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ABSTRACT Cervical cancer is caused by the persistent infection of certain types of the Human Papillo-
mavirus (HPV) and is a leading cause of female mortality particularly in low and middle-income countries
(LMIC). Visual inspection of the cervix with acetic acid (VIA) is a commonly used technique in cervical
screening. While this technique is inexpensive, clinical assessment is highly subjective, and relatively poor
reproducibility has been reported. A deep learning-based algorithm for automatic visual evaluation (AVE)
of aceto-whitened cervical images was shown to be effective in detecting confirmed precancer (i.e. direct
precursor to invasive cervical cancer). The images were selected from a large longitudinal study conducted
by the National Cancer Institute in the Guanacaste province of Costa Rica. The training of AVE used
annotation for cervix boundary, and the data scarcity challenge was dealt with manually optimized data
augmentation. In contrast, we present a novel approach for cervical precancer detection using a deep metric
learning-based (DML) framework which does not incorporate any effort for cervix boundary marking.
The DML is an advanced learning strategy that can deal with data scarcity and bias training due to
class imbalance data in a better way. Three different widely-used state-of-the-art DML techniques are
evaluated- (a) Contrastive loss minimization, (b) N-pair embedding loss minimization, and, (c) Batch-hard
loss minimization. Three popular Deep Convolutional Neural Networks (ResNet-50, MobileNet, NasNet)
are configured for training with DML to produce class-separated (i.e. linearly separable) image feature
descriptors. Finally, a K-Nearest Neighbor (KNN) classifier is trained with the extracted deep features. Both
the feature quality and classification performance are quantitatively evaluated on the same data set as used
in AVE. It shows that, unlike AVE, without using any data augmentation, the best model produced from our
research improves specificity in disease detection without compromising sensitivity. The present research
thus paves the way for new research directions for the related field.

INDEX TERMS Automated cervical visual examination, cervical cancer, deep metric learning, siamese
network.

I. INTRODUCTION
Cervical cancer is a major cause of premature female morbid-
ity with over half a million new cases and over three hundred
thousand deaths reported in 2018.1 Universally, this disease
is caused by persistent infection with one or more from a
dozen oncogenic types of the human papillomavirus (HPV).
Early detection of HPV-induced precancer (the precursor to
cancer) and providing appropriate treatment where necessary
can reduce suffering and premature death. However, there

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangcun Shan .
1https://www.who.int/health-topics/cervical-cancer#tab=tab_1

is a significant scarcity of clinical and gynecological ser-
vices and expertise as well as a lack of sufficient access to
effective low-cost cervical screening programs in the low and
middle-income countries (LMIC). This shortage correlates
highly with regions where the highest death rates have been
reported.

The VIA method (Visual Inspection with Acetic Acid) is
a low-cost and readily available screening method. A weak
(3%-5%) acetic acid solution is applied to the cervix region
which is then visually assessed by an expert. Whitening
of cervical tissue around the transformation zone [1] indi-
cates focal HPV infections. Appropriate treatment of the
cervix or referral for further evaluation is recommended by
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the clinician. Although VIA is cheap and easily accessi-
ble, low reliability, accuracy, and high inter-observer vari-
ability have been reported [2]. Clinical colposcopes help in
improving VIA performance with better illumination and
optical magnification of the cervix region. However, they are
very expensive and not commonly available in all settings.
Moreover, these assessments also suffer from high intra- and
inter-observer variability [3]. These challenges present an
opportunity for research in developing powerful image ana-
lytics algorithms in an automated low-cost assistive screening
system that is accurate, reliable, and effective.

There are several challenges towards achieving this goal.
First, there is a lack of an imaging standard. We find that
images are often taken inconsistently, with varied illumi-
nation, poor focus, high specular reflection, and imperfect
color tone [4], [5]. Designing hand-crafted statistical features
for addressing these variables is limiting and error-prone.
Modern deep learning-based classification algorithms can
apply data-driven strategies to deal with it in a better way.
However, there is a naturally occurring high class-imbalance
in screening data due to low disease prevalence in the gen-
eral population with many more controls (normal class) than
cases (abnormal class) -typical ratios of 99:1 or higher in
controls to cases are not uncommon. This makes the tasks
more challenging. Recall that, while DCNN is an impor-
tant addition for representation learning in computer vision
[6], [7], these networks are trained in an end-to-end man-
ner, and during training adjust weight matrices within the
network layers. Images are processed through the layers and
produce prediction maps for all possible classes. The training
error is computed based on the ground-truth probability map
for every class, with a differentiable error function, such as
Cross-Entropy, Mean Square Error, etc. However, key draw-
backs of training a DCNN with classification loss are that
it is prone to bias toward the majority class, which tends
to be comprised of images from normal women. Such an
imbalance does not guarantee, without an appropriate training
strategy, that the image embedding (i.e. feature map obtained
from the last fully connected layer before the loss layer) are
linearly separable. While, it may sometimes appear that we
obtain good classification accuracy, due to the classifier’s
biasedness toward majority classes, we are often unable to
get good feature representation to support generalization to
unseen data.

Previously, Faster-RCNN, a deep learning-based Auto-
matic Visual Evaluation (AVE) [8] method was proposed for
detecting precancer cases. AVE uses a region proposal algo-
rithm (Faster-RCNN) to localize the cervix boundary prior to
the classification module. In developing AVE, the data skew
was retained to increase statistical power for epidemiologic
analyses but reduced to a 3:1 ratio of controls to cases.
Consequently, in selecting absolute precancer cases the num-
ber of samples was also limited. With fewer data available
for training, synthetic data augmentation was used during
network training to overcome its impact on learning and
classification performance. As a result, the trained model was

likely over-fit to the data and less likely to adapt to naturally
occurring variations in cervical image appearance and disease
prevalence. In order to advance the prior AVE effort and
pursue the first step toward addressing data skew, we develop
a new method that operates on the full cervix image. We pro-
pose to train the convolutional neural network with deep
metric learning (DML) for producing class-separated feature
representation of the cervical images. Finally, a K-Nearest
neighbor classifier is built with the deep features.

The key contributions of this paper are as follows.
1) We present a pioneering approach using deep metric

learning for cervical precancer detection aimed at nat-
urally occurring disease prevalence.

2) We analyze the linear separability of learned image
features both quantitatively and qualitatively.

3) A detailed analysis of experimental results is conducted
which demonstrates that the method improves speci-
ficity in disease detection without compromising sen-
sitivity and paves the way for new research directions.

The organization of the rest of the paper is as fol-
lows: Section II provides background on state-of-the-art
approaches on cervical image analysis. A discussion about
deep metric learning and the experimented approaches are
available in Section III. The experimental setup and the anal-
ysis of experimental results are presented in Section IV and
Section V. Finally, Section VI concludes the paper.

II. RELATED LITERATURE
The potential for automatic analysis of digital cervical images
in revolutionizing screening for precancers has motivated the
development of several automatic and semi-automatic image
analysis algorithms. These include algorithms for anatomical
landmark detection [9], cervix region detection [10], [11],
cervix type detection [12], pre-cancerous lesion detection-
segmentation [13]–[15] and disease diagnosis [16]–[18].
Since our main concern is detecting precancer (or worst dis-
ease condition) in cervical images, we restrict our literature
review to the topically relevant algorithms.

Early cervical image classification research mainly
focused on the development of robust features to repre-
sent cervical images and classifier development. Commonly,
hand-crafted image features were used as cervical image
descriptors, such as (a) filter bank-based texture features,
(b) pyramid color histogram features (in L∗a∗b∗ color space),
(c) pyramid histogram of oriented gradients (PHOG), and
(d) pyramid histogram of local binary patterns (PLBP). These
features were subsequently used for developing classification
algorithms, such as χ2 distance, support vector machine
(SVM), random forest (RF), gradient boosting decision tree
(GBDT), AdaBoost, logistic regression (LR), multi-layer
perceptron (MLP), and k-Nearest Neighbors (kNN) [16],
[17], [19]–[21]. Some approaches extracted features from the
cervix region-of-interest (RoI) detected at an earlier stage
of the algorithm [16], [17]. However, these hand-crafted
color and texture features were rarely sufficiently robust in
representing cervical images due to high variability in image
quality and appearance. The variability is most confounding
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in color and object illumination which are critical for disease
discrimination, but also includes focus [4], the region of
interest coverage, the imaging device, time that the image
was taken after application of acetic acid, and geographic
region [22]. This has resulted in data-driven automatic super-
vised representation learning algorithms becoming an attrac-
tive choice for computer vision researchers [8], [23]–[29].
Training a DCNN model from scratch was proposed in [23].
Multimodal learning [24], where image data along with clin-
ical records are processed together has also been attempted.
Multi-scale CNN are proposed in [25], [26]. Multi-CNN
decision feature integration is used in [27]. [28] proposed to
use the Deep Belief network. Object detection networks are
employed in [8], [29].

All these approaches focus on developing a discriminating
model, or classifier, from the raw color intensity matrix of
the input images. In contrast, our research focuses on cervical
image representation with deep metric learning.

III. METHODS
The deep metric learning (DML) is a robust technique that
can address two limitations of commonly used deep clas-
sification networks- (i) biasedness towards majority class
[30]–[32] and (ii) over-fitted model development due to data
scarcity [33], [34]. The training strategy of DML aims to pro-
duce the image embedding in such a way that they are closer
if the images are sampled from the same class and distant
otherwise and thus produces class-separated image represen-
tation. Also, unlike classification model training, the training
loss is computed based on the embedding obtained from
multiple images. In the literature, several DML approaches
are proposed which are broadly designed based on the image
sampling strategy, embedding distance computation, loss
computation etc. [30]–[32].

In this paper, we develop a DML based framework (see
Fig 1 (a)) for cervical image classification. In the pro-
posed framework, firstly, the DML is performed with the
training images and their labels. The learning objective
of DML is to produce a deep model which can generate
class-discriminating feature vectors from the training images.
Note that the deep network does not contain any classification
layer during DML (see Fig 1(b)). In the next stage, the trained
DMLmodel serves as a feature extractor and extracted feature
vectors are then used to build a K-Nearest Neighbor (KNN)
classifier. During the test phase, the embeddings of the test
images are obtained from the trained DML network and then
their class labels are predicted from the trained KNN. We opt
for a KNN classifier since the size of the training data is small
and the features are expected to be linearly separable.

In this paper, we vary learning objective functions (called
loss functions) for deep model development with the DML.
The loss functions associated with the chosen DML algo-
rithms are described in the following paragraphs.

A. DEEP METRIC LEARNING WITH CONTRASTIVE LOSS
In this approach, a mini-batch is constructed with a randomly
sampled pair of images. If the two images are sampled from

FIGURE 1. (a) Block diagram of the proposed system. Upper part denotes
two-step training phase and lower part denotes test phase. (b) Block
diagram of deep metric learning (DML). Images and their class labels are
inputted and the mini-batch loss is computed based on the image
embeddings.

the same class then the pair is called positive pair and if the
images are sampled from different classes then the pair is
called negative pair. The distance between a positive pair is
called positive distance and the distance between a negative
pair is called negative distance. The training loss is designed
in a way such that the positive distance is minimized and
the negative distance is maximized. Mathematically, the con-
trastive loss (Lcontrastive) is defined as:

Lcontrastive = [dp − mpos]+ + [mneg − dn]+ (1)

where mpos denotes the upper limit of positive distance,
mneg denotes the lower limit of negative distance, dp
denotes positive distance, dn denotes negative distance and
[x]+ = max(0,x).

B. DEEP METRIC LEARNING WITH N-PAIR
EMBEDDING LOSS
Suppose, X1,Y1,X2,Y2 . . . ,XN ,YN are N-pair of images
sampled from N different classes where Xi,Yi are images
from ith class. The training loss between two ith class images
Xi and Yi is given by

Li = −log
exp(f TXi fYi )∑N

k=1,k 6=i exp(f
T
Xi fXk )+

∑N
k=1 exp(f

T
Xi fYk )

(2)

where fA is the feature vector of imageA; and T representation
transpose operation. The mini-batch loss is computed as the
mean of all N classes, i.e., LNPE =

∑N
i=1 Li. In the present

work, N = 2 as we are dealing with binary classification
problem.
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TABLE 1. Age-stratified data set splits. The entries in the table denote the number of images.

FIGURE 2. Samples of cervical images from the present data set. Left
image from Control class. Right image from Case class.

C. DEEP METRIC LEARNING WITH BATCH HARD
SAMPLING
In this approach, P classes2 are randomly chosen and from
every class, S images are randomly sampled. In a mini-
batch, the loss function considers the hard samples i.e. the
maximum of intra-class (or positive) distances and minimum
of inter-class (or negative) distances. The training loss is
designed in a way such that it is decreasing the intra-class
distance as well as increasing inter-class distance. Mathemat-
ically, the Batch-hard sampling loss (LBH ) is defined as:

LBH =
P∑
i=1

S∑
a=1m+

Intra-class distances︷ ︸︸ ︷
max
p=1..S

D(f ia, f
i
p) −

Inter-class distances︷ ︸︸ ︷
min

j=1..P;n=1..S
j6=i

D(f ia, f
j
n)


+

where m is a predefined threshold, f denotes feature vector
of an image, D(x, y) represents distance between x and y and
[x]+ = max(0,x).

IV. EXPERIMENTAL SETUP
A. DATA SET DESCRIPTION
This paper uses Cervigram R©3 image data set used in AVE
research [8]. Every image in the data set was labeled either
as a case (disease) or control (non-disease) based on the
following diagnostic information: HPV status, naked-eye
visual impression, colposcopic impression, cytological find-
ings, histopathological analysis outcome. A sample image
from both case and control class is shown in Fig 2.

In [8], the data set was partitioned into three non-
overlapping subsets: training, validation, and hold-out test
sets, respectively. In our work, we make a random disjoint
split of the training data into training and val1 data. The
previous AVE validation data is termed val2. The val1 is
used for parameter selection in the DML training. The val2

2Here, number of classes = 2. So, class subset selection is not needed.
3Cervical images captured with cerviscope.

(i.e. validation data of [8]) is used forK value selection during
classifier model building. The hold-out test data, which is the
same as one used in AVE research, is used for comparing the
classification performancewithAVE.Details of data set splits
are given in Table 1.

B. DEEP NETWORKS AND TRAINING STRATEGIES
Three state-of-the-art pre-trained networks, namely, ResNet-
50 [35], NasNetMobile [36] andMobile-Net [37] are selected
as backbone networks. First, the softmax classification layer
is removed from each backbone network. Then an L2 nor-
malization layer is used after the last feature layer of
the networks. Finally, the networks are trained with the
chosen DML algorithms (Section III). After training, the
L2-normalized output vector obtained from the trained net-
work is used as the image embedding.We vary the parameters
associated with DML training best results are found when the
DML are trained with learning rate = 0.002, weight decay
= 1e − 6, and momentum = 0.9, epoch = 50. The DML
algorithms built with constrictive loss and batch hard loss
need to set loss function parameters. In this paper, we vary
these parameters and receive best performance for following
parameters (a) constrictive loss: mpos = 0 and mneg = 0.25,
(b) batch hard loss: S = 8, m = 0.25.

C. BASELINE ALGORITHMS
The state-of-the-art pre-trained models developed using the
ImageNet data are our initial choice as the baseline feature
extractor networks. Note that the limitation of classification
networks for imbalanced data set is our key concern. Our
next baseline network is the fine-tuned binary classification
network with our data. For this model development, we use
binary cross-entropy loss minimization for training this clas-
sification network. The performance of the chosen DML
algorithms is compared with these baselines.

D. PERFORMANCE EVALUATION
The proposed system has two steps: (1) Training deep
model for linearly separable image embedding extraction,
and (2) Classifier model development. We evaluate both
steps separately. The evaluation scheme is described in the
following subsections.

1) EMBEDDING QUALITY ASSESSMENT
We assess the quality of the feature embedding using t-SNE
plots [38] visualization. The t-SNE converts the high dimen-
sional data (here image embedding) into 2-D data vectors
which help to visualize them in a 2D-plane. It is a very
popular choice for data visualization in spite of its limitations.
The t-SNE plot provides only a geometric interpretation of
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FIGURE 3. Loss improvement during DML training.

TABLE 2. Mean K-Precision in val2 data set. Network-wise best performing Mean K-Precision for different values of K are bold-faced.

separation in the embedding at the cost of significant informa-
tion loss in reducing high-dimensional data into a 2D vector.
Moreover, small differences between feature vectors cannot
be determined from the plot. To offset this limitation, we also
propose using the following two quantitative measures for
assessing embedding quality.

a: MEAN K-PRECISION
The K-precision of a test sample T is given by the ratio
k
K , where k is the number of nearest neighbors of T of
the same class selected among total K nearest neighbors
from the training data. The mean K-precision is the mean

of K-precision for all test images. The value of K-Precision
lies in the range [0,1] and a higher value represents better
performance.

b: CLASS-WISE MEAN N-PRECISION
Suppose, in the training data, there are Ncontrol controls and
Ncase cases. The N-precision for a test data sample Tcontrol
belonging to the control class is given by the ratio ncontrol

Ncontrol
,

where ncontrol is the number of nearest neighbors of Tcontrol
in the training set which belongs to control class. Similarly,
N-precision for a test data sample Tcase belonging to the case
class is given by the ratio ncase

Ncase
, where ncase is the number of
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FIGURE 4. The t-SNE plots of feature embeddings.

nearest neighbors of Tcase in the training set which belongs
to case class. The value of N-precision lies in range [0,1] and
the higher value represent better performance. For a perfect
model, all test data will have N-precision equals 1.

2) CLASSIFICATION PERFORMANCE EVALUATION
The classification performance is evaluated using class-wise
accuracy. Class-wise accuracy is defined by the percent-
age of correct classifications achieved by the proposed
model for each class. Note that the case accuracy refers to

sensitivity/recall and the control accuracy refers to specificity.
These two performance measures together can provide an
idea about the biasedness of the model toward the majority
class.

V. RESULTS AND DISCUSSION
The training loss and validation loss improvement for chosen
DML algorithms are shown in Fig 3. According to Fig 3,
the DML algorithm trained with Batch-hard loss has closer
training and validation loss (val1) at the end of the training.
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TABLE 3. Class-wise Mean N-Precision in val2 data set. The best performing feature representation method is chosen based on the average of Case and
Control’s Mean N-precision. Network-wise best performing feature representation methods are bold-faced.

TABLE 4. KNN classification accuracy for val2 data set in percentage (%). The best performing classification model is chosen based on the average of
Case and Control’s classification accuracy. The bold-faced numbers represent the network-wise best performing models for different values of K .

A detailed analysis of the experimental results is given
in this section. We divide the discussion into four sections.
The first section discusses the separability of the image
embedding for the chosen algorithms. Next, we discuss the
effectiveness of the K-Nearest Neighbour classifier. Then,
the performance of the algorithm on the hold-out test data
is presented. Finally, the performance of the best model is
compared with the state-of-the-art AVE results [8].

A. EMBEDDING QUALITY ASSESSMENT
Fig 4 shows 2D t-SNE plots of the image embed-
ding obtained from the considered competing approaches.
In the first row, i.e., subfigures (a, b, c), show that the
images are poorly separated when features from the Ima-
geNet pre-trained networks are used. The second row, i.e.,
subfigures (d, e, f), shows that features from the fine-tuned
models increase the separability. Finally, the last three rows,
i.e., subfigures (g-o), demonstrate the power of DML which
produces increasingly well-separated training image feature
representations. We find that for many scenarios, due to the
inability of producing fully generalized models with the cho-
sen techniques, val2 images are not guaranteed to be closer
to the appropriate class. However, based on our experiments,
we can assert that the DML algorithm has the potential to deal
with the current image classification task in a better way.

The mean K-Precision for three different K values for all
competing approaches for val2 data are given in Table 2.
According to Table 2, the performance after fine-tuning with
the training data is markedly improved over the pre-trained
model. We also note that the performance of the deep net-
works built with contrastive loss based DML is comparable
with the fine-tuned model. However, we see that the networks
built with N-pair loss and Batch-hard sampling strategy out-
perform these competing methods.

The mean N-Precision values of the case and control for all
competing methods for val2 data are listed in Table 3. Here,
we see that in terms of separability the embeddings obtained
from the fine-tuned deep models are much better than the

TABLE 5. Mean-K Precision on hold-out test set. Network-wise best
results are bold-faced.

TABLE 6. N-Precision for hold-out test set. The best performing DML
model is chosen based on the average of Case and Control’s mean
N-precision. The network-wise best results are bold-faced.

respective pre-trained models. The DML algorithms notice-
ably improve the mean N-Precision values for both cases and
control over the fine-tuned models. Our experimental results
also show that the networks trained with N-Pair embedding
loss or Batch-hard loss minimization produce much better
mean N-Precision values for cases than the networks trained
with contrastive lossminimization. This demonstrates that the
deep model developed with DML algorithm with Batch-hard
or N-Pair Embedding loss minimization is valuable for pro-
ducing separable image embedding for our classification task.
We see this as a significant finding because real-world data
are likely to be highly imbalanced with many more controls
than cases. It is desirable to build classification models that
adopt strategies built around this precondition thereby result-
ing in realistic and usable decisions.

B. CLASSIFICATION PERFORMANCE
The class-wise K-Nearest Neighbor (KNN) classification
accuracy for three different values ofK in val2 data are shown
in Table 4. Here, we see that the KNN classifiers trained
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TABLE 7. Comparison with state-of-the-art on hold-out test data. This table shows overall and age-stratified (95% CI with exact binomial) comparison of
best DML model with Faster RCNN [8]. Reported age stratified analysis excludes nine (9) women as their ages are missing.

with the pre-trained deep models are not suitable for our
task. The performance of the DML algorithm trained with
contrastive loss is comparable with fine-tuned models. For
both approaches, keeping the network fixed results in good
accuracy for controls but is found to be poor for cases. This
is an indication of the classifier’s bias towards the majority
class. Again, we see that for every network that was stud-
ied, the DML algorithm trained with N-pair embedding loss
or Batch-hard loss is better at overcoming data imbalance
and consequently the diminishing classifier bias. We surmise
that the potential source of bias might be due to the model
over-fitting to the training data. Finally, Table 4 shows that
the NasNet model trained with Batch-hard loss minimization
is our best deep model, and 1-NN (K = 1) can be considered
as the best classifier because higher values of K increases
the complexity and is unable to improve the classification
performance.

C. PERFORMANCE ON HOLD-OUT TEST SET
The mean K-Precision and class-wise mean N-Precision
values for the hold-out test set are presented in Table 5
and Table 6, respectively. According to Table 5 all DML
algorithms produce very good mean K-Precision for different
values of K . As the hold-out test data is highly skewed (96:1)
towards the control class and so mean K-Precision is not
an effective measure as the good mean K-Precision may
come from biased feature representation. Hence, we focus on
Table 6 for performance comparison. According to Table 6,
the mean N-Precision for control is good but the mean
N-Precision for the case is not good for all networks. We see
the balanced performance is obtained for the Batch-hard
sampling approach and for NasNet it produces the best result.

D. COMPARISON WITH THE STATE-OF-THE-ART
In [8], for the same data set, only the area under curve (AUC)
values of the Receiver operating curve (ROC) were used
to evaluate the classification model built with the Faster
R-CNN algorithm. In this paper, for comparison purposes, we

TABLE 8. Confusion matrix of the best DML model (BH-NasNet-1-NN)
and comparison with state-of-the-art performance on hold-out test data.
This table shows overall and age stratified Kappa statistics between best
DML model and Faster RCNN [8]. Reported age stratified analysis
excludes nine (9) women as their ages are missing.

compute the age group-wise classification accuracies on the
hold-out test set from the previous class prediction outcomes.
Then the performance of the previous algorithm is compared
with the best model produced from this research. According
to the discussion presented in Section V-B, NasNet trained
with Batch-hard loss minimization is our best feature extrac-
tor model and 1-NN is our best classifier. The age group-wise
classification performance for our best model and the model
built with the AVE algorithm is presented in Table 7. We see
that the overall performance of our system outperforms the
previously reported result. It is important to mention that we
use the entire image and its class label. In contrast, the Faster
R-CNN-based AVE algorithm uses additional annotation that
localizes the cervix region of interest (ROI) during model
training. We conclude that our method improves overall per-
formance. We also compute the age-stratified Kappa statis-
tics between our best model with previously reported Faster
RCNN results, which are reported in Table 8.

VI. CONCLUSION
This paper takes a pioneering initiative to study the effec-
tiveness of the deep metric learning algorithm for cervi-
cal image classification. Our experimental results show that
the deep metric learning with Batch-hard loss minimization
performs better than the previously proposed AVE method
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on the hold-out test set. Additionally, the present framework
diminishes the image level ROI annotation labor. While our
results are indeed better, we note that some misclassification
still exists. The probable reason for this is the possible lack
of proper generalizability during training. We believe that
using more advanced metric learning techniques could over-
come this deficit and is left for future work. The real-world
application for the proposed system is to serve as an intelli-
gent assistant for the clinician evaluating the woman. Also,
the images used in the envisioned system could be acquired
using a variety of devices, such as a smartphone, digital
camera, or a colposcope enabled with digital image capture
capability. These are likely to introduce additional image
appearance variability, as noted earlier. Our future work shall
also include steps to address this variability in addition to any
data imbalance and regional variations in the appearance of
the cervix.
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