information of
APIs and mashups, and fully considers the diverse relations
between entities. With this knowledge graph, the potential
relations between mashups and APIs can be explored.
•We have collected more than 18000 web APIs and more

than 7700 mashups on PWeb. Experiments on this dataset
showed that our proposed method is significantly better than
existing related methods.

The rest of the paper is organized as follows. Section 2 dis-
cusses some representative related work. Section 3 introduces
the service recommendation model of this paper in detail.
Section 4 evaluates our model through a comprehensive
experiment. In section 5, we make a summary of our work;
meanwhile we put forward the shortcomings of our method
and prospects for the future.

II. RELATED WORK
A. API RECOMMENDATION FOR MASHUPS
In this section, we discuss some representative research work
on the existing methods that recommend APIs for mashups.

In the existing related researches, the most widely used
method is collaborative filtering technology, which provides
recommendations through similarities of mashups or similar-
ities of APIs. Cao et al. [7] proposed a collaborative filter-
ing method based on the semantic similarities of mashups.
Depending on the semantic similarities between mashups,
they recommended the APIs used by mashups with similar
description information to the target mashup. However, this
method has high requirements for the description information
of mashups. When the description information is incomplete
or inaccurate, it will greatly affect the final recommendation
result. In addition, some researchers used the technology of
matrix factorization [9], and combined the relations between
APIs and mashups to make the recommended APIs more
diverse. However, this method has the problem of data spar-
sity. In order to alleviate the sparsity problem of collaborative
filtering, many scholars have proposed effective methods.
Yu et al. [15] proposed a two-side Cross Domain Collaborate
Filtering model. Firstly, the intrinsic features of users and
items are extracted from the auxiliary domain. Then the
problem of recommending items to users is changed into a

VOLUME 9, 2021 50881

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

classification problem. Finally, SVM [16] is used to solve
the classification problem. However, the extracted intrinsic
features are usually not related to the domain, which leads to
poor recommendation effects. Considering this shortcoming,
Yu et al. [17] improved the previous model and proposed a
cross-domain collaborative filtering algorithm with expand-
ing user and item features via the latent factor space of
auxiliary domains. Based on the previous model, Funk-SVD
is used to extract additional user and item features from
the auxiliary domain to expand the two-dimensional location
feature vector. Finally, the model uses the C4.5 decision
tree algorithm to predict missing ratings to achieve better
experimental results.

Xiong et al. [8] proposed a hybrid service recommendation
method based on deep learning. They first obtained the his-
torical usage records between mashups and APIs. Then they
put the historical usage records and their functions into the
neural network. In this way, researchers explored the potential
relations betweenmashups and APIs. However, this approach
relies on the historical usage records between mashups and
APIs. Unfortunately, historical usage data is very sparse.
Most mashups use no more than three APIs, and only 10%
of the existing APIs are used by mashups, which makes it
difficult to recommend appropriate APIs when the scale of
data is very large.

B. KNOWLEDGE GRAPH
Knowledge graph is a directed graph composed of entities and
relationships between entities [18]. It can store large-scale
data and describe the relations between data. At present, there
are many knowledge graph databases, the most well-known
ones are DBpedia [19] based on Wikipedia, and the huge
knowledge resource library YAGO [20].

In recent years, knowledge graph has gradually become
a hot spot in academic research, especially in the field of
recommendation algorithms [21]. Many researchers applied
knowledge graph to recommend APIs for mashups [14],
which has a good effect in solving the problem of sparsity.

Wang et al. [12] proposed an API recommendation method
by using knowledge graph and random walking. They first
obtained the information of APIs and mashups through the
knowledge graph. Then they mined the potential relations
between the APIs and the target mashup through the random
walking algorithm. Finally, they recommended appropriate
APIs for the target mashup through potential relationships.
Although this method can alleviate sparseness, it has high
requirements for description information of mashups. Once
the developers describe the requirements of mashups inaccu-
rately, it will affect the final experimental results. In addition,
the quality of screening features directly affects the final
results.

C. KNOWLEDGE REPRESENTATION LEARNING
In the field of knowledge, feature engineering [22] is often
used to extract features. However, feature engineering needs
to process data manually, which makes the workload become

huge. Considering the shortcomings of feature engineering,
Mikolov et al. [23] proposed the word2vec representation
learning model, which is the earliest research of knowledge
representation learning.

Asmore andmore scholars pay attention to knowledge rep-
resentation learning, many models of representation learning
appear. Nickel et al. [24] proposed the method of e factoriza-
tion of a three-way tensor, and Socher et al. [25] proposed
a single-layer neural network-based representation learning
model. Among these models, the translation model [26] has
received attention because of its high accuracy.

With the development of knowledge graph technology,
the application of the translation model in knowledge graph
has become extensive [26]–[29]. These methods transform
the relations and entities in the knowledge graph into vectors,
and the representative one is the TransEmodel [26]. Although
the TransE method has a good effect on a single relation
vector, when the entities have one-to-many or many-to-many
relations, the expected effect cannot be achieved. Therefore,
in 2014, Wang et al. [27] proposed TransH, which can handle
one-to-many or many-to-many relations in the knowledge
graph. Since then, many scholars improved models on the
basis of TransE, and successively proposed TransA [28],
TransR [29], TransD [30].

In recent years, the method of combining representation
learning and knowledge graph has been used in service rec-
ommendation. Cao et al. [14] proposed an API recommenda-
tion algorithm based on knowledge graph and representation
learning. They first determined the competitive or cooperative
relations betweenAPIs. Then they embeddedAPI entities and
user entities into the low-dimensional space by the represen-
tation learning algorithm. Finally, they recommended APIs
to users through the distances between API entities and user
entities. But this recommendation model is dependent on the
quality of the information in the API description. Generally,
if the quality of the API description is not high, then the triples
extracted from the knowledge graph will be inaccurate, which
seriously affects the effectiveness of a specific recommenda-
tion approach.

III. THE PROPOSED METHOD: KGCF-SR
Considering the problem of data sparsity and cold start in
existing service recommendation models, this paper proposes
a service recommendation model based on knowledge graph
and collaborative filtering. In this model, in order to explore
the hidden relations between APIs and mashups, the related
information of APIs and mashups is transformed into entities
to construct the service knowledge graph. Then the TransH
algorithm is used to embed the APIs into the low-dimensional
space to calculate the similarities betweenAPIs. TheK neigh-
bor APIs of target APIs are selected as the recommended set,
which is defined as AS1. For the purpose of solving the cold
start problem, the model calculates the similarities between
the extracted functional sets of all mashups, and then selects
K neighbor mashups of the target mashup. The APIs used
by these neighbor mashups form a recommended set, which

50882 VOLUME 9, 2021

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

FIGURE 1. The main steps of the proposed method.

is defined as (MS1). In addition, the similarities between
APIs and the similarities between mashups are calculated
according to the record of mashups using APIs, and then the
collaborative filtering is used to obtain the API-based recom-
mendation set (AS2) and the Mashup-based recommendation
set (MS2). After the four recommendation lists are obtained,
the similarities of the recommended APIs in (AS1) and (AS2)
are normalized and the two sets are merged into the API-
based recommendation list AS. Similarly, (MS1) and (MS2)
aremerged into theMashup-based recommendation set (MS).
Finally, the (AS) and (MS) are combined and sorted to form
the final recommendation list RS.

The specific steps of the proposed method are shown
in Figure 1.

A. SERVICE KNOWLEDGE GRAPH CONSTRUCTION
At present, the historical data of mashups using APIs is
very sparse. Among nearly 20000 APIs, more than 90% of
mashups use less than five APIs, which makes it difficult to
obtain the relations between the target mashups and a large
number of APIs. The knowledge graph is a directed graph,
which can connect information related to entities with com-
plex relations. So that knowledge graph canmine the potential
relations between entities. Therefore, our model constructs
a service knowledge graph to mine the potential relations
between the target mashups and a large number of APIs.

In order to build a service knowledge graph, we first
obtained over 18,000 APIs and 7,732 mashups as service
entities from PWeb, and embedded them into the knowledge
graph. Then we defined the relations between entities. The
relation between API and Mashup was ‘‘used’’, the relation
between API and Category was ‘‘belong_to’’, and the relation
between Tag and API was ‘‘tag’’. In addition, the relation

between Mashup and Category is ‘‘belong_to’’, and the rela-
tion between Mashup and Tag is ‘‘Tag’’.

When the functions between the two APIs are very similar,
the two APIs are in competition. In order to explore the
potential relations between APIs, we calculated the similar-
ities between APIs by extracting functions. Based on the
functional similarities, we set the 20% APIs that were closest
to each API as the API’s competing APIs.

The relations in the knowledge graph are shown in
Figure 2.

FIGURE 2. Relations in the knowledge graph.

Neo4J [31] is an open source graph database, which can
embed entities and relations into graph databases by Cypher
language. We embedded the entities and relations into the

VOLUME 9, 2021 50883

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

Neo4J graph database to construct a knowledge graph about
services.

B. EMBEDDING SERVICE ENTITIES INTO LOW
DIMENSIONAL SPACE
After constructing the service knowledge graph, although the
API entities are connected with their related attributes and
entities, the distance between the APIs cannot be calculated,
so we need to embed the APIs into the vector space. In order
to obtain the vectors of APIs from the knowledge graph,
the representation learning algorithm is used to embed API
entities into low dimensional space.

TransE is a classical algorithm in representation learning
algorithms. It obtains the low-dimensional vector of each API
by the triples in the knowledge graph. In the proposed model,
the triples (h, r , t) extracted from the service knowledge graph
form the training set M . h and t belong to the set E which is
the set of entities. And r belongs to the set R which is the set
of relations. The vectors of h, t , r are defined as vh, vr , vt . The
purpose of the TransE algorithm is to satisfy that the sum of
vh and vr is approximately equal to vt , as shown in Figure 3.

FIGURE 3. Representation of the triple vector in the TransE.

vh, vr and vt satisfy Eq. (1):

vh + vr ≈ vt (1)

The TransE algorithm constructs an incorrect setM ′, which
is composed of the correct triples replaced by an incorrect
head entity or an incorrect tail entity. Its construction method
is as follows:

M ′ = {(h, r, t ′)|t ′ ∈ E} ∪ {(h′, r, t)|h′ ∈ E} (2)

The loss function on the training set is

L =
∑

(h,r,t)∈M

∑
(h′,r,t ′)∈M ′

[η + d(vh + vr , vt)

− d(vh′ + vr , vt ′)]+ (3)

where η is a boundary parameter whose value is greater than
zero. [X]+ represents the positive part of x.
In order to make the entities and relations in the existing

triples satisfy Eq. (1), the stochastic gradient descent algo-
rithm is usually used to optimize the method.

Although the TransE algorithm has a good effect when
the relation between the entities in the knowledge graph

is one-to-one, the entities cannot be well converted into
low-dimensional vectors when the relations between the enti-
ties is complex. However, the relations between entities in
the service knowledge graph are all one-to-many or many-to-
many. For example, there are more than 30 competing APIs
with the API named Yahoo Travel, and Yahoo Travel is used
by 7 mashups.

Considering the complex relations between entities in the
service knowledge graph, the TransH algorithm is used to
embed API entities into the low-dimensional space. TransH
is an improved representation learning algorithm based on
TransE. It solves the problem that TransE can onlyworkwhen
the relations in the knowledge graph is one-to-one. The vector
representation of the TransH algorithm is shown in Figure 4.

FIGURE 4. Vector representation in the TransH.

For a triple (h, r , t) in the knowledge graph, its corre-
sponding vectors are vh, vr , vt . In the TransH algorithm, each
relation r will have a hyperplane, and the normal vector of the
hyperplane is defined as wr . The vh and vt are respectively
multiplied by the normal vector wr to map the two vectors to
the hyperplane to obtain vhw and vtw. The formulas of vhw and
vtw are as follows:

vtw = vt − wTr vtwr (4)

vtw = vt − wTr vtwr (5)

The score function is defined as:

d(vhw + vr , vtw) =
∥∥∥vh − wTr vhwr + dr

− vt + wTr vtwr
∥∥∥2
2

(6)

In order to distinguish correct triples from wrong triples,
we use negative sampling to maximize the scores of wrong
triples and minimize the scores of correct triples. The loss
function sets some constraints on the basis of TransE:

L=
∑

(h,r,t)∈M

∑
(h′,r,t ′)∈M ′

[η+d(vh+vr , vt)− d(vh′+vr , vt ′)]+

+C

{∑
e∈E

[||e||22 − 1]+ +
∑
r∈R

[
(wTr dr)

2

||dr ||22

]
+

}
(7)

50884 VOLUME 9, 2021

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

where C is a weight. The second term is the maximum
of the difference between the square of the lengths of all
entity vectors and 1, which restricts the length of the entity
to be no more than 1. The accumulation in the third term
constrains that the spaces represented by different relations
are uncorrelated.

C. SIMILARITY CALCULATION
Themodel proposed in this paper uses the collaborative filter-
ing algorithm to recommend related APIs for target mashups.
In order to obtain the neighbor mashups of the target mashup
or the neighbor APIs of the target API, a variety of similari-
ties need to be calculated, including the similarities between
API entities in the low-dimensional space, the similarities
between the invocation matrices of mashups or APIs, and
Functional similarities between mashups.

1) CALCULATING THE SIMILARITIES OF API ENTITIES
IN THE LOW-DIMENSIONAL SPACE
After embedding the entities in the service knowledge graph
into the low-dimensional space, we can get the vectors of all
API entities. Then the similarities between APIs can be cal-
culated by cosine similarity. The cosine similarities between
API vectors are defined as:

Sim(API ,API ′) =

∑d
i=1 (APIi × API

′
i)√∑d

i=1 APIi
2
×

√∑d
i=1 APIi

′2
(8)

where d is the dimension of the API vector. The dimension
of vector can be set in the TransH algorithm. In this model,
the dimension of API vector is 100.

2) CALCULATING THE SIMILARITIES BETWEEN
INVOCATION MATRICES
We obtained a historical record of mashups using APIs.
From the historical record, a total of 1569 APIs are used
by 7732 mashups. Based on the record, mashup-based invo-
cation matrices and API-based invocation matrices are con-
structed, and then the similarities of the two types of matrices
are calculated respectively.

According to records of Mashup-API invocation, matrices
of mashups can be constructed. The construction method is
as follows:

Mashupi = (API1,API2, . . . ,APIj, . . . ,API1569) (9)

The value of APIj depends on whether APIj has been used
by Mashupi. If it has been used, APIj is 1, otherwise it is 0.
Its value is shown in Eq. (10):

APIj =

{
0 if APIj is not used by Mashupi
1 if APIj is used by Mashupi

(10)

After obtaining the matrices of mashups, the Jaccard simi-
larity coefficient is used to calculate the similarities between
the matrices. The similarities are calculated as follows:

Jaccard(x, y) =
Mashupx ∩Mashupy
Mashupx ∪Mashupy

(11)

where Mashupx ∩ Mashupy represents the number of APIs
used by two Mashups at the same time.Mashupx ∪Mashupy
means the number of APIs used by Mashupx or Mashupy.
Similarly, the matrices of APIs are constructed as follows:

APIi= (Mashup1,Mashup2, . . . ,Mashupj, . . . ,Mashup7732)

(12)

When APIi has been used by Mashupj, the value of Mashupj
is 1. Otherwise, the value of Mashupj is 0. Its value is as
shown in Eq. (13)

Mashupj =

{
0 if APIi is not used by Mashupj
1 if APIi is used by Mashupj

(13)

The Jaccard similarity coefficient is used to calculate the
similarities between matrices of APIs. The formula for cal-
culating similarity is as follows:

Jaccard(x, y) =
APIx ∩ APIy
APIx ∪ APIy

(14)

where APIx ∩ APIy means the number of mashups that have
used both APIx and APIy, and APIx ∪APIy means the number
of mashups that have used APIx or APIy.

3) CALCULATING THE SIMILARITIES BETWEEN MASHUPS
BASED ON FUNCTIONS
In most related researches, the similarities between mashups
are represented by the similarities between description texts
of mashups. However, the description texts of mashups are
very short, whichmakes the semantic similarities between the
texts unable to accurately represent the similarities between
the mashups.

In actual development, when the functions in the descrip-
tion text of two mashups are similar, the APIs they use
are also similar. Therefore, in the model proposed in this
paper, the functions in the description texts of mashups are
extracted to form function sets. Based on the functional sets
of mashups, the similarities between mashups are calculated.

Stanford Parser is a popular tool of natural language pro-
cessing. It can identify the parts of speech of words and
generate the corresponding sets Stanford dependence (SD) by
analyzing the grammatical relationships of words [32]. An SD
is a two-tuple expressed as sdtype (gov, dep).Where gov is the
dominant word, including verbs, prepositions, etc., while dep
is a subsidiary word, including nouns, noun phrases, etc. The
sdtype is the type of SD between two words. In this paper,
Stanford Parser is used to extract the functions of mashups’
description text. For example, the description information of
the mashup whose name is search video is Search for videos
through Google. The SD method of direct conversion is used
to convert the description information of this mashup into
a two-tuple dobj (search for, video), which is the extracted
function of the mashup. Since the number of functions of dif-
ferent mashups is different, the Jaccard similarity coefficient
is used to calculate the similarities between the functional sets

VOLUME 9, 2021 50885

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

of mashups. The formula is as follows:

Jaccard(P,Q) =
|P ∩ Q|
|P ∪ Q|

(15)

where P and Q are function sets with different lengths. The
similarities between mashups are calculated as shown in
Eq. (16):

Sm(m1,m2) =

∑l
i=0 Sn(f1i, f2i)

k
(16)

where m1 and m2 are two mashups. f1i is the ith function in
m1, and f2i is the ith function in m2. k is the larger number of
functions in the mashup between m1 and m2. l is the number
of functions of the mashup with fewer functions. Sn(f1i, f2i) is
the similarity between each function in m1 and each function
inm2. The formula for calculating the similarities of functions
is as follows:

Sn(f1, f2)=w1×Sword (V1,V2)+w2×

∑l
i=1 Sword (N1i,N2i)

k
(17)

where V1 is the verb contained in function f1, and V2 is the
verb contained in function f2. N1i is the ith noun in func-
tion f1, and N2i is the ith noun in function f2. Sword(V1,V2)
is the similarity between V1 and V2, and Sword(N1i,N2i) is
the similarity between N1i and N2i. w1 is the proportion
of verb similarity, w2 is the proportion of noun similarity,
w1 + w2 = 1.

In this model, the WordNet [33] is used to calculate the
similarities of words. The formula of Sword (d1, d2) is as
follows:

Sword (d1, d2) =
2× E(F(d1) ∩ F(d2))
E(F(d1))+ E(E(d2))

(18)

where F(D) is the feature set of word D, while E(D) is the
number of information of functional set D. The formula of
E(D) is as Eq. (19):

E(D) = −
∑
t∈D

logP(t) (19)

where P(t) represents the probability of feature t . When there
is no intersection between the feature set of d1 and the feature
set of d2, Sword(d1, d2) is 0. When the feature set of d1 and the
feature set of d2 are the same, Sword(d1, d2) is 1.

D. CONCATENATION OF RECOMMENDATION SETS
For a target Mashup, all the APIs used by the target mashup
are the target APIs. Equation (8) is used to calculate the
similarities between APIs in the low-dimensional space, and
then K neighbor APIs of each target API are selected to
form the recommended set AS1. In addition, the formula (14)
calculates the similarities ofMashup-API invocationmatrices
of APIs, and then the K neighbor APIs of the target APIs
form the recommended set (AS2). In order to merge (AS1)
and (AS2), the API similarities in the two sets are normalized.
The normalized formula is as follows:

Mi =
si − smin
smax − smin

(20)

where si is the similarity of the original ith API in the set, smin
is the lowest API similarity value in the set, and smax is the
highest API similarity value in the collection.

After the set (AS1) and set (AS2) are normalized, they
become the union of the two sets, and then the scores for the
recommended APIs in the two sets are determined. If the API
was included in the set before, the score of the recommended
API is the normalized similarity of the API. Otherwise,
the score of this recommended API is 0. In this way, two sets
of the same length are obtained, and the recommended APIs
in two sets are the same.

Next, set (AS1) and set (AS2) are merged into an API-
based recommendation set (AS). The score of each API
in (AS) is calculated as follows:

Sri =


s1 if s2 = 0
s2 if s1 = 0
s1 + s2

2
if s1 6=0 and s2 6= 0

(21)

Where s1 is the score of the ith API in the set AS1, AND s2 is
the score of the ith API in the set (AS2).

Eq. (11) is used to calculate the functional similarities
between the target mashup and other mashups, and then all
APIs used by the K neighbor mashups of the target mashup
form the recommended set (MS1). The similarities between
the target mashup and the recommended APIs are the similar-
ities between the neighbormashups and the APIs. At the same
time, Eq. (11) is used to calculate the similarities between the
Mashup-API invocation matrices of mashups. The APIs used
by the K neighbor mashups of the target mashup form the
recommended set (MS2).

Considering that the similarity range of recommended API
in (MS1) is different from that in (MS2), Eq. (20) is used
to normalize the two sets. Similar to the formation of the
API-based recommendation set, (MS1) and (MS2) are trans-
formed into two sets of the same length, and then (MS1) and
(MS2) are combined into theMashup-based recommendation
set (MS) through Eq. (21).

Finally, Eq. (21) is used to merge API-based recommen-
dation set (AS) and mashup-based recommendation set (MS)
into one set and take Top-N APIs as final recommendation
set. When obtaining Top-N APIs, it is possible that multiple
APIs have the same score, which leads to the number of
recommended APIs exceeds N . Since a large number of
experiments have proved that the Mashup-based recommen-
dation is more reliable, if the score is the same, we prefer to
choose the APIs from set MS. If APIs with the same score
are all from MS, we choose the API that has been used more
often.

IV. EXPERIMENTAL EVALUATION
In our model, the selection of K which is the number of
neighbors is very important, so we analyzed the influence
of K on the experimental results. In order to verify the accu-
racy of our algorithm, we used real data obtained from PWeb
to compare our model with several traditional collaborative

50886 VOLUME 9, 2021

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

filtering recommendation models. Experiments show that our
service recommendation model is better than the existing ser-
vice recommendation models based on collaborative filtering
in Recall,Precision and F1.

A. DATASET
For the authenticity of the experiment, we obtained 18,536
real APIs and 7,732 real mashups from PWeb.We selected all
the mashups that use three APIs as the test set, and remove
the mashups without text description. Finally, the number of
mashups selected in the test set is 769.

In order to evaluate the effectiveness of the recommen-
dation method, we removed one of the three APIs from
each target mashup in the test set. According to the two
APIs that have not been removed, recommendation model
recommends APIs for the target mashup. If the removed API
is in the Top-N recommendation set, the recommendation is
successful. Since a target mashup in the test set will have three
different sets of data depending on the different removed API,
the evaluation metric of the target mashup is the average of
three experimental results.

B. EVALUATION METRICS
In the experiment, we used the Precision,Recall and F1 to
evaluate the effectiveness of the recommendation model.
Precision and Recall are widely used when comparing
the effects of methods [34], and F1 is a combination of
precision [35] and Recall [36]. The metrics are defined as
follows.
Precision@N [37] is a popular type of Precision for evalu-

ating recommendation systems. It indicates how many of all
recommended APIs are marked as originally belonging to the
target mashup. The formula is as follows:

Precision@N =
|{Real APIs} ∩ {Recommend APIs}|

N
(22)

where Real APIs represents the APIs set marked in the
target mashup, and Recommend APIs represents the Top-N
recommended APIs. Since Precision@N refers to the ratio
of the number of recommended correct APIs to the total
recommendedAPIs, the largerN is, the smallerPrecision@N
will be.
Recall@N indicates how many of the APIs marked by the

target mashup are in the Top-N recommended API set. The
calculation formula is as follows:

Recall@N =
|{Real APIs} ∩ {Recommend APIs}|

|{Real APIs}|
(23)

F1@N considers both the Recall and the Precision. There-
fore, the F1 is often used as an important indicator of the
recommendation system evaluation. F1@N is defined as
equation (24):

F1@N =
2Precision@N × Recall@N
Precision@N + Recall@N

(24)

C. THE INFLUENCE OF THE PARAMETER K
There is an important parameter K in our model, which is the
number of neighbors of the target mashup or target API in the
model. K has a great influence on the experimental results.
When K is set too small, the recommended APIs will be too
few to compare the experimental results under different N
which is the number of recommended APIs. When the value
of K is set too large, it will seriously affect the running speed
of the model. In this section, we study the influence of K on
the recommendation results through experiments.

We set K in the KGCF-SR algorithm to 5, 7, 9, 11 respec-
tively, and then calculated the Precision, Recall and F1 of
Top-N under different K . N is the number of APIs recom-
mended by the recommendation model. The value of N in
the relevant research is generally evenly distributed Between
0 and 20. We chose the value of N as 5, 10, 15 and 20. The
experimental result is shown in Figures 5-7.

FIGURE 5. Precision of KGCF-SR under different K settings.

FIGURE 6. Recall of KGCF-SR under different K settings.

It can be seen from Figure 5 that the Precision of our rec-
ommending model decreases with the increase of the K, and
the smaller the API recommended number N is, the greater
the decline of Precision with the increase of K. When the N
is 5, the Precision of top-5 when K is 7 is 14% lower than
the Precision of top-5 when K is 5. When N reaches 20,
the change inK has little effect on the Precision of the top-20.

VOLUME 9, 2021 50887

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

FIGURE 7. F1 of KGCF-SR under different K settings.

Fig. 6 shows that the Top-N Recall of the KGCF-SRmodel
also decreases with the increase of K , and the change rule is
similar to that of the Precision. Affected by the Precision and
Recall, the larger the K is, the smaller the F1 is.
Experiments showed that the value of K has an impact on

the final experimental results, especially when N is small,
the choice of K has a huge impact on the recommended
performance. Generally speaking, when the value of K is
larger, the recommendation effect of API is worse. Therefore,
the value of K selected in our model should be as small as
possible. But when K is too small, the final recommended
APIs are too few. Considering comprehensively, the parame-
ter K in our model is set to 5 in all the following comparison
experiments.

D. APPROACH COMPARISON
To evaluate the performance of our model, we compared
our method with existing service recommendation methods.
These methods are briefly explained as follows.

1) Function-Based Recommendation (FBR): The purpose
of this method is to recommend functionally similar
APIs for the target mashup. First, the Stanford Parser
tool is used to extract the verbs and objects of the
description information in mashups and APIs. Then
the extracted verbs and objects form a functional set.
The similarities between the target mashup and APIs
are calculated through functions. Finally, themost simi-
lar Top-N APIs are recommended to the target mashup.

2) API-Based Recommendation though LDA (ABR-
LDA): This method first obtains the description infor-
mation of all APIs, then LDA [38] is used to model
APIs as topic probabilistic proportion vectors. Finally,
the most similar Top-N APIs of each API used by the
target mashup are recommended.

3) Mashup-Based Recommendation through Function
(MBRF): Similar to method 1, this method first uses
the Stanford Parser tool to extract the functions of
all mashups. Based on the similarities of the func-
tions, the model recommends the APIs used by similar
mashups of the target mashup.

4) Mashup-Based Recommendation through VSM
(MBR-VSM): This method uses the VSM algorithm
to map the description information of the mashups into
feature vectors. Then the similarities between mashups
are calculated. Finally, the APIs used by theK neighbor
mashups that aremost similar to the targetmashup form
the final recommendation list.

5) Service recommendation based on knowledge map and
collaborative filtering (KGCF-SR): our function.

Figures 8-10 show the comparison of our method and
other recommended methods. These three figures respec-
tively show the Precision@N , Recall@N, F1@N of five
methods. In general, our method is obviously better than the
other four methods.

FIGURE 8. The comparison on the overall Precision@N.

FIGURE 9. The comparison on the overall Recall@N.

Experiments show that the effect of API-based collabora-
tive filtering recommendation through the LDA is very poor.
Themain reason is that twoAPIs with greater correlation can-
not cooperate well with each other in the same mashup. Gen-
erally, two similar APIs often have a competitive relationship
and can replace each other. The effect of the function-based
recommendation method is also very bad, mainly because the
description information of mashups and APIs is not accurate,
and a lot of description information is even incomplete.

Compared with the above methods, the two methods of
Mashup-based collaborative filtering recommendation have

50888 VOLUME 9, 2021

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

TABLE 1. Evaluation results of five recommendation algorithms.

FIGURE 10. The comparison on the overall F1@N.

better performance. Because only a few of APIs have been
used by mashups, and API usage frequency varies greatly.
The frequently used APIs are used more than 2000 times,
while the rarely used APIs have been used no more than
10 times. The invocations of the 200 most frequently used
APIs even accounts for more than 90% of the historical
records of invocations. It can be seen that mashups tend to
use popular APIs, which makes two mashups with similar
functional requirements often use the same API. Therefore,
MBRF and MBR-VSM have better performance.

Our method KGCF-SR not only considers the functional
information of mashups, but also considers the Mashup-API
invocation matrices and potential relations between the APIs
in the service knowledge graph. Experiments showed that our

FIGURE 11. Precision@N from top-1 to top-20.

model has better effect. It can be seen from Figure 9 that
when N is 5, the gap between our method KGCF-SR and
other methods is not large. As N increases, the advantage
of our method becomes more and more obvious. When the
number of recommended APIs increases to 20, the Recall of
our method has reached 0.82, which is far better than other
methods. In addition, the Recall tends to be stable with the
growth of n.

The values of N selected in Top-N above are not con-
tinuous, which makes the experimental results not rigorous.
In order to make the experiment more rigorous, we calculated
all the Precision, Recall and F1 of the five models from top-1
to top-20. The Precision, Recall, and F1 from Top-1 to top-20
are shown in Figures 11-13.

VOLUME 9, 2021 50889

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

TABLE 2. The cases of recommendation.

It can be seen from the figure that whenN takes continuous
values, the effect of our method is still significantly better
than other methods

E. CASE STUDY
In this section, we will use actual cases to show the results
of the five recommended API recommendation methods.
We randomly selected 5 target mashups from the mashup
data set, and each mashup in the data set was removed with a
usedAPI. The five selectedmashups areAcmeGeorss, Songs,
Amanav, Actually, App Review Tube. Then fivemethods were
used to recommend top-3 APIs for target mashups. The final
recommendation results are shown in Table 2. The bolded
API is the one that has been removed from APIs used by the
target mashup. If there is a bolded API in the recommended

list of top-3, it means that the recommended method hits the
correct API.

In the five randomly selected samples, KGCF-SR hits
twice, MBRF also hits twice, and MBR-VSM hits once.
In contrast, ABR-LDA and FBR did not perform well, none
of their recommended top-3 APIs hits. From the results, both
KGCF-SR and MBRF hit twice. KGCF-SR did not show an
advantage, because it can be seen from the previous part that
the top-3 Precision of KGCF-SR andMBCF are both low and
similar, and the target mashups were all randomly selected.
In fact, the superiority of our method has been fully reflected
in the experimental comparison of the previous part. The
purpose of this part is to show real cases of recommendation.

It can be seen from the table that some popular APIs
appear frequently and rank very high in the recommended list
even if they are completely unrelated to the target mashup.

50890 VOLUME 9, 2021

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

FIGURE 12. Recall@N from top-1 to top-20.

FIGURE 13. F1@N from top-1 to top-20.

For example, some popular APIs released by Google and
Yahoo. It shows that these methods have the Matthew effect.
Those APIs that are used more frequently will have a higher
ranking.

V. CONCLUSION
In this paper, we propose a new method of recommending
APIs for mashups, which is based on knowledge graphs
and collaborative filtering. In the proposed model, in order
to mine the potential relations between APIs and mashups,
TransH is used to embed the entities in the service knowledge
graph into a low-dimensional space. In addition, the Mashup-
API invocation matrices and functions of mashups are also
considered.

Experiments showed that our method can provide more
accurate recommendation results compared with existing
methods.

However, ourmethod has some limitations. Themain prob-
lem is the Matthew effect, that is, APIs that are frequently
used by mashups rank high in the recommended list. For
example, Google maps has been used by mashups for more
than 2000 times, which leads to a high ranking of Google
maps, even if it is completely unrelated to the target mashup.

SinceAPIs used bymashups account for a small proportion
of all APIs, the Matthew effect has a greater impact on the

recommendation results. In addition, the incomplete descrip-
tion information of mashup leads to inaccurate extracted
functions, which also affects the final recommendation effect.

In the future, we will improve our method in view of the
above shortcomings. First of all, in order to reduce the impact
of the Matthew effect, the weight of popular APIs should be
reduced to make their ranking in the recommended list more
reasonable. For the problem of incomplete description infor-
mation of mashups, it is necessary to use natural language
processing technology to complete the description text. In this
way, the functions of themashups can be extracted accurately.

REFERENCES
[1] W. Pan, X. Xu, H. Ming, and C. K. Chang, ‘‘Clustering mashups by

integrating structural and semantic similarities using fuzzy AHP,’’ Int. J.
Web Services Res., vol. 18, no. 1, pp. 34–57, Jan. 2021.

[2] T. Espinha, A. Zaidman, and H.-G. Gross, ‘‘Web API growing pains:
Stories from client developers and their code,’’ in Proc. Softw. Evol. Week
- IEEE Conf. Softw. Maintenance, Reeng., Reverse Eng. (CSMR-WCRE),
Feb. 2014, pp. 84–93.

[3] V. Hoyer and M. Fischer, ‘‘Market overview of enterprise mashup tools,’’
in Proc. 6th Service-Oriented Comput. (ICSOC), Sydney, NSW, Australia,
2008, pp. 708–772.

[4] D. Benslimane, S. Dustdar, and A. Sheth, ‘‘Services mashups: The new
generation of Web applications,’’ IEEE Internet Comput., vol. 12, no. 5,
pp. 13–15, Sep. 2008.

[5] W. Pan and C. Chai, ‘‘Structure-aware mashup service clustering for
cloud-based Internet of Things using genetic algorithm based clustering
algorithm,’’ Future Gener. Comput. Syst., vol. 87, pp. 267–277, Oct. 2018.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, ‘‘Evaluat-
ing collaborative filtering recommender systems,’’ ACM Trans. Inf. Syst.,
vol. 22, no. 1, pp. 5–53, Jan. 2004.

[7] B. Cao, M. Tang, and X. Huang, ‘‘CSCF: A mashup service recommenda-
tion approach based on content similarity and collaborative filtering,’’ Int.
J. Grid Distrib. Comput., vol. 7, no. 2, pp. 163–172, Apr. 2014.

[8] R. Xiong, J. Wang, N. Zhang, and Y. Ma, ‘‘Deep hybrid collaborative
filtering for Web service recommendation,’’ Expert Syst. Appl., vol. 110,
pp. 191–205, Nov. 2018.

[9] M. M. Rahman, X. Liu, and B. Cao, ‘‘Web API recommendation for
mashup development using matrix factorization on integrated content and
network-based service clustering,’’ in Proc. IEEE Int. Conf. Services Com-
put. (SCC), Jun. 2017, pp. 225–232.

[10] G. Tian, J. Wang, K. He, C. Sun, and Y. Tian, ‘‘Integrating implicit feed-
backs for time-aware Web service recommendations,’’ Inf. Syst. Frontiers,
vol. 19, no. 1, pp. 75–89, Feb. 2017.

[11] Y. Zhong, Y. Fan, W. Tan, and J. Zhang, ‘‘Web service recommendation
with reconstructed profile frommashup descriptions,’’ IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 468–478, Apr. 2018.

[12] X. Wang, H. Wu, and C.-H. Hsu, ‘‘Mashup-oriented API recommen-
dation via random walk on knowledge graph,’’ IEEE Access, vol. 7,
pp. 7651–7662, 2019.

[13] T. K. Paradarami, N. D. Bastian, and J. L. Wightman, ‘‘A hybrid rec-
ommender system using artificial neural networks,’’ Expert Syst. Appl.,
vol. 83, pp. 300–313, Oct. 2017.

[14] Z. Cao, X. Qiao, S. Jiang, and X. Zhang, ‘‘An efficient knowledge-graph-
based Web service recommendation algorithm,’’ Symmetry, vol. 11, no. 3,
p. 392, Mar. 2019.

[15] X. Yu, Y. Chu, F. Jiang, Y. Guo, and D. Gong, ‘‘SVMs classification based
two-side cross domain collaborative filtering by inferring intrinsic user and
item features,’’ Knowl.-Based Syst., vol. 141, pp. 80–91, Feb. 2018.

[16] X. Yu, J. Yang, and Z. Xie, ‘‘Training SVMs on a bound vectors set based
on Fisher projection,’’ Frontiers Comput. Sci., vol. 8, no. 5, pp. 793–806,
Oct. 2014.

[17] X. Yu, F. Jiang, J. Du, andD.Gong, ‘‘A cross-domain collaborative filtering
algorithm with expanding user and item features via the latent factor space
of auxiliary domains,’’ Pattern Recognit., vol. 94, pp. 96–109, Oct. 2019.

[18] Q. Wang, Z. Mao, B. Wang, and L. Guo, ‘‘Knowledge graph embedding:
A survey of approaches and applications,’’ IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 12, pp. 2724–2743, Dec. 2017.

VOLUME 9, 2021 50891

B. Jiang et al.: Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering

[19] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer, ‘‘DBpedia—
A large-scale, multilingual knowledge base extracted from wikipedia,’’
Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[20] F. M. Suchanek, G. Kasneci, and G. Weikum, ‘‘YAGO: A core of semantic
knowledge unifying WordNet and wikipedia,’’ in Proc. 16th Int. Conf.
World Wide Web. New York, NY, USA, May 2007, pp. 697–706.

[21] Q. Li, X. Tang, T. Wang, H. Yang, and H. Song, ‘‘Unifying task-oriented
knowledge graph learning and recommendation,’’ IEEE Access, vol. 7,
pp. 115816–115828, 2019.

[22] C. Ré, A. A. Sadeghian, Z. Shan, J. Shin, F. Wang, S. Wu, and
C. Zhang, ‘‘Feature engineering for knowledge base construction,’’ 2014,
arXiv:1407.6439. [Online]. Available: http://arxiv.org/abs/1407.6439

[23] T. Mikolov, L. Sutskever, K. Chen, G. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 2, Dec. 2013, pp. 3111–3119.

[24] M. Nickel, V. Tresp, and H. P. Kriegel, ‘‘A three-way model for collective
learning on multi-relational data,’’ in Proc. 28th Int. Conf. Mach. Learn.
(ICML), Washington, DC, USA, Jun. 2011, pp. 809–816.

[25] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, ‘‘Reasoning with neural
tensor networks for knowledge base completion,’’ in Proc. 26th Int. Conf.
Neural Inf. Process. Syst., Dec. 2013, pp. 926–934.

[26] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
‘‘Translating embeddings for modelingmulti-relational data,’’ inProc. 26th
Int. Conf. Neural Inf. Process. Syst., Dec. 2013, pp. 2787–2795.

[27] Z. Wang, J. Zhang, J. Feng, and Z. Chen, ‘‘Knowledge graph embedding
by translating on hyperplanes,’’ in Proc. 28th AAAI Conf. Artif. Intell.,
Jul. 2014,.pp 1112-1119.

[28] H. Xiao, M. Huang, Y. Hao, and X. Zhu, ‘‘TransA: An adaptive approach
for knowledge graph embedding,’’ 2015, arXiv:1509.05490. [Online].
Available: https://arxiv.org/abs/1509.05490

[29] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, ‘‘Learning entity and relation
embeddings for knowledge graph completion,’’ in Proc. 28th AAAI Conf.
Artif.Intell., Austin, TX, USA, Jan. 2015, pp. 2181–2187.

[30] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, ‘‘Knowledge graph embedding via
dynamic mapping matrix,’’ in Proc. 53rd Annu. Meeting Assoc. Comput.
Linguistics 7th Int. Joint Conf. Natural Lang. Process. (Long Papers),
vol. 1, 2015, pp. 687–696.

[31] J. Partner, A. Vukotic, N. Watt, T. Abedrabbo and D. Fox,Neo4j in Action
Pearson Schweiz Ag, 2014, p. 304.

[32] M. Mozgovoy and R. Efimov, ‘‘WordBricks: A virtual language lab
inspired by scratch environment and dependency grammars,’’ Hum.-
Centric Comput. Inf. Sci., vol. 3, no. 1, pp. 1–9, Dec. 2013.

[33] G. A. Miller and A. George, ‘‘WordNet: A lexical database for english,’’
Commun. ACM, vol. 38, no. 11, pp. 39–41, 1995.

[34] W. Pan, H. Ming, C. Chang, Z. Yang, and D.-K. Kim, ‘‘ElementRank:
Ranking java software classes and packages using a multilayer com-
plex network-based approach,’’ IEEE Trans. Softw. Eng., early access,
Oct. 8, 2019, doi: 10.1109/TSE.2019.2946357.

[35] W. Pan, B. Li, J. Liu, Y. Ma, and B. Hu, ‘‘Analyzing the structure of
java software systems by weightedK-core decomposition,’’ Future Gener.
Comput. Syst., vol. 83, pp. 431–444, Jun. 2018.

[36] H. Li, T. Wang, W. Pan, M. Wang, C. Chai, P. Chen, J. Wang, and J. Wang,
‘‘Mining key classes in java projects by examining a very small number
of classes: A complex network-based approach,’’ IEEE Access, vol. 9,
pp. 28076–28088, 2021.

[37] N. Craswell, L. Liu, and M. T. Zsu, ‘‘Precision at N,’’ Encyclopedia
Database Syst., to be published.

[38] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

BO JIANG received the Ph.D. degree from the
School of Computer, Zhejiang University, China.
She is currently a Professor and a M.S. Supervisor
with the School of Computer Science and Infor-
mation Engineering, Zhejiang Gongshang Univer-
sity. She has published more than 30 articles in
international journals and conferences. Her cur-
rent research interests include service computing
and complex networks. She is also a member
of China Computer Federation (CCF) and CCF

Service Computing Association.

JUNCHEN YANG is currently pursuing the M.S.
degree with the School of Computer Science and
Information Engineering, Zhejiang Gongshang
University. His research interests include service
computing and software engineering.

YANBIN QIN is currently pursuing the M.S.
degree with the School of Computer Science and
Information Engineering, Zhejiang Gongshang
University. His research interests include service
computing and complex networks.

TIAN WANG is currently pursuing the M.S.
degree with the School of Computer Science and
Information Engineering, Zhejiang Gongshang
University. Her research interests include software
engineering and complex networks.

MUCHOU WANG received the bachelor’s degree
from the Department of Computer Science,
Zhejiang University of Technology (ZJUT),
in 2005, and the master’s degree from the
Huazhong University of Science and Technology
(HUST), in 2008. He is currently working with
WenzhouUniversity. His research interests include
service-oriented software engineering and digital
library.

WEIFENG PAN received the Ph.D. degree from
the School of Computer,WuhanUniversity, China,
in 2011. He has been a Visiting Scholar with
Western Michigan University. He is currently an
Associate Professor and a M.S. Supervisor with
the School of Computer Science and Informa-
tion Engineering, Zhejiang Gongshang University.
He has published more than 50 articles in inter-
national journals, such as IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, Future Generation Com-
puter Systems, and Cluster Computing. His current research interests include
software engineering, service computing, complex networks, and intelligent
computation. He is also a member of China Computer Federation (CCF) and
CCF Service Computing Association.

50892 VOLUME 9, 2021

http://dx.doi.org/10.1109/TSE.2019.2946357

