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ABSTRACT In order to improve the security and compliance of physical human-robot interaction (pHRI),
an adaptive fuzzy impedance control for robotic manipulators based on finite-time command filtered method
is proposed in this paper. Firstly, robots usually encounter system uncertainties in practical applications, and
the adaptive fuzzy control is introduced to approximate the system uncertainties. Secondly, the finite-time
control method is used to improve the interaction performance of the system. Then, the command filtered
control technique is used to deal with the “computational complexity ” of traditional backstepping. Finally,
simulations are conducted to illustrate the effectiveness of the proposed control method in physical human-
robot interaction.

INDEX TERMS Physical human-robot interaction (pHRI), adaptive fuzzy control, impedance control, finite-
time control, command filtered control.

I. INTRODUCTION
In recent years, robots have been widely applied in social
services, such as rehabilitation [1], home service [2], educa-
tion and entertainment [3]. Physical human-robot interaction
has become one of the active research fields in social service
robots [4], [5]. It should be concerned that security and com-
pliance should be guaranteed in pHRI. Hence, researchers
pay more attention to how to design more effective control
strategies to achieve better interaction effects. To regulate the
physical interaction between humans and robots, impedance-
based controllers have been widely used [6]–[8]. In addition,
robots usually encounter system uncertainties in practical
applications [9], [10], such as sensor error, and parameters
change, which will affect the performance of the robot control
if they are not handled properly. Therefore, it is crucial to
study the effective impedance control approaches for robots,
which ensure the physical interaction performance by dealing
with robot system uncertainties.

During the past years, many research results show that
fuzzy logic control plays a significant role in estimating the
dynamic model of complex nonlinear systems [11], [12], and
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various impedance control approaches based on the adaptive
control [13], [14] and fuzzy logic control [15]–[17] have been
proposed for uncertain manipulators. Among these works,
an impedance sliding mode control with adaptive fuzzy com-
pensation scheme was proposed in [15] which employing
adaptive fuzzy to estimate uncertain model. In [17], an adap-
tive fuzzy impedance control method where the fuzzy logic
system (FLS) was used to approximate unknown nonlinear
dynamics was exploited for pHRI. To improve interaction
performance in pHRI, finite-time control [18]–[20] has been
used in robotic manipulators. In [18], S. Yu introduced finite-
time control into the robotic manipulator system, combined
with terminal sliding mode technique to achieve a higher pre-
cision control performance and converge to the equilibrium
in finite time. Up till now, the finite-time impedance control
of uncertain manipulators has been seldom studied because
it is extremely tough to eliminate the influence of manipu-
lator uncertainty in the design of the finite-time impedance
controller. Hence, it is a challenging work how to extend the
finite-time impedance control to the uncertain manipulator to
ensure the finite-time convergence of the control error.

In another research field, backstepping is one of the most
effective control techniques for strict-feedback nonlinear
systems, but the repeated derivatives of the virtual control
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law in the backstepping control increase the “computational
complexity ” [21], [22]. For the sake of solving this prob-
lem, the dynamic surface control (DSC) was proposed by
Swaroop et al. [23], Zhang and Ge [24], Yu et al. [25], but
it doesn’t take into account the problem of approximation
errors generated by the first-order filters, and the control
quality of the systemmay be affected. Therefore, Farrell et al.
proposed command filtered control (CFC) [26]–[28], which
solves approximation errors problem by some compensated
signals, and reduces the complexity of the controller design.
However, how to design the finite-time command filtered
impedance control for the robotic manipulator systems is still
a problem to be solved.

Based on the observations above, this paper proposes an
adaptive fuzzy finite-time command filtered impedance con-
trol (AFFTCFIC)method for roboticmanipulators to improve
interaction performance. Adaptive fuzzy control is used to
approximate the uncertain dynamics. The finite-time control
was used to improve pHRI performance. CFC technique
can deal with the issue of the “computational complexity
” in the backstepping design, and overcome approximation
errors problem for DSC by designing compensated signals.
Lyapunov stability criterion is used for stability analysis. The
primary contributions of the proposed control method can be
summarized as follows:
• In the face of pHRI system, an AFFTCFIC scheme is

proposed for the first time, which can achieve desired
tracking performance in finite time. Hence, it expands
the application scope for practical pHRI systems.

• Command filtered control technique with compensation
signals is adopted to solve the problem of the “computa-
tional complexity ” in the process of classical backstep-
ping impedance controller design in [17].

• Compared with [15] and [17], the finite-time control
can ensure the impedance control of the robot system
with higher control accuracy and faster convergence
speed. Therefore, it is introduced into the impedance
control of the robotic manipulator, which can improve
the interaction performance in pHRI system.

Notation:To facilitate the design of theAFFTCFIC. Let vβ∗
be vβ∗ =

[
vβ1 , . . . , v

β
i , . . . , v

β
n

]
, (i = 1, . . . , n.n ∈ N ∗). The

Euclidean norm of a vector is denoted by ‖∗‖. The maximum
and minimum eigenvalues of the matrix ∗ are denoted by
λmax (∗) and λmin (∗), respectively.

The rest of this study is arranged as follows. The math-
ematical model and preliminaries are given in Section II .
AFFTCFIC controller design and stability analysis are pre-
sented in Sections III and IV . Simulink results and conclu-
sions are shown in Sections V and VI .

II. MATHEMATICAL MODEL AND PRELIMINARIES
A. SYSTEM DESCRIPTION
Consider a physical human-robot interaction system, includ-
ing a P-link manipulator and the force sensor mounted on the
end-effector (P ≥ 1). A P-link manipulator dynamics [29] in

Cartesian space is described as

D (x) ẍ + C (x, ẋ) ẋ + G (x) = τ − τe (1)

where x, ẋ, ẍ ∈ Rn are the position, velocity, acceleration
vectors at the end-effector of the manipulator in Cartesian
space, D (x) ẍ ∈ Rn denotes the inertia force vector of the
manipulator in Cartesian space, C (x, ẋ) ẋ ∈ Rn denotes
the Centripetal and Coriolis force vector of the manipulator
in Cartesian space, G (x) ∈ Rn denotes the gravitational
force vector of the manipulator in Cartesian space, τ ∈ Rn

denotes the control input vector, τe ∈ Rn denotes the vector
of constraining force on robotic end-effector in Cartesian
space, which is 0 when the robotic manipulator is no contact
with human or environment. n denotes the dimension of the
operational space.
Property 1 ( [30], [31]): The matrix D (x) is symmetric

positive definite.
Property 2 ( [30], [31]): The matrix 1

2 Ḋ (x) − C (x, ẋ) is
skew-symmetric.

For the convenience, D, C and G represent D (x), C (x, ẋ)
and G (x), respectively.

Let x1 = x and x2 = ẋ1. Equation (1) becomes

ẋ2 = D−1 [τ − τe − Cx2 − G] . (2)

When the manipulator comes into contact with human or
environment, an interaction force will be generated based on
the user-defined dynamics, the target impedance. The desired
impedance dynamics in the workspace [32] is expressed as

Md ë+ Bd ė+ Kde = τe, (3)

where e = xd − xr , xr denotes the commanded trajectory, xd
denotes the desired trajectory. the desired inertia, damping,
and stiffness matrices are denoted by Md , Bd , and Kd spec-
ified by the user, respectively. If the manipulator moves in
free space, there has xr = xd and τe = 0. However, when the
manipulator is in contact with the environment, the contact
force of the end-effector is defined by the desired impedance
dynamics (3). If x tracks xr precisely, (3) becomes

Md (ẍd − ẍ) + Bd (ẋd − ẋ)+ Kd (xd − x) = τe.

It should be mentioned that τe can be measured from force
sensor on robotic end-effector,Md , Bd , Kd and xd are defined
by the user. Therefore, xr can be calculated from (3).

B. FUZZY LOGIC SYSTEM
An FLS is composed of three parts: 1) the fuzzifier; 2) the
fuzzy inference engine for processing fuzzy rules; and 3) the
defuzzifier [33]–[35].

Consider l fuzzy IF-THEN rules R(s), s = 1, . . . , l, where
R(s) represents the sth rule. The fuzzifier maps the input point
xi in the input space U ⊂ Rn to a fuzzy set Asi in the input
space, and x = [x1, x2, . . . , xn]T ∈ U is the input vector of
the fuzzy system.Membership functions of linguistic variable
xi for i = 1, . . . , n are used to represent fuzzy sets. The fuzzy
inference engine implements amapping from fuzzy sets in the
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input space to fuzzy sets in the output space V ⊂ Rm based
on fuzzy rules, and y = [y1, y2, . . . , ym]T ∈ V is the output
vector of the fuzzy system. Finally, the defuzzifiermaps fuzzy
sets in the output space V into a crisp output value. The fuzzy
logic system is

yj =

l∑
s=1

(∏n
i=1 µAsi

)
ysj

l∑
s=1

(∏n
i=1 µAsi

) , j = 1, . . . ,m, (4)

where µAsi = exp
[
−
(
xi − c2is

)
/σ 2

is

]
. For the sake of clarity,

the fuzzy basis function vector and weight vector are defined

as φ (x, c, σ ) = [p1, p2, . . . , pl]T and θj =
[
y1j , y

2
j , . . . , y

l
j

]T
,

respectively, where ps =
(∏n

i=1 µAsi

/
l∑

s=1

(∏n
i=1 µAsi

))
,

σ =
[
σ T1 , σ

T
2 , . . . , σ

T
n
]T and c =

[
cT1 , c

T
2 , . . . , c

T
n
]T . Hence,

(4) can be described as

yj = θTj φ (x, c, σ ) . (5)

FLS can approximate any given continuous function fj (x),
j = 1, 2, . . . ,m, to arbitrary accuracy on a compact set �.
Hence, for any constant δj > 0, there is a θ∗Tj φ (x) in the FLS
that makes

sup
x∈�

∣∣∣fj (x)− θ∗Tj φ (x)
∣∣∣ ≤ δj

where θ∗j is an actual weight vector, εj is the approximation
error, which on page satisfies max

x∈�

∥∥εj∥∥ ≤ δj.
C. PRELIMINARIES
Lemma 1 [36]: For any real numbers λ1 > 0, λ2 > 0,
0 < β < 1, then the finite-time stable exten-
sion Lyapunov condition can be expressed as: V̇ (x) ≤
−λ1V (x) − λ2V β (x), The convergence time by Tr ≤ t0 +
[1/λ1(1− β)] ln

[
(λ1V 1−β (t0)+ λ2)/λ2

]
to estimate.

Lemma 2 [37]: For xi ∈ R, i = 1, 2, . . . , n, 0 < p ≤ 1,

then
(

n∑
i=1
|xi|
)p
≤

n∑
i=1
|xi|p ≤ n1−p

(
n∑
i=1
|xi|
)p

.

Lemma 3 [38]:For real variables x and y, and given positive
constants b1, b2, b3, the following relation holds:

|x|b1 |y|b2 ≤
b2

b1 + b2
b3
−
b1
b2 |x|b1+b2 +

b1
b1 + b2

b3|y|b1+b2 .(6)

Lemma 4 ( [39], [40]): The Levant differentiator is
described as follows:

ϕ̇1 = ι1

ι1 = −R11sign (ϕ1 − α)+ ϕ2,
ϕ̇2 = −R2sign (ϕ2 − ι1)

(7)

where 1 = diag
(
|ϕ11 − αr1|

1
2 , . . . , |ϕ1n − αrn|

1
2

)
. α is the

input signal of the differentiator, ϕ1 = x1,c and ϕ2 = ẋ1,c
are the output signals of the differentiator. Select properly
parameters R1 and R2, the following equations are true when

there are no input noises after a transient process of the finite-
time.

ϕ1 = α0, ι1 = α̇0,

and the differentiator’s solutions have finite-time stability.
When the differentiator’s input signal is given to be unaf-

fected by noise, that is α = α0. Consider the input noise
satisfying the inequation |α − α0| ≤ κ . Thence, the following
inequations completely dependent on differentiator parame-
ters R1 and R2 hold in finite time:{

|ϕ1 − αr0| ≤ ϑ1κ = ω̄1

|ι1 − α̇r0| ≤ ζ1κ = ω̄2,

where ϑ1 and ζ1 are normal numbers determined by the first-
order Levant differentiator design parameters. ω̄1 and ω̄2 are
normal numbers.

III. CONTROL DESIGN
According to the principle of backstepping method, the error
variables are defined as follows:

z1 = x1 − xr , z2 = x2 − x1,c, (8)

where x1,c is the first-order Levant differentiator’s output
signal when virtual control law α is the input signal. The error
compensation signals are defined as ξi = zi − vi, i = 1, 2
with ξi (0) = 0. The specific structure of virtual control law
and the error compensation signals are given in the following
design.
Step1: Selecting a Lyapunov function as

V1 =
1
2
v1T v1. (9)

Differentiating V1 with respect to time yields

V̇1 = vT1 v̇1 = vT1
(
ż1 − ξ̇1

)
= vT1

(
x2 − ẋr − ξ̇1

)
. (10)

Designing virtual control law α and compensation signal
ξ̇1 as follows:

α = −K1z1 + ẋr − S1v
β

1∗, (11)

ξ̇1 = −K1ξ1 + ξ2 +
(
x1,c − α

)
− h1sign (ξ1) , (12)

where the gain matrix K1 = K1
T > 0, S1 = S1T > 0,

the parameter 0 < β < 1, h1 > 0.
Substituting equations (11) and (12) into equation (10)

yields

V̇1 = −vT1K1v1 + vT1 v2 − v
T
1 S1v

β

1∗ + h1v
T
1 sign (ξ1) . (13)

Step2: Then, selecting the Lyapunov function as

V2 = V1 +
1
2
v2TDv2, (14)

and taking its time derivative yields

V̇2 = V̇1 + v2TDv̇2 +
1
2
v2T Ḋv2

= v2T
(
τ − τe − G− Cx2
+v1 − D

(
ẋ1,c + ξ̇2

) )− vT1K1v1

−vT1 S1v
β

1∗ + h1v
T
1 sign (ξ1)+

1
2
v2T Ḋv2. (15)
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Since there are uncertainties in D, C and G, FLSs are
used to approximate the uncertainties in D, C , and G. The
fuzzy-approximation-based adaptive impedance control will
be designed to approach the uncertain dynamics of the robotic
manipulator and to adjust the interaction between human and
manipulator.

Designing the control law τ as

τ = −K2z2 + τe + θ̂TDφD (ZD) ẋ1,c + θ̂
T
CφC (ZC ) x1,c

+θ̂TGφG (ZG)− v1 − S2v
β

2∗ − Krsign (v2) , (16)

where the gain matrix K2 = K2
T > 0, S2 = S2T > 0,

Kr = diag [krii] > 0. θ̂D, θ̂C and θ̂G are the estimate weight
matrices, θ∗D, θ

∗
C and θ∗G are the actual weight matrices, θ̃D =

θ̂D−θ
∗
D, θ̃C = θ̂C−θ

∗
C and θ̃G = θ̂G−θ∗G are the weight error

matrices, ZD =
[
xT1 , x

T
2 , x

T
1,c, ẋ

T
1,c

]T
, ZC =

[
xT1 , x

T
2 , x1,c

T
]T

and ZG =
[
xT1 , x

T
2

]T are FLS inputs, respectively.
The updating laws are designed as

˙̂
θDk = −0Dk

(
σDk θ̂Dk + φDk (ZD) ẋ1,cv2k

)
, (17)

˙̂
θCk = −0Ck

(
σCk θ̂Ck + φCk (ZC ) x1,cv2k

)
, (18)

˙̂
θGk = −0Gk

(
σGk θ̂Gk + φGk (ZG) v2k

)
, (19)

where 0Dk > 0, 0Ck > 0, 0Gk > 0, and σDk , σCk , σGk are
positive constants for improving the robustness. θ̂TDφD (ZD)
is an estimation matrix of θ∗TD φD (ZD), θ̂TCφC (ZC ) is an esti-
mation matrix of θ∗TC φC (ZC ) and θ̂TGφG (ZG) is an estimation
matrix of θ∗TG φG (ZG).

θ∗TD φD (ZD) = D+ εD, (20)

θ∗TC φC (ZC ) = C + εC , (21)

θ∗TG φG (ZG) = G+ εG, (22)

where εD, εC , and εG are small approximation errors.
For the convenience of derivation, choosing ξ̇2 = 0.

Substituting the control law (16) and equations (20)-(22) into
(15) and Property 2 is used, there is

V̇2 = −vT1K1v1 − vT1 S1v
β

1∗ − v
T
2K2v2 − vT2 S2v

β

2∗

+v2T θ̃TDφD (ZD) ẋ1,c + v2
T θ̃TCφC (ZC ) x1,c

+v2T θ̃TGφG (ZG)+ v2
T (Er − Krsign (v2))

+h1vT1 sign (ξ1) , (23)

where Er = εDẋ1,c + εCx1,c + εG, Eri, i = 1, . . . , n is ith
element of a vector, there has Er = [Er1, . . . ,Ern].

IV. STABILITY ANALYSIS
For the stability analysis, the Lyapunov function is selected
as

V = V2 +
1
2

n∑
k=1

θ̃TDk0
−1
Dk θ̃Dk +

1
2

n∑
k=1

θ̃TCk0
−1
Ck θ̃Ck

+
1
2

n∑
k=1

θ̃TGk0
−1
Gk θ̃Gk . (24)

Substituting (17)-(19) and (23) into the time derivative of
(24) yields

V̇ = −vT1K1v1 − vT1 S1v
β

1∗ − v
T
2K2v2 − vT2 S2v

β

2∗

+v2T θ̃TDφD (ZD) ẋ1,c + v2
T θ̃TCφC (ZC ) x1,c

+v2T θ̃TGφG (ZG)+ v2
T (Er − Krsign (v2))

−

n∑
k=1

θ̃TDkφDk (ZD) ẋ1,cv2k −
n∑

k=1

σDk θ̃
T
Dk θ̂Dk

−

n∑
k=1

θ̃TCkφCk (ZC ) x1,cv2k −
n∑

k=1

σCk θ̃
T
Ck θ̂Ck

−

n∑
k=1

θ̃TGkφGk (ZG) v2k −
n∑

k=1

σGk θ̃
T
Gk θ̂Gk

+h1vT1 sign (ξ1) , (25)

nothing that

v2T θ̃TDφD (ZD) ẋ1,c =
n∑

k=1

θ̃TDkφDk (ZD) ẋ1,cv2k , (26)

v2T θ̃TCφC (ZC ) x1,c =
n∑

k=1

θ̃TCkφCk (ZC ) x1,cv2k , (27)

v2T θ̃TGφG (ZG) =
n∑

k=1

θ̃TGkφGk (ZG) v2k . (28)

Based on Young’s inequality, there holds

−θ̃TDk θ̂Dk ≤ −
1
2
θ̃TDk θ̃Dk +

1
2
θ∗TDk θ

∗
Dk , (29)

−θ̃TCk θ̂Ck ≤ −
1
2
θ̃TCk θ̃Ck +

1
2
θ∗TCk θ

∗
Ck , (30)

−θ̃TGk θ̂Gk ≤ −
1
2
θ̃TGk θ̃Gk +

1
2
θ∗TGk θ

∗
Gk , (31)

h1vT1 sign (ξ1) ≤
h1
2
vT1 v1 +

nh1
2
. (32)

Substituting (26)-(32) into (25) with Krii ≥ ‖Eri‖ yields

V̇ ≤ −vT1

(
K1 −

h1
2

)
v1 − vT1 S1v

β

1∗ − v
T
2K2v2

−vT2 S2v
β

2∗ −
1
2

n∑
k=1

σDk θ̃
T
Dk θ̃Dk

−
1
2

n∑
k=1

σCk θ̃
T
Ck θ̃Ck −

1
2

n∑
k=1

σGk θ̃
T
Gk θ̃Gk

+
1
2

n∑
k=1

σDkθ
∗T
Dk θ
∗
Dk +

1
2

n∑
k=1

σCkθ
∗T
Ck θ
∗
Ck

+
1
2

n∑
k=1

σGkθ
∗T
Gk θ
∗
Gk +

nh1
2
. (33)

Applying Lemma 3 to the terms
(

n∑
k=1

σDk θ̃
T
Dk θ̃Dk
4

) β+1
2

,(
n∑

k=1

σCk θ̃
T
Ck θ̃Ck
4

) β+1
2

,
(

n∑
k=1

σGk θ̃
T
Gk θ̃Gk
4

) β+1
2

with y = 1, and
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b1 =
β+1
2 , b2 = 1− β+1

2 , b3 =
(
1−β
2

) 1−β
1+β

, there holds

(
n∑

k=1

σDk θ̃
T
Dk θ̃Dk

4

) β+1
2

≤
1
4

n∑
k=1

σDk θ̃
T
Dk θ̃Dk + b1b3, (34)

(
n∑

k=1

σCk θ̃
T
Ck θ̃Ck

4

) β+1
2

≤
1
4

n∑
k=1

σCk θ̃
T
Ck θ̃Ck + b1b3, (35)

(
n∑

k=1

σGk θ̃
T
Gk θ̃Gk

4

) β+1
2

≤
1
4

n∑
k=1

σGk θ̃
T
Gk θ̃Gk + b1b3. (36)

According to Lemma 2 and vj =
[
vj,1, vj,2, . . . , vj,n

]T ,
there holds

vTj v
β
j∗ =

[
vj,1, vj,2, . . . , vj,n

] [
vβj,1, v

β

j,2, . . . , v
β
j,n

]T
= vβ+1j,1 + v

β+1
j,2 + · · · + v

β+1
j,n ≥

(
vTj vj

) β+1
2
. (37)

Substituting (34)-(37) into (33) yields

V̇ ≤ −vT1

(
K1 −

h1
2

)
v1 − vT1 S1v

β

1∗ − v
T
2K2v2

−vT2 S2v
β

2∗ −
1
4

n∑
k=1

σDk θ̃
T
Dk θ̃Dk

−
1
4

n∑
k=1

σCk θ̃
T
Ck θ̃Ck −

1
4

n∑
k=1

σGk θ̃
T
Gk θ̃Gk

−

(
n∑

k=1

σDk θ̃
T
Dk θ̃Dk

4

) β+1
2

+
1
2

n∑
k=1

σDkθ
∗T
Dk θ
∗
Dk

−

(
n∑

k=1

σCk θ̃
T
Ck θ̃Ck

4

) β+1
2

+
1
2

n∑
k=1

σCkθ
∗T
Ck θ
∗
Ck

−

(
n∑

k=1

σGk θ̃
T
Gk θ̃Gk

4

) β+1
2

+
1
2

n∑
k=1

σGkθ
∗T
Gk θ
∗
Gk

+
nh1
2
+ 3b1b3

≤ −aV − bV
β+1
2 + c, (38)

where K1 −
h1
2 > 0, 1

2 ≤
β+1
2 ≤ 1,

a = min

λmin (2K1−h1) , min
k=1,...,n

σDk

2λmax

(
0−1Dk

) ,
λmin (2K2)

λmax (D)
, min
k=1,...,n

 σCk

2λmax

(
0−1Ck

) , σGk

2λmax
(
0−1Gk

)

,

(39)

b = min



min
k=1,...,n

(
σDk

2λmax

(
0−1Dk

)
) β+1

2

, λmin (S1) ∗

2
β+1
2 , min

k=1,...,n

 σCk

2λmax

(
0−1Ck

)


β+1
2

,

min
k=1,...,n

 σGk

2λmax

(
0−1Gk

)


β+1
2

, λmin (S2) ∗

(
2

λmax (D)

) β+1
2



,

(40)

c =
1
2

n∑
k=1

σDkθ
∗T
Dk θ
∗
Dk +

1
2

n∑
k=1

σCkθ
∗T
Ck θ
∗
Ck

+
1
2

n∑
k=1

σGkθ
∗T
Gk θ
∗
Gk + 3b1b3 +

nh1
2
. (41)

Rewrite (41) as follows

V̇ ≤ −
(
a−

c
2V

)
V −

(
b−

c

2V
β+1
2

)
V

β+1
2 . (42)

From (42), selecting parameters can obtain a > c
2V ,

b > c

2V
β+1
2

. By Lemma 1, vj(j = 1, 2) will be within

the finite-time T1 converge to the domain
∥∥vj∥∥ ≤

max
{
√
c/a,

√
2
(
c
/
2b
) 2
β+1

}
.

Remark 1: Control parameters determine the radius of
the tracking error domain, that is, the smaller radius of the
tracking error domain can be ensured by the larger parameters
λmax (Ki) and λmax (Si).
Remark 2: In the control law, the Kr is chosen as

Krii ≥ ‖Eri‖. For stability, Kr is chosen to be properly large.
This is not very ideal due to the introduction of the chatter-
ing. Therefore, the control parameter Kr can be changed as
Kr = kDẋ1,c + kCx1,c+kG, where kD ≥ ‖εD‖, kC ≥ ‖εC‖,
kG ≥ ‖εG‖.
Theorem 1: Consider manipulator dynamics (1) with

Property 1, 2 and impedance dynamics (3). If the finite-
time command filter and the error compensation mech-
anism are chosen as (7), (12), and the adaptive FLS
control law (16) with updating laws (17)-(19) are cho-
sen, the tracking error z1 converges to a small enough

region with the radius max
{
√
c/a,

√
2
(
c
/
2b
) 2
β+1

}
+

max
{√

c0
/
a0,

√
2
(
c0
/
2b0

)2} in finite time T ≥max {T1,T2}.

The proof of Theorem 1 is given in the Appendix.
Remark 3: In the proof of Theorem 1, the result∣∣x1,c − α∣∣ ≤ w̄1 from Lemma 4 will be used. Note that if

the α of the finte-time command filter (7) is not influenced
by the noise, there has w̄1 = 0. Therefore, the conclusion of
Theorem 1 can be obtained when the noise is bounded.
Remark 4: Note that the manipulator is a highly nonlinear

system. The finite-time convergence speed in the nonlinear
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FIGURE 1. Block diagram of control system.

FIGURE 2. Block diagram of the proposed method for manipulators.

system cannot be guaranteed by the traditional PID control.
When the nonlinear system contains unknown dynamics,
the excellent tracking performance cannot be guaranteed by
the PID control. Although the excellent robustness and fast
convergence capability of the unknown manipulator system
can be guaranteed by the sliding mode control, the slid-
ing mode control can only deal with the matched unknown
dynamics, and the control effect cannot be ensured when the
nonlinear system contains the unmatched unknown dynam-
ics. When the robot system contains an unmatched unknown
dynamics, the AFFTCFIC can ensure that the control error
variable z1 converges to a small enough domain of the origin
in finite time, and that all signals in the robot system can be
kept in the appropriate region in finite time.

V. SIMULATION RESULT
In this section, a 2-degrees of freedom (2-DOF) robotic
manipulator on a vertical plane, which is shown in Fig.3,
is considered, simulations of pHRIs verify the validity of
the proposed method and the robotic manipulator system of

FIGURE 3. A planar 2-DOF manipulator.

two rotary degrees of freedom is defined by (2), it can be
described as follows:

ẋ1 = x2
ẋ2 = D−1 [τ − τe − Cx2 − G] ,
y = x1

and x1 = [x11, x12]T and x2 = [ẋ11, ẋ12]T , x11 and x12
represent respectively the position of the axis X and Y on the
end-effector of the manipulator in the Cartesian coordinates.
fe = ‖τe‖ denotes the external force on the end-effector.
q = [q1, q2]T represents the each joint angle position. mi
and li are respectively the mass and length of link i, lci is
the distance from joint i − 1 of the robotic manipulator to
the centroid of the link i, Ii is the moment of inertia of link i
through the centroid of link i, (i = 1, 2) based on the axis of
the page.

The inertia matrix of 2-DOF manipulator D∗, Centripetal
and Coriolis matrix C∗, gravity force vector G∗ are given as
follows:

D∗ =

m1l2c1 + m2l21 + l
2
c2 + 2l1lc2 cos q2 + I1 + I2

m2

(
l2c2 + l1lc2 cos q2

)
+ I2

m2

(
l2c2 + l1lc2 cos q2

)
+ I2

m2l2c2 + I2


C∗ =

[
−m2l1lc2q̇2 sin q2 −m2l1lc2 (q̇1 + q̇2) sin q2
m2l1lc2q̇1 sin q2 0

]
G∗ =

[
(m1lc2 + m2l1) g cos q1 + m2lc2g cos (q1 + q2)

m2lc2g cos (q1 + q2)

]
The Jacobian matrix of 2-DOF robotic manipulator is

shown as follows:

J =
[
− (l1 sin q1 + l2 sin (q1 + q2)) −l2 sin (q1 + q2)
l1 cos q1 + l2 cos (q1 + q2) l2 cos (q1 + q2)

]
Some formulas for robotic system are D = J−TD∗J−1,

C = J−T
(
C∗ − D∗J−1J̇

)
J−1 and G = J−TG∗.

The parameters of the 2-DOF manipulator are shown as
the length of link 1 and link 2 are 1.00m, the mass of link 1
and link 2 are 1.00kg, the moment of inertia of link 1 and
link 2 are 0.25kg · m2. The initial parameters of the robotic
manipulator are x11 (0) = 0.4, x12 (0) = 1m, ẋ11 (0) =
ẋ12 (0) = 0, q1 (0) = π

2 , q2 (0) = −
π
2 , the desired

trajectory of the 2-DOF robotic manipulator is shown as
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FIGURE 4. The tracking curves under three schemes.

xd = [0.7− 0.2 cos (t) , 0.7+ 0.2 sin (t)]T , where t ∈ [0, 10].
The manipulator end-effector moves along the solid wall
when it makes touch with the wall, and the obstacle wall is
located as xo = 0.8m.

The target impedance of the 2-DOF robotic manipulator
is selected as Md = diag [1.0, 1.0], Bd = diag [15.0, 15.0],
Kd = diag [60.0, 60.0].

The updating law parameters are 0Dk = 0Ck = 0Gk =

diag [20, 20], σDk = σDk = σDk = diag [0.01, 0.01].
In this part, the PD control method, the adaptive fuzzy

impedance control (AFIC) method in [17] and the proposed
AFFTCFIC method in this paper are compared. The robotic
manipulator system control parameters are chosen as follows:

A). For PD method of the 2-DOF robotic manipulator,
the control law is given as τ = −K1z1 − K2z2 and control
parameters are chosen as K1 = diag [800, 800], K2 =

diag [200, 200];
B). For AFIC method of the 2-DOF robotic manipulator

in [17], control parameters are given as K1 = diag [6, 6],
K2 = diag [8, 8];

C). For AFFTCFIC method of the 2-DOF robotic manip-
ulator, control the control parameters are given as K1 =

diag [6, 6], K2 = diag [8, 8], S1 = diag [2, 2], S2 =
diag [2, 2], γ = 0.6, h1 = 1, R1 = 20, R2 = 0.6.

FIGURE 5. The tracking error curves under three schemes.

FIGURE 6. The external force curves under three schemes.

FIGURE 7. The control input curves under three schemes.

The simulation results are described in Figs.4-8. Among
them, Fig.4(a) and Fig.4(b) show the position tracking curves
of the manipulator end-effector on the X-axis and Y-axis
under three schemes. Fig.5 shows the position tracking error
curves of the manipulator end-effector on the X-axis and
Y-axis under three schemes. Indicated from Fig.4 to Fig.5,
it can be seen that the tracking performances are better under
the proposed control method whether the manipulator contact
with the wall or not, and the proposed AFFTCFIC scheme
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FIGURE 8. The curves of α and x1,c under the proposed algorithm.

has better control accuracy and faster convergence speed than
the AFIC algorithm in [17] and PD algorithm. Figs.6 shows
contact forces from the wall on X-axis. When the manip-
ulator contacts with the solid wall, it can be seen that the
desired impedance model can be obtained more smoothly
and quickly under the AFFTCFIC method and PD control
has a relatively large collision force in Fig.6. Fig.7 shows
the control inputs are in proper bounds, but the PD control
input is relatively large, which is not conducive to practical
application. Fig.8 shows that the filtered signal x1,c has an
excellent tracking approximation to the virtual signal α.

VI. CONCLUSION
In this paper, the adaptive fuzzy impedance controller that
combines the finite-time control and the CFC technique
has been proposed to improve the security and compli-
ance of pHRI. The manipulator tracking quality has been
improved by the finite-time control technique. Simultane-
ously, the combination of the CFC technique and the back-
stepping can solve the “computational complexity” issue in
the backstepping controller design. Through the Lyapunov
stability analysis and simulations, the validity of the proposed
method is proven. Our future research is to design a novel
finite-time state constraint control scheme of robotic manipu-
lators, which can ensure that the manipulator moves in a finite
space and achieves the desired performance in finite time.

APPENDIX
Proof of the Theorem 1

Proof:Now the following Lyapunov function is selected.

V̄ =
1
2
ξT1 ξ1. (43)

The differential of (43), with respect to time, is

˙̄V = −ξT1 K1ξ1 + ξ
T
1
(
x1,c − α

)
− h1ξT1 sign (ξ1) . (44)

Based on Lemma 2 and Young’s inequality, there holds

h1ξT1 sign (ξ1) ≥ h1
(
ξT1 ξ1

) 1
2
, (45)

let d =
(
x1,c − α

)
, there holds

ξT1 d ≤
1
2
ξT1 ξ1 +

1
2
dT d . (46)

According to Lemma 4, there is
∣∣x1,c − α∣∣ ≤ w̄1 in finite

time T2, and substituting (45) and (46) into (44). For t > T2,
there holds

˙̄V ≤ −ξT1

(
K1 −

1
2
I
)
ξ1 − h1

(
ξT1 ξ1

) 1
2
+

1
2
w̄2
1

≤ −a0V̄ − b0V̄
1
2 + c0, (47)

where K1 −
1
2 I > 0,

a0 = 2 ∗ λmin

(
K1 −

1
2
I
)
, b0 = h1 ∗ 22, c0 =

1
2
w̄2
1.

Rewrite (47) as follows

˙̄V ≤ −
(
a0 −

c0
2V̄

)
V̄ −

(
b0 −

c0

2V̄
1
2

)
V̄

1
2 . (48)

From (48), selecting parameters can obtain a0 −
c0
2V̄

> 0,
b0 −

c0

2V̄
1
2
> 0. By Lemma 1, ξ1 can converge to the domain

‖ξ1‖ ≤ max
{√

c0
/
a0,

√
2
(
c0
/
2b0

)2} in finite-time T2.

Since z1 = v1 + ξ1, when T ≥ max {T1,T2}, there can

obtain ‖z1‖ ≤ ‖v1‖+‖ξ1‖ ≤ max
{
√
c/a,

√
2
(
c
/
2b
) 2
β+1

}
+

max
{√

c0
/
a0,

√
2
(
c0
/
2b0

)2}. The proof is completed. �
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