
Received February 18, 2021, accepted March 9, 2021, date of publication March 29, 2021, date of current version April 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069191

Multimodal AI System for the Rapid Diagnosis
and Surgical Prediction of Necrotizing
Enterocolitis
WENJING GAO1,*, YUANYUAN PEI 1,*, HUIYING LIANG1,
JUNJIAN LV2, JIALE CHEN2, AND WEI ZHONG2
1Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
2Department of Neonatal Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China

Corresponding author: Wei Zhong (zhongwei123455@gmail.com)

This work was supported by the National Key Research and Development Program under Grant 2018YFC1315402.

∗Wenjing Gao and Yuanyuan Pei are co-first authors.

ABSTRACT The rapid diagnosis and surgical prediction of necrotizing enterocolitis (NEC) remain a
challenge because its complex pathogenesis has not been completely elucidated, and no single medical
examination is specific for diagnosing NEC. Artificial intelligence (AI) has proven the robustness of
multivariate analysis and been widely used in the diagnosis of complex diseases in the past decade. In this
paper, a newmultimodal AI system including feature engineering, machine learning (ML), and deep learning
(DL) was constructed based on abdominal radiographs (ARs) and clinical data. A total of 4,535 ARs from
1,823 suspected NEC patients were analyzed by transfer learning, and then medical images and clinical
parameters from 827 suspected NEC patients were used to train, validate, and test the AI system. Our results
demonstrated that the system was effective in diagnosing NEC. In addition, the clinical datasets obtained
one week before surgery from 379 NEC patients were studied by the multimodal AI system, and the results
showed that it was capable of predicting which NEC patients required surgery. We compared the results
in external test sets with those made by clinicians and found that the diagnostic and surgical predictive
ability of the AI system was equivalent to that of experienced clinicians. This multimodal AI system can
help clinicians improve diagnostic efficiency, reduce the number of missed diagnoses, and facilitate early
diagnosis and treatment to prevent disease progression or even death.

INDEX TERMS Abdominal x-ray, AI, diagnosis, multimodal, necrotizing enterocolitis, surgery.

I. INTRODUCTION
NEC is one of the most devastating gastrointestinal emer-
gencies in the neonatal care unit [1]. Usually, there are no
clinical warning signs for acute NEC. It is estimated that
up to 50% of patients need surgical intervention, 46.5% of
patients do not survive after surgery, and 20% to 50% of
the survivors develop long-term sequelae, such as recurrence,
intestinal stenosis, short bowel syndrome, slowed growth,
and neurodevelopmental disorders [2]. NEC consists of a
group of complex multivariable diseases that are difficult to
describe, detect, and diagnose [3], [4]. Numerous interna-
tional groups have recently highlighted NEC as a research
priority and have made efforts to move the field forward
[1], [5], [6]. Despite the intense research performed in this
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field, an effective method for the rapid diagnosis and the
prediction of surgical indications of NEC has not been found.
In 2020, Hooven et al. [7] predicted NEC using microbiome
data, achieving a precision-recall AUC value of only 0.7.
Shi et al. [4] showed that the prediction and diagnosis of NEC
were satisfactory in the Era ofMetabolomics and Proteomics,
despite the small quantity of training data [4]. Additionally,
van Druten et al. [2], [3], [8] diagnosed NEC based on
abdominal X-rays with artificial intelligence, but the results
were not expected through a single medical examination.
Multimodal models represent attempts to effectively simplify
the complexity of multiple-factor diagnosis [9]. This study
aims to establish a new multimodal AI system for NEC
patients. Combined with feature engineering, a multimodal
AI system was constructed via machine learning (ML) and
deep learning (DL) models in series. The system was eval-
uated with a dataset derived from 2,245 NEC patients from
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Guangzhou Women and Children’s Medical Center, China,
collected from 2011 to 2020. Then, we carried out a series
of experimental studies. The diagnosis of NEC is heavily
dependent on abdominal radiography (AR) [10]. Therefore,
in the first stage, 4,535 ARs of 1,823 suspected NEC patients
were collected and divided into a training dataset, a validation
dataset, and an internal test dataset. Then, three DL models
were made computationally effective with the training and
validating ARs. We selected the best model, SENet-154, by
comparing the AUC value, sensitivity, specificity, precision
and accuracy of the three models in the internal test dataset.
In the second stage, the SENet-154 model was trained and
validated with the clinical data of 827 suspected NEC patients
and 379 confirmed NEC patients obtained one week before
surgery, respectively. The radiomics signatures of the ARs
were obtained by transferring the learning and fine-tuning
the model parameters, and then the top-performing signif-
icant features were selected by mRMR. In the third stage,
the light gradient boosting machine (LightGBM) classifier
was used to predict the diagnosis and surgical eligibility
of NEC in combination with the radiomics signature and
clinical parameters (Fig. 2). The model captured valuable
information from ARs that cannot be detected by the human
eye. Afterward, thermographic images were generated, which
improved the value of the diagnosis and prediction of surgical
eligibility for NEC. Diagnostic value: AUC 0.9337 (95%
CI: 0.9028, 0.9646), sensitivity 0.9427 (95% CI: (0.9138,
0.9716)), specificity 0.8246 (95% CI: (0.7774, 0.8718)), pre-
cision 0.9476 (95% CI: (0.9199, 0.9753)), accuracy 0.9157
(95% CI: (0.8812, 0.9502)). Surgery-predictive value: AUC
0.9413 (95%CI: 0.8998, 0.9828), sensitivity 0.8500 (95%CI:
0.7869, 0.9131), specificity 0.9535 (95%CI: 0.9163, 0.9907),
precision 0.9714 (95% CI: 0.9419, 1.0000), accuracy 0.8861
(95% CI: 0.8300, 0.9422). Our multimodal AI system was
comparable to experienced clinicians in diagnosing and pre-
dicting the surgery eligibility for NEC. This study can be used
as an auxiliary means for the clinical diagnosis and surgical
eligibility prediction of NEC.

II. MATERIALS AND METHODS
A. DATASETS
1) SETTINGS AND PARTICIPANTS
This was a retrospective study on data obtained from hospi-
talized infants in GuangzhouWomen and Children’s Medical
Center, China, betweenDecember 2011 andMarch 2020. The
study was approved by the Ethics Committee of Guangzhou
Women and Children’s Medical Center (No. GO-2016–017)
and conducted in accordancewith the ethical guidelines of the
Declaration of Helsinki of the World Medical Association.
Informed written consent was obtained from all participants
at the initial hospital visit.

We collected 2,245 consecutive infants with abdomi-
nal distention, bradycardia, lethargy, temperature instability,
emesis, bloody stool, feeding intolerance, and gastric reten-
tion. The gold-standard set was a diagnosis of medical NEC

and surgical NEC as defined by senior pediatricians and pedi-
atric surgeons according to Bell’s staging criteria [11] modi-
fied by Walsh and Kliegman [12]. The criteria for screening
eligible infants are summarized in Table SI [13], [14]. Radi-
ological signs were the primary criteria for the diagnosis and
surgical eligibility prediction of NEC, and clinical parame-
ters (abdominal signs and clinical and laboratory findings)
were the secondary criteria. One primary and one secondary
sign were used to define NEC/surgical NEC. The non-NEC
group presented with intestinal dysmotility, gastroesophageal
reflux, megacolon, intestinal malrotation, intestinal atresia,
lactose intolerance, meconium ileus, and intestinal stenosis,
which were diagnosed based on standard clinical and radio-
logical results. Patients were excluded if they presented with
spontaneous intestinal perforation (n = 7) and congenital
malformations in other organs (n = 4). Accordingly, 2,234 of
the 2,245 patients remained, with one group including 1,201
non-NEC and 622 NEC patients and an independent group
of 411 NEC patients that included surgical NEC and medical
NEC. For the first group, patients were excluded due to a
lack of complete clinical parameters or poor diagnostic image
quality. Finally, there were 827 patients in the first group, with
342 NEC (1,234 records) and 485 non-NEC (758 records)
patients with a complete set of ARs and clinical parameters.
Likewise, in the independent group of 411 NEC patients,
in which 379 patients had complete case data and were thus
included, 268 patients (with 268 records) had received con-
servative treatment without surgical intervention, while the
remaining 111 patients (226 records) had undergone invasive
open surgery (Fig. 1).

2) DATA DEFINITIONS
The collected NEC and non-NEC datasets included clini-
cal patient information obtained between diagnosis and dis-
charge from the NICU. Preoperative data were used to predict
surgical probability. All data were reviewed by two board-
certified pediatricians (L.J.J. and C.J.L. each with 7-14 years
of experience). ARs were obtained from the infants every
6 hours. All ARs were generated using a CanoScan LiDE
700F (Canon, Beijing, China). The ARs were extracted from
the picture archiving and communication system. For each
infant in the NEC and non-NEC groups, three to six rep-
resentative radiomics signatures (Table SII) were selected
for image analysis. For surgical NEC patients, one to three
AR images were collected from each patient. For medical
NEC patients with multiple samples, a single AR image was
randomly selected. In addition to ARs, clinical parameters
previously reported in the literature [3], [7], [13], [15]–[17]
were also extracted. A total of 23 clinical parameters that
included demographic data (age, birth weight, gestational
age, etc.), vital signs and clinical symptoms (heart rate, vomit-
ing, bloody stool, abdominal distention, etc.), and laboratory
parameters (hemoglobin, CRP, WBC, etc.) obtained during
hospitalization were included. All clinical parameters were
collected within 24 hours before each AR examination. Indi-
vidual patient data were labeled NEC/surgical NEC when
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FIGURE 1. The flowchart shows study case selection according to exclusion criteria to diagnose NEC and predict NEC.

the ARs and their corresponding clinical parameters met the
diagnostic criteria.

B. METHODS
1) EXPERIMENTAL PROCEDURE
In this paper, we proposed a multimodal AI system to
address NEC diagnosis and surgical indication prediction.
Fig. 2 shows a flowchart of our experiments, which can be
divided into three stages:

1) Data preprocessing, transfer learning and best AR-
DL model selection: Three DL models, ResNesT-50,
SENet-154, and SE-ResNet were pretrained on Ima-
geNet datasets, the 4,535 ARs of 1,823 suspected NEC
patients were standardized and augmented, and then
transfer learning was performed with the 4,535 ARs and

the three models. The best model was SENet-154 as
evaluated by five key indicators (AUC, sensitivity, speci-
ficity, precision, accuracy).

2) Selection of the radiomics characteristics of the ARs:
SENet-154 was trained and tested with the data from
the diagnosis group (1,992 ARs of 827 patients) and
the surgical indication prediction group (494 ARs
of 379 patients), and then the radiomics characteristics
of the penultimate layer were obtained to determine
the top variables through mRMR (minimum redundancy
maximum correlation).

3) Establishment of a multimodal AI system and external
validation (comparison between multimodal AI system
and clinicians): A multimodal AI system based on ARs
and other clinical parameters was constructed by Light-
GBM with the data from the diagnosis and surgical
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FIGURE 2. Experimental flow. a. Data preprocessing, transfer learning and best AR-DL model selection. b. Selection of radiomics characteristics
of ARs. c. Establishment of the multimodal AI system and external validation (comparison between the multimodal AI system and clinicians).
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FIGURE 3. Comparison of the classification performance in identifying NEC and predicting surgical NEC. Performance is reported for three sets of
features (clinical parameters, ARs, and both ARs and clinical parameters). a. Results for NEC diagnosis in test datasets with suspicious patients
presenting with similar clinical symptoms of NEC. b. Results for differentiating medical NEC and surgical NEC in validation datasets.

indication prediction groups. As shown in Fig. 3, the AR
dataset, the clinical parameter dataset, and the combined
AR and clinical parameter dataset were run on the inte-
grated AI system, and the results demonstrated that the
multimodal AI system was superior to the model based
on clinical data alone. Finally, four indicators (sensitiv-
ity, specificity, precision, and error rate) were used as
evaluation criteria for external verification.

The results showed that the diagnostic and surgical predic-
tion ability of the multimodal AI system was equivalent to
that of experienced clinicians.

When NEC is diagnosed based on the modified Bell stage
criteria, the label of NEC is set to 1, whereas the label of
non-NEC is set to 0. For NEC patients, NEC is diagnosed
as surgical NEC based on the gold standard, in which case
the label is 1; otherwise, it is 0.

2) DATA PREPROCESSING
AR preprocessing: The ARs were converted into portable
network graphics format and resized to 224 × 224 pixels
to fit a deep convolutional neural network. The ARs were
standardized by z-score normalization (subtraction by the
mean intensity value and division by the standard deviation of
intensity values) to reduce the effect of different reconstruc-
tion parameters. During the training portion, augmentation,
including width/height shift, horizontal/vertical flip, rotation,
brightness and contrast changes, and zoom, was used to
expand the training dataset and improve the generalizability
of the model.

This diagnostic study followed the 2015 Standards for
Reporting of Diagnostic Accuracy (STARD). All ARs of
the 1823 suspected patients were randomly assigned into
1 of the following three datasets: (1) the training dataset,

comprising 1,312 patients (3,206 ARs), used to optimize
the network weights; (2) the validation dataset, comprising
328 patients (910 ARs), used to optimize the hyperparame-
ters; and (3) the internal test dataset, comprising 183 patients
(419 ARs). The best DL model was chosen by transfer
learning. Then, the DL model was trained and tested in the
dataset comprising 827 patients with complete information,
and the best performance DL model was fine-tuned using the
pretrained weights. The 827-patient dataset were divided into
two nonoverlapping datasets. The first, the training dataset,
comprised 88% of the data (1,743 records of 728 patients with
AR and clinical parameter data). This training set was used to
update the DL system parameter. The second, the test dataset,
including the remaining 12% (249 records of 99 patients with
AR and clinical parameter data). The test dataset was used for
independent testing. Because no hyperparameter optimiza-
tion was performed, there was no need for a separate valida-
tion set. Finally, 80% of the dataset (371 records of 303 NEC
patients with full AR and clinical parameter data) was used to
train the surgery predicting ability of the model, and 20% of
the dataset (123 records of 76 NEC patients encompassing
ARs and clinical parameters) were applied as a validation
dataset to select the surgery predictive hyperparameters.

If clinical parameters were missed by over 50%, the clini-
cal parameters were excluded from the study. The remaining
missed values were handled by the LightGBM classifier,
which assigns them to the branch of a split that minimizes
the loss [18].

3) AR DEEP LEARNING MODEL SELECTION
The ARs were loaded onto a computer with a Linux oper-
ating system (Ubuntu 16.04.4; Canonical, London, Eng-
land) and a Torch deep learning framework (Version: 1.4.0;
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https://pytorch.org/), a graphics processing unit acceleration
operated on CUDA 10.2/cuDNN 7.6.0 (Nvidia Corporation,
Santa Clara, Calif), an NVIDIA Quadro M6000 24 GB GPU
for training and testing, and 256 GB RAM.

Three different effective attention DL models were
evaluated in this study. Split-attention networks [19],
squeeze-and-excitation networks [20] and SE-ResNet (a
squeeze-and-excitation network used directly with the resid-
ual network) [20]. The three different DL models for feed-
forward convolutional neural networks improve the learned
feature representations to boost performance across image
classification. Given an input feature map, the attention
module sequentially infers attention maps. ResNeSt is a
modular split-attention block, and we stacked these blocks
in the style of ResNet-50 (ResNeSt-50). The squeeze-and-
excitation (SE) module is an architectural unit designed
to improve the representational power of a network by
integrating SE blocks with a modified ResNeXt to form
a SENet-154 network (SENet-154). The SE module is a
lightweight and general module that can be seamlessly inte-
grated into residual networks with 50 layers and negligible
overhead and is end-to-end trainable along with base CNNs
(SE-ResNet-50).

First, the DL models were pretrained on 1.2 million
everyday color images from ImageNet (http://www.image-
net.org/) that consisted of 1,000 categories (referred to as
pretrained). For medical image analysis, the transfer learning
method was implemented to identify discriminate radiomics
signatures. All layers in each DL model except the last layer
were inherited from the pretrained DL model for fine-tuning.
Utilizing the 4,535 ARs from the 1,823 suspected patients,
the best DL model was selected by evaluating the perfor-
mance in the internal test datasets.

The three DL models consist of their intrinsic structures
and one fully connected layer. A batch normalization layer
was applied prior to the fully connected layer, and a softmax
activation layer was connected to the fully connected layer,
which was used to yield the prediction probabilities of the
nodule candidates. To reduce the possibility of overfitting
during the training process, it was necessary to take several
measures. (1) Regularization: L2 regularization was used,
which added a cost to the loss function of the network for
large weights. As a result, a simpler model that was forced
to learn only the relevant patterns in the training datasets was
obtained. (2) Dropout: A dropout layer was included after the
batch normalization layer with dropout probability. (3) Early
stop: Training was stopped if no improvement was seen in the
validation loss following a decrease in the learning rate.

4) DL FOR CLASSIFICATION AND RADIOMICS SIGNATURE
SELECTION
After transfer learning, of the 4,535 ARs of the 1,823 sus-
pected NEC patients used to select senet-154, 1,992 ARs
(827 patients) were used for NEC diagnosis and 494 ARs
(379 patients) were used for surgery prediction, after which
the model was fine-tuned. Finally, the features of the penul-

timate layer of the network structure were extracted as
radiomics features. mRMR is a feature selection method.
For continuous features, the F-statistic of mRMR was used
to calculate the correlation with class (correlation), and the
Pearson correlation coefficient was used to calculate the
correlation between features (redundancy). Previous studies
have shown that ranking variables may help to improve the
performance of the model. In this study, the mRMR algo-
rithm was applied to select strong discriminative radiomics
features. The minimum redundancy and maximum corre-
lation were used for feature selection to identify the top
variables [21].

5) ML ON RADIOMICS SIGNATURES AND CLINICAL
PARAMETERS
LightGBM is an ML classifier and an open-source
Python implementation of a gradient boosting frame-
work (https://lightgbm.readthedocs.io/en/latest/). LightGBM
mainly consists of two algorithms: the gradient-based one-
side sampling (GOSS) algorithm, which excludes most sam-
ples with small gradients from the perspective of sample
reduction and uses the remaining samples to calculate infor-
mation gain; the exclusive feature bundling (EFB) algorithm,
which bundles mutually exclusive features from the per-
spective of feature reduction; and a greedy algorithm with
a constant approximation ratio, which is used to solve the
problem. The LightGBM is a tree model, as each node in
the tree can be converted to IF-THEN rules that are easily
understandable, and can significantly outperform the other
tree learning classifiers, such as extreme gradient boosting
(XGBoost) and random forest [22]. Many data scientists
have applied LightGBM to solve classification problems
and have achieved excellent results. LightGBM has also
been successfully used in medical studies [18]. Radiomics
signatures and clinical parameters were used for diagnosing
NEC and predicting surgical NEC with LightGBM as the
classifier.

6) FEATURE IMPORTANCE
We implemented LightGBM to interpret the effects and rel-
ative contributions of the radiomics signatures and clinical
parameters on the diagnosis and prediction models. The
LightGBM classifier has the ability to evaluate the impor-
tance of features. Feature importance refers to a class of
techniques for assigning scores to be input to a predictive
model that indicates the relative importance of each feature.
In LightGBM, feature importance is calculated as the number
of times the feature is used in a model. A total of 58 feature
importance values for diagnosing NEC and 49 feature impor-
tance values for predicting surgical NEC were obtained and
ranked.

7) STATISTICAL ANALYSIS
The associations between clinical parameters and
NEC/surgical NEC were evaluated with the independent
Mann-Whitney U test for continuous variables and the
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chi-square test for categorical variables. Two-sided p < 0.05
was considered to indicate a statistically significant dif-
ference. The predictive power and diagnostic performance
indicators were measured using the area under the receiver
operating characteristic curve (AUC), sensitivity, specificity,
and precision, and accuracy was calculated from the confu-
sion matrix to quantify the performance of the proposed clas-
sification algorithms. Youden’s index was used to determine
the optimal threshold. Since the number of reliably labeled
NECs was very limited, we can estimate the 95% confidence
interval (95% CI) for the performance indicators using the
standard approach for computing the confidence interval for
proportions [21] by using the following formula in Python:

CI = P̂± Z ∗

√√√√ P̂
(
1− P̂

)
N

where z denotes the significance level of the confidence inter-
val (the number of standard deviations of the Gaussian distri-
bution). Here, we used a 95% confidence interval, for which
the corresponding value of z is 1.96. P̂ is the proportion.

8) ACTIVATION MAPPING
Convolutional layers naturally retain spatial information that
is lost in fully connected layers, and we expected the last con-
volutional layers to have the best compromise between high-
level semantics and detailed spatial information. To generate
activation maps, we focused on explaining the output layer
decisions only. Grad-CAM uses the gradient information
flowing into the last convolutional layer of the CNN to assign
importance values to each neuron for a particular decision of
interest and generate activation heatmaps (gradients) during
backpropagation [23]. The heat maps were then normalized
and enlarged to match the input image size, thus indicating
where the DL model was focused. The blue and red colors
on the heat maps indicate lower and higher activation values,
respectively. PyTorch tool kits and Python 3.7 were required
to implement this model.

9) EXTERNAL VALIDATION
The external test set included 25 patients (11 with medical
NEC, 7 with surgical NEC and 7 with non-NEC) and was
used to compare the performance of the AI system with
that of clinicians with different levels of experience in both
making a binary decision between NEC and non-NEC and
in predicting the NEC patients who required surgery. Each
patient in this set had only one record. The patients were
anonymized and independently presented to 2 senior clini-
cians (10-20 years of work experience), 2 junior clinicians
(3-10 years of work experience), and 1 resident (2 years
of work experience). These clinicians were invited to read
the same ARs and clinical parameters as those used for the
AI system. The analysis was performed under double-blind
conditions.

III. RESULTS
A. STUDY ON THE NEC COHORT
A total of 827 patients (median age 2.00 days (0.00, 12.00)
[IQR]) were included; 342 patients (41.35%) were positive
for NEC (median age 0.00 days (0.00, 6.00) [IQR] days),
and 485 (58.65%) were categorized as non-NEC (median age
7.00 days (2.00, 20.00) [IQR]). The clinical parameters of the
patients with NEC and non-NEC are shown in Table 1. Eigh-
teen of the 23 clinical parameters were significantly different
between the NEC group and the non-NEC group (P < 0.05),
whereas sex, gastric residual, vomiting, abdominal disten-
tion, and lethargy were similar. A total of 111 patients
(median age 0.00 days (0.00, 10.75) [IQR]) underwent
surgery, and 268 patients (median age 0.00 days (0.00,8.00)
[IQR]) underwent conservative treatment (Table 2). There
were no significant differences in 14 of the variables between
the surgical and conservative groups. However, heart rate,
hemoglobin, percentage of neutrophils, CRP, gestational age,
decreased bowel sounds, mechanical ventilation, tenderness,
and lethargy were significantly different.

B. DL MODEL PERFORMANCE AND PARAMETER
OPTIMIZATION
Manipulation of some hyperparameters produced significant
changes in DL model performance, and other parameters
produced reasonable models over a variety of settings. The
three DL models’ performances and architectures are shown
in Supplemental Table SIII. As mentioned earlier, we focused
on three popular attentional DLmodels: ResNeSt-50, SENet-
154 and SE-ResNet-50. These models predicted a probability
score for each image and the likelihood of an AR being
detected as NEC. By comparing this probability with the cut-
off threshold, we can derive a binary label showing whether
the image represents NEC. An ideal model should predict
all NEC samples with a probability close to 1 and all non-
NEC samples with a probability close to 0. All the models
achieved very promising results on the internal test dataset,
with SENet-154 achieving optimal diagnostic power, with an
AUC value of 0.8531 (95% CI: 0.8192-0.8870), a sensitivity
of 0.6881 (95% CI: 0.6437-0.7325), a specificity of 0.7742
(95% CI: 0.7342-0.8142), a precision of 0.7394 (95% CI:
0.6974-0.7814) and an accuracy of 0.7327 (95% CI: 0.6893,
0.7760) in the internal test dataset. Therefore, SENet-154 was
finally chosen as the best transferred network model for the
subsequent analyses.

During the training, the Adam optimizer with initial learn-
ing rate= 0.008, beta_1= 0.9, and beta_2= 0.999 was used;
the learning rate was stepped down in plateau fashion by a
factor of 0.9 every 1 epoch. We applied weight decay with a
value of 0.01 and dropout rate of 0.55.

C. RESULTS WITH ON DIFFERENT DATASETS
In the diagnosis of NEC, 18 clinical parameters were found
to be significantly correlated with NEC in the univari-
able analysis, and the top 40 radiomics signatures with
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TABLE 1. Clinical characteristics of NEC and non-NEC patients.

the highest mRMR ranks were selected. The multimodal
model (cutoff: 0.4) achieved an AUC of 0.9337 (95% CI:
0.9028, 0.9646). The AR-alone model (cutoff: 0.8) achieved
an AUC of 0.8757 (95% CI: 0.8347, 0.9166), and the
clinical parameters-alone model (cutoff: 0.3) achieved an
AUC of 0.9030 (95% CI: 0.8662, 0.9398). By adding
clinical parameters to the AR-based radiomics signatures
in the multimodal model, the AUC improved by 5.80%,
sensitivity improved by 8.85%, specificity improved by
1.76%, precision improved by 1.05%, and accuracy improved
by 7.23%.

In predicting surgical necessity, 9 clinical parameters with
p < 0.05 in the univariable analysis were retained (Table 2),
and 40 radiomics signatures were selected using the mRMR
method. The multimodal model (cutoff: 0.8) achieved an
AUC of 0.9413 (95% CI: 0.8998, 0.9828) by using both ARs
and clinical parameters, 0.8198 (95% CI: 0.7519, 0.8877) by
using ARs alone (cutoff: 0.1), and 0.9061 (95% CI: 0.8546,
0.9576) by using clinical parameters alone (cutoff: 0.5). The
addition of clinical parameters to the AR-based radiomics
signatures improved the AUC obtained by the multimodal
model by 12.15%. The specificity, precision, and accuracy
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TABLE 2. Clinical characteristics of patients with definite medical NEC or surgical NEC.

increased by 16.28%, 8.53%, and 4.06%, respectively (Fig. 3
and Table 3).

D. ACTIVATION MAPPING OF DL NETWORKS
To determine regions within the ARs responsible for the
network predictions, we mapped the network’s activation
maps over the final convolutional layer (Fig. 4). This analysis
allowed us to highlight the relevant regions (both lesion core
and perilesional area) with the greatest impact on predictions.
We observed that the network tended to fixate on the ileum,
colon and jejunum. Most contributions to the predictions
came in the form of large uninterrupted areas of relatively

lower AR density—spanning regions within and beyond the
lesion. Areas with higher AR density, however, contributed
the least to the predictions. We also observed that high-
density bone tissue was disregarded, as it was likely to be
found in most images and was thus noninformative. This
visual mapping demonstrates that attention regions within
and without the lesion were both crucial for characterization
and eventual prediction.

E. FEATURE IMPORTANCE
We established a multimodal model integrating 18 clinical
parameters and 40 radiomics signatures. The 40 radiomics
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TABLE 3. Performance comparison of multimodal data in diagnosing NEC and predicting surgical necessity.

FIGURE 4. Activation mapping by the DL network. Visual highlights of the
most ‘‘important’’ regions within the input image with the greatest
contribution to maximizing the outputs of the SENet-154 final
diagnosis or prediction layer are shown. Rows represent 4 randomly
selected samples. The first column shows the original ARs. The second
column shows annotations with different abdominal regions, labeled
with serial numbers. Column 3 represents the activation heatmaps, which
provide a better visual reference.

signatures were identified as the most significant diagnos-
tic contributor, with a contribution of 28.84%. In addition,
demographic parameters, such as gestational age, age, and
birth weight, also contributed to the diagnosis of NEC,

with a contribution of 17.30%. As expected, inflamma-
tory markers (CRP, percentage of neutrophils, WBC, PLT,
hemoglobin) contributed 25.03%. Interestingly, respiratory
function (breath andmechanical ventilation) parameters were
also found to be related to NEC. The reason may be
that patients lacking oxygen often have poor overall health
(Table SIV and Fig. 5(a)).

We also computed importance for the features involved
in predicting NEC surgery based on 9 clinical param-
eters and 40 radiomics signatures. Radiomics signatures
remained the most important contributor, but their contribu-
tion increased to 51.29%. Inflammatory markers comprising
CRP, hemoglobin, percentage of neutrophils but excluding
WBC and PLT parameters were also important, but their
contribution decreased to 23.53%, and intestinal symptoms
bloody stools and decreased bowel sounds) made no contri-
bution. The patients diagnosed with medical NEC or surgical
NEC shared similarities in the intestinal symptoms they pre-
sented (Table SV and Fig. 5(b)).

F. COMPARISON AND VALIDATION OF THE DIAGNOSTIC
ABILITY OF THE AI SYSTEM
We further evaluated the strengths and weaknesses of the
multimodal model with respect to clinicians utilizing con-
fusion matrices (Fig. 6). The receiver operating character-
istic curve and diagnostic and predicted performance of the
multimodal model and clinicians in an external validation
set are illustrated in Fig. 6 and Tables SVI and SVII. These
results demonstrated that the multimodal model performed
significantly better than 3 (2 years and 3–10 years of expe-
rience) clinicians and senior clinicians with 10–20 years of
experience.

In diagnosing NEC, the multimodal model demonstrated
a senior clinician-level performance, with an AUC of 0.98,
a sensitivity of 1.00, a specificity of 0.86, and precision
of 0.95. The overall accuracy of the multimodal model was
0.96, while that of the best-performing clinician, who had
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FIGURE 5. Illustration of features contributing to diagnosing NEC and predicting surgical eligibility. (a) The relative contributions of
ARs and clinical parameters in identifying NEC. (b) The relative contributions of ARs and clinical parameters in predicting surgically
eligible NEC. The larger the feature importance value is, the greater the importance of the variable to the model.

10–20 years of experience, was 0.86. In predicting surgical
NEC, the multimodal model was superior to the two senior
clinicians with 10-20 years of work experience, the two
junior clinicians with 3-10 years of work experience, and the
residents with 2 years. The multimodal model achieved an
AUC of 0.90, a sensitivity of 0.86%, a specificity of 0.91%,
a precision of 0.86%, and an accuracy of 0.89%.

IV. DISCUSSION
A. PREDICTIVE FEATURES
Our multimodal AI system proved to be accurate in the
diagnosis and surgical eligibility prediction of NEC. In a
recent multispecialist survey, Ahle et al. [24] reported 90%
agreement in the value of ARs for confirming an NEC
diagnosis, providing guidance in decisions on surgery and
abdominal radiography as the first-choice treatment modal-
ity and the most important radiographic signs, respectively.
CRP, gestational age, hemoglobin, percentage of neutrophils,
and mechanical ventilation appeared in both multimodal AI
systems for detecting NEC and predicting the surgical form
of the disease. These five clinical parameters delineate a
distinct subset of NEC in terms of surgical management.
Pourcyrous et al. [25] concluded that CRP becomes abnor-
mal in both stage II and stage III NEC. In infants with NEC,
persistently elevated CRP after initiation of appropriate med-
ical management suggests associated complications that may
require surgical intervention. D’Angelo et al. [10] reported
that the NEC group had a lower gestational age than the non-
NEC group. Preterm newborns have many intestinal vulner-
abilities that permit microbial pathogens to invade tissue and
may cause bowel perforation and even death. Cai et al. [26]
analysis revealed that a decrease in hemoglobin was a risk
factor for NEC. Here, we found that an increased percentage
of neutrophils was correlated with NEC and surgical NEC,

and increased mechanical ventilation was related to NEC,
while decreased mechanical ventilation was associated with
surgical NEC. D’Angelo et al. [10] also showed that several
biochemical alterations, such as raised or depressed WBCs
and thrombocytopenia, can be observed in infants affected by
NEC.

B. COMPARISONS WITH PREVIOUS MODELS
Many studies have described several potentially use-
ful biomarkers, isolated largely from serum, stool, and
urine samples, for discriminating NEC and surgical NEC.
Cakir et al. [27] estimated the predictive value of endocan
and interleukin (IL)-33 biomarkers using statistical analyses.
They found that the serum levels of these biomarkers were
significantly higher in the NEC group than in the control
group on the 1st, 3rd, and 7th days. Serum endocan and
IL-33 levels gradually increased in patients who underwent
surgery. Heath et al. [14] also studied biomarkers in NEC and
found that high amounts of intestinal alkaline phosphatase
(IAP) in stool and low IAP enzyme activity were associated
with a diagnosis of NEC and may serve as useful biomarkers
for the disease. Ng et al. [28] discovered that specific circulat-
ingmiR-1290 biomarkers provide the greatest diagnostic use-
fulness for identifying both mild medical and severe surgical
NEC. Combined with C-reactive protein, these biomarkers
achieved a sensitivity of 0.83, a specificity of 0.96, a positive
predictive value of 0.75, and a negative predictive value of
0.98. Ng et al. [29] combined gut barrier proteins, liver fatty
acid-binding protein (L-FABP), intestinal fatty acid-binding
protein (I-FABP), and trefoil factor 3 (TFF3) biomarkers
and the LIT score to differentiate NEC and identify the
most severely affected surgical NEC. Median values of the
biomarkers and the LIT score in the NEC group served as
cutoff values for identifying NEC and achieved a specificity
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FIGURE 6. Confusion matrices for diagnosing NEC and predicting surgical NEC for the AI system and individual clinicians.

of 95% or more and a sensitivity of 50%. The median LIT
score of 4.5 achieved a sensitivity and specificity of 83% and
100%, respectively, in predicting NEC. Although biomarkers
are powerful for detecting NEC and predicting surgical NEC,

their analysis is expensive and time consuming. No biomark-
ers have been identified to prospectively diagnose NEC and
predict surgical NEC. Therefore, it is challenging to establish
the biological significance of biomarkers.

VOLUME 9, 2021 51061



W. Gao et al.: Multimodal AI System for the Rapid Diagnosis and Surgical Prediction of NEC

FIGURE 7. Comparison between the AI system and five clinicians of different experience levels in binary
classifying NEC versus non-NEC (a, b) and surgical NEC versus medical NEC (c, d).

Previous studies have applied ML models to aid in the
diagnosis of NEC. Mueller et al. [30] developed an algorithm
using artificial neural networks (ANNs) to predict prema-
turely born infants at the highest risk of NEC. Small ges-
tational age (SGA) and artificial ventilation were the first
and second most useful among all 57 variables included
for the ANN. As predictive tools, the ANNs provided an
indication for the relative importance of the 57 variables in
the final decision-making. Ntonfo et al. [31] presented a
novel approach to the early diagnosis of NEC through thermal
image analysis. Preliminary results showed that IQR and
kurtosis measures were good discriminants in the detection
of NEC.

Despite ARs or clinical parameters being the primary
evidence for the disease and NEC diagnoses requiring all-
sided information, there are no existing studies that have
combined ARs and clinical parameters as two modalities.
Unlike traditional methods, the proposed multimodal AI sys-
tem combines different data modalities with the LightGBM
classifier. The LightGBM classifier is based on decision tree
algorithms and is used for variable ranking and classification.
From the combined information, the LightGBM classifier
not only quantified the feature importance of the clinical
parameters part and the 40 selected radiomics signatures

but also classified and determined the surgical eligibility
of NEC.

C. MODEL INTERPRETATION
One disadvantage of DL is that the model usually runs as a
black box. However, it is necessary for clinicians to under-
stand the reasons why a model makes such a prediction in the
clinic, especially when timely detection is necessary. Grad-
CAMwas used to produce the attention map highlighting the
important regions in the ARs for diagnosing the target object
(NEC or non-NEC) and histopathologic features.

D. LIMITATION
The multimodal AI system should be further improved by
considering genetic information, microbiome data, and the
numerous altered biochemical parameters missing in this
study. Indeed, Hooven et al. [7] used clinical and microbiome
data and achieved an AUC above 0.90, with 75% of dominant
predictive samples for NEC-affected infants identified at least
24 hours prior to disease onset. Due to the low number of
eligible patients and the small number of clinical parame-
ters, the AI system might not have yet achieved the best
performance, especially in distinguishing medical NEC and
surgical NEC. For the AI system to perform the real-time

51062 VOLUME 9, 2021



W. Gao et al.: Multimodal AI System for the Rapid Diagnosis and Surgical Prediction of NEC

diagnosis of NEC in a clinic, it needs to be evaluated in the
form of prospective trials. Should this happen, it would likely
lead to improved outcomes. Due to the limitation of the ARs,
the selected radiomics signatures may not reflect all cases
completely. Further studies could involve the use of images
from different manufacturers.

V. CONCLUSION
In this paper, we identified the significant features of ARs
and clinical data that were closely related to the diagnosis
and surgical prediction of NEC with feature engineering
using artificial intelligence. Then, a multimodal AI system
was established with ML and DL models in series. The AI
system was tested on a dataset derived from patients from
Guangzhou Women and Children’s Medical Center and ulti-
mately demonstrated favorable accuracy in diagnosing NEC
and predicting surgical NEC. After validation, the multi-
modal AI system proved to be a useful auxiliary diagnostic
tool for helping clinicians improve their efficiency and accu-
racy. Future work should entail the determination of charac-
teristic factors to improve the accuracy of the AI system and
supplement a prospective randomized case-control study on
the treatment of NEC.
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