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ABSTRACT In this paper, the finite-time bipartite consensus (FTBC) problem is investigated for the multi-
agent system (MAS) with detail balanced structure. To realize FTBC of MAS, a unified protocol framework
is developed. Some criteria are established for realizing FTBC. It is worth noticing that estimations of
settling time can be given in form of mathematical expression. The unified framework can bring in various
protocols by choosing different parameters, which extends previous results. Finally, two numerical examples
are provided to illustrate the effectiveness and superiority of corresponding theoretical results.

INDEX TERMS Finite-time bipartite consensus, Filippov solutions, detail balance digraph, structurally
balanced signed graph, weighted signed average consensus, settling time.

I. INTRODUCTION
Coordination control of MAS has been a focus in many
disciplines in past decades. The reason is that MAS has
been applied into many practical applications. For exam-
ple, the consensus of MAS has been applied in sensor net-
works [1]–[4], robot teams [5]–[8], distributed computation
[9], [10], and so on. For coordination control of MAS, con-
sensus problem is one of the most important topics. It aims
to guarantee agent states converge to the same ideal values
by some suitable protocols. Most existing works [1]–[4],
[11], [12] on consensus of MAS are based on the funda-
mental assumption that the interactions among the agents
are cooperative. However, there are cooperatives and antago-
nism simultaneously in practical applications, such as two-
party political systems, trust networks, and so on. To deal
with this kind of network consensus problems, lots of works
[13]–[28] focused on consensus problem of MAS includ-
ing antagonistic interactions, which are said to be bipartite
consensus. Generally, such phenomena can be characterized
by a signed graph whose edge weights can be both positive
and negative, which denotes that cooperative and antago-
nism, respectively. Bipartite consensus (BC) implies that the
final states are the same in modulus but not sign (direction).

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian .

Since the concept of BC of MASwas firstly proposed in [13],
asymptotic BC of MAS under undirected and digraph has
been studied extensively in the existing literature.

However, asymptotic consensus protocol can’t guarantee
consensus is achieved in a finite time, which sometimes
becomes a deficiency for practical systems, the reason is that
sometimes consensus needs to be achieved in a finite time
for some practical applications. To overcome the drawback,
the finite-time bipartite consensus was proposed, and this
kind of consensus has been a focus in control discipline
recently. The reason is that FTBC owns many ideal per-
formances such as higher convergence speed, better robust-
ness, and disturbance rejection. Lots of results on FTBC
have been reported in [29]–[35] and references therein. For
example, [29] and [30] investigated FTBC problem of MAS
under undirected topology. [31] investigated FTBC problem
of MAS under directed topology structure. In virtue of homo-
geneity, [34] investigated FTBC problem of MAS with detail
balanced structure. As a special finite-time bipartite con-
sensus, fixed-time BC of MAS was discussed in [36]–[38].
Deng et al. proposed a continuous fixed-time bipartite con-
sensus (FDTBC) protocol in [37]. An FDTBC protocol
framework was proposed in [38] for undirected topology
structure. Under this framework, both discontinuous FTBC
protocols and discontinuous FDTBC protocol can be con-
structed by choosing suitable parameters. Moreover, settling
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time estimations are presented in form of a mathematical
expression. Similarly, synchronization of discontinuous com-
plex networks was also discussed in [39] under a unified
protocol framework.

Motivated by the above observations, a natural question
will be asked. Under detail balanced structure, can discon-
tinuous FTBC protocols and continuous FTBC protocols be
constructed under a unified protocol framework?Besides, can
corresponding settling time estimation be given in form of
mathematical expression as well? This is an interesting and
open problem, at present. To solve this problem, a unified
FTBC protocol framework is designed for MAS with detail
balanced structure in this article. The contributions of this
article can be summed up as follows. Firstly, a unified frame-
work is developed to construct FTBC protocol. Noticing that
both continuous protocols and discontinuous protocols can
be obtained under this framework. Secondly, by finite-time
stability theorem, Lyapunov function, Filippov solution, and
graph theory, a rigorous proof is carried out to obtain an esti-
mation of settling time in form of mathematical expression.
It is shown that the settling time can be estimated by protocol
parameters, topology information, and initial values. Finally,
some sufficient conditions are proposed to solve FTBC prob-
lem of MAS under the detail balanced structure.

The rest of the article is arranged as follows. Preliminaries
are given in Section II. In Section III our main results are
presented. Simulation examples are provided in Section IV.
Section V concludes this article with some conclusions.
Notations: RN , RN×N , R and R+ denote N -dimensional

Euclidean space, N × N dimensional real matrix space,
real number set and positive real number set, respectively.
Index set 5N = {1, · · · ,N }. AT denotes transpose of
matrix or vector A. Notation A ≥ 0 (A > 0) means that A
is a semi-positive definite (positive definite) matrix. Set S =
{diag{σ1, · · · , σN }|σi ∈ {−1, 1}}. sign(·) is signmum func-
tion. |·| denotes absolute of a real number. (·)[α] = sign(·)|·|α

for α ≥ 0. For a positive vector ξ = [ξ1, · · · , ξN ]T ∈ RN ,
ξmin = mini∈5N {ξi}, ξmax = maxi∈IIN {ξi}.

II. PRELIMINARIES
A. SET-VALUED DERIVATIVE AND FINITE-TIME
STABILITY OF NONLINEAR SYSTEM
For every point x in the set6 ⊂ Rn, if there is a nonempty set
χ (x) ⊂ Rn, then the map x ↪→ χ (x) is said to be a set-valued
map from6 to B(Rn), where B(Rn) denotes the set consisting
of all the subsets of Rn.
Consider a dynamical system described by the following

differential equation:

ẋ (t) = h (x(t)) , x(0) = x0, (1)

where x(t) ∈ Rn stands for state of system (1), h(·) : Rn→ Rn

is a nonlinear function or vector field. When h(·) is continu-
ous, from the well-known Peano’s theorem, the existence of a
continuous differentiable solution can be guaranteed for (1).
When it is discontinuous but locally measurable, the solution
of (1) is understood in sense of Filippov in this article.

Definition 1: [42] A vector function x(t) defined on the
interval [0,T ∗) is called Filippov solution of system (1) if it is
absolutely continuous on any compact subinterval of [0,T ∗)
(T ∗ > 0), and it satisfies the differential inclusion ẋ(t) ∈
K[h](x(t)) for almost all t ∈ [0, t∗), the set-valuedmapK[h] :
Rn→ Rn is defined as following

K[h](x(t)) =
⋂
δ>0

⋃
µ(S)=0

co {h(B(x, δ)) \ S} ,

where co(·) is convex closure, µ stands for Lebesgue mea-
sure, B(x, δ) denotes the open ball centered at x with radius
δ > 0.

In order to deal with the finite-time stability smoothly, here
one assumes that the Filippov solutions of system (1) exist on
interval [0,∞) and h(0) = 0.
Definition 2: [43]–[49] Assume V : Rn → R is a local

Lipschitz function. The Clarke upper generalized derivative
of V at x in the direction of v ∈ Rn is defined by

V 0(x, v) = lim
y→x

sup
l→0+

V (y+ lv)− V (x)
xl

,

where ∂V denotes generalized gradient ofV , which is defined
as follows.

∂V (x) = co
{

lim
i→+∞

OV (xi) : xi→ x, xi /∈ S
⋃
�V

}
,

where co denotes the convex hull, �V denotes points set
where V is not differentiable, S ⊂ Rn denotes any set of
measure zero.

The set-value Lie derivative of V with respect to f (· ) at z
is denoted as

Lf V (z) = {a ∈ R|∃v ∈ F(f )(z) with vT ξ = a,∀ξ ∈ ∂V (y)},

moreover,

V ′(x, v) = lim
l→0+

V (y+ lv)− V (y)
l

exists and V ′(x, v) = V 0(x, v).
Definition 3: [49] Suppose that regular function V :

Rn → R+ satisfies local Lipschitz condition, and function
x(t) : [0,+∞) → Rn is absolutely continuous on any
compact set of interval [0,+∞), then x(t) and V (x(t)) are
differentiable in almost everywhere in the interval [0,+∞),
and one has

dV (x(t))
dt

= 〈ζ, ẋ(t)〉 ,∀ζ ∈ ∂V (x(t)).

Definition 4: [50] The origin of system (1) is said to be
globally finite-time stable if the following statements hold for
any solution x(t, x0) of equation (1):
(a) Lyapunov stability: For any ε > 0, there is a δ(ε) > 0

such that ‖ x(t, x0) ‖< ε for any ‖ x0 ‖< δ and t ≥ 0.
(b) Finite-time convergence: There exists a function T :

Rn→ (0,+∞), called settling time function, such that

lim
t→T (x0)

x(t, x0) = 0, x(0, x0) = x0, for t ≥ T (x0).
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Lemma 1: [49] For real numbers yi ≥ 0, i ∈ 5N ,

0 < θ < 1, one has the following inequality

N∑
i=1

yθi ≥

(
N∑
i=1

yi

)θ
.

Proof: Applying the fundamental inequality yp ≥ y for
any y ∈ (0, 1]) and p ∈ (0, 1], one has∑N

i=1 ξ
θ
i(∑N

i=1 ξi

)θ = N∑
i=1

(
ξi∑N
i=1 ξi

)θ
≥

N∑
i=1

ξi∑N
i=1 ξi

= 1,

which means that the conclusion in Lemma 2.5 holds. This is
complete proof.
Lemma 2: [50] If function U (t) : [0,+∞)→ [0,+∞) is

differential in interval [0,+∞), and it satisfies inequality:

dU (t)
dt
≤ K (U (t))β ,

where parameters K > 0, 1 > β > 0, then U (t) converges
to zero in a finite time T > 0 and U (t) = 0, for t ≥ T and
associated settling time T satisfies

T ≤
(U (0))1−β

K (1− β)
.

Lemma 3: [40], [41], [49], [50] Assume function x(t) :
[0,+∞) → Rn is absolutely continuous on any compact
subset of interval [0,+∞), and function U (t) : [0,+∞) →
[0,+∞) is C-regular. If there exist a function γ (τ ) :
[0,+∞) → [0,+∞) with γ (τ ) > 0 for ∀τ ≥ 0 such that
U̇ (t) < −γ (U (t)) and t∗ =

∫ U (0)
0

dτ
γ (τ ) < +∞. Then one has

U (t) = 0 for any t ≥ t∗.
Remark 1: Lemma 2 is usually said to be the well-known

finite-time Lyapunov stability theorem, where the Lyapunov
function has to be differentiable. While the Lyapunov func-
tionU in Lemma 3 just satisfiesC−regular conditions, which
is weaker than the differentiability. And it is to be applied to
deal with the finite-time stability problem of discontinuous
system in this article.

B. SIGNED GRAPHS
A directed signed graph consists of vertex set V =

{v1, v2, · · · , vN }, edge set E = {eij = (vi, vj)} ⊂ V × V and
adjacency matrix A, and it is denoted by G(A). Here matrix
A = [aij] ∈ RN×N is defined as aij 6= 0 if and only if (vj, vi) ∈
E , where (vj, vi) ∈ E implies that there is an edge between
agent vj and agent vi, and agent vj transmits information to
agent vi, aij = 0, otherwise. Here we assume graph doesn’t
contain self-loop, i.e., aii ≡ 0, and graph G(A) is digon sign-
symmetric, i.e., aijaji ≥ 0 for ∀i 6= j, i, j ∈ 5N . The Laplacian
matrix of graph G(A) is defined as L(A) = D−A, whereD is a
diagonal matrix, which is defined as dii =

∑N
j=1

∣∣aij∣∣, dij = 0
for i 6= j. A path

(
vi1 , vim

)
is a sequence of distinctive edges

in E , and these edges satisfy (vik , vik+1 ) ∈ E , for k ∈ 5m−1,
where vik , k ∈ 5m, are distinctive vertices. If there is a path
between any pair vertices, graph G(A) is said to be strongly

connected. G(A) contains a spanning tree if there is a vertex
(called root vertex) that can reach all the other vertices by
some directed path.

To state our main results, some definitions and lemmas,
which are necessary and helpful to derivation of our main
results, are listed as follows.
Definition 5: [34]: Directed graph G(A) is said to be detail

balanced if there is a positive vector ξ = [ξ1, · · · , ξN ]T ∈
RN , where ξi > 0, such that ξiaij = ξjaji for any i, j ∈ 5N .
Definition 6: [39] Directed signed graph G(A) is called

structurally balanced if there are two vertex sets V1 and V2
satisfying V1 ∪ V2 = V , and V1 ∩ V2 = ∅; Besides, one
has aji ≥ 0 if i, j ∈ Vr , r ∈ 52 and aji ≤ 0, when index
i ∈ Vr , j ∈ V3−r , r ∈ 52.
Lemma 4: [39]: Directed signed graph G(A) is structurally

balanced if and only if there exists a diagonal matrix S =
diag {σ1, · · · , σN }, where σi ∈ {−1, 1} , i ∈ IIN , such that
SAS ≥ 0.

III. MAIN RESULTS
In this section, FTBC problem of MAS under detail balanced
structure is to be discussed.

Consider the MAS consists of N agents, and the dynamics
of i-th agent is described as follows.

ẋi(t) = ui(t), xi(0) = x0 i ∈ 5N , (2)

where xi(t) ∈ R stands for state of agent i, and ui(t) ∈ Rn

stands for input, which is said to be protocol to be designed.
To simplify expression, denote x(t) = [x1(t), · · · , xN (t)]T .
Definition 7: [39] MAS (2) achieves FTBC if there is a

settling time T (x0) such that

lim
t→T (x0)

|xi(t)| = c, |xi(t)| = c, t ≥ T (x0)∀i ∈ 5N ,

where c is a constant.
To solve FTBC problem of system (2), a unified FTBC

protocol framework is designed as follows:

ui =
N∑
k=1

aik (τki)[p] , i ∈ 5N , (3)

where τki = xk − sign(aik )xi, 0 ≤ p < 1.
Remark 2: When power parameter 0 < p < 1, protocol

(3) degenerates into the one in [28], and which solved signed
average consensus problem. Therefore, the protocol in [28]
can be regarded as a special case of protocol (3), which solved
FTBC problem of MAS under undirected and connected
signed graph. In [32], protocol (3) with p > 0 was applied to
solve FTBC problem of MAS (2) via homogeneity. However,
the deficiency of [32] is that settling time cannot be estimated
by mathematical expression. Besides, (3) is discontinuous
protocol when p = 0, this case was not investigated in [32].
In addition, [39] only solved finite-time SAC problem of
MAS (2) via a discontinuous protocol.
Remark 3: When power parameter p = 0 protocol (3) is

discontinuous. When 0 < p < 1 protocol (3) is continuous.
Therefore, the two cases need to be discussed, respectively.
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Based on above analysis, It can be seen that (3) is an unified
framework, which unifies continuous and discontinuous pro-
tocols into a unified framework. In addition, we will prove
that corresponding settling times can be estimated through
mathematical expression in this article.
Remark 4: To improve the convergence rate, gain coef-

ficient ζ > 0 can be introduced into (3), then (3) can be
rewritten as

ui = ζ
N∑
k=1

aik (τki)[p] . (4)

To simplify expression, here we choose ζ = 1.
Before moving on, a necessary lemma is introduced as fol-
lows.
Lemma 5: Assume that the signed graph G(A) is detail

balanced with positive vector ξ = [ξ1, · · · , ξN ]T and struc-
turally balanced. Then, under protocol (3), the weighted
signed-average φ∗(t) satisfies

φ∗(t) = ω
N∑
i=1

ξiσixi(t) = φ∗(0),

where ω =
1∑N
i=1 ξi

, and σi, i ∈ 5N are defined in

Lemma 2.11.
Proof: Due to G(A) is structurally balanced, according

to Lemma 4, one can find a matrix S such that SAS ≥ 0
and σiσj = sign(aij), where σi ∈ {−1, 1}. Therefore, one
can obtain σi = sign(σi), and the derivative of φ∗(t) can be
calculated as follows:

φ̇∗(t) = ω
N∑
i=1

ξiσiui(t)

= ω

N∑
i=1

N∑
k=1

ξi |aik | (σkxk − σixi)[p]

=
ω

2

N∑
i=1

N∑
k=1

ξi |aik | (σkxk − σixi)[p]

+
ω

2

N∑
i=1

N∑
k=1

ξi |aik | (σkxk − σixi)[p]

=
ω

2

N∑
k=1

N∑
i=1

ξi |aik | (σkxk − σixi)[p]

+
ω

2

N∑
i=1

N∑
k=1

ξi |aki| (σkxk − σixi)[p]

=
ω

2

N∑
i=1

N∑
k=1

ξi |aik | (σkxk − σixi)[p]

−
ω

2

N∑
i=1

N∑
k=1

ξi |aik | (σkxk − σixi)[p] = 0.

Thus φ∗(t) = φ∗(0), for all t ≥ 0. This is complete proof.
Obviously, Lemma 5 means that φ∗(t) is weighted signed

average of initial states. Thus, when final consensus state is

φ∗(0), the corresponding consensus can be called weighted
signed average consensus (WSAC), which can be regarded
as the extension of signed average consensus in [30], [36],
[37], [39]. The reason is that when ξi ≡ 1, i ∈ IIN , WSAC
equals to SAC.
Theorem 1: Assume the signed graph G(A) has detail-

balanced structure with ξ = [ξ1, · · · , ξN ]T . If the graph is
structurally balanced, under the protocol (3) with 0 < p < 1,
MAS (2) can achieve FTBC and associated settling time is
estimated by

T (x0) ≤ T1 =
V 1−α(0)
k0(1− α)

,

where parameter α = 1+p
2 ∈ ( 12 , 1), and parameter

k0 =
1
2
(2λ2 (L(B)))α

(
2
ξmax

)α
is to be determined later.

Proof: From Lemma 4, there is a matrix S such that
SAS ≥ 0 since graphG(A) is structurally balanced. Let zi(t) =
σixi(t). Thus one has z(t) = [z1(t), · · · , zN (t)]T = Sx(t),
z(0) = Sx(0). Moreover, one has

żi(t) = σiẋi(t) = σiui(t), i ∈ 5N .

Substituting protocol (3) into above equation yields

żi(t) =
N∑
k=1

|aik | (zk − zi)[p] .

Let ei(t) = zi(t)− φ∗(0), then one has

ėi(t) = żi(t)

=

N∑
k=1

|aik | |sign(zk − zi)| |zk − zi|p

=

N∑
k=1

|aik | |sign(ek − ei)| |ek − ei|p . (5)

Set e(t) = [e1(t), · · · , eN (t)]T . Through simple mathemati-
cal operation, one can obtain ξT e(t) = 0.
Consider the following candidate Lyapunov function:

V =
1
2

N∑
k=1

ξie2i (t).

It is easy to verify that V is a continuous, differential, posi-
tive definite, and radically unbounded function. In addition,
it satisfies inequalities:

1
2
ξmin

N∑
k=1

e2i (t) ≤ V ≤
1
2
ξmax

N∑
k=1

ξie2i (t).

Furthermore, the following inequalities can be obtained:

2V
ξmax
≤

N∑
k=1

e2i (t) ≤
2V
ξmin

.
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The derivative of V along (5) can be calculated as follows:

V̇ =
N∑
i=1

ξiei(t)ėi(t)

=

N∑
i=1

N∑
k=1

|ξiaik | (ek − ei)[p]

=
1
2

N∑
i=1

N∑
k=1

|ξiaik | (ek − ei)[p]

+
1
2

N∑
k=1

N∑
i=1

|ξiaik | (ek − ei)[p]

=
1
2

N∑
i=1

N∑
k=1

|ξiaik | (ek − ei)[p]

−
1
2

N∑
i=1

N∑
k=1

|ξiaik | (ek − ei)[p]

= −
1
2

N∑
i=1

N∑
k=1

|ξiaik | (ek − ei)(ek − ei)[p]

= −
1
2

N∑
i=1

N∑
k=1

|ξiaik | |ek − ei|1+p

≤ −
1
2

(
N∑
i=1

N∑
k=1

|ξiaik |
2

1+p (ek − ei)2
) 1+p

2

, (6)

where Lemma 1 is inserted to prove above inequality due
to 0 < p < 1. According to detail balanced conditions,
one has |ξiaik |

2
1+p = |ξkaki|

2
1+p , for ∀i, k ∈ 5N . Set matrix

B = [bik ] ∈ RN×N , which is defined by bik = |ξkaki|
2

1+p ,
if i 6= k , and bik = 0, for i = k . Since A = AT the graph
G(B) = G(V, E,B) is an undirected and connected. Accord-
ing to matrix BT = B, one has the following inequality:

N∑
i=1

N∑
k=1

|ξiaik |
2

1+p (ek − ei)2 ≥ 2λ2 (L(B)) eT e, (7)

where L(B) denotes Laplacian matrix of the graph G(B).
Invoking (6) and (7), one can obtain

V̇ ≤ −
1
2 (2λ2 (L(B)))

1+p
2
(
eT e

) 1+p
2

≤ −
1
2 (2λ2 (L(B)))

1+p
2

(
2
ξmax

) 1+p
2
V

1+p
2

= −k0V α, (8)

where α = p+1
2 . According to Lemma 2 and inequality (8), V

converges to zero in a finite time, and associated settling time
is estimated by T (x(0)) ≤ T1. Thus we have limt→T1 |xi(t)| =
|φ∗(0)| and |xi(t)| = |φ∗(0)|, for t ≥ T1. According to
Definition 7, FTBC problem of MAS (2) is solved. This is
complete proof.

Next, the case that p = 0 is to be discussed. Obviously,
power parameter p = 0 means that (3) is a discontinuous pro-
tocol ui =

∑N
k=1 aiksign(τki) and ẋi(t) =

∑N
k=1 aiksign(τki)

is a discontinuous system. By Filippov solution, one can
obtain the following result.
Theorem 2: Suppose graph G(A) is structurally balanced

and detail balanced structure with ξ = [ξ1, · · · , ξN ]T . Then
under the protocol (3) with p = 0, MAS (2) can achieve
FTBC and associated settling time can be estimated by

T (x0) ≤ T2 =
2V

1
2 (0)

(2λ2 (L(A0)))
1
2

(
2
ξmax

) 1
2

,

where parameter λ2 (L(A0)) is to be determined later.
Proof: Similar to Theorem 1, one can obtain

żi(t) =
N∑
k=1

|aik | sign (zk − zi) ,

ėi(t) =
N∑
k=1

|aik | sign (ek − ei) , (9)

which is a obviously discontinuous system. To guarantee
the existence of Filippov solution for equation (9), denote
the right side of (9) as f (e). By the Filippov regulariza-
tion, the Filippov solution of equation (9) can be defined as
absolutely continuous function, which satisfies differential
inclusion:

ėi(t) ∈ K[f ](e(t)) =
N∑
k=1

|aik |SIGN (ek − ei) , i ∈ IIN .

where the set-value function SIGN(·) satisfying SIGN(µ) =
sign(µ), if µ 6= 0, SIGN(µ) ∈ [−1, 1] if µ = 0. Detailed
explanations about existence of Filippov solution of equa-
tion (9) can refer to references [51], [52]. Then, the candi-
date Lyapunov function is still taken as V =

∑N
i=1 ξie

2
i (t).

The set-valued Lie derivative of V can be calculated as
following:

LV =
[
∂V
∂x

]T
·K[f ](e(t))

= 2
N∑
i=1

ξiei
N∑
k=1

|aik |SIGN(ek − ei)

= −

N∑
i=1

N∑
k=1

(
|ξiaik |2 (ek − ei)2

) 1
2

≤ −

(
N∑
i=1

N∑
k=1

|ξiaik |2 (ek − ei)2
) 1

2

≤ −

(
2λ2 (L(A0)) eT e

) 1
2

= − (2λ2 (L(A0)))
1
2

(
eT e

)
, (10)

where L(A0) is Laplacian of the graph G(V, E,A0), matrix
A0 = [a0ij] ∈ RN×N is defined as a0ij = |ξiaik |2, i 6= j,
a0ii = 0 for i, j ∈ 5N . According to detail balanced
condition, one has AT0 = A0. Thus graph G(V, E,A0) can
be regarded as an undirected connected graph, which leads
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to L(A0) be a semi-positive definite matrix. Furthermore,
one can obtain algebra connectivity λ2 (L(A0)) > 0. More-
over, by Theorem 1, one has 2V

ξmax
≤
∑N

i=1 e
2
i (t) = eT e.

Inserting this inequality into inequalty (10), one can obtain

LV ≤ − (2λ2 (L(A0)))
1
2

(
2
ξmax

) 1
2
V

1
2 . Invoking comparison

principle and Lemma 2, one concludes that V converges to
zero in a finite time, that is to say limt→T (x0) V = 0 and
V = 0 for t > T (x0). At the same time, associated settling
time T (x0) satisfies

T (x0) ≤ T2 =
2V

1
2 (0)

(2λ2 (L(A0)))
1
2

(
2
ξmax

) 1
2

.

Noticing that definition of V and ei = σixi − φ∗(0), one has
lim
t→T2

ei = 0 and ei = 0 for t > T2. Thus we have lim
t→T2
|xi| =

|φ∗(0)| and |xi(t)| = |φ∗(0)|, for t > T2, and any i ∈ IIN .
Therefore the FTBC problem of MAS (2) is solved. This is
complete proof.

Subsequently, we consider finite-time stability of MAS (2)
under structurally unbalanced signed graph G(A).
Theorem 3: If the signed graph G(A) has detail balanced

structure, and it is structurally unbalanced, under the protocol
(3) with 0 < p < 1, MAS (2) can realize finite time stability
and associated settling time is estimated by

T (x0) ≤ T3 =
U1−α(0)
k1(1− α)

,

where parameters α, k1 are to be determined later.
Proof: Consider MAS (2) with protocol (3) under struc-

turally unbalanced signed graph G(A). Which is described as
the following equations:

ẋi =
N∑
k=1

aiksign(τki) |τki|p , i ∈ 5N , (11)

where τki = xk − sign(aik )xi. The candidate Lyapunov
function is taken as U =

∑N
i=1 ξix

2
i . Then the derivative of

U along system (11) can be calculated as follows.

U̇ = 2
N∑
i=1

ξixiẋi

= 2
N∑
i=1

ξixi
N∑
k=1

aiksign(τki) |τki|p

=

N∑
i=1

ξixi
N∑
k=1

aiksign(τki) |τki|p

+

N∑
k=1

ξkxk
N∑
i=1

akisign(τik ) |τik |p

= −

N∑
i=1

N∑
k=1

|ξkaki| |xk − sign(aki)xi|1+p

= −

N∑
i=1

N∑
k=1

(
|ξkaki|

2
p+1 |xk − sign(aki)xi|2

) p+1
2

≤ −

(
N∑
i=1

N∑
k=1

|ξkaki|
2

p+1 (xk − sign(aki)xi)2
) p+1

2

= −

(
N∑
k=1

N∑
i=1

bki (xk − sign(aki)xi)2
) p+1

2

. (12)

Denote matrix Bp =
[
bpki

]
∈ RN×N , which is defined as

bpki = sign(aki) |ξkaki|
2

p+1 , L(Bp) = [lpki] ∈ RN×N with

lpki =
∑N

i=1 |ξkaki|
2

p+1 if i = k and lpki = −bpki if i 6= k .
Then L(Bp) is Laplacian of the graph G(Bp). Due to graph
G(Bp) is detail-balanced and structurally unbalanced, L(Bp)
is a positive definite matrix. Therefore, its eigenvalues can be
arranged as 0 < λ1(Bp) ≤ λ2(Bp) ≤ · · · ≤ λN (Bp). Which
leads to λ1(Bp)xT x ≤ xTL(Bp)x for any x ∈ RN . Detailed
explanation can refer to reference [13]. Thus, one has

N∑
k=1

N∑
i=1

bki (xk − sign(aki)xi)2 ≥ 2λ1(Bp)xT x. (13)

Based on inequalities (12) and (13), one can obtain the
following inequality

U̇ ≤ −
(
2λ1(Bp)

) p+1
2
(
xT x

) p+1
2
. (14)

In addition, inequality U
ξmax
≤
∑N

i=1 x
2
i = xT x ≤ U

ξmin
can

be obtained from U =
∑N

i=1 ξix
2
i . Inserting it into inequality

into (14), one can obtain the following inequality

U̇ ≤ −
(
2λ1(Bp)

) p+1
2

(
U
ξmax

) p+1
2

= −k1Uα, (15)

where parameters α = p+1
2 , k1 = −

(
2λ1(Bp)

)α ( 1
ξmax

)α
.

According to Lemma 1 and inequality (15), U converges
to zero in a finite time, and associated settling time can be
estimated by T3. This is complete proof.
Remark 5: From Theorem 3, it can be seen that for the

structurally unbalanced signed graphs, the finite time bipar-
tite consensus problem is equal to the finite-time stability
problem. That is to say, Theorem 3 solved finite time stabil-
ity problem of continuous system (11) in virtue of positive
definite matrix L(Bp). If power parameter p = 0, the finite
time stability of discontinuous system needs to be analyzed
by Filippov solutions and set-valued Lie derivative.
Remark 6: It follows from Theorem 1, Theorem 2 and

Theorem 3, the FTBC (or finite time stability) under the
structurally balanced (unbalanced) signed graphs can be
achieved under the protocol (3) with different power param-
eters. Specifically, if power parameter p = 0, corresponding
finite-time stability has to be analysized by Filippov solution.

Similar to Theorem 3, another result can be given as
follows.
Theorem 4: If the signed graph G(A) is detail balanced

and structurally unbalanced, MAS (2) under protocol (3) with
p = 0 can achieve finite-time stability and associated settling
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FIGURE 1. State trajectories of MAS (2) under protocol (3) with p =
1
3 and

topology G(A1).

time is estimated by T (x0) ≤ T4 =
2U

1
2 (0)
k3

, where parameter

k3 = (2λ1 (B0))
1
2

(
1
ξmax

) 1
2
, matrix B0 =

[
b0kj

]
∈ RN×N with

b0kj = sign(aki) |ξkaki|2, i, j ∈ IIN , λ1(B0) is the smallest
eigenvalue of matrix L(B0).
Obviously, matrix L(B0) can be regarded as Laplacian

matrix of graph G(B0), Due to the proof of Theorem 4 is sim-
ilar to Theorem 3, to save place, the proof of Theorem 3.11 is
omitted here. Interested readers can finish it according to
Theorem 3.
In addition, due to undirected and connected signed graph
is a special detail balanced signed graph, thus based on
Theorem 1, Theorem 2, Theorem 3, and Theorem 4, one has
the following corollary.
Corollary 1: Suppose signed graph G(A) is connected.

If G(A) is structurally balanced, then MAS (2) under the
protocol (3) can achieve FTBC; If G(A) is structurally unbal-
anced, then the MAS (2) can achieve finite-time stability
under protocol (3).

The proof of Corollary 1 is easy to finish according
to proofs of Theorem 1, Theorem 2, Theorem 3, and
Theorem 4. To save space, corresponding proof is omitted
here as well.

IV. NUMERICAL SIMULATIONS
In this section, two simulation examples are provided to illus-
trate the effectiveness of theoretical results in Section III. Our
objective is to demonstrate the effectiveness of protocol (3)
under conditions in Theorem 3.6, Theorem 3.7, Theorem 3.8,
and Theorem 3.11, respectively.
Example: Consider a multi-agent systems under G(A1)

with ξ = [2, 1, 3]T , and associated weighted adjacency

matrix A1 satisfies A1 =

 0 −2 3
−4 0 −3
2 −1 0

 . Obviously, it is

easy to prove that G(A1) satisfies detail-balanced condition.
To verify protocol (3) is effective under the conditions in
Theorem 3.6, set p = 1

3 , the initial states of agents are chosen

FIGURE 2. State trajectories of MAS (2) under protocol (3) with p = 0 and
topology G(A1).

FIGURE 3. State trajectories of MAS (2) under protocol (3) with p =
1
3 and

topology G(A2).

as x(0) = [8, 4,−2]T . In addition, one can find a matrix

S =

 1 0 0
0 −1 0
0 0 1

 , which ensures SA1S ≥ 0. Then it is easy

to get ξmax = 3, ξmin = 1. According to Lemma 3.5, one gets
φ∗(x(0)) = 1. According to Theorem 3.6, the corresponding
theoretical value of settling time satisfies T1 ≤ 2.8892s. The
evolutions of individuals’ state xi(t) are plotted in Fig.1. One
can see that the finite-time consensus is achieved, the final
consensus state satisfying xi(t) = φ∗(x(0)) = 1 and the
simulations match the theoretical results perfectly. Moreover,
to verify the effectiveness of protocol (3) with p = 0 under
the conditions in Theorem 3.7, corresponding evolutions of
individuals’ state xi(t) are plotted in Fig.2. By Theorem 3.7,
associated theoretical value of settling time is T2 = 6.224s.
From Fig.2, one can see that simulation results accord with
corresponding theoretical results. To demonstrate protocol
(3) with p = 1

3 is effective under the conditions in The-
orem 3.8, one assumes that corresponding communication

topology is G(A2), where A2 =

 0 2 3
4 0 −3
2 −1 0

 other parame-
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FIGURE 4. State trajectories of MAS (2) under protocol (3) with p = 0 and
topology G(A2).

ters and initial states are invariant. According to Theorem 3.8,
associated estimation of settling time is T3 = 6.224s. The
corresponding simulation results are shown in Fig.3., which
shows that finite-time stability is achieved. Moreover, from
Fig.3., one can find that the real settling time is about 2.2s.
This simulation supports our theoretical analysis. Set protocol
parameter p = 0, other parameters are invariant as well.
By Theorem 3.11, the corresponding theoretical value of
estimation of settling time can be obtained T4 = 9.3699s.
Corresponding simulation results are shown in Fig.4., which
accords well with theoretical results in Theorem 3.11.

V. CONCLUSION
In this article, we investigated FTBC problem of MAS under
detail-balanced structure. The novelty of this article can be
summed as follows. (1) Based on finite time stability the-
orem and structurally balanced graph theory, a weighted
signed average consensus protocol framework is proposed to
construct FTBC protocol; (2) Worth noticing that the final
consensus state is weighted signed average of initial states,
and associated settling time is a finite time, which can be
estimated explicitly in form of mathematical expression by
protocol parameters, initial conditions, and communication
topology information; (3) By Filippov solution, a class of
discontinuous protocol is proved to be effective as well under
structurally balanced structure. For this case, existing litera-
tures did not mention it. However, there are lots of remained
works to be done, such as the case that random disturbance,
communication delay are involved in the dynamics of MAS.
These are also our future work.
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