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ABSTRACT With the rapid development of economy and technology, large-scale integrated energy buildings
account for an increasing proportion of urban load. However, the randomness of EV owner behaviors,
electricity price and outdoor temperature have brought challenges to the energy management of integrated
energy buildings. This paper proposes a stochastic dynamic programming-based online algorithm to address
the energy management of integrated energy buildings with electric vehicles and flexible thermal loads under
multivariate uncertainties. First, an online energy management framework is established, which is further
formulated as a multi-stage stochastic sequential decision-making problem. To address the complexities
of the problem, a novel stochastic dynamic programming is employed to develop a distribution-free,
computationally efficient, and scalable solution. By using extensive training samples, the algorithm is
trained offline to learn how to deal with multivariate uncertainties and get the approximate optimal solution,
which no longer depends on intraday forecast information. Numerical tests demonstrate the effectiveness
of the proposed algorithm compared with other online algorithms in terms of optimality and computation
efficiency.

INDEX TERMS Stochastic dynamic programming, online algorithm, energymanagement, integrated energy
building, multivariate uncertainties.

I. INTRODUCTION
Strengthening the connection between various energy sources
have become a necessary way for the power grids in the
world today [1]–[3]. It is worth mentioning that the integrated
energy system realizes integration optimization and multi-
energy complementation by fusing electricity, gas, heat, cold
and other energy forms. Furthermore, the integrated energy
building is an important application form of the integrated
energy system, which uses combined cooling, heating and
power (CCHP) as the key technology, and unites advanced
control, communication and management methods to build a
building energy management system (BEMS). In developed
cities, the load of large commercial and residential buildings
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exceeds 30% of the total load [4]. Therefore, exploiting the
potential of energy management represented by integrated
energy buildings is of great significance for improving elec-
tric power usage.

There have been numerous research on how to realize
the energy management of BEMS. Reference [5] presents
mathematical optimization models of residential energy hubs
with the objective functions of minimizing energy con-
sumption, total cost of electricity and gas, emissions, peak
load. Reference [6] proposes a residential energy hub model
and performs optimal load management, which realizes
co-optimization of electricity consumption costs and carbon
emissions reductions. Reference [7] describe a MILP model
for determining the optimal capacity and operation of seven
CCHP systems in the heating and cooling network of a res-
idential district. Reference [8] establishes the cooling and
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electricity coordinated MG day-ahead scheduling and real-
time dispatching model.

The above research provides a variety of methods to
promote the collaborative optimization of multiple energy
sources in integrated energy buildings, but how to obtain the
real-time optimal policy under multivariate uncertainties has
not been comprehensively studied. Reference [9] uses chance
constrained programming to solve the economic operation
problem of the building-level integrated energy system under
uncertain factors. Reference [10] verifies the effectiveness of
the robust index method to handle the uncertainties of cus-
tomer behavior and proves its application in load scheduling.

But most of the literature considers the influence of
randomness from the perspective of day-ahead scheduling
decision-making. Therefore, many literatures use model pre-
dictive control (MPC) to solve the problem of real-time
scheduling of integrated energy buildings considering ran-
domness. Reference [11] proposes an appliance scheduling
scheme for residential building energy management con-
trollers based on MPC method. Reference [12] uses MPC
method to handle the uncertainties and price variations, and
proposed a scenario-based branch-and-bound approach to
solve MES scheduling in urban buildings. Reference [13]
designs an MPC controller to reduces the operating and
maintenance cost in a district heating system, considering
TES and flexible loads. However, the MPC method is highly
dependent on the load and electricity price forecast accuracy.

In order to make up for the shortcomings of the
above-mentioned literature, this paper proposes a stochas-
tic dynamic programming-based online algorithm to address
the energy management of integrated energy buildings with
electric vehicles and flexible thermal loads under multivari-
ate uncertainties such as EV behaviors, load, and electric-
ity price. First, we establish an economic dispatch model
for integrated energy buildings, and transform the multi-
period decision-making problem into a recurrence problem.
To address the complexities of the problem, a novel stochastic
dynamic programming is employed to develop a distribution-
free, computationally efficient, and scalable solution. The
approximate form of the value function is constructed to
deal with the multivariate uncertainties of the building. The
value function is trained based on the SPAR algorithm, and
a convergent approximate value function is obtained. Put the
convergent approximation function into online operation, and
the real-time energy control problem of integrated energy
buildings is solved time by time.

Compared with existing research, the major contributions
of this paper are as follows:

• A novel stochastic dynamic programming is proposed
to address the complexities of the problem, and the
highly close-to-optimal online solution can be obtained
by using extensive training samples.

• Multivariate uncertainties are sufficiently considered,
and multiple flexible resources are jointly optimized in
the energy management of integrated energy buildings,

which is further formulated as a multi-stage stochastic
sequential decision-making problem.

• The proposed algorithm makes operators no longer rely
on intraday forecast information to make approximate
optimal decisions, which reduces the impact of multi-
variate uncertainties on energy management. Simulation
validates its better performance than MPC and Myopic
algorithm.

The rest of this paper is arranged as follows. Section I
introduces the integrated energy building operation frame-
work. In Section II, the economic dispatch model of the
building energy management system is established, and the
objective function with the maximum expectation of total
benefits considering multivariate uncertainties is constructed.
Section III introduces the proposed real-time energy man-
agement algorithm for integrated energy buildings, including
model conversion, processing and solution. Section IV sim-
ulates an example of a comprehensive energy building in the
south. Section V gives conclusions.

II. MODELING FOR INTEGRATED ENERGY BUILDINGS
A. THE FRAMEWORK OF INTEGRATED ENERGY
BUILDINGS
The operating framework of integrated energy building is
shown in Figure 1. The energy input of the building includes
the distribution network and natural gas station, while the
energy output contains the electrical load, heating load, and
cooling load. Electrical load contains basic load such as
drainage, office, lighting, elevator, etc. In addition, the build-
ing also includes CCHP, EV, and energy storage system
(ESS). The CCHP system in this paper consists of gas gen-
erator, heat recovery device, electric refrigerator, absorption
refrigerator, water storage tank, heat exchanger and so on.
The operation mode of ‘‘determining electricity by heat’’ is
adopted by CCHP. The operator of the building purchases
gas from the natural gas station to supply the gas turbine
with the aim of producing electricity. The wasted heat can
be used as a by-product to supply the heat load. ESS and EV
are power storage devices, which are chosen by the operator
to charge or discharge according to the current electricity
price and total load. The operator integrates various resources
of power supply, load and energy storage in the building,
aiming to realize the coordination of the three and meet the
needs of electricity, cooling and heating loads. At the same
time, the operator tries to reduce operating costs and improve
economic benefits.

B. ECONOMIC DISPATCH MODEL OF INTEGRATED
ENERGY BUILDINGS
1) CONSTRAINTS OF POWER BALANCE

PDNt + P
cchp
t +

NESS∑
i=1

PESSi,t = PCONt +

NEV∑
i=1

PEVi,t (1)

where PDNt is the active power transmitted from the distri-
bution network to the building at time t; Pcchpt is the power
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FIGURE 1. Framework of integrated energy buildings.

output of CCHP at time t; PESSi,t is the active output of ESS at
time t , which is positive when discharging and negative when
charging; PCONt is the electrical load except for EV at time t;
PEVi,t is the active load of EV at time t , which is positive when
charging and negative when discharging; NEV is the number
of EV and NESS is the number of ESS.

2) CONSTRAINTS OF ESS

Ei,t+1 =

Ei,t −
1
ηi
Pi,t Pi,t ≥ 0

Ei,t − ηiPi,t Pi,t < 0
(2)

Pi,t,min ≤ Pi,t ≤ Pi,t,max (3)

Ei,t,min ≤ Ei,t ≤ Ei,t,max (4)

where Ei,t denotes the energy of the i-th ESS at time t .
Pi,t is the power output of the i-th ESS at time t , which is
positive when discharging and negative when charging. ηi
is the efficiency of charging and discharging. Equations (3)
and (4) are the upper and lower limits of energy and power
respectively. Since the ESS cannot be charged and discharged
at the same time, equation (2) is replaced with the following
equation [14]:

Pi,t = P+
i,t
− P−

i,t

Ei,t+1 = Ei,t −
1
ηi
P+
i,t
+ ηiP−i,t

0 ≤ P+
i,t
≤ P+

i,max
, 0 ≤ P−

i,t
≤ P−

i,max

(5)

As the mathematical proof showed in [14], (2) and (5) are
equivalent only if equation (6) holds,

P+
i,t
• P−

i,t
= 0 (6)

That is to say, the optimal solution that satisfies the model
will automatically satisfy the complementary constraints (6)
that cause strong non-convexity.

3) CONSTRAINTS OF EV
As for a single EV, it is connected to the charging pile in the
parking lot of the building at tin and intends to leave at tout.

Assuming that the EV is charged with the maximum power
after it is connected to the charging pile, and is charged to the
desired power at tlimit. Then we define the upper boundary of
the energy to represent the power change curve during this
period. Assuming that after the EV is plugged in, the charg-
ing is delayed until the moment of departure just reaches
the user’s expected power value, then we define the lower
boundary of the energy as the power change curve during this
period. The upper and lower boundaries of energy reflect the
adjustable characteristics of the EV [15]. When tout > tlimit,
it means that this EV can be used as an adjustable load to
participate in BEMS scheduling, and only needs to meet
the power constraints and energy constraints requirements at
each time t [15], [16]:

Ei,t = η
∑t

k=tstart
Pi,k1t = Ei,t−1 + ηPi,k1t

Ei,tend,min = Ei,tend,max = Eexp
Ei,t,min ≤ Ei,t ≤ Ei,t,max

Pi,t,max = min(Pmax, (Ei,t,max − et−1)/η/1t)
Pi,t,min = max(0, (Ei,t,min − Ei,t−1)/η/1t)
Pi,t,min ≤ Pi,t ≤ Pi,t,max

(7)

where 1t is the time interval; Ei,t is the power of the i-th
EV battery at time t; Pi,k represents the charging power of
the i-th EV at time k; Ei,t,max and Ei,t,min are the upper and
lower boundaries of EV energy at time t respectively; Eexp is
the expected charging capacity of the user, which generally
represents the maximum capacity of the battery; Pi,t,max and
Pi,t,min are the upper and lower limits of EV charging power at
time t . Pmax indicates the maximum charging power affected
by the charging pile and the EV itself.
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With the aim of avoiding the emergence of ‘‘dimensional-
ity disaster’’, EVs are clustered once every t . Consider EVs
with the similiar departure time as the same cluster. The
charging model of a single EV in the cluster can be superim-
posed to obtain an equivalent cluster model. The correctness
of this method can be proved in the reference [15], [16].

4) CONSTRAINTS OF THERMOSTATICALLY CONTROLLED
LOAD
Assuming that the water tank is always in a state of full water,
and ignoring the dynamic process of water flow. Therefore,
the mathematical model of the water tank can be expressed
by equation (8), Twt

t+1 =
V cold
t

(
T cold

− Twt
t
)
+ VTwt

t

V
+
hwtt 1t
VCw

Twt
min ≤ T

wt
t ≤ T

wt
max

(8)

where V is the volume of the water tank; Cw is the specific
heat capacity of water; Twt

t is the temperature of the water
tank at time t; V cold

t and T cold
t are the volume and temperature

of injected cold water at time t respectively; hwtt is the thermal
power at time t; Twt

min and T
wt
max are the upper and lower limits

of the hot water temperature acceptable to the user.
On the other hand, the model of room temperature reg-

ulation system has been studied in reference [2], [3] and
[17], [18]. Some are first-order models, some are second-
order models, and some consider more factors, such as the
influence of adjacent rooms. In this paper, we use a simpli-
fied and common first order mathematical model of room
temperature regulation system on the basis of reference [17],
[18] to reduce the complexity of the problem. The model is
established discretely according to the heat balance principle,
the external temperature conditions and building parameters.
It can be expressed by equation (9) during cooling, and can
be expressed by equation (10) during heating.

T indoor
t+1 = T indoor

t e1t/RCair +

(
e1t/RCair − 1

)
×

(
T outdoor
t − RPret 1t

)
(9)

T indoor
t+1 = T indoor

t e−1t/RCair −

(
e1t/RCair − 1

)
×

(
T outdoor
t + Rhheatt 1t

)
(10)

T indoor
min ≤ T indoor

t ≤ T indoor
max (11)

where T indoor
t and T outdoor

t are the indoor temperature and
outdoor temperature respectively at time t; R the thermal
resistance of the house;Cair is the specific heat capacity of air;
Pret and hheatt are the cooling and heating power respectively
at time t; T indoor

min and T indoor
max are the upper and lower limits of

indoor temperature acceptable to users.

5) CONSTRAINTS OF CCHP
The CCHP system works in the mode of ‘‘heating to deter-
mine power’’ [19]. That is to say, according to the heating
load at each moment, the corresponding heat energy and the

corresponding proportion of electricity are output. Therefore,
its output electric power and thermal power should satisfy:{

Pcchpt = ηeQgasF
cchp
t

hcchpt = ηhQgasF
cchp
t

(12)

Furthermore, it’s described as follows:

hcchpt

ηh
=

Pcchpt

ηe
(13)

hcchpmin ≤ hcchpt ≤ hcchpmax (14)

where hcchpt , Pcchpt and Fcchp
t are the thermal power, electric

power and natural gas consumption of CCHP output respec-
tively at time t . ηe and ηh are the efficiency of electricity
and heat generation of the CCHP system respectively at time
t . Qgas is natural gas calorific value. hcchpmin and hcchpmax are the
upper and lower limits of the output power.

6) THE OBJECTIVE FUNCTION
The operator of integrated energy building aims to minimize
the total cost of energy management, including fuel costs
namely gas purchase costs, electricity purchase costs, uncom-
fortable costs of temperature control loads, and ESS operating
costs.

min
T∑
t=1

(
Cgas
t + C

DN
t + C

tcl
t +

ESS∑
i=1

CESS
i,t

)
(15)



Cgas
t = pgas · Fcchp

t

CDN
t = pDNt · P

DN
t

C tcl
t = pindoor

(
T indoor
t − T indoorset

)
+ pwt

(
Twt
t − T

wtset)
CESS
i,t = pESS(P+i,t + P

−

i,t )

(16)

where T is the total number of periods in the scheduling cycle;
Cgas
t is the fuel cost at time t; pgas is the gas price; CDN

t is
the electricity purchase cost at time t; pDNt is the electricity
price at time t; C tcl

t is the uncomfortable cost of temperature
control loads at time t; pindoor and pwt is the sensitivity
coefficient of indoor temperature and hot water temperature
[20]; T indoorset and Twtset is the indoor temperature and hot
water temperature set by user; CESS

i,t is operating cost of i-th
ESS at time t; pESS is the operating cost factor.

To deal with the multivariate uncertainties of electric vehi-
cles’ owners, electricity prices and outdoor temperature in
real-time energy management, the objective function should
be the maximize expected value of the total benefit in the
dispatch period:

maxE

{
−

T∑
t=1

Ct (St , xt ,wt)

}
(17)
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
Ct (St , xt ,wt) = Cgas

t + C
DN
t + C

tcl
t +

ESS∑
i=1

CESS
t

St = PCONt ,EEV
i,t,min,E

EV
i,t,max, p

DN

xt = PESS,+i,t ,PESS,-i,t ,PEVi,t , h
cchp
t ,PDNt

wt = wEVt ,wTt ,w
p
t

(18)

whereCt is the total cost at time t; St is the state of the system,
including load power, the upper and lower boundaries of the
EV cluster, and electricity price information; xt is the decision
variable, including the charge and discharge power of ESS,
the charge power of EV, the output thermal power of CCHP,
and the purchasing power; wt is the random information,
including the newly connected or leaving EVs, changes in
outdoor temperature and changes in electricity prices.

III. STOCHASTIC DYNAMIC PROGRAMMING-BASED
ONLINE ALGORITHM FOR INTEGRATED ENERGY
BUILDINGS
A. THE CONVERSION OF MODEL
The key to real-time energy management of integrated energy
buildings is how to deal with various uncertain factors,
namely random information wt , and how to solve the objec-
tive function containing the expected value. Therefore, this
paper proposes a stochastic dynamic programming-based
online algorithm for integrated energy buildings that can
adapts to various uncertain factors based on the idea of
stochastic dynamic programming.

According to Bellman’s optimality principle, the multi-
period optimization decision problem can be transformed into
a recursive problem, that is, equation (17) can be turned into
(19),

Vt (St) = max(Ct (St , xt ,wt)+ ξE(Vt+1(St+1|St ))) (19)

That is, for Markov multi-step decision-making process
with no aftereffect (the future has nothing to do with the past),
the decision-making of each step only depends on the current
state and the subsequent system evolution, and has nothing
to do with the previous history [21]. In other words, when
the decision made at time t makes the formula (19) take the
minimum value, it is the optimal strategy. Where Vt (St ) is
the value function of the system in state St ; Vt+1 (St+1| St )
is the value function at t + 1 under the premise of system
state St , which means the impact of the current decision on
the subsequent period cost; is the future attenuation factor,
whose value is between 0 and 1.

The solution of equation (19) requires the value function
of the system state at each time. While solving small-scale
problems, we can use the method of recursion from back to
front. That is, listing various possible single-stage states and
their state value functions. Since each step is screened accord-
ing to the principle of optimality, the amount of calculation
is greatly reduced. However, in the real-time energy manage-
ment of integrated energy buildings, the coupling constraint
of time period between ESS and EV decision variables, and
the decision variables and state variables are continuous,

FIGURE 2. The solution diagram of stochastic dynamic programming.

which make the state space increases exponentially with the
raise of dimension, so it is not practical to list all states and
their value functions. Therefore, we need to use effective
methods to estimate the value function in order to get the
optimal scheduling strategy as close as possible.

B. THE PROCESSING OF MODEL
Stochastic dynamic programming solves the problem of
‘‘Curse of dimensionality’’ by using approximate value func-
tions trained in a large number of simulation scenarios to
replace the value function in equation (19) and adopts the
way of recursive solution from the forward to the back. The
thought of stochastic dynamic programming can be shown in
Figure 2.

When the system is in the state St , the approximate value
function ṽt+1(St+1) obtained by the approximate dynamic
programming algorithm can replace the value function
vt+1(St+1), and the decision variables xt can be obtained by
solving the equation (19) to generate real-time revenue Ct ,
and the next state St+1 is obtained through the state transition
equation and the observed random information.

We define the state transition equation as shown in equa-
tion (20),

St = f (St−1, xt−1,Wt) (20)

That is, the system state St at time t is determined by
the state St−1, the decision made at t − 1, and the random
variablewt at time t in common. In order to solve the problem,
we divide the system state into two stages, the pre-decision
state Sx−t and the post-decision state Sxt . Before making a
decision, the system observes changes in random variables
and changes its state,

SX−t = SXt-1 + f
X− (Wt) (21)

After making the decision, the system, the state of the
system changes further,

SXt = SX−t + f X (xt) (22)

Take electric vehicles as an example. Before the decision
is made, the battery level of each electric vehicle remains
unchanged. But after observing the random access of new
electric vehicles, the upper and lower boundaries of the
energy, and the constraints of the electric vehicles change, and
the adjustable capacity of the electric vehicle also changes.
After the decision is made, the battery power of each elec-
tric vehicle changes according to the decision made, which
realizes the transfer of the system state.
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After dividing the system state into the pre-decision and
post-decision states, equation (19) can be divided into two
parts. Therefore, the pre-decision state value function and the
post-decision state value function can be obtained,

V X−
t

(
SX−t

)
= max

xt∈X
(C(St , xt )+ ξV X

t (S
X
t |S

X−
t )) (23)

V X
t

(
SXt
)
= E(V X−

t+1(S
X−
t+1|S

X
t )) (24)

While the approximate value function is designed,
the value function corresponding to each state is updated
through an iterative process to obtain the optimal strategy.
The idea of iteration is to calculate the optimal decision based
on the initial estimate of the value function, and update the
value function with the information obtained from the deci-
sion. Apply the updated value function to the next iteration
process, so that the approximate value function continuously
approaches the exact value function. The higher the approx-
imate precision, the closer the decision is to the optimal
solution.

xnt = argmax
xt∈X

(C(Snt , x
n
t )+ Ṽ

n−1
t (Sn−1t |S

n−1
t−1 )) (25)

where n represents the number of iterations. It can be seen
that how to obtain an approximate value function to replace
the accurate value function is the key to the problem. There
exist two difficulties. One is the design of the approximate
value function for real-time scheduling problems, and the
other is the iterative update method of the approximate value
function.

C. THE SOLUTION OF MODEL
The design methods of approximate value function include
linear model method based on basis function, piecewise
linear function method and hierarchical clustering method
[21]. In this paper, we use the piecewise linear method to
construct the approximate value function, and the estimation
parameters are updated with the marginal revenue of each
piece of virtual storage. At last, the approximation func-
tion is obtained by the SPAR method (Successive Projective
Approximation Routine).

Use the piecewise linear method to construct the approxi-
mate value function, we have

xnt = argmax
xt∈X

(C(Snt , x
n
t )+ ξ

β∑
r=1

vn
t
(r,Wt)ytr ) (26)

Which must satisfy

β∑
r=1

ytr = f x (Rt , xt) , ytr ∈ [0, ρ] , r ∈ {1, · · · , β} (27)

where r represents the number of segments, ρ is the length
of each segment, and ytr is the amount of resources in each
segment. Equation (27) ensures that all resources are added
to the resource value after decision. The model assumes that
all segments are uniform.

The steps of using the SPAR method to obtain the approx-
imate value function are as follows:
Step 1: Initialize vnt (r,Wt ), and make vt (1,Wt ) ≥

vt (2,Wt ),≥ . . . ≥ vt (β,Wt ) to ensure that the slope is mono-
tonically decreasing so that they can meet the concavity; then
we use Monte Carlo method to generate N training samples,
and each training sample contains the changes of various
random quantities in a comprehensive energy building in a
day. Make n = 1 and t = 1;
Step 2: Update the system state according to the latest

random variables, and use the slope of each segment after the
last iteration to solve equation (28), that is

xnt = argmax
xt∈X

(C(Snt , x
n
t )+ ξ

β∑
r=1

vn−1
t

(r,Wt)ytr ) (28)

Therefore, we can obtain each decision variable xnt , the
system state after the decision Sn,Xt , including the adjustable
capacity Rn,Xt , after the decision, etc.
Step 3: Calculate the temporary value of the slope from the

updated sample,

g(y) =

{
(1− α)vn−1t−1 (y)+ α

∧
vt
n

y = r
vn−1t−1 (y) y 6= r

(29)

where g is a temporary vector, a is the step size,
∧
vt
n
(y) is the

marginal benefit, V n−1
t−1 (y) is approximate slope.

Step 4: Perform projection operation on the temporary
vector to get the approximate slope component of the nth
iteration {

min ‖ vnt -g ‖
s.t. vnt (r+1) ≤ v

n
t (r)

(30)

Step 5: Make t = t + 1, return to step 2. when t > T ,
return to step 6.
Step 6: Make n = n + 1, return to step 2. The loop ends

when n > N.

IV. CASE STUDIES
In order to verify the effectiveness of the proposed model and
algorithm,we select an integrated energy building in the south
for simulation analysis. Reference [22] can see the electricity
price data and CCHP related parameters. The temperature
sensitivity coefficients of hot water and rooms are based
on [23]. As for uncertainty factors, we mainly consider the
impact of EV owner’s access and departure time, electricity
price forecast, outdoor temperature deviation on the dispatch
result. The calculation example is modelled by MATLAB
R2018b and GAMS on a computer with an intel(R) Core
(TM) i7-7700 CPU, a main frequency of 3.40 GHz and a
memory of 8 G.

A. THE SETTING OF SCENE
This paper sets up four different scenarios as shown
in Table 1. As for the uncertainty of EV, we mainly con-
sider two cases. One is typical working days, the peaks of
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TABLE 1. The setting of scene.

access and departure are mainly concentrated in the day and
night. The second is atypical working days, the distribution
of access and departure times is more random. As for the
uncertainty of the electricity price, one is normal situation
where the high peak appears during the day and the low peak
appears at night. The second is abnormal situation where the
electricity price is distributed according to the sine function
and changes more randomly. The calculation example in this
paper only simulates and analyses the uncertainty of EV and
electricity price. As for other uncertainties, our algorithm is
also applicable, but it will not be repeated due to the limitation
of the length of the literature.

B. THE RESULT OF SIMULATION
Assuming that at each time t , all the random information is
known in advance, so the theoretically optimal solution can be
obtained. Compare the optimal solution with the approximate
solution obtained by the algorithm proposed in this paper,
we can evaluate the performance of the proposed algorithm.

Use Monte Carlo method for sampling to generate
100 training scenarios to train the value function. Each train-
ing scenario contains different random information. It can be
seen from Figure 3 that in the four scenarios, the algorithm
proposed in this paper can quickly approach the optimal
solution after a certain number of trainings. Because in each
different training scenario, the value function is constantly
learning, so as to adapt to the learned environment. Besides,
it can use the learned knowledge to make an approximate
optimal strategy in the unknown environment in the future.
It can be seen from the figure 3 that in the 15th to 100th
training scenarios, the error between the approximate solution
obtained by the algorithm proposed in this paper and the
optimal solution is small, so the algorithm can be considered
as convergent. In scenario 4 where the law of EV and elec-
tricity prices is more random, the fluctuation of the objective
function is greater, because the uncertainty factors change
more drastically. But it can be seen that the algorithm in
this paper can still maintain the approximate optimal, which
means it has better stability.

After the value function converges, put it into online oper-
ation. That is, according to the current state of the system and
random information, use the approximate value function to
solve the single-period optimization problem. Take scene 1 as
an example to analyse the output of each unit in the integrated
energy building during real-time operation on a certain day,
as shown in Figures 4 and 5. The total electrical load of the
building is composed of EV load, basic load and cooling load,

FIGURE 3. Training process: (a) Scene 1 (b) Scene 2 (c) Scene 3
(d) Scene 4.

and it is supplied by the output of ESS, purchased power, and
CCHP output. The power output of ESS depends on the level
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FIGURE 4. The output of each unit.

FIGURE 5. The demand of heat load.

of electricity price and the size of the load. Since scene 1
is a situation where the electricity price appears high peak
during the day and low peak in the morning and evening, it
can be seen that the ESS is charged at 22:00∼8:00 when the
electricity price is low, and discharged at 9:00∼14:00 when
the electricity price is high. Since CCHP works in the ‘‘fixed
electricity by heat’’ mode, we can see that from 6:00 to 7:00,
the heating demand of integrated energy buildings increases,
and the thermal power output of CCHP increases, thereby
its electrical power output raises. On the basis of meeting its
own load demand, the building has sold surplus electricity to
the grid, which has improved the operating economy of the
building.

C. THE COMPARISON OF ALGORITHMS
In order to verify the effectiveness of the algorithm proposed
in this paper, we extract another 100 simulation scenarios to
conduct online simulations of the convergent approximation
function, and compare them with the MPC algorithm and
myopic algorithm. Figure 6 shows the algorithm compari-
son effect diagram under scene 4. The optimization error is
obtained by comparing the result of the algorithm with the
theoretical optimum. It can be seen from the figure 6 that the
optimization effect of the algorithm proposed in this paper is
better than the other two algorithms. Due to the influence of
random information, the algorithm in this paper cannot reach
the global optimum. However, in various scenarios, the opti-

FIGURE 6. Errors of different algorithms.

TABLE 2. Effects of different algorithms.

mization error of this algorithm can be kept within 0.04. Since
the MPC algorithm and Myopic algorithm are optimized in a
short time window, they cannot use the approximate value
function to consider the impact of all subsequent periods,
which leads to poor effect. The optimization error of MPC
algorithm is between 0.06 and 0.2, while the error of Myopic
algorithm is between 0.25 and 0.35.

It can be seen from the table 2 that the algorithm in this
paper is more economical in simulation scenarios, which
means it has lower average operating cost (the opposite of
the objective function of this paper). After the value function
is trained to convergence offline, it’s put into real-time oper-
ation, which only takes 0.192 s on average to get the approxi-
mately optimal solution for each period, meeting the demand
of real-time operation. In contrast, although MPC algorithm
and Myopic algorithm do the calculation in a shorter time
window, they take more time in each calculation.

V. CONCLUSION
There are multivariate uncertainties inside integrated energy
buildings, including deviations from EV owner behav-
iors, electricity price forecasts, and outdoor temperature.
To address this problem, this paper proposes an algorithm
based on stochastic dynamic programming to deal with the
impact of uncertainties on online energy management of the
integrated energy building, which improve the economics of
building operation. The results of the calculation example
show:

1) The proposed algorithm makes operators no longer
rely on intraday forecast information to make approximate
optimal decisions, which greatly reduces the impact of mul-
tivariate uncertainties on energy management.
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2) The proposed algorithm performs obviously better than
MPC and Myopic algorithm in optimization accuracy, which
improves the economic benefits of operators.

3) After the algorithm is trained offline by using extensive
training samples, it’s put into online operation, and the aver-
age calculation time can reach 0.192s, which meets the needs
of online operation.

How to realize the coordinated dispatch of distribution
network and integrated energy buildings at multiple time
scales is the focus of the next step.
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