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ABSTRACT Shielding effectiveness (SE) dominates the shielding performance of materials. Under the exci-
tation of high-intensity transient electromagnetic pulse, especially the wide-band transient electromagnetic
pulse, how to characterize and calculate the SE of shielding materials is not clear. In order to reveal the
shielding performance of materials towards the wide-band transient electromagnetic pulse, a systematic
experimental investigation was performed on a home-made SE measurement system. The ‘peak value
reduction (SEpr)’ is verified to be an effective approach for the characterization of SE of shielding materials.
The SE of the employed materials shows no noticeable change even with the excitation field intensity
increasing to 200 kV/m, which is significantly different from that of high-power microwave (HPM). Under
the excitation of HPM, the SE of materials starts to increase at a field intensity of 19.4 kV/m and becomes
saturated at 33.6 kV/m. Further analysis discloses that the variation of SE of materials is mainly dependent
on two factors, one is the intrinsic property of the material itself, and the other is energy density spectrum of
the excitation high-intensity transient electromagnetic pulse. The energy in per frequency unit (10 MHz) for
wide-band transient electromagnetic pulse is far lower than that of HPM, resulting in an evident dissimilarity
in the changes of SEs of shielding materials.

INDEX TERMS Shielding performance, wide-band transient electromagnetic pulse, peak value reduction,

energy density spectrum.

I. INTRODUCTION

In the past few years, great concern has been paid to the threat
brought by high-intensity transient electromagnetic pulse,
against the normal working of facilities such as electronic
systems, networks, grids and communications [1]-[4], espe-
cially with the rapid development of pulsed power science and
high-power microwave (HPM) technology [5]-[10]. Improv-
ing the survivability of facilities through taking protection
and reinforcement measure is crucial for their normal use.
Electromagnetic shielding materials, such as carbon-based
materials, transition metal oxides/dichalcogenids, silicon car-
bides and polymer-based composites, which can isolate the
sensitive equipment from the electromagnetic radiation in
space, have attracted interest of researchers in the field of
electromagnetic compatibility, and also show great poten-
tial in the reinforcement application against high-intensity
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transient electromagnetic pulse [11]-[18]. Under the excita-
tion of high-intensity transient electromagnetic pulse, how
to characterize the shielding effectiveness (SE) of shielding
materials, and whether the shielding performance will be
affected by the parameters such as field intensity, repetition
frequency and pulse width are thus very critical for practical
applications.

Presently, the characterization and description of SE for
shielding materials are clear under the excitation of contin-
uous small signal [19]-[21]. As to high-intensity transient
electromagnetic pulse, related work mainly focus on theoretic
analysis, numerical simulation and experimental investiga-
tion based on standard waveforms such as Gauss pulse, dou-
ble exponential pulse and square pulse [22]-[30]. Till very
recently, a comprehensive study on the shielding performance
of materials under the excitation of HPM was conducted
[31], and Per Angskog et al. [32] reported a detailed inves-
tigation on the SE and HPM vulnerability of energy-saving
windows and window panes. However, almost no work has
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been made on how to characterize the SE of materials under
the excitation of wide-band transient electromagnetic pulse
and whether the shielding performance will be affected by
the pulse parameters is unclear.

The aim of this work is to clarify the characterization of
SE of materials against wide-band transient electromagnetic
pulse and reveal the underlying mechanism that affects the SE
of materials under the excitation of high-intensity transient
electromagnetic pulse. The ‘peak value reduction (SEpr)’ is
approved to be a suitable approach for the characterization of
SE of materials. The SE of materials exhibits no noticeable
variation even with the excitation field intensity of wide-band
transient electromagnetic pulse reaching 200 kV/m, which
is greatly different from that of HPM. Under the excitation
of HPM, the SE of materials first keeps unchanged, then
starts to increase, and finally saturates with the increment of
field intensity. Further analysis reveals that the variation of
SE of materials is mainly dependent on two factors, one is
the intrinsic property of the material itself, and the other is
energy density spectrum of high-intensity transient electro-
magnetic pulse. The energy in per frequency unit (10 MHz)
for wide-band transient electromagnetic pulse is far less than
that of HPM, which leads to a distinctly different evolution
of the SE of shielding materials.

Il. EXPERIMENTAL METHOD

A. EXPERIMENTAL SYSTEM

The experiments were performed on a home-made SE
measurement system, as shown in Fig. 1(a). A wide-band
transient electromagnetic pulse radiation device with rE
(field-intensity distance product on the main beam axis)
of 300 kV is employed as the excitation source. A test box
with a 600 mm x 600 mm test window is placed in the
microwave anechoic chamber. The field intensity is adjusted
by changing the distance between the wide-band transient
electromagnetic pulse source and test box. As a result, field
intensities in the range of 10-200 kV/m are easily obtained.
Four different kinds of shielding materials, such as Ag doped
shielding filling, Ag-Cu doped shielding filling, Cu-mesh
embedded shielding glass and ITO coated shielding glass,
were purchased from 33rd Research Institute of China Elec-
tronics Technology Group Corporation (CETC 33), Taiyuan,
China and were cut into 640 mm x 640 mm that can well
match the window size of the measurement system. All of
the four shielding materials are rigid, not having good flex-
ibility. The SEs of them are not dependent on frequency
in the frequency regime of 100 MHz to 8 GHz under the
excitation of continuous small signal, which are probably
owing to the component and structure of materials employed.
A typical output waveform of the wide-band transient elec-
tromagnetic pulse source is shown as Fig. 1(b). It is clear to
see that the excitation pulse lasts for about 10 ns. Fast Fourier
Transform (FFT) was then performed to obtain its amplitude-
frequency characteristics (Fig. 1(c)). The excitation pulse sig-
nal has a central frequency of about 380 MHz, and its -10-dB
bandwidth is in the range from 200 to 500 MHz.
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FIGURE 1. (a) Schematic illustrating the SE measurement system for
wide-band transient electromagnetic pulse. (b) Typical time-domain
output waveform of the wide-band transient electromagnetic pulse
source. (c) Corresponding normalized amplitude-frequency curve of the
output waveform.

B. SHIELDING EFFECTIVENESS
SE is defined as the logarithm ratio of the voltage or power
obtained by the receiving antenna without/with a shielding
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material on the window of the test device [19]-[21].

1%
SE = 20log — (1)
Vs
Wi
SE = 10log — 2
og W, ()

V1 and W) are the received voltage and energy when the
shielding material is not placed on the test window, respec-
tively. Vo and W, correspond to the received voltage and
energy once the shielding material is positioned on the test
window.

In the experimental system, the signal receiving loop con-
sists of a wide-band receiving antenna inside the test box,
atransmission cable, attenuators with suitable power capacity
and a digital oscilloscope. By changing the attenuation value
of the attenuator, the receiving signal can be well displayed
by the oscilloscope. Supposing R, and R. the attenuation
(in dB) of the attenuator and transmission cable, respectively,
as well as V), the peak voltage of the time-domain waveform
recorded by the oscilloscope, the field intensity (E) of the
wide-band transient electromagnetic pulse received by the
receiving antenna can thus be expressed as

Vp lo(Ra+RC)/2O
= ————_727_____

he donates the effective height of the receiving antenna.
As aresult, SE of the shielding materials calculated by peak
value reduction (SEpRr) can be described as

3

(Ra,1+Re)

Vou10—m [,

E;
SEpr = 20log — = 201
PR og £ 0g (Ryp+Re)

Vp2l07 0 he

Vo1
=20log =—— + R4 1 — Rup2 “)
Vio

Vp,1 and R, | are the peak voltage and attenuation when
the shielding material is not present on the test window,
respectively. V2 and R, represent the peak voltage and
attenuation as the shielding material is placed on the test
window.

The frequency-domain SE (SEpp) can be calculated based
on the amplitude-frequency curve and path attenuation before
and after the shielding material is present on the test window.

V.
SEpp = 201og -1 4+ Ryt — Ra2 )
Vf,z

Vi1 and Vi represent the voltage at a specific frequency
without/with the shielding material on the test window.

The gain of the receiving antenna depends on the efficiency
factor k and directivity D, which can be expressed as

G =kD (6)

D is equal to the ratio of the maximum power density to its
average value over a sphere as observed in the far field of an
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FIGURE 2. Frequency-domain SEs of four different kinds of shielding
materials.
antenna, which can be written as

A,
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A, denotes the effective aperture of the receiving antenna and
can be given as
h2Z()

Ae = ¢ 8
© = UR, ®)

Zy and R; are the intrinsic impedance of free space and
radiation resistance of the receiving antenna, respectively.

According to (6), (7) and (8), the gain of the receiving

antenna can be calculated as

kmZ,

G=h"3"

AR,

For the time-domain signal of wide-band transient electro-

magnetic pulse acquired by the oscilloscope, its energy can

be calculated as
V(r)?
W, = / @) dt (10)
T

©))

R

T represents the duration of the transient signal, R denotes the
characteristic impedance of the receiving loop and V (¢) is the
voltage component of the time-domain waveform.

Taking into consideration of the energy calculated by the
time-domain signal of wide-band transient electromagnetic
pulse recorded by the oscilloscope, the path attenuation and
the gain of antenna, the energy received by the antenna can
be calculated as

W = 100/10y RatR/10
— 10heknZo/10°R, W RatR/10

(Ra+R:)/10
t} (11)

_ 10/2knZ0/1012R, [/ V(l)zd
T R

As a result, the energy reduction SE can be calculated as,
(12) shown at the bottom of the page.

Ill. CHARACTERIZATION OF SHIELDING EFFECTIVENESS

Fig. 2(a) shows the frequency-domain SEs of the four kinds
of shielding materials under the excitation of wide-band tran-
sient electromagnetic pulse with a field intensity of 20 kV/m.
It is apparent that the SEs keep almost unchanged in the
frequency range from 200 MHz to 500 MHz. Further anal-
ysis shows the fluctuation in the SEs is very slight, not
exceeding 3 dB in the entire frequency regime (Fig. 2(b)
and Fig. 2(c)). Taking into consideration of the measurement
errors and intrinsic characteristics of wide-band transient
electromagnetic pulse, a 3-dB fluctuation in measured SEs
can be ignored. The SErp of these four shielding materials
can thus be approximately characterized by using the SE
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FIGURE 3. SEpg, SEyg and SEgp of ITO coated shielding glass.

of the central frequency (380 MHz). Fig. 3 shows the SEs
of ITO coated shielding glass calculated by the ‘peak value
reduction’, ‘frequency-domain SE based on FFT” and ‘energy
reduction’. We can clearly see that the SEs calculated by
different methods are nearly the same. The difference in
between them is so slight that it can be ignored.

The SEs of these four kinds of shielding materials under the
excitation of wide-band transient electromagnetic pulse are
displayed in Table 1. It is evident that for all the four shielding
materials employed in our experiments, the percentage of
maximum deviation at absolute value of SE calculated by
‘frequency domain SE based on FFT’ and ‘energy reduction’
does not exceed 1.76% and 2.12%, respectively, in com-
parison with that obtained by using ‘peak value reduction’
method. Such phenomenon is probably ascribed to the insen-
sitivity of the SE on frequency within the main frequency
regime of wide-band transient electromagnetic pulse. Con-
sidering that the peak value of the time-domain signal can
be directly obtained from the waveform acquired by oscil-
loscope, so ‘peak value reduction’ characterization can be
employed as a simple and convenient way to calculate the
SE of shielding materials under the excitation of wide-band
transient electromagnetic pulse.

IV. SHIELDING PERFORMANCE UNDER THE EXCITATION
OF HIGH-INTENSITY TRANSIENT ELECTROMAGNETIC
PULSE

For high-intensity transient electromagnetic pulse, it is often
considered that the parameters such as repetition frequency,

Wi
SEwr = 101g —
WR g W,

Ra1+R:)/10
101g { 107k7Z0/ 1027, |:/ %’)zd{r +e)/ / 10/2k720 /1032, |:/ Vz(f)zdt
T T

(Ra24R:) /10
=

2 2
= lOlg |:/ Vl(t) dl// V2(t) dl‘i| + (Ra,l - Ra,Z) (12)
r R r R
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field intensity and pulse width play an important role in
the electromagnetic interference effect on electronic systems
[33]-[35]. Whether the shielding performance of materials
will be affected by the parameters of high-intensity transient
electromagnetic pulse is crucial for their practical applica-
tions. In a piece of previous work [31], a comprehensive
investigation about shielding performance of materials under
the excitation of HPM has been performed. It has been found
that with the increase of the power density (~ E2/377)
of HPM, the SE of materials first keeps unchanged, then
increases and finally saturates, and other parameters like rep-
etition frequency and pulse width of HPM have a negligible
effect on the shielding performance of materials.

In order to have a comprehensive understanding of various
parameters of wide-band transient electromagnetic pulse on
the shielding performance of materials, a systematic inves-
tigation was carried out. Fig. 4 shows the measured SEs of
the four kinds of shielding materials with different repetition
frequency and field intensity. When the field intensity of
the wide-band transient electromagnetic pulse is 20 kV/m,
the SEs keep almost unvaried with the repetition frequency
in the range of 1-50 Hz (Fig. 4(a)). Similarly, with the vari-
ation of field intensity from 1 to 200 kV/m, SEs of shielding
materials under the excitation of wide-band transient electro-
magnetic pulse with repetition frequency of 1 Hz are nearly
unchanged (Fig. 4(b)).

Comparative SE measurements were further performed on
these four kinds of shielding materials with the excitation of
HPM. The experimental setup for HPM SE measurements has
been well introduced in an article published by us recently
[31]. An L-band klystron microwave power amplifier with
carrier frequency of 1.35 GHz is employed as the HPM
source, and the excitation field intensity can be easily tuned in
the range from 6.1 to 43.4 kV/m. No noticeable change in SEs
can be observed for the Cu-mesh embedded shielding glass
and ITO coated shielding glass even for the field intensity is
increased to 43.4 kV/m (Fig. 5(a)). In contrast, the shielding
performances of the Ag-Cu doped shielding filling and Ag
doped shielding filling are obviously affected by the radiation
of HPM. When the field intensity reaches nearly 19.4 kV/m,
the SEs of these two materials tend to become larger. Here-
after, with the continuous increment of field intensity, the SE
is increased from nearly 70 dB/57 dB to 78 dB/64 dB for
Ag-Cu doped shielding filling and Ag doped shielding fill-
ing, respectively. As the field intensity attains approximately
33.6 kV/m, the SEs of the two materials become saturated.
Further increase in the field intensity doesn’t give rise to
improvement of the SEs (Fig. 5(b)).

Under the excitation of HPM, microscopic interconnec-
tions produced by polarization or thermal effect in Ag-Cu
doped shielding filling and Ag doped shielding filling can
improve their electrical conductivities, which in turn lead to
the increase of the SEs. Once the field intensity is increased
to a certain value, the polarization or thermal effect induced
interconnection saturates and the electrical conductivity no
longer gets larger. As a result, the SEs of these two kinds of
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FIGURE 4. SEs of four kinds of shielding materials under the excitation of
wide-band transient electromagnetic pulse with different (a) repetition
frequency and (b) field intensity.

TABLE 1. Percentage of maximum deviation at absolute value of four
groups of materials.

Percentage of maximum deviation at

Material absolute value
|SEwr-SEpr|/SEpr |SErp-SEpr|/SEpr
Ag-Cu doped shielding filling 1.72% 1.76%
Ag doped shielding filling 2.12% 1.56%
Cu-mesh embedded shielding 1.03% 0.96%
glass
ITO coated shielding glass 1.25% 1.01%

shielding materials become saturated. Contrarily, for the other
two shielding materials like Cu-mesh embedded shielding
glass and ITO coated shielding glass, it is probably owing
to that no obvious microscopic interconnection is produced
under the excitation of HPM with field intensity in the range
of 6.1-43.4 kV/m.

It is worth noting that with the increase of field intensity,
Ag-Cu doped shielding filling and Ag doped shielding filling
exhibit completely different shielding performances against
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FIGURE 5. SEs of (a) Cu-mesh embedded shielding glass, ITO coated
shielding glass and (b) Ag-Cu doped shielding filling, Ag doped shielding
filling under the excitation of HPM with different field intensity.

wide-band transient electromagnetic pulse and HPM. The
SE keeps unchanged even with the field intensity increasing
to 200 kV/m for wide-band transient electromagnetic pulse,
whereas for HPM, the SE is continuously increased with
the field intensity in the range from 19.4 to 33.6 kV/m.
Since the frequency regime of wide-band transient electro-
magnetic pulse is different from that of HPM, the influence
of frequency on SE was thus investigated. As shown in
Fig. 6 (a), the SEs of Cu-mesh embedded shielding glass and
ITO coated shielding glass are measured to be ~29 dB and
~26 dB under these two excitations, respectively, indicating
the frequency almost has no effect on the SEs. For Ag-Cu
doped shielding filling and Ag doped shielding filling, it is
clearly observed that before the SEs start to increase under the
excitation of HPM, the SEs are nearly maintained at 70 dB
and 57 dB (Fig. 6(b)), which further demonstrates that the
frequency has ignorable influence on the SEs. Fig. 7(a) shows
the normalized amplitude-frequency curve of HPM, from
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FIGURE 6. Evolutions of SEs with the field intensities of wide-band
transient electromagnetic pulse and HPM. (a) shielding filling,
(b) shielding glass.

which we can clearly see that the central frequency of HPM
locates at 1350 MHz and the —10-dB bandwidth ranges
from nearly 1345 MHz to 1355 MHz, which differs sig-
nificantly from that (200500 MHz) of wide-band transient
electromagnetic pulse (Fig. 1(c)). For HPM signal with a
field intensity of 19.4 kV/m, the energy distributed in per
frequency unit (10 MHz), i.e., energy spectrum density, is
0.1746 J/10 MHz (Fig. 7(b)). As to wide-band transient elec-
tromagnetic pulse, the maximum energy spectrum density
doesn’t exceed 0.0189 J/10 MHz even with the field intensity
of 200 kV/m (Fig. 7(c)). The maximum energy spectrum
density of wide-band transient electromagnetic pulse is far
less than that of HPM, which is probably the reason why no
improvement in the SEs of shielding materials is observed
under the excitation of wide-band transient electromagnetic
pulse. As a result, the SEs of shielding materials exhibit dis-
tinctly different evolution phenomena for wide-band transient
electromagnetic pulse and HPM. Based on aforementioned
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FIGURE 7. (a) Normalized amplitude-frequency characteristics of HPM
signal. (b, ) Energy density spectrum of HPM and wide-band transient
electromagnetic pulse, respectively.

results, we put forward a hypothesis here if the excitation
field intensity of wide-band transient electromagnetic pulse
attains a value of approximate 608 kV/m, a phenomenon
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that the SE of shielding materials starts to increase should
appear.

V. CONCLUSION

Under the excitation of wide-band transient electromagnetic
pulse, the ‘peak value reduction (SEpr)’ can be employed
to characterize the SE of shielding materials. The SE of the
shielding materials exhibits no noticeable change even with
the excitation field intensity reaching 200 kV/m, which is
greatly different from that of HPM. Under the excitation
of HPM, the SE of materials starts to increase at a field
intensity of 19.4 kV/m and saturates at 33.6 kV/m. Further
analysis reveals that the variation of SE of shielding materials
is mainly determined by two factors, one is the intrinsic
property of the material itself, and the other is energy density
spectrum of the excitation high-intensity transient electro-
magnetic pulse. The energy in per frequency unit (10 MHz)
for wide-band transient electromagnetic pulse is far less than
that of HPM, leading to a distinctly different evolution of the
SEs of shielding materials.
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