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ABSTRACT Communication networks are expanding rapidly and becoming increasingly complex. As a
consequence, the conventional rule-based algorithms or protocols may no longer perform at their best
efficiencies in these networks. Machine learning (ML) has recently been applied to solve complex problems
in many fields, including finance, health care, and business. ML algorithms can offer computational
models that can solve complex communication network problems and consequently improve performance.
This paper reviews the recent trends in the application of ML models in communication networks for
prediction, intrusion detection, route and path assignment, Quality of Service improvement, and resource
management. A review of the recent literature reveals extensive opportunities for researchers to exploit the
advantages of ML in solving complex performance issues in a network, especially with the advancement of
software-defined networks and 5G.

INDEX TERMS Machine learning algorithms, communication network, intrusion detection, routing, quality
of service.

I. INTRODUCTION
In recent years, network traffic has grown exponentially
along with increasing bandwidth and delay-sensitive applica-
tions, including voice over Internet protocol, 5G long-term
evolutions, and on-demand videos. Accordingly, modern
communication network systems need to be improved to
manage traffic and fulfill their service level agreement (SLA)
efficiently. However, the growth in the number of appli-
cations with different Quality of Service (QoS) require-
ments, the ever-increasing number of subscribers, and the
complexities in resource allocation and management all
introduce challenges that prevent network designers from
optimizing network performance and achieving the highest
efficiency.

Machine learning (ML) is a subset of Artificial Intelligence
(AI) application that allows systems to learn automatically
and provides predictions or solutions based on experience.
ML brings intelligence to various broad sectors, such as
image and speech recognition [1]–[4], guiding systems [5],
and communication networks [6], [7]. ML is also known for
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its superior classification and optimization performance, has
been used to intelligently address complex problems, and,
in some cases, can produce better outputs compared with
humans [8].

This paper surveys the recent trends in the application of
ML algorithms in the communication literature published
from 2017 to 2020. Instead of merely focusing on a single
network such as software-defined networking (SDN), this
paper presents an overview of how ML algorithms can be
incorporated into various networks, including multi-domain,
multilayer, optical, Internet of Things, and 5G networks.
Given that networks are becoming exponentially complex
and the gradual obsoletion of conventional algorithms over
time, ML can be viewed as a revolutionary solution to the
challenges being faced in networks, hence motivating this
paper to survey the recent trends in the application of ML
in solving such issues and to highlight its advantages over
conventional solutions. The contributions of this paper are
outlined as follows:
• This paper provides an overview of ML algo-
rithms, including supervised and unsupervised learn-
ing models, deep learning (DL), and reinforcement
learning (RL).
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• This paper reviews the related applications of ML
between 2017 and 2020. These applications include
congestion control, predictivemodel, intrusion detection
system (IDS), routing, QoS improvement, and resource
management.

• This paper discusses the issues encountered by conven-
tional algorithms, the advantages of the current imple-
mentation of ML algorithms, and the current methods
for solving network issues.

• This paper presents the future challenges and trends in
the application of ML algorithms in networks.

The rest of this paper is organized as follows. Section II
reviews the related papers. Section III provides an overview
of ML algorithms, including supervised and unsupervised
learning, DL, and RL. Section IV discusses the applications
of ML in congestion control. Section V discusses the appli-
cation of ML to predict the QoS in a network. Section VI
discusses the application ofML-based IDS and elaborates the
recent common intrusions in a network, the publicly available
intrusion datasets, and future recommendations. Section VII
discusses the application of ML for route and path assign-
ments. Sections VIII and IX discuss the application of ML
to improve QoS and network resource management, respec-
tively. Section X elaborates the future challenges and trends
in the application of ML algorithms in networks. Section XI
concludes the paper. Fig. 1 summarizes the organization of
this paper, and Table 1 lists the acronyms and notations used
in this study.

TABLE 1. Definitions of acronyms and notations.

II. RELATED WORKS
Numerous studies have reviewed the application of ML in
networks. For instance, Miller et al. [9] comprehensively
reviewed the application of deep neural networks (DNN)
in defending networks from attacks. Mammeri et al. [8]
reviewed the literature on the application of RL for routing.
Several recent reviews on the application of DL in networks
have also been conducted in [10]–[14]. Otoum et al. [10]
comprehensively analyzed the application of ML and
DL solutions for IDS in sensor networks. Shrestha and
Mahmood [11] reviewed the available optimization methods
that utilize different types of deep architectures to improve
accuracy and reduce training time. Zhang et al. [12] reviewed
mobile and wireless research based on DL. Usama et al. [13]
provided an overview of the applications of unsuper-
vised learning in the networking domain. Luong et al. [14]
addressed the recent issues in the application of deep RL
in communication and networking. These studies focus on
specific ML algorithms or applications.

However, a broad range of ML algorithms come with
their own advantages and disadvantages. ML algorithms have
limitless applications in networks and can be implemented
either in the present network or its future evolutions. There-
fore, the application of a broad ML algorithm in a spe-
cific network has been recently reviewed. For instance,
Yao et al. [15] reviewed the application of ML for load
balance routing in a next-generation wireless network.
Zhao et al. [16] incorporated different ML algorithms in
SDN. Praveenkumar et al. [17] reviewed the application of
different ML-based algorithms in wireless sensor networks.
Although the ML algorithm covered in these papers are
broad, they specialize in specific network applications or net-
work types. By contrast, Boutaba et al. [18] comprehensively
surveyed the various network applications of ML, such as for
traffic predictions, traffic classifications, routing, congestion
control, and resource management. This paper also provides
insights for future research. While Boutaba et al. provides
one of the most complete surveys on the application of ML,
their review is only limited up to 2018.

Given that research on the application ofML in networking
is still ongoing and has many opportunities for expansion,
this paper provides a review of the recent trends in the
application of ML in networks and an overview of the most
recent advancements in this field. This paper also identifies
gaps that can be filled in future studies on the incorporation
of ML into networks. Our latest study shows that the most
prominent applications ofML in networks include congestion
control, network performance predictions, IDS, routing, QoS
improvements, and resource management. Therefore, this
survey will focus primarily on these six applications. Table 2
summarizes the recent related works along with their focus
and contributions.

III. OVERVIEW OF ML MODELS
ML has been recently applied in various aspects of our
lives, including financing, health care, robotics, customer
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FIGURE 1. Organization of this paper.

service, and pattern recognition. ML algorithms can pro-
vide low-complexity solutions to performance issues by
exploiting the historical data without the need for any
complex re-programming [24]. With the expanding volume
of complex data generated and the demand for intelligent
data analytics, the use of the ML algorithm has become
ubiquitous. Fueled by advancements in computing power,
ML has received recognition in both research and industry
for its potential to extract information efficiently from a
large dataset [25]. Given the high predictive accuracy of ML

approaches and the rapid speed by which an ML model can
be generated, ML is being used every day by thousands of
companies for the predicting the next best business [26].

ML tasks often depend on the nature of the training data.
During the training process, the ML framework is trained to
achieve a specific goal, such as making a decision, predicting
a value, or performing a classification. Training allows the
ML framework to discover potential relationships between
the input and output data without any human interven-
tion [27]. Another form of ML is the online ML algorithm,
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TABLE 2. Summary of the Recent Related Works with Their Focus and Contributions.

in which after every prediction, the model is updated for each
new input feature [26].

A model can be built from the historical data or dataset
by using the ML algorithm. The model is then evaluated to
check whether the desired accuracy has been reached and
to determine whether optimization is required to improve
performance. New data are then fed into the model to make
predictions. For online ML models, the new predicted results
are updated into the model. The differences between ML
algorithms and the rule-based algorithm are summarized as
follows [26]:
• ML creates its model based on the dynamic input fea-
tures and complexity of the data with no fixed rule.

• ML is often more accurate, automated, fast, cus-
tomizable, and scalable than a manually constructed
rule-based system.

• ML can be trained to identify trends and patterns from
a large volume with multi-dimensional data to provide
future predictions for a particular problem.

ML, which is a subset of AI technology that learns pat-
terns from empirical data, has been applied in classifica-
tion, regression, and control. The basic workflow of ML
algorithms is depicted in Fig. 2. The dataset is fed into the
ML platform to train the algorithms. The ML platform then
builds the model, whose accuracy is subsequently evaluated.
If the accuracy is not promising, then further optimization
is required. This process is repeated until the accuracy of
the algorithm converges. The trained ML algorithm is then
further validated on a new data to ensure that the algorithm
still provides good accuracies. This is also an important

FIGURE 2. The basic workflow of real-world ML system [26].

performance measure to prevent the algorithm from overfit-
ting the training dataset. The ML algorithm can be trained
with a labelled dataset that informs the machine about the
correct answers in a process known as supervised learn-
ing. Many algorithms, including decision tree (DT), logistic
regression, and k-nearest neighbor (KNN), use this approach
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FIGURE 3. ML model categories.

to perform regression or classification. When dealing with
labeled data, both input and desired outputs are known by
the system. The supervised learning approach is commonly
used when sufficient historical data are available. Some ML
algorithms are also fed with unlabeled datasets. The model
looks for associated or clustering patterns without the correct
answers in the dataset. The main goal of unsupervised learn-
ing is to explore the data and infer some structure directly
from unlabeled data. K-means, self-organizing map (SOM),
expectation–maximization (EM), and generative adversarial
networks are some examples of unsupervised learning algo-
rithms. Unsupervised learning is essential in the event where
the applications have no labeled data. Another form of the
ML model is RL. RL allows an agent to take action and
interact with the environment to maximize the total rewards.
The basic workflow of RL will be elaborated further in this
paper. Fig. 3 summarizes the subdivisions of the ML algo-
rithm, including RL, supervised ML, and unsupervised ML.
This section presents an overview of the classical supervised
and unsupervised learning algorithms and briefly explains
each ML algorithm. A well-trained ML algorithm should
be able to perform predictions in a system with remarkable
accuracy. Nonetheless, when the behaviors of the system
change rapidly, ML algorithms may need to be re-trained
to be adaptive to the new changes. To overcome this prob-
lem, another form of ML algorithm, namely, online ML is
introduced. Online ML assumes an initial model that can
generate predictions without any pre-deployment effort as
soon as the system is up. This model can be updated every
time a new occurrence in the system is observed. Online

ML updates periodically while adapting to changes in the
effort to improve the accuracy of the algorithm [28]. For
additional information on each algorithm discussed in this
section, readers can refer to [26], [29]–[43].

A. DECISION TREE (DT)
The DT algorithm can be used to address both classification
and regression problems. This algorithm considers all input
attributes and features at the root and is divided into groups
of splits at the first phase. The accuracy of each split is
calculated by using a cost function, and the split with the least
cost is selected. DT is recursive given that each split formed
can be subdivided by using the same strategy. The next phase
is tree pruning, which identifies and removes branches that
reflect noise or outliers [29], [44]. Given this procedure,
the DT algorithm is known as a greedy algorithm. DT has an
excessive desire to lower the costs. The cost function seeks to
find the most homogenous group of branches with the most
similar responses. The maximum depth of DT refers to the
length of the longest path from the root to a leaf. The depth is
set to a value that balances the accuracy of the model and
avoids overfitting the training data at the same time. The
advantages of DT are as follows:
• simple to interpret and visualize;
• implicitly performs feature selection; and
• unaffected by the nonlinear relationship among
parameters.

However, DT can be over-complex and overfit the training
data. This algorithm is also prone to instability because a
small variation in the data may result in the generation of
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a completely different tree [29], [44]. This model may also
be unable to deal with complex systems with inconsistent
attributes.

B. RANDOM FOREST (RF)
One of the downsides of DT is that the top levels of the tree
have a huge impact on the output. If the new data does not
follow the same distribution as the training dataset, DT may
suffer inaccuracies. The RF model can help to mitigate such
issues [26]. The DT model is the primary building block
of the RF model. As the name implies, the RF model con-
sists of a large number of individual DTs that operate as an
ensemble [30], [33], [45], [46]. Each DT in the RF splits
out a class prediction, and the class with the most votes is
selected the model prediction as illustrated in Fig. 4. A large
number of uncorrelated trees operating as a committee will
outperform any of the individual constituent models. Each
tree in the RF may give the wrong prediction, whereas the
other trees may produce an accurate prediction. The RF con-
structs multiple DTs and eventually merges them to obtain an
absolute and stable value, which is mainly used at the time of
training and predicting the class [30], [33], [45], [46]. As a
result, this group of trees provides an improved prediction.
RF also forces additional variations into the model, which
will ultimately reduce the correlation across branches due
to diversification. The advantages of RF algorithms include
their immunity to few correlation features and noisy datasets
and their significant gains in accuracy [47]. Moreover, RF is
robust against overfitting unlike DT. Apart from having a
high-performance classification model, RF can calculate the
importance and degree of influence of each variable used in
the classification [48].

FIGURE 4. Illustration of Random Forest classifier [26].

C. SUPPORT VECTOR MACHINE (SVM)
SVM is highly preferred by many due to its significant accu-
racy yet low computation power. Similar to DT, SVM can
be used to solve both regression and classification problems.
SVM aims to find a hyperplane in an N-dimensional space
that distinctly classifies the data points [31]–[33], [49] as
illustrated in Fig. 5. To separate several classes of data points,

FIGURE 5. Illustration of SVM hyperplane in 3-dimension space and its
optimal hyperplane and margin in 2-dimension space [26].

many hyperplanes can be constructed. The main objective of
SVM is to find a plane with the maximum distance between
the classes, where the hyperplane divides the blue and red
data points with some classification error. Maximizing the
optimal margin distance provides some reinforcement in
order for future data points to be classified with improved
accuracy. A higher number of features corresponds to a more
complex construction of the hyperplane. SVM can also fit
linear and nonlinear data and uses a the kernel technique,
which is a mathematical construct that can ‘‘wrap’’ the space
where the data are located. SVM can then find a better bound-
ary in this wrapped space, thereby making the boundary
nonlinear in the original space [26], [33], [49]. SVM has
an excellent generalization performance, hence making this
model suitable for small datasets with many features.

D. NAÏVE BAYES (NB)
An NB classifier is a probabilistic ML model that is used to
solve classification problems. The operation of this classifier
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is based on the Bayes theorem presented in Equation (1).

P(A|B) =
P(B|A)P(A)

P(B)
(1)

where P(A|B) is a conditional probability of the likelihood
of event A occurring given that event B is true, P(B|A)
is the conditional probability of the likelihood of event B
occurring given that event A is true, and P(A) and P(B) are
the probabilities of observing events A and B, respectively.
The NB algorithm is mostly used in sentiment analysis and
recommendation systems. One of the most significant disad-
vantages of NB is requiring the input attributes to be indepen-
dent, which is not always the case in real-life applications.
Such disadvantage will ultimately hinder the performance of
this classifier [33], [49], [50]. However, in the case where
the input attributes can be independent, NB is preferred due
to its simplicity and fast processing speed compared with
other classifiers. Similar to SVM, the NB classifier has the
advantage of requiring only a small amount of training data
to estimate the parameters required for classification.

E. REGRESSION
Regression is a method of modeling a target value based
on independent variables. This method is widely used for
forecasting and determining the cause and effect relationship
among variables. The most basic regression model is linear
regression, which is a type of regression analysis where only
one independent variable is present and where the relation-
ship between the independent x and dependent y variables is
linear as shown in Equation (2).

y = ao + a1x (2)

Equation (2) shows the cost function where the a0 and a1
are the slope and intercept of the linear regression model
with respect to each input, respectively. This equation aims
to calculate the best possible values for a0 and a1 that can
achieve the best fit for all data points. The search problem
is converted into a minimization problem where the goal is
to improve the fit. The gradient descent method continuously
updates both values to reduce the mean squared error (MSE).
The linear regression eventually fits the data point straight
line or plane to the target variable as illustrated in Fig. 6.
While linear regression is used to predict a numerical value,
logistic regression is used to perform classification. The best
line or plane for splitting the data into the target classes is
constructed for the logistic regression. This approach can
be extended to additional dimensions, and the performance
may degrade if the decision boundary that separates the
classes is highly nonlinear. Another downfall is that logistic
regression can sometimes overfit the data. A process called
regularization is usually employed to limit the occurrence of
overfitting [26].

F. K-MEANS
K-means is one of the oldest yet most widely used unsuper-
vised clustering algorithms. This simple partitional clustering

FIGURE 6. Sample Linear Regression best fit line [26].

algorithm attempts to findK non-overlapping clusters. To cre-
ate K-means clusters, the K initial centroids are initially
selected. The basic working model of K-means is shown
in Fig. 7. The K initial number of clusters are pre-defined
by users. Afterward, every data point is assigned to the
closest centroid, and each collection of points assigned to
a centroid forms a cluster. This process is repeated until no
point changes clusters. This clustering algorithm shows sev-
eral advantages over other algorithms in terms of simplicity.
However, K-means performs poorly when the clusters are
non-globular and is highly sensitive to outliers [35].

G. SELF-ORGANIZING MAP (SOM)
SOM is an unsupervised learning algorithm that produces
a low-dimensional, discretized representation of the input
space of the training dataset. This algorithm is usually
employed to reduce dimensionality and incorporates com-
petitive learning [36]. First, each weight of the input nodes
is initialized. Second, a vector is chosen randomly from the
training data. Third, each node is evaluated by calculating
those weights that are most likely to belong to the input
vector. The winning node is known as the best matching unit
(BMU). Fourth, the neighborhood of the BMU is calculated,
and the number of neighbors decreases over time. The closer
a node is to the BMU, the more weights are altered. This
process is repeated until the convergence becomes valid. Two
advantages of SOM are its high interpretability and capability
to handle high-dimensional datasets. However, SOM also
incurs high computational load, especially for large maps
with dense training data [51].

H. EXPECTATION-MAXIMIZATION (EM)
EM can be applied as an unsupervised clustering algorithm
to estimate the maximum likelihood in the presence of latent
variables. This algorithm aims to enhance the tractability of
the given incomplete data problem for ML estimation [37].
The flowchart of EM is shown in Fig. 8. The EM algorithm
is an iterative approach that cycles between two modes. First,
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FIGURE 7. K-Means clustering [35].

a set of initial parameters is considered with incomplete data.
The first mode, namely, estimation-step, attempts to estimate
the missing data. Second, the maximization-step attempts to
optimize the model parameters to explain the estimated value
generated in the estimation-step. This process is repeated
until convergence is reached. EM guarantees that the likeli-
hood increases along with each iteration. However, EM has a
slow convergence rate, thereby resulting in the development
of modified versions of this algorithm [37].

I. GENERATIVE ADVERSARIAL NETWORKS (GAN)
GAN belongs to a set of generative models given its capa-
bility to generate new content. Specifically, GAN can gen-
erate an infinite number of similar samples based on a
given dataset. GAN contains two NNs, namely, a generator
and a discriminator, that compete against each other in a
zero-sum game framework. The basic workflow of GAN is
shown in Fig. 9. First, the generative network takes random
noise as an input and generates samples as an output. The
main goal of the generator is to generate samples that will

FIGURE 8. The Flowchart of EM [37].

‘‘trick’’ the discriminator into thinking that it sees a real
image. Second, the discriminator takes both real images from
the dataset and the fake images generated by the generator
and subsequently decides the legitimacy of the given image.
GAN eliminates the need for direct data inputs by using a
generative network and can generate sharp distributions that
are superior to Markov chains. However, GAN has a long
training time, thereby enhancing its complexity for real-world
applications [38].

J. DEEP LEARNING (DL)
As shown in Fig. 10, DL is a subset of ML that attempts to
mimic the function of the human brain. DL has been regarded
as the next paradigm to revolutionize user experience and has
widely attracted the attention of networking researchers given
its ability to alleviate the burden resulting from exponen-
tially growing traffic and increasing complexity. Researchers
have also investigated the application of DL in alleviating
the ever-increasing communication overhead. DL mimics the
biological nervous system and performs computation through
multi-layer transformation as depicted in Fig. 11. The pri-
mary benefit of DL over traditional ML is its automatic fea-
ture extraction, whereby the expensive hand-crafted feature
engineering can be circumvented. By contrast, traditional
supervised ML is only useful when sufficient labeled data are
available. However, most current systems generate unlabeled
or semi-labeled data. DL provides a solution by extracting
unlabeled data to find useful patterns [12], [33], [39]–[41].

DLs have been applied in many domains, including com-
puter vision, natural language processing, and big data anal-
ysis. DL can also be used to perform both supervised and
unsupervised learning and can result in accurate, prompt
actions due to its efficiency in extracting features from the
input and finding the relationships among multiple metrices
by training with massive data [52]. DL comprises an artificial
neural network (ANN) thatmakes the core computational unit
focus on uncovering the underlying patterns or connections
within a dataset similar to what the human brain does when
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FIGURE 9. Basic workflow of GAN [38].

FIGURE 10. Difference between AI, ML and DL [12].

making a decision. The structure of the DL is similar to how
neurons are arranged in the human brain.

DLs have several layers of ANN that carry out the ML
process. The first layer is the input layer, which comprises a
series of neurons, processes the raw input data, and passes the
information to the second layer with some weights. The sec-
ond layer is known as the hidden layer, which processes
the information further by adding additional weights. All
inputs are eventually summed up and added with another
pre-determined number called bias before being passed to
the activation function where the final output is either 1 or 0.
At the final layer, the predicted output is compared with the
actual output. If the predicted output is not matching with the
actual output, then the ANN will perform the backpropaga-
tion process, whereby the process is repeated after adjusting
the weights to minimize errors. This process is continuously
performed across all layers of the ANN until the desired
results are obtained. The advantages of the ANN include the
following:

FIGURE 11. Artificial Neural Networks with two hidden layers.

• easily models multi-complex tasks [27];
• requires a small number of stored variables yet yields
high accuracy [53]; and

• a well-trained ANN can be thought of as an ‘‘expert’’ in
dealing with human-related data [54]

There are various types of DL algorithms and the most
used in the field of networking including Convolutional NN
(CNN), Long Short-Term Memory networks (LSTM), and
Deep belief network. While no one network is considered
perfect, some DL algorithms are better suited to perform
specific tasks.

K. REINFORCEMENT LEARNING (RL)
Another form of ML model is RL. The workflow of RL
is illustrated in Fig. 12. RL is trained iteratively from the
data collected from the model itself. The goal of RL is
to learn from the environment and find the best strategies
for a given agent. In contrast to the supervised ML model,
RL does not learn from a given dataset. Instead, an RL agent
learns from the significance of its activities and chooses
its action based on past information and a new choice.
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FIGURE 12. The basic workflow of the RL algorithm.

In this way, RL is essentially a trial and error learning
technique [27], [33], [42], [43]. RL learns the reward from a
particular action and gives a feedback loop to the algorithm.
The agent then changes its action based on the previous
reward. The agent continues to interact with the environment
by learning both the action and reward until the reward sat-
urates or reaches a pre-defined threshold [8], [23], [33]. The
agent then learns how good or bad its action was based on
the rewards received from the environment. This procedure
resembles the decision-making process of humans.

The study of RL involves the construction of a mathemat-
ical framework to solve a given problem. To find a good
policy, valued-based methods, such as Q-learning, are used
to measure how the action of an agent performs in a certain
state. The RL algorithm has two general tasks, namely, policy
evaluation and policy improvement, the former of which cal-
culates the cost related to the current policy, whereas the latter
assesses the obtained cost and updates the current policy. The
RL policy and value iteration algorithms repeatedly perform
policy evaluation and improvements until an optimal solution
is found [33], [55].

However, real-world problems can be extremely complex,
thereby preventing a typical RL algorithm from providing
an effective solution. Moreover, throughout the RL learn-
ing process, despite reaching convergence, determining the
best policy may consume much time because the RL algo-
rithm needs to explore and gain knowledge of the entire
system. This shortcomingwill ultimatelymake RL unsuitable
for large-scale networks [14]. To overcome these problems,
researchers have introduced an enhanced version of RL,
namely, deep RL (DRL) [56], which exploits the advan-
tages of DNNs to train the learning process and improve the
learning speed of the RL algorithm. DRL also achieves an
autonomous decision making and significantly improves the
learning speed.

The following sections discuss the applications of super-
vised, unsupervised, and RL algorithms in a network.

IV. ML-BASED CONGESTION CONTROL IN THE NETWORK
Congestion presents a key concern for network providers
given its degrading effects on overall network performance.
Without proper congestion control and management, the net-
work may encounter delays and underutilize its available

resources. Congestion control ensures network stability, fair
resource utilization, and acceptable packet loss ratio [57].
Different network environments deploy their own sets of con-
gestion control mechanisms. Conventional routing protocols
do not learn from their past experiences regarding network
abnormalities, including network congestion. The perpetual
growth of network traffic places a significant amount of stress
on the network, thereby leading to challenges in resource
allocation and management. As a result, the QoS of network
traffic is affected because most networks are still operat-
ing on routing frameworks that have been designed decades
ago [58]. The conventional routing protocols are originally
designed for a fixed network that calculates the shortest path
based on distance vectors or link costs. In the end, the network
may suffer from excessive traffic load that will degrade its
performance entirely. When such situation reoccurs in the
future, conventional routing strategies typically make the
samemistake; these strategies ought tomake the same routing
decisions all over again, thereby leading to an uncontrollable
increase in delay and packet loss rate. The predictive ML
model can be used to address such congestion.

Complex network applications that deal with massive
dynamic bandwidth requirements that optimize the routing
of several end-to-end connections are typically complex.
To overcome such complexity, Troia et al. [59] implemented
an intelligent network optimization model called ML rout-
ing computation that drives the provisioning of paths in
the SDN network. SDN has emerged as one of the most
promising technologies for implementing centralized and
programmable control planes. By exploiting the programma-
bility features of SDN, the logistic regression classifier model
is implemented in the network due to its simplicity. As a
logically centralized control plane, SDN can obtain net-
work information, including topology, bandwidth request,
link load, and network device status. The classifier captures
the traffic metrics, including the number of bytes in each
traffic flow, from the switches. A real-time routing deci-
sion is then made upon detecting changes in the network
traffic matrix. The ML-based routing scheme proposed by
Troia et al. provides smarter routes by reducing network con-
gestion. In contrast to conventional routing where the shortest
path is the desired route, this routing scheme can avoid bot-
tlenecks and congestion in advance. This scheme only takes
80 ms to capture the network conditions, obtain the routing
configurations, and provide new flow rules to the switches.

Congestion is one of the most prominent issues in ensuring
QoS in wireless mesh networks. One of the most common
congestion avoidance protocols is the transmission control
protocol (TCP). However, TCP suffers from performance
degradation [60]. Moreover, the source node cannot explic-
itly determine whether a packet loss has occurred due to
buffering overflow or temporary link failure by the TCP [61].
As mentioned previously, conventional routing protocol does
not learn from previous experiences in handling congestion,
thereby resulting in a recursive problem unless a proper
congestion control mechanism is implemented in the system.
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In a wireless mesh network, the congestion window size
is not precisely adjusted and selected by using the previ-
ous cross-layer handling link asymmetry scheme (CHLA-
QSCACAR). Accordingly, Yuvaraj and Thangaraj [61]
proposed an improved cross-layer handling link asymmetry
scheme with enhanced QoS-based congestion avoidance that
ensures its adaptiveness to the congestion window size by
using ML approaches. In this work, input features, includ-
ing the congestion factor, window decrease factor, aggres-
sive factor, data rate, and packet loss rate, are fed into
the SVM model. Afterward, the next congestion window
size is predicted and used to adjust the congestion win-
dow in the following transmission. Yuvarai et al. proved that
CHLA-QSCACAR can improve the throughput by 10.48%
and end-to-end delay by 11.47% as well as reduce the inter-
ference and noise ratio by 19.35% and routing overhead by
12.5%. Results show that by using ML to aid the current
link handling scheme, the network congestion can be further
improved.

The implementation of DL for congestion control has been
limited to the baseline routing protocol. As elaborated in
Section III, DL works with a set of initialization weights for
all neurons in the input layer of the ANN. In most cases,
to solve the congestion issues in the network, the DL applies
the open shortest path first (OSPF) as the baseline, which
lacks the required intelligence to deal with newly occurring
situations [58]. To address this shortcoming, Tang et al. [58]
proposed a novel real-time DL-based intelligent network traf-
fic control method by exploiting the deep convolutional NN
(deep CNN) with uniquely characterized input and output to
represent the considered wireless mesh network backbone.
At the initial phase, instead of using OSPF as the baseline,
all routers in the network calculate and record the possible
paths for each destination node. All paths are arranged as a
minimum priority queue depending on their metric values,
including their hop number and distance. After obtaining
enough training data, the training is accomplished via a peri-
odic real-time updating phase. The valid path combinations
are then intelligently chosen and executed by the proposed
deep CNN model. The proposed scheme is compared with
OSPF, intermediate system to intermediate system, and rout-
ing information protocol, and the simulation results prove the
superiority of the DL-based routing scheme, which avoids
98.7% of the congestion cases compared with other routing
protocols.

V. ML AS A PREDICTIVE MODEL IN COMMUNICATION
NETWORK
The prediction of network parameters, such as path or link
quality, delay, throughput, optical signal-to-noise ratio, and
incoming traffic, plays an important role in network oper-
ations and management. ML aims to learn from historical
data or the environment and make prediction of the network
parameters to improve the efficiency of the entire network
system.

A. PREDICTING THE NETWORKS OPTICAL SIGNAL TO
NOISE RATIO
Recent works in [62]–[64] have used ANN, SVM, and
Gaussian process regressions, respectively, to predict the
OSNR in an optical network. The predicted OSNR for each
source-to-destination path are then used by the system to
determine the best path for the incoming traffic.

FIGURE 13. QoT estimation in multi-domain Elastic Optical Networks as
proposed in [62].

Estimating theQuality-of-Transmission (QoT) in an elastic
optical network is an incredibly challenging task that can lead
to inaccuracies, especially when supporting high-capacity
and dynamic traffic demands across multiple autonomous
systems. In addition, making QoT predictions is extremely
challenging in a multi-domain network. In each domain, only
a minimal amount of inter-domain information is disclosed to
the domain manager (DM), thereby creating a considerable
disadvantage when using the ML algorithm for QoT predic-
tion given that this algorithm heavily relies on the availability
of large quantities of performance monitoring data to learn
and make predictions. To overcome the privacy issues in a
multi-domain network, Proietti et al. [62] proposed an alien
wavelength performance monitoring technique and used ML
algorithms to estimate the network QoT for the light path
provisioning of intra-inter-domain traffic as shown in Fig. 13.
Alien wavelength refers to those light paths that are not under
the direct control of the domain. For each domain, the DM
monitors performance in the intra-domain connections and
alien wavelengths. For every light path request, the DM
immediately calculates the cognitive routing, modulation for-
mat, and spectrum assignment (RMSA) solution that satisfies
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the QoT requirement. Afterward, DM calls the domain-level
QoT estimation model to estimate the QoT of each candidate
path solution provided by the RMSA. The DM then chooses
the RSMA that satisfies the QoT requirements. The broker
plane, which connects all DMs in the network, receives the
intra-domain candidate light paths together with their esti-
mated QoT. The broker plane then builds a multi-domain
virtual topology and further calculates the inter-domain end-
to-end RMSA on the broker-level QoT estimation model.
With this model, the DM can disclose most information and
only relay the estimated QoT by the domain-level estimator
to the broker plane. The QoT estimation model used in the
system is the ANN model. The input data are obtained via
a testbed to determine the BER and OSNR of active con-
nections and alien wavelengths. The ANN then predicts the
QoT of candidate RMSA solutions to the broker plane in
order to create a virtual topology for end-to-end routing. The
proposed cognitive function achieves an OSNR prediction
accuracy of 95%. The ML-based predictive model shows that
the BER at the egress node is 2.7 × 10−3, while without the
QoT estimator, the BER can reach as high as 8.0 × 10−3,
thereby validating the effectiveness of the ANN-based QoT
estimator.

Locatelli et al. [63] proposed an in-band OSNR estima-
tion process that relies on the ML algorithm to accurately
estimate the OSNR from the in-band optical spectrum in
short-distance scenarios. The generated spectral data for dif-
ferent configurations and resolutions are obtained via simu-
lations. These data are used to train twoML regression-based
algorithms, namely, Gaussian process (GP) regressions and
SVM model. The accuracy of GP and SVM are compared
based on their mean square error (MSE), and the MSE
obtained from these models are 8.5× 10−3 and 21.6× 10−3,
respectively. GP shows a better accuracy than SVM in this
system.

The traffic management of a core IP/Optical back-
bone of a large Internet service provider must deal with
dynamic traffic changes under various network conditions.
Choudhury et al. [64] proposed a hybridMLmodel to predict
the traffic volume for each traffic engineering tunnel at future
time horizons and subsequently predict the optical perfor-
mance of new wavelengths in a multi-vendor environment.
After compiling all the available data for every optical path
in the network, the ML algorithm predicts the path perfor-
mance, and the path with the least OSNR value is chosen
to route the incoming traffic. The dataset is used to train
regression models, including Ridge, GP, gradient boosted
trees, and RF regression trees. The simulations show that
GP and RF algorithms have the lowest MSE value of 0.81.
The proposed scheme can improve the efficiency and reduce
the cost by 9% compared with a non-ML-based scheme
due to the predictions made by the ML algorithm, which
can help avoid traffic loss and increase both feasibility and
efficiency by changing the IP layer topology before the traffic
surge.

B. PREDICTING THE NEXT NODE FOR THE TRAFFIC
FORWARDING
The conventional method for improving network QoS con-
siders a limited number of metrics due to the challenges
in manually ascertaining the relationship among multiple
metrics to reduce the analysis and computation complex-
ity. The advancement of ML algorithms, such as DL, has
enabled an effective extraction of features from the input
and identification of relationships among multiple metrics
through training with massive data. However, the existing
DL-based predictive strategies build intelligence based on a
fixed topology where the existing nodes or links information
is assumed to be static. A problem arises when the network
topology changes, where the prediction accuracy of the DL
algorithm sharply decreases. The network may have various
topologies that cannot be fully covered in the training process.
A study in [65] proposed a value iteration architecture-based
deep reinforcement learning (VIADL) routing strategy that
uses the adjacency matrix of the network node as a learning
parameter. VIADL can repeatedly predict the next node until
the destination is reached. This approach makes the system
topology independent by focusing only on predicting the next
node in contrast to deep-belief architecture (DBA), which
predicts the complete path from the source to the destination.
The proposed scheme guarantees a stable network perfor-
mance when the network topology changes. The throughput
of the proposed scheme is maintained at 144 Mbps, whereas
that of DBA is reduced to 133 Mbps when dealing with
network failure.

Guo et al. [66] reviewed the stochastic shortest path rout-
ing (SSPR) approaches that are only applicable in situations
where the edge lengths are fixed. The SSPR problem has
become a key topic in the literature after the emergence
of 5G technology. A learning-automata-based (LA) algorithm
called SSPR-hieraStructure LRI, whose workflow is similar
to that of RL algorithm that learns from the environment
and grants a reward for every action, is proposed to solve
the SSPR problem. This approach finds the shortest path
with an optimal node in each layer instead of focusing on
the shortest path alone. The LA selects one of its actions
to activate the next LA, and this process is repeated until
no LA remains to be activated. The activated LAs, which
can be viewed as selected paths, are collectively sent to the
environment. If the current length is shorter than a predefined
threshold, then a reward is received. Simulation results show
that the proposed algorithm converges faster with the highest
probability compared with other state-of-the-art LA-based
SSPR algorithms.

As its name implies, the delay tolerant network (DTN)
does not have a strict delay requirement and forwards its
traffic opportunistically. Example DTNs include the con-
nection between Mars orbiter satellites to ground stations
on Earth, non-essential wireless sensor networks, and net-
works in rural or disaster areas. Some challenges being faced
by DTNs include the frequent interruptions among nodes,
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uncertain available paths, long trip times, and asymmet-
ric links. Dudukovich and Papachristou [67] proposed an
ML-based approach to predict a set of neighboring nodes
that have a high probability of delivering a message to the
desired location based on historical message delivery infor-
mation. The performance of this approach is compared with
that of Naïve Bayes, DT, and KNN based on hamming loss,
zero-one loss, F1 score, and Jaccard similarity score. Simu-
lation results prove that in synthetic mobility scenarios and
real-world cases, DT-based classifiers obtain the best perfor-
mance parameters.

C. PREDICTING THE LINK QUALITY IN THE NETWORK
The computational load must be considered in any optimiza-
tion approach to solve a problem. Even if the algorithm
achieves the best accuracy, when the computational load
is too demanding, implementing the algorithm may not be
feasible. In [68], an ML approach that efficiently accom-
plishes the routing and wavelength assignment (RWA) for
an input traffic matrix in an optical network is proposed.
Despite the cost-minimized solution provided by the integer
linear program (ILP), this ML approach suffers from high
computational complexity and requires minutes or even hours
to solve medium-sized network topology problems. Other
AI-based approaches, such as genetic algorithms or RL, also
suffer from high computational costs with slow convergence.
Martin et al. [68] proposed a classifier that is trained with
labeled RWA configurations that are already solved by the
ILP. After training, the classifier can provide the network
configuration for newly incoming trafficmatrices in an online
fashion. The RWA configurations are computed within a few
milliseconds, thereby allowing a dynamic network adaptation
and reconfiguration in response to frequently changing traffic
patterns. Therefore, instead of performing ILP calculations
for each incoming traffic, the network learns from historical
data that have been solved by ILP and assigns a path accord-
ingly. Numerical results show that this approach can reduce
the computational time by up to 93% compared with the ILP
method.

The computational load is proportional to the problem that
the ML model is designed to solve. Liu et al. [25] reduced
the problem size by formulating a small-sized optimization
problem that can indirectly solve the original problem. While
they find that many links in the network are not involved
in the optimization solution, these links are still considered.
However, part of the computing efforts is wasted by repeat-
edly solving similar conditions. The DL-based classifier aims
to predict those links that need to be included in the opti-
mization problem. Only the predicted useful links are kept
in the formulation by applying the threshold. This approach
successfully reduces the computation cost by 50% without
affecting the optimality, thereby significantly improving the
efficiency of solving network optimization problems.

Bote-Lorenzo et al. [28] used the online ML algorithm to
predict the link quality in community wireless mesh net-
works (CWMN). They also claimed that no previous study

has examined the application of this algorithm in predict-
ing the link quality of large-scale CWMN. Real data from
the FunkFeuer Wien CWMN dataset with 500 nodes and
2000 links are used to train online ML algorithms, including
online perceptron, online regression trees with options, and
fast incremental model trees with drift detection and adaptive
model rules. The performance evaluation results show that
the online perceptron algorithm outperforms the rest in terms
of accuracy with light computational demand. Such perfor-
mance is further evaluated by using offline supervised ML
algorithms, including SVM, KNN, regression trees, and GP.
Evaluation results show that the performance of SVM is on
par with that of the online perceptron algorithm. However,
the online ML approach requires only 0.1% of the compu-
tational load generated by SVM, thereby suggesting that the
online ML approach is superior over the offline ML approach
in this case.

D. PREDICTING THE TRAFFIC VOLUME IN THE NETWORK
In virtual network topology, a high number of transponders
should be installed given that the network must be able to
cope with the maximum daily traffic forecast during the plan-
ning period. However, the design is often over-provisioning,
and most of the available capacity in the network will remain
underutilized throughout the day. Morales et al. [69] pro-
posed an ML-based virtual network topology reconfigura-
tion (VENTURE) to predict traffic usage. The VENTURE
framework is shown in Fig. 14. First, the data are collected
for each origin to destination (OD) pairs and stored in the
modeled data repository. Second, a prediction module based
on ML algorithms generates the predicted OD traffic matrix
for the next period. Third, the decision-maker module decides
whether the current virtual network topology needs to be
reconfigured by the VENTURE optimizer. After the algo-
rithm finds a solution, the network controller implements the
changes in the network. VENTURE can maximize the uti-
lization of available transponders by reconfiguring the virtual
topology to follow the predicted traffic direction changes and
dynamically manage the capacity. VENTURE also saves up
to 40% of transponders compared with the threshold-based
method.

E. PREDICTING REVENUE IN THE 5G INFRASTRUCTURE
With the high data rates, extensive coverage, and sub-
millisecond delays promised by 5G networks, this novel
technology is expected to boost upon deployment. In the 5G
infrastructure, network slicing can be one of the traded goods,
including the network resources such as spectrum and trans-
port network. Network slicing involves a set of network func-
tion virtualizations and divides the infrastructure into several
slices, where each slice can be tailored to meet specific
service requirements. The network capacity broker algorithm
must decide whether to admit or reject a new network slice
request that can meet the service guarantee and maximize the
revenue of the network provider. Bega et al. [53] proposed an
ML approach for 5G infrastructure market optimization and
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TABLE 3. Summary of recent ML-based Predictive Model with their Previous Issues on Conventional Rule-based Method, ML Algorithms and Advantages
of the Proposed ML-based Solution.

FIGURE 14. Proposed VENTURE for traffic volume prediction in multilayer
network [69].

developed an analytical model for the admissibility region
that uses the NN-deep RL algorithm to maximize the revenue
of the infrastructure provider. In this model, an agent interacts
with the environment and makes a decision at a given state,
and an estimated reward is then given for each action. The
reward in this case is revenue. Upon receiving a request,
two NN algorithms predict the revenue for each state when
the selected action is either accepted or rejected and then
make decisions based on the predicted value. The perfor-
mance of the proposed algorithm is close to the optimal point
under a wide range of configurations, and this algorithm sub-
stantially outperforms the native approaches, such as smart
heuristics with fast convergence. This algorithm can also be

scaled to a large scenario and may prove useful in practical
settings.

A summary of recent works on the ML-based predictive
model can be found in Table 3 along with the issues and
advantages of their proposed algorithms.

VI. ML-BASED IDS IN A COMMUNICATION NETWORK
The mass dependencies on computers and networks, espe-
cially those applications that require strict protection appli-
cations such as banking, securities, and private cloud data,
only increase the vulnerability of users to security and privacy
threats. Guaranteeing security in such a complex technologi-
cal environment presents a huge challenge that needs to be
tackled intelligently. IDS is an important tool for ensuring
the security of the network information system. Security
mechanisms, including wired equivalent protection and WiFi
protected access, have been mainly used to secure and protect
networks. However, these mechanisms demonstrate many
flaws when exposed to threats, such as Denial-of-Service
(DoS), network discovery, and brute force attacks [70]. Intru-
sion can also lead to huge financial losses and compromise
critical infrastructure. Some real-life intrusions in the net-
work are listed in Table 4.

To protect the network from such vulnerabilities,
researchers have developed a state-of-the-art IDS that inte-
grates ML algorithms. Given that intrusion detection can
be considered a classification problem, ML is viewed as a
promising IDS candidate in the network. ML-based IDS pro-
vides a learning-based system that classifies possible attacks
based on the behavior of the incoming packet. The advantages
of ML-based IDS over conventional signature-based IDS are
as follows [71]:
• flexible rather than rule based;
• low computational load;

52536 VOLUME 9, 2021



M. A. Ridwan et al.: Applications of ML in Networking: Survey of Current Issues and Future Challenges

TABLE 4. Real-life Network Intrusions.

• ability to detect novel attacks;
• ability to capture complex properties of the attack
behavior; and

• clustering ML-based IDS does not require updates on
the dataset.

TABLE 5. Common Attacks in the Network.

ML-based IDS aims to provide a general representation of
known attacks from historical data [72]. Some of the known
intrusions in the network are summarized in Table 5.
IDS can be categorized into a host- and network-based

IDS, both of which can be further categorized into signature-,
anomaly-, and hybrid-based IDS. Anomaly-based IDS learns
the network behavior under normal operations and classifies
any abnormality as an intrusion. Signature-based IDS learns
from the historical dataset of a known intrusion and classi-
fies a similar occurrence as a network intrusion. However,
signature-based IDS achieves a favorable detection accuracy
only for well-known attacks. Moreover, the administrator
needs to update the IDS database regularly, and this IDS is
prone to false alarms whenever new legitimate traffic enters
the network domain.

Anomaly-based IDS can be further categorized into sta-
tistical techniques, ML-based techniques, and finite state
machine-based (FSM) techniques [73]. FSM produces a
behavioral model comprising states, transitions, and actions.

Anomaly-ML-based IDS can discover zero-day attacks or
intrusions that are previously unknown. However, anomaly-
ML-based IDS suffers from a high false-positive because of
the limitation of ML algorithms in accurately distinguishing
normal from intrusion behavior.

Similar to any ML algorithm, data are essential for IDS.
Computer network security data can usually be obtained
either directly or by using an existing public dataset. Direct
access is one method of acquiring cyber data either by simu-
lations or using a testbed. The required network packet data
can be captured throughWireshark or Win Dump. This direct
approach is flexible and straightforward depending on the
preferences of the researcher. However, this approach is only
suitable for collecting short-term and limited amounts of data
on a network with a limited scale. When trying to obtain
long-term and large amounts of data, the cost of data collec-
tion will increase proportionally. Therefore, using an existing
public dataset can shorten the data collection time and sub-
sequently improve research efficiency [74]. However, feature
selection needs to be performed because these datasets usu-
ally contain massive amounts of data, and some features may
have a low correlation for ML algorithms. Moreover, some
datasets may be outdated, such as the KDD-Cup99 and NSL-
KDD, thereby introducing challenges in the detection of the
newest attacks.

A. PUBLICLY AVAILABLE DATASET FOR IDS
The DARPA intrusion detection dataset is collected and pub-
lished by The Cyber System and Technology Group of the
MIT Lincoln Laboratory for evaluating IDS [82]. The lat-
est DARPA dataset is the 2000 DARPA intrusion detection
scenario-specific dataset that includes LLDOS 1.0, LLDOS
2.0.2, and Windows NT attack scenario data.

The KDD CUP 99 dataset, which is based on the DARPA
1998 dataset [83], is one of the most used training datasets
in the literature that contains 4,900,000 replicated attacks,
22 attack types, and 41 fixed feature attributes.

The NSL-KDD dataset is a new version of the KDD CUP
99 dataset that addresses some limitations of its predeces-
sor [84]. This dataset removes unnecessary records and dupli-
cates from the training data and offers a highly homogenous
distribution by ensuring that the number of records in the
training sets is proportionally distributed [83].

The CICIDS-2017 dataset, which was created in 2017,
includes real-world attacks that are recorded during the year
of its introduction. This dataset was created by analyzing
network traffic by using information from timestamps, source
and destination IPs, source and destination ports, protocols,
and attacks [85]. This dataset comprises 86 features, com-
plete with network and traffic structure, tagged data, recorded
network traffic, and protocols of frequent attacks that are
distributed proportionally.

CSE-CICIDS-2018 was introduced in 2018/2019 by the
Canadian Institute for Cybersecurity [86]. As an enhanced
version of the previous CICIDS-2017 dataset, CSE-CICIDS-
2018 contains a limited number of duplicated data, excludes

VOLUME 9, 2021 52537



M. A. Ridwan et al.: Applications of ML in Networking: Survey of Current Issues and Future Challenges

uncertain data, and can be exported in CSV format, thereby
making this dataset ready for use without pre-processing.

B. IMBALANCE DATASET
One problem with publicly available datasets is that they
contain data with enormous sizes. Given that these datasets
capture network activity for as long as several weeks, most
ML algorithms that utilize shallow learning methods, such
as KNN, SVM, and SOM, may suffer from long training
times [87], [88]. Shallow learning algorithms heavily depend
on feature engineering and feature selection and demonstrate
poor performance in detecting unlabeled network attackswith
high false alarm rates. These algorithms also cannot effec-
tively classify large-scale data in actual complex network
application environments.

In addition, most datasets containing different types of
attack traffic are imbalanced. Fig. 15 shows the percentage
portion between normal and DoS attack class type between
well-known public intrusion dataset. Such imbalance pre-
vents traditional classifiers from achieving high detection
rates. These classifiers tend to favor the class with the highest
volume in a dataset [88]. Meanwhile, minority class types
usually have low prediction and detection rates. This issue is
generally unfavorable given that the other intrusion types in
the dataset are equally harmful to the network. Intruders may
take advantage of this loophole and focus on minority attack
types. While other attack types such as bot, infiltration, brute
force, and SQL injection attacks only account for less than
7% of the public dataset [83].

FIGURE 15. Percentage portion comparison between different public
intrusion datasets.

Several methods have been used to deal with imbalanced
datasets. One of these methods is resampling, which can be
divided into the following:

• oversampling, which generates samples of the minority
class;

• undersampling, which drops the sample of the majority
class;

• hybrid sampling, which combines oversampling and
undersampling;

• exploiting ensemble-based algorithms to help alleviate
the influence of imbalanced class distribution; and

• using loss functions in DL algorithms.

Several studies have recently attempted to overcome such
imbalance. For instance, Yang et al. [88] proposed the hybrid
supervised and DNN adversarial variational auto-encoder
with regularization (SAVAER) approach, which can accu-
rately detect various network attacks, thereby making this
approach suitable for new networks. The decoder of SAVAER
is used to synthesize low-frequency and unknown attack
samples of a specific label, thereby increasing the diversity
of training samples and balancing the training dataset. As a
result, the detection rate for low-frequency and unknown
attacks is improved. SAVAER has been compared with both
DNN and DT. In the NSL-KDD dataset, the minority attack
class types are the U2R and R2L attacks. Results show
that SAVAER has a 44.5% detection accuracy for U2R
attacks, whereas DT and DNN only report detection accu-
racies of 8.5% and 5 %, respectively. Meanwhile, for R2L
attacks, SAVAER, DT, and DNN obtain detection accura-
cies of 53.59%, 7.12%, and 7.66%, respectively. There-
fore, SAVAER can successfully improve the detection of the
minority attack class in the NSL-KDD dataset.

Karatas et al. [83] argued that looking at the overall accu-
racy of theML-based IDS does not yield precise comparisons
due to the imbalanced distribution of attacks in the dataset.
Instead, the accuracies related to each attack type should be
examined separately. Accordingly, they attempt to remove
the effect of asymmetry between classes in the dataset by
improving the average accuracy of the system. The imbalance
ratio in the dataset is reduced by using a synthetic data gen-
eration model called synthetic minority oversampling tech-
nique (SMOTE) as depicted in Fig. 16. The SMOTE function
creates new samples by considering the differences between
the feature vectors and their nearest neighbor and by multi-
plying the difference by a random number between 0 and 1.
After running this function, the imbalance ratio in the newly
transformed dataset is reduced from 53887 to 9.98, which is
deemed acceptable. However, the sampling model increases
the dataset size by 17%, thereby extending the training time
of the system. Nevertheless, the newly transformed dataset
obtained by the SMOTE function demonstrates a 72.35%
improvement in detection accuracy for three minority attacks,
namely, brute force, infiltration, and SQL injection attacks.

Yu and Bian [89] proposed an intrusion detection method
based on few-shot learning (FSL). FSL is one of the solutions
when only a limited amount of training data is available [90].
This method aims to learn from a small amount of labeled
data. FSL is one of the algorithms that can effectively solve
the problem of limited network intrusion detection data.
However, FSL requires a balanced dataset. To ensure that the
dataset is balanced for each training session, the same number
of samples from each attack class type is chosen and sampled
by N times in sequence according to the sampling order. This
work focuses on two training phases, namely, binary clas-
sification, where the dataset is categorized into normal and
attack type classes, and multi-class classification. For binary
classification, 100 samples are chosen from each class and
sampled five times.Meanwhile, for multi-class classification,
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FIGURE 16. Workflow of SMOTE function proposed in [83].

50 samples are selected for each class and sampled 10 times.
Experiment results show that the resampling works do not
affect the performance of the IDS. FSL also outperforms the
other ML algorithms, such as NB, NB-Tree, RF, and SVM.
The proposed scheme achieves a 92.34% accuracy with only
1% of the NSL-KDD and UNSW-NB15 dataset. Meanwhile,
in multi-class classification, FSL achieves a 92.33% accuracy
with only less than 2% of the KDDTrain+ dataset.
Gao et al. [91] investigated the imbalanced dataset prob-

lem by using the ensemble learning model. Ensemble
learning integrates the advantages of each ML algorithm for
different attack classes to achieve optimal results. All clas-
sification algorithms are initially trained via cross-validation
by using the training data, and the algorithm with the highest
accuracy and operation performance is selected for voting.
Afterward, each algorithm is boosted via feature selection,
unbalanced sampling, adding class weights, and multi-layer
detection to further improve the detection accuracy. The class
with the highest number of votes is selected as the final pre-
diction of traffic class type. Experimental results prove that
the proposed ensemble voting approach achieves the highest
accuracy of 85.2%, whereas the multi-tree and DNN models
only achieve accuracies of 84.23% and 81.61%, respectively.

C. FEATURE ENGINEERING ISSUES IN DATASET
The high-dimensional input features of publicly available
IDS datasets pose one critical challenge that needs to be
addressed. Nagaraja et al. [92] proposed a Gaussian distance
function to reduce the dimension of the original input dataset
into a new transformation space. By using the KDD and
NSL-KDD datasets, the original 41 attributes are reduced to
35 after feature transformation. By dimensionally reducing

the dataset, the precision value for the minority attack class is
improved from 58% to 68% for U2R attacks and from 97%
to 98% for R2L attacks.

Kasongo et al. [70] proposed a DL-based IDS that uses
feed-forward DNN (FFDNN) coupled with a filter-based
feature selection algorithm. Before using FFDNN for feature
extraction, DNN has a learning rate of 0.05 with 41 features.
After the filtering process, the number of features is reduced
to 21, thereby reducing the learning rate to 0.02 and achieving
an accuracy of 86.19% when using the NSL KDDTest+
dataset. Other ML algorithms, such as RF, SVM, and NB,
achieve accuracies of 85.27%, 79.55%, and 75.51%, respec-
tively, when using the same dataset. These results prove
that feature extraction or reduction is essential to reduce the
learning load of ML algorithms.

However, extracting features from a dataset is a challeng-
ing task. ML algorithms can achieve satisfactory detection
levels when sufficient training data are available, and sophis-
ticated hand-engineering features are built to achieve suffi-
cient generality and to accurately detect both attack variants
and novel types of attacks. However, with the emergence
of DL, these hand-engineering features have been replaced
with a trainable multi-layer network. Andresini et al. [93]
exploited the DL feature by proposing a novel DNN architec-
ture for training intrusion detection models. They combined
supervised and unsupervised multi-channel feature learning
to find the feature dependencies in both channels. In the
supervised stage, two sets of autoencoders for normal and
attack flows are separately learned. The autoencoders in the
first set are trained on normal samples, can contribute to
the recovery of denoised normal samples, and can detect
attack samples as anomalies. Meanwhile, the autoencoders in
the second set perform the same process for attack samples.
The multi-channel parametric convolution is then adopted
in the supervised stage to learn the effect of each channel.
The idea is to exploit the possible existing patterns among
channels to improve intrusion detection performance. The
proposed approach outperforms the other ML algorithms,
including NN, ANN, CNN, and anatomically CNN, when
using the CICIDS 2017 test set with 97.9% accuracy.

To address themisclassification issues in IDS, Su et al. [94]
proposed BAT-MC, a novel methodology for IDS that inte-
grates the Bat and DL algorithms. The Bat algorithm com-
bines the bidirectional long-short-term memory (BLSTM)
with the attention mechanism. The network traffic is repeat-
edly collected at fixed time intervals to generate a network
traffic matrix. Multiple convolutional layers then pre-process
the data. The BLSTM layer extracts the features of the traffic
bytes of each packet. The attention mechanism is then used to
perform feature learning on the sequence data comprising the
packet vector to obtain fine-grained features. The proposed
BAT-MCmethod can achieve an 84.25 % detection accuracy,
which is approximately 4.12% and 2.96% higher than those
of existing CNN and RNNmodels when using the NSL-KDD
dataset.
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D. CHOSSING THE RIGHT ML ALGORITHMS FOR IDS
No single ML algorithm can be considered superior over
others when solving specific problems. Such superiority all
comes down to the core of the problems, the availability of
data, the volume of datasets, and other considerations, includ-
ing the overhead cost or transparency. Each algorithm has its
advantages and disadvantages. While some algorithms may
perform well on one type of attack, they may demonstrate a
poor performance on other attack types.

Ahmad et al. [95] compared the performance of SVM,
RF, and extreme learning machine (ELM) for IDS using
the NSL-KDD dataset. ELM is a feedforward NN, but
it works differently from a standard NN as it does not
require gradient-based backpropagation to work. The results
from [95] shows that SVM performs poorly when using a
huge dataset, thereby making this algorithm unsuitable for
IDS given that the dataset is large by nature. Meanwhile,
the RF algorithm has a low real-time prediction speed given
that this algorithm comprises multiple trees that may require
much time to develop. The ELM algorithm outperforms the
other algorithms in terms of accuracy, precision, and recall
rate on full data samples with 65,535 records of activities.
SVM shows the best performance but only when using a
quarter of the data samples, thereby proving the claim that
SVM only performs best in small datasets.

Recent works, such as Andresini et al. [93] and
Su et al. [94], have exploited DL algorithms to reduce the
cost of performing features engineering on a dataset, which
is particularly challenging for datasets with a massive vol-
ume. However, DL algorithms require a longer training time
compared with other ML algorithms [91], thereby resulting
in long detection delays in the practical application sce-
nario of a broadband network and subsequently affecting
the response time of attack detection. Although DL can
handle high data throughput, improving accuracy and reduc-
ing the false-positive alarm rate remain crucial given the
ever-growing size of datasets used in IDS research [70].

Otoum et al. [10] comprehensively analyzed the perfor-
mance of ML algorithms that apply DL-based solutions
for IDS systems in wireless sensor networks (WSN) with
KDD’99 as the attack dataset. Analysis results show that
the DL- and ML-based IDSs have accuracies of 99.91% and
99.83%, respectively. However, the ML-based IDS frame-
work has approximately half the detection time of the
DL-based IDS framework (31.4 s vs. 17.1 s, with test-
ing times of 1.62 s and 0.86 s). However, ML-based IDS
requires features engineering, which can be complex and time
consuming.

E. MALWARE ATTACKS IN MOBILE DEVICES
Mobile devices are vulnerable to attacks, such as malware
attacks. For instance, devices operating on Android, which is
among the most popular open-source operating systems (OS)
in the world, have accounted for 54% of malware variants
reported in 2017 [96] Third-party application stores have also

been reported to host 99.9% of the available malicious appli-
cations [96]. To address the vulnerabilities of mobile devices,
researchers have developed an ML-based Android OS mal-
ware detection approach. For instance, Ananya et al. [96]
proposed a novel feature selection method called selection
of relevant attributes for improving locally extracted features
using classical feature selectors (SAILS), which can improve
the performance of classifiers, including RF, LR, classifi-
cation and regression trees, XGBoost, and DNN, compared
with conventional feature selectionmethods. Their evaluation
results show that SAILS achieves an accuracy improvement
of up to 95% compared with conventional feature extrac-
tion methods, including mutual information, distinguishing
feature selector, and Galavotti–Sebastiani–Simi. However,
when SAILS is tested against adversarial attacks, its accuracy
decreases to as low as 24.79%. These results suggest that
hackers can still bypass detection when the classifier blind
spot is exploited, and this challenge needs to be addressed to
further improve the security of mobile devices.

Taheri et al. [97] proposed another malware detection
method that uses Hamming distance to classify samples into
benign and malware samples. The conceptual workflow of
this proposed scheme is depicted in Fig 17. First, the static
features of the data samples are selected from the dataset, and
the RF feature selection algorithm is used to select a certain
percentage of features between 10% to 100%. The selected
features are then converted into vectors and further converted
into binary vectors. Second, the ML model is generated by
using the proposed classification detection algorithm based
on Hamming distance. This model achieves a malware detec-
tion accuracy of up to 99%, which is comparable with that of
existing state-of-the-art solutions.

FIGURE 17. Workflow of Hamming distance classification proposed
by [97].

Table 6 summarizes the recent works on the application of
ML algorithms for IDS with their issues and their accuracies
to detect intrusions.

VII. ML FOR IMPROVING ROUTING DECISIONS IN
COMMUNICATION NETWORKS
Network traffic routing is one of the fundamentals in net-
working where a path is selected for packet transmission.
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TABLE 6. Summary of recent ML-based IDS with their Previous Limitation of ML-based IDS, Training Datasets, ML Algorithms and Detection Accuracies.

With proper routing management, the route with cost mini-
mization and fulfils the QoS requirements can be determined.
Traffic routing usingML approaches is a challenging task that
must be able to cope with complex and dynamic topologies,
different types of traffic, and unique QoS requirements. The
input and output of ML algorithms for the routing optimiza-
tion problem can be described as traffic and route matri-
ces [98]. ML algorithms should learn the correlation between
traffic inputs and link conditions to predict or determine a
path for the incoming traffic. Recent studies that attempt to
improve routing decisions in a network are mostly NN based,
such as in [22], [24], [99]–[101], followed byworks that adopt
RL, such as in [34], [100], [102]. Those recent studies that
exploit other ML algorithms are further elaborated in this
section.

A. DL-BASED ROUTING ALGORITHM
Sensors are intensively deployed in mobile heterogeneous
wireless sensor networks (MHWSN) to improve data moni-
toring accuracy [103]. However, intensive deployment nodes
can cause multiple nodes to perceive the same anomaly,
thereby making the data highly redundant. To effectively
address these redundancy issues, a data fusion algorithm
based on an ELM optimized by the Bat algorithm for
MHWSNs is proposed in [99]. ELM is another type of
single hidden layer feedforward-NN. Given that ELM con-
sists of only one hidden node layer, the output weight and
thresholds are calculated via one-step operations, thereby
increasing the learning speed of ELM by several thousand
times compared with back-propagation (BP) NN, RBF NN,
and SVM. By contrast, the Bat algorithm was inspired by
the echolocation ability of bats that provides them with
strong global search abilities. In this work, the Bat algorithm

optimizes the input learning weight and threshold of the ELM
algorithm, and only the optimal nodes are chosen to be trans-
mitted. Simulation results prove that the BAT-ELM-based
data fusion algorithm can effectively reduce network traffic,
conserve network energy, improve networking efficiency, and
significantly extend network lifetime. Compared with other
protocols such as the stable election protocol, BP NN, and
ELM-based NN, the proposed BAT-ELM algorithm has a
higher node survival rate, which reaches 87% at the 400th
iteration. Meanwhile, BP NN and ELM-based NN have
node survival rates of 55.0% and 51.7%, respectively. The
BAT-ELEM algorithm also has the highest node reduction
and the best load performance among the compared algo-
rithms. Combining the ML algorithm with other optimization
algorithms, such as the Bat algorithm in this case, can further
improve the overall efficiency.

Building a mathematical model that accurately describes
the behavior of WSNs in a complex environment is a
challenging task [103]. The work in [24] presents a case
study where ML classifiers are hybridized to develop the
multi-criteria Topsis-based ensemble (MCTOPE) frame-
work. Instead of merely evaluating the accuracy of ML algo-
rithms, this framework generates scores based on the diversity
of classifiers, errors, accuracy, and area under the ROC curve
of the classifier. The validity of the MCTOPE framework is
tested by using six datasets from the UCI machine learning
repository, and results prove that the ensemble SVM and NN
classifiers are superior over single ML-based classifiers.

The next-generation wireless network (NGWN) is an inter-
face of network services and operations that can support the
access of multiple standards, such as 5G,Wi-Fi, and cognitive
radio networks. However, the traffic in the current communi-
cation infrastructure is rapidly increasing to the extent that
the router speed may be unable to accommodate such traffic.
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Depending on conventional routing schemes that are purely
based on standard rules and have limited computing capacity
cannot satisfy and serve the real-time load balance requests
of the NWGN [22]. Accordingly, Yao et al. [22] proposed
a load balance routing scheme based on NN to predict the
network queue status, which is one of the metrics used for
making intelligent routing decisions. The proposed algorithm
is then compared with shortest-path-based algorithms, such
as Bellman–Ford (BF) and its Queue-Utilization variant,
in terms of throughput and delay. Results show that the
proposed algorithm achieves a higher throughput yet suffers a
20% longer delay compared with the BF algorithm. However,
the proposed algorithm can predict the next-hop path with the
lowest buffer and alleviate the load balancing issue.

Routing in the opportunistic Internet of Things net-
work (OppIoT) is an incredibly challenging task because
the network is intermittently connected and end-to-end paths
from the source to the destination are almost non-existent
due to the absence of a fixed infrastructure. With limited
information, designing a routing protocol with a high mes-
sage delivery success rate is considered ambitious. A routing
strategy called epidemic routing will flood the network with
messages. Despite having a higher probability of message
delivery, this strategy has a high overhead load. Simulation
results show that the delivery probability of this strategy
is merely 38.54%. An ML-based solution called ML-based
probabilistic routing protocol using the history of encounters
and transitivity (MLProph) adopts a binary classification of
the delivered or undelivered message to train on, thereby
resulting in a class imbalance problem. To improve routing
in OppIoT, Vashishth et al. [100] utilized cascade learning,
which is a form of ensemble-basedML that combines logistic
regression with NN classifiers. The logistic algorithm ini-
tially generates two probabilities that are either delivered or
undelivered by usingMLProph as the input. The probabilities
from the regression model are fed as inputs into the NN
classifiers to generate a delivery probability value from the
learning solutions. The proposed algorithm outperforms the
existing ML-based protocols, including MLProph, KNNR,
history-based prediction routing (HBPR), and ProPHET,
in terms of message delivery probability, average hop count,
number of packets dropped, and network overhead ratio.

With the exploding traffic volume and complex environ-
ments in wired grid networks, controlling network traffic
becomes an increasingly complex taskwhen designing a rout-
ing strategy. The conventional routing methods are incapable
of dealing with such complexity, and using fixed metrics to
determine a routing protocol cannot cope with the complex
environment. Tensor is a multi-dimensional matrix that pro-
vides a very concise mathematical framework for arranging
the values of various parameters. A study in [101] proposed
tensor-based deep belief architectures (TBDA), which uses
tensor as an input in training an NN algorithm. The traffic
patterns from the edge router are fed to TDBA, and a path
to all edge routers is subsequently constructed. All paths are
then attached to the headers of the corresponding packets,

and the router simply forwards these packets according to the
labeled paths. TDBA outperforms the OSPF protocol with a
zero packet loss rate. The average delay per hop for TDBA
remains constant, whereas that for OSPF gradually increases
over time.

In a multi-domain optical network, having a distributed
collaborative routing where each domain has its own con-
troller can improve domain privacy but will create a com-
plex signaling problem for inter-domain routing. Meanwhile,
a centralized routing system simplifies the signaling yet com-
promises domain privacy. To overcome these privacy and
complexity issues, Zhong et al. [104] proposed a data analyt-
ical method that learns historical route trajectories and trains
a DL model that can directly return a feasible inter-domain
route upon request. Training data, such as traffic requests,
historical routes, and inter-domain link capacities, are pub-
licly available. However, the complicated relationship among
these data is deeply hidden inside the layers of the NN,
thereby preserving domain privacy. The public global infor-
mation in multi-domain networks is collected from a traffic
engineering database and is fed to the NN for training pur-
poses. Several local paths in each domain are computed, and
these local paths comprise an end-to-end inter-domain path
trajectory. Compared with the backward recursive path com-
putation element-based computation approach for assigning
the end-to-end path, the signaling volume of the proposed
scheme is reduced with 98% prediction accuracy.

Li et al. [105] proposed an NN approach for optical cir-
cuit switching networks with fixed-alternate routing. The
ELM framework is used to improve the training of the ML
algorithm. This approach uses the enhanced ELM frame-
work that adopts a random-search-based selection phase to
determine those hidden nodes that significantly reduce the
estimation error. As a result, the number of ANN hidden
nodes is significantly reduced, and the estimation accuracy
is improved. The ELM framework also rapidly estimates the
blocking probability for all paths and recommends the best
path with the lowest blocking probability to the network
management system. Moreover, the enhanced ELM provides
highly accurate blocking probability estimates by reducing
the required number of hidden nodes by one-third compared
with the previous baseline ELM training algorithm.

In SDN, the bursty nature of packet traffic introduces
load imbalance in a network. To address this problem,
Yao et al. [106] proposed a pair of ML-aided load balance
routing schemes that consider queue utilization (QU) to
reduce packet loss ratio and to improve throughput for bet-
ter load-balance routing. The QU for the next time slot is
predicted by ANN algorithms to cope with the network con-
gestion resulting from sudden traffic bursts. The predicted
value is then used for intelligent routing decision making.
The proposed scheme achieves a higher packet loss ratio and
throughput yet with a 20% longer delay compared with the
shortest path approach.

A study in [107] employed metaheuristic dynamic optical
routing to address the over-provisioning problem in SDN
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that leads to reduced energy efficiency and high operational
expenses. This approach uses ANN to forecast the traffic
load, predict the tidal traffic variation, calculate the best
resource allocation, and reduce energy consumption. The
ANN was trained on a public dataset from Milan with traffic
of voice data and a short messaging service. The effective-
ness of this ML-based dynamic routing scheme is proven
to match almost entirely the behavior of a network that
performs an optical routing reconfiguration. The proposed
scheme also yields an optimality gap exceeding 3%, whereas
the static-based routing scheme reduces the optimality gap
below 0.2%.

Fig. 18 summarizes the sample recent network issues
that are proven feasible to be solved using the DL-based
algorithm.

FIGURE 18. Recent network issues solved by DL-based routing algorithm.

B. RL-BASED ROUTING PROTOCOL
As discussed in Section III, RL employs an agent to learn
the surrounding environment without supervision. RL uses
a trial and error approach to learn the optimal action policy
that maximizes the reward. Routing protocol via RL chooses
an action that establishes a route from a specific path in
the network to the destination, and the reward can be given
in term of their delay, congestion level, packets loss rate,
link reliability, retransmission count and many more. This
process reiterates until the reward converges. For complex
situations, a single agent may be insufficient to achieve a
global optimization. In this case, multi-agent RL (MARL)
employs multiple agents in the learning process, and each
node exchanges local knowledge and decisions with other
nodes in the network to achieve a better optimization. Never-
theless, this approach has high complexity and computation
load that require attention.

Several works have used the self-learning RL-based algo-
rithm to compute the most optimal path. Murudkar et al. [34]
proposed the user specific-optimal capacity shortest path
routing that uses RL to determine the resource-based
optimum-capacity shortest path for a user between a source
and destination pair in the 5G network. Given that the shortest
path is not always the optimum one and fails to satisfy QoS
requirements, this work considers the available capacity at
the network nodes and the distance between a source and
destination pair. By implementing Q-learning, the RL algo-
rithm determines the shortest path while avoiding congested
network nodes with high physical resource blocks (PRB) to
satisfy throughput or bitrate requirements. If the PRB exceeds
70%, then the RL will classify the nodes as busy; otherwise,
the RL classifies these nodes as available. Simulation results
show that the proposed RL algorithm rapidly determines the
shortest path with optimum capacity.

MARL routing algorithms can achieve better optimiza-
tion yet incur a high communication overhead, slowly con-
verge under dynamic networks, and lack QoS support.
Reference [102] proposed an enhanced version of Q-routing,
namely, the Q2-routing algorithm, which merges the existing
wireless routing techniques and further enhances them by
using the MARL domain for an ad-hoc wireless network.
Q2-routing is a hybrid routing algorithm where the nodes
make routing decisions by choosing the neighbor associated
with the optimal Q-value for a given destination as the next
hop. This algorithm is similar to Q-routing but with an addi-
tional modified reward function to satisfy the QoS require-
ments. During the learning process, only the training traffic
is sent to obtain the Q-values on the available path until con-
verging within a predetermined threshold. Afterward, the rate
of sending learning traffic is sharply reduced, and the trans-
mission of data traffic commences. The proposed Q2-routing
algorithm outperforms the ad-hocQoS-aware on-demand dis-
tance vector algorithm and can adapt to changes in network
conditions.

C. RF AS A ROUTING ALGORITHM
In a circuit network, achieving an accurate timing esti-
mation is difficult when the routing has not yet been
performed. Moreover, performing the computations is
usually expensive, and frequently evaluating optimization
solutions is considered impractical. Given the lack of rout-
ing information, the over-pessimistic pre-routing predic-
tion approach is adopted. However, this approach results in
an over-design that subsequently wastes optimization time.
To overcome this issue, Barboza et al. [108] proposed an
ML-based pre-routing timing prediction that mostly avoids
pessimism by using the RF algorithm. They compared
this algorithm with lasso regression, ANN regression, and
commercial-based estimation tools, and their experimental
results show that the proposed pre-routing prediction achieves
accuracy near the post-routing sign-off analysis. Moreover,
compared with commercial estimation tools, this approach
reduces the false positive rate by about two-thirds when
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reporting timing violations. RF also obtains the lowest MSE
with the highest correlation. Using a commercial tool for the
estimation is considered very pessimistic and large spread
with more significant true negative error and false alarm. The
proposed model has better accuracy than the ANN regression
algorithm.

Recall that ML requires massive amounts of data to
well-train and optimize the network. However, in real net-
work deployment scenarios, having a perfect knowledge of
the network is impossible. A study in [109] claims that in an
elastic optical network, the complete information, including
types of fiber and amplifiers, is not always known, thereby
reducing the accuracy of the existing analytical model. Such
lack of information may also result in the underutilization of
network resources. Salani et al. [109] proposed the integra-
tion of RF-based estimation for routing and spectrum assign-
ment to ensure QoT in an elastic optical network. All known
network parameters, including traffic requests, alternative
route configurations, and modulation formats, are obtained
as inputs for the classifier. The output of these classifiers
yields a probability that the light path configuration will
satisfy a pre-determined threshold on the BER measured at
the receiver. The learning process is iterative, where new
information in the adjacent channels are fed into the classi-
fier. Compared with the margined analytical model, the pro-
posed scheme achieves up to 30% savings in the spectrum
occupation.

D. OTHER SUPERVISED LEARNING ML-BASED ROUTING
ALGORITHM
Circuit-switched networks are typically fixed route oriented,
thereby limiting their routing performance due to inflexibility
in route selection. One routing protocol in a circuit-switched
network is the least loaded routing (LL) protocol. However,
this protocol may have poor performance due to capacity
overconsumption under high load situations, which affects
its overall efficiency [110]. A novel online-based supervised
NB classifier is then proposed in [110] to improve the perfor-
mance of LL routing. The supervised NB classifier predicts
the future circuit blocking probability between each node
pair. After a service is either fulfilled or blocked, the net-
work snapshot is stored as historical data for route selection
in future service connections. The performance of the pro-
posed scheme is compared with those of the least-load and
short-path conventional routing protocols, and this scheme
reports the lowest blocking probability, smallest number of
extra hops, and lowest network capacity overconsumption.

Vashishth et al. [100] proposed a DL-based algorithm to
improve the routing protocol in OppIoT, and their simula-
tion results highlight the superiority of the proposed algo-
rithm over other routing schemes. Meanwhile, the approach
in [111] for routing in OppIoT utilizes Gaussian mixture
model routing (GMMR), which combines the advantages of
context-aware and context-free routing protocols. Specifi-
cally, context-free routing protocols utilize minimal network
resources as they do not expend computational power in

gathering and analyzing network information. While this
approach increases the message delivery probability, the net-
work may suffer from congestion and message dropping.
By contrast, context-aware routing protocols gather knowl-
edge about devices and network conditions to select the next
best intermediate relay for a message yet require a high
computation power. In GMMR, the trained GMM classifier
creates clusters and assigns devices to each of these clus-
ters. Afterward, the message is forwarded to every device
belonging only to the same cluster as themessage destination.
This approach reduces the computational load by only involv-
ing the node within clusters and simultaneously increases
the message delivery probability. Similar to the evaluation
in [111], the performance of GMMR is compared with those
of MLProph, ProPhet, KNNR, and HBPR. Simulation results
show that GMMR outperforms these routing protocols in
terms of average hop count, overhead ratio, delivery proba-
bility, and number of dropped messages.

FIGURE 19. Link state-aware system model based on EON [112].

Zhou et al. [112] proposed a link state-aware routing strat-
egy (LSA) that considers physical layer impairments to sat-
isfy QoT requirements under different link states. As shown
in Fig. 19, in the control plane, a link-state evaluation process
is performed, followed by a network configuration process.
In the link-state evaluation process, the physical signal is
collected periodically in the physical plane of EON and
then used to estimate the domain parameters, including chro-
matic dispersion and OSNR. Afterward, the link state is esti-
mated by using the LightGBM algorithm, which is based on
gradient-boosting DT. Results show that when the link in the
network is degraded, the proposed LSA routing algorithm can
still achieve an improved network throughput with a reduced
traffic failure probability of 24% and bandwidth blocking
probability of 10%.
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Traffic classification is another approach used by the
ML-based routing algorithm. Pasca et al. [113] proposed an
application-aware multipath flow routing framework inte-
grating ML in the SDN (AMPS), which evaluates the char-
acteristics of each possible path based on the accessible
parameters, including bandwidth and delay, and then assigns
a path based on the QoS requirements. The paths are updated
into the forwarding flow rule table. The data are collected
by conducting experiments with 10 clients using different
applications, such as Skype, Facebook, YouTube, and Drop-
box. The collected data are fed into state-of-the-art classifiers,
including NB, NB kernel estimation, DT, Bayesian network,
and SVM. Numerical results show that the DT algorithm
yields the highest classification accuracy of 98% compared
with other classifiers. The AMPS-based routing also offers
less jitter and high throughput for high-priority applications
by choosing low-latency paths.

Recent studies that exploit the advantages of ML-based
algorithms to improve network routing protocols have proven
that ML-based routing can greatly improve network perfor-
mance and efficiency compared with conventional routing
schemes. The limitations of conventional routing protocols
as described in recent papers are summarized in Fig. 20.

FIGURE 20. Limitation of conventional routing protocols.

The recent ML-based routing approaches proposed in the
literature have promising applications in addressing com-
plex network problems. However, with the superiority of
ML-based routing, the computational load must also be con-
sidered if the technology is to be implemented in a real-world
network environment. Several studies, such as those in [108]
and [109], argue that collecting data for training the ML
algorithm is not an easy task in practice. Furthermore, some
of these studies have been based on assumptions that are not
realistic enough to be implemented in a network. These are
some of the challenges that need to be overcome in order
to achieve the best trade-off between the best-performing

ML model and computation complexity. Recent studies on
ML-based routing and path assignments are summarized
in Table 7.

VIII. ML ALGORITHM FOR IMPROVING QoS IN A
NETWORK COMMUNICATION SYSTEM
Achieving a good QoS by managing network delay, jitter,
bandwidth, and packet loss ratio is the main objective of
any network provider. Having knowledge about the impact of
network performance on user experience is also crucial given
that such knowledge determines the success or failure of a
service. Therefore, monitoring and controlling QoS param-
eters is essential to deliver high-quality services. However,
with the increased traffic volume in a network, satisfying
the QoS requirements of each incoming traffic becomes a
challenge [114]. Using conventional algorithms for improv-
ing QoS parameters in a network may also be impractical
due to network complexity. Therefore, an automated strategy
should be developed to measure QoS as realistically as pos-
sible [115]. Researchers are still improving and developing
novel algorithms, particularly ML-based algorithms, to max-
imize throughput, reduce delay, and comply with traffic QoS
requirements.

A. THROUGHPUT MAXIMIZATION
Recent works, such as in [116], have exploited the advan-
tages of ML-based models with an aim to improve network
throughput. In a 5G wireless network, the conflict graph is
widely considered an adequate representation of the under-
lying interference constraint in the network and a powerful
tool for interference management. However, most studies that
construct conflict graphs are based on accurate geographical
distance information, which is not easy to collect in prac-
tice. Cao et al. [117] then proposed an accurate and practical
ML-based approach for constructing a conflict graph. Specif-
ically, the inter-user interference relations are constructed
by analyzing the data collected from the network with
minimum prior knowledge assumed for training the ANN
algorithm. This approach mines large-scale uplink signal-to-
interference-plus-noise ratio data and resource block alloca-
tion data that are readily accessible in a practical network. The
ANN can automatically alleviate the influence of data fluctu-
ations caused by rapid fading on the predicted model. From
the constructed graph, the throughput maximization problem
is decoupled into a user clustering subproblem and a subchan-
nel allocation subproblem. The proposed Min k-Cut-based
clustering algorithm splits the network into several clusters
to further reduce the interference caused by spectrum reuse.
A supplementary allocation algorithm is then developed to
improve spectrum efficiency by fully utilizing the remaining
unallocated subchannels. This approach improves the system
efficiency by up to 125.19% and inevitably improves the
network throughput.

An experiment in [116] has successfully proven that
the RL-based algorithm can optimize the network-on-chip
run time performance. This work presents a variety of
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TABLE 7. Summary of recent ML-based Routing with their Previous Issues on Conventional Rule-based Method, ML Algorithms and Advantages of the
Proposed ML-based Solution.

RL-based algorithms, including Q-learning, state-action-
reward-state-action (SARSA), and expected-SARSA algo-
rithms, to keep record of the current network state with
its corresponding reward, which is throughput in this case.
Selecting routing algorithms that denote the action of RL will
yield a reward based on the learned information with the goal
of maximizing throughput. Experimental results show that
with a 0.3 packet injection rate per node, the random routing
strategies saturate due to deadlock. By contrast, the RL-based
strategy delivers near-optimal choices across all states.

Azzouni et al. [118] introduced an ANN-based algorithm
called NeuRoute to maximize throughput at minimum cost
for the unicast dynamic routing of SDN. NeuRoute comprises
three modules, namely, the traffic matrix estimator, traffic
matrix predictor, and traffic routing unit. The traffic matrix
estimator initially estimates the traffic matrix, the traffic
matrix predictor takes the fixed size set of archived traffic
matrices and input to predict the traffic matrix at the next
cycle, and the traffic routing unit eventually selects the opti-
mal routes based on the predicted traffic matrix. The traffic

matrix estimator continuously gathers data from the network
and feeds them into the traffic matrix predictor and traffic
routing unit to adjust the weights and improve accuracy until
the convergence point is reached. The model successfully
selects the near-optimal path learned from the model with an
estimated error of 0.05% and execution time of within 30 ms
compared with the baseline heuristic approach, which has an
execution time of 120 ms.

B. REDUCING NETWORK DELAY
To minimize the delay in a cognitive radio network (CRN),
Pourpeighambar et al. [119] proposed a distributed coop-
erative multi-agent routing problem in a multi-hop CRN
that is modeled by using a decentralized partially observ-
able Markov decision process (DEC-POMDP). The goal of
this approach is to minimize the end-to-end delay while
keeping the interference to the primary user (PU) below
a certain threshold. In CRN, the secondary users (SU) or
cognitive users are allowed to access the licensed spectrum
subject to the condition that the interference caused by the
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transmission of the SUs to the PU does not exceed a pre-
defined threshold. Routing in CRN is incredibly challenging
due to the stochastic behavior of PUs, which distinguishes
this network from a traditional multi-hop wireless network.
The main challenge here is to implement a routing protocol
that is adaptive to the available spectrum windows in the
CRN. DEC-POMDP was used in [120] to model the rout-
ing problem. Afterward, a gradient-based learning algorithm
was implemented to solve this problem. Simulation results
show that the proposed scheme maintains the end-to-end
delay experienced by packets at a low level and outperforms
the related approaches, including OPERA and the fictitious
learning approach, in terms of interference control.

The existing QoS-aware routing schemes cannot be used
for a front-haul centralized radio access network (C-RAN)
because these schemes ignore frame-level queueing. To deal
with queuing delay, Nakayama et al. [120] proposed a routing
scheme that reduces the worst-case end-to-end delay of all
front-haul flows and guarantees that all flows satisfy the
latency requirements by using theMarkov chain Monte Carlo
algorithm. In the proposed work, the path computation ele-
ment (PCE) collects information by using the IS-IS routing
algorithm, and then the PCE generates a set of candidate paths
for each front-haul flow by using the k-shortest path algo-
rithm to determine those paths that satisfy the latency require-
ments. Afterward, the algorithm selects the paths by using the
learned solution and determines whether these paths satisfy
the constraints. The proposed work successfully reduces the
delay of all flows below the latency requirements. However,
when the shortest path approach is employed, the maximum
delay exceeds the threshold due to queuing delays. These
results prove that the ML-based algorithm can solve the
queuing delay issues in C-RAN.

Stampa et al. [121] designed and evaluated a deep RL
agent that can optimize routing according to a predefined
target metric, which is the delay requirement in SDN. The
deepRLmodel adapts automatically to the current traffic con-
ditions and utilizes a tailored configuration to minimize the
network delay. With the traffic matrix and bandwidth request
as the states, path allocations as the action, and minimizing
delays as the reward, the deep RL model can determine the
optical behavior policy. This model also consistently com-
putes the overall traffic intensities, and the delays are lower
than the 100,000 randomly generated routing benchmark on
average.

C. QUALITY OF EXPERIENCE (QoE) IMPROVEMENT
Several challenges in cloud-RAN (CRAN) need to be
addressed in the application of unmanned aerial vehicles
(UAV), including the effectiveness of tracking user behavior,
caching, and resource management. Previous studies on UAV
have only considered non-linear systems and assume that the
users are static. Chen et al. [122] proposed a novel frame-
work for deploying cache-enabled UAVs by incorporating a
conceptor-based echo state network (ESN) to maximize the
QoE of users and minimize the transmit power of UAVs at

the same time. ESN is a branch of RNN that is used to predict
the content request distribution andmobility patterns of users.
ESN allows the cloud to split the behavior of each user into
different patterns and learn these patterns independently to
improve the accuracy of predictions. The ESN-based scheme
successfully improves the average transmit power and QoE
by 33.3% and 59.6%, respectively.

The related works discussed in this section prove the
superiority of the ML algorithm in improving network QoS
parameters, increasing network throughput, and minimizing
delay across various networks. The ML-based algorithm also
successfully addresses the QoS issues that are faced by con-
ventional schemes, such as the shortest path or randomly
generated path approach. The ML algorithm can also cope
with network complexities, stringent delays, and throughput
requirements.

IX. ML ALGORITHM FOR NETWORK RESOURCE
MANAGEMENT
Network resource management refers to the process of man-
aging and allocating the available resources for the network-
ing process. An efficient resource management is achieved
when the available network resources are fully utilized and
able to achieve the desired QoS requirements [123]. In a
communication network, the switches, routers, bandwidth,
and spectrums are considered network resources. Traditional
resource management approaches are typically static based,
which, in the long run, will lead to an underutilization prob-
lem where the allocated resources, such as bandwidth, are
higher than what is requested. Such inefficient resource allo-
cation results in inevitable delays and poor network effi-
ciency. Admission control and resource allocation are two
broad categories that contribute to network resource manage-
ment [18]. Admission control aims to optimize the utilization
of resources by monitoring and managing resources in the
network and accepts or rejects the incoming traffic based on
network availability. Continuously accepting a new request
increases the revenue of the network provider yet degrades
the QoS of the existing service that violates the SLA. There-
fore, admission control maximizes the number of accepted
requests without violating the SLA. Resource allocation is a
decision problem that manages resources, such as bandwidth,
to achieve a long-term objective. By exploiting its advantages,
the ML model can learn and predict resource management
provisioning.

In a 5G SDN-based vehicular network, resource manage-
ment is considered a complex and challenging objective that
can facilitate the achievement of the expected outcome. How-
ever, one feature of SDN is its ability to extract network infor-
mation from a centralized controller. Such information allows
the detection of resource capacity and network require-
ments from the global perspective [16]. Moreover, extract-
ing network information provides a considerable advantage
in solving the resource allocation problem by using ML
approaches, which can learn seamlessly from the available
data. Tayyaba et al. [124] proposed a resource allocation
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FIGURE 21. SDN-based 5G architecture for VANET service
provisioning [124].

policy framework for an SDN-based vehicular network in
the context of 5G connectivity as depicted in Fig. 21. In this
work, the policy framework can optimize resource alloca-
tion according to the changing demands and dynamic nature
of the vehicular network. Every flow request from vehicles
is assigned with a priority based on the criticality of the
application demand. The flows are then classified based on
applications, such as road safety, infotainment applications,
or comfort, by using anML-based classifier. The training data
are obtained by using a Mininet emulator to train classifiers,
including LSTM, deep ANN, and CNN. Simulation results
show that LSTM, CNN, and DNN achieve detection accu-
racies of 99.36%, 95%, and 92.58%, respectively, thereby
proving that ML-based approaches successfully allocate net-
work resources to high-priority applications with up to 99%
accuracy.

Effective resource management is typically consid-
ered a challenge in mixed-integer nonlinear program-
ming (MINLP). MINLP involves optimization problems
with continuous and discrete variables and nonlinear func-
tions in the objective function. A study in [125] shows
that recent ML-based methods for addressing resource
management problems in a wireless network require a
tremendous amount of training samples and are unable to
address constrained problems. When the network param-
eters change (task mismatch), ML-based approaches tend

to demonstrate poor performance. To address this problem,
Shen et al. [125] proposed the learning to optimize resource
management (LORM) framework that can reduce the sample
complexity and address the feasibility problem. LORM learns
the optimal pruning policy in the branch-and-bound algo-
rithm for MINLP by utilizing an efficient yet straightforward
method called imitation learning. To address the task mis-
match problem, a transfer learning method via self-imitation
(LORM-TL) has been proposed. This approach can rapidly
adapt a pre-trained MLmodel to the new task while requiring
only few additional unlabelled training samples. The pro-
posed resource management policy is compared with special-
ized state-of-the-art algorithms, including relaxed MINLP,
iterative group sparse beamforming (GSBF), and branch-
and-bound algorithms. The LORM algorithm successfully
outperforms GSBF and relaxed MINLP and achieves a
near-optimal performance within a running time that is twice
shorter than that of GSBF.

The works in [124], [125] have proven the effectiveness
of using ANN algorithms to learn from the environment,
perform classification for resource network management,
and accurately allocate network resources to high-priority
applications. The combination of RL and DL has recently
been proven as a promising alternative solution to various
resource management problems in practical settings [126].
Meanwhile, NN-based algorithms encounter steady perfor-
mance problems in terms of accuracy and convergence [127].

The recent works discussed in this paper have proven
the superiority of ML algorithms in solving complex issues
across most networks ranging from wired to wireless net-
works. Table 8 summarizes the recent works on the applica-
tion of ML for satisfying QoS improvements and achieving
resource management. The issues being faced in a network
cannot be solved by using conventional methods, which are
not adaptive and are not specifically built to solve complex
problems without making unrealistic assumptions.

X. CHALLENGES AND FUTURE RESEARCH TRENDS
The emergence ofML-assisted solutions in networking seems
promising given that ML can learn a complex system based
on the fed historical or live data and make predictions based
on these data. The survey of recent studies shows that ML
algorithms have broad applications in solving various com-
plex network problems. Despite the superiority of ML, many
related challenges need to be addressed. One of these prob-
lems is winning the confidence of network providers to incor-
porate ML into their networks. This section discusses some
challenges and potential directions in ML research that can
help readers identify research gaps in the application of ML
in networking.

A. HIGH COMPUTATIONAL LOAD AND TRADE-OFF WITH
ML ACCURACIES
DT, RF, NB, and SVM are just some ML algorithms
that are preferred by network administrators due to their
simplicity and better interpretability compared with DL.
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TABLE 8. Summary of recent ML-based QoS Improvement and Resource Management with their Previous Issues on Conventional Rule-based Method,
ML Algorithms and Advantages of the Proposed ML-based Solution.

FIGURE 22. Accuracy versus interpretability [129].

The relationship between accuracy and interpretability is
depicted in Fig. 22, which shows that a higher accuracy corre-
sponds to a lower interpretability. One downside of the afore-
mentioned ML algorithms is their instability. Specifically,
a small change in the training dataset can result in a massive
change inML algorithms. These conventionalML algorithms
may also be inapplicable in solving complex problems with
a high-dimensional state and action space in large-scale envi-
ronments. These algorithms also have low training speed and
face overfitting issues that influence their effectiveness [51].
To overcome these problems, DL has emerged in the realm
of networking. Previous studies have exploited DL to solve
complex network issues. The number of applications with
different QoS requirements has increased exponentially in
recent years. As a result, the network depth and number of
network parameters have also exploded. Given its multi-layer
structure, DL is considered a practical approach for accu-
rately extracting important information from raw datawithout
requiring tedious feature extraction works, which represent
the most time-consuming phase of conventional ML algo-
rithms [128]. Recent advancements in GPU and hardware
accelerators have resulted in the development of different

DL-based solutions for various network problems. However,
DL also has limitations, such as the demand for a signif-
icant amount of computation power, memory, energy, and
resources. When DL algorithms are incorporated into a cen-
tralized network without resource constraints such as SDN,
DL can be implemented with the aid of a resourceful com-
putation platform. However, in distributed networks where
the edge devices or sensors have limited storage and power
(such as in the case of IoT), implementing DL presents an
enormous challenge. Fig. 23 shows the run-time and accuracy
comparison between different ML algorithms using a sample
dataset. DL algorithm has the highest accuracy compared to
the rest, but it has the highest run-time which correspon-
dence to higher requirements of computational load. While
DT algorithm has the lowest run-time, but has a slightly
lower accuracy. Nonetheless, DT algorithms has better inter-
pretability as depicted in Fig. 22. With that, network provider
will need to look for the trade-off between computational load
and accuracy for their system. Future research should then
investigate the implementation of DL on resource-limited
devices. However, it is important to note that different ML
algorithms will behave differently depending on the training
dataset.

B. DATA AVAILABILITY AND PRIVACY ISSUES
ML algorithms heavily rely on the availability of large quan-
tities of performance monitoring data to learn and make
predictions. One issue that needs to be considered by net-
work providers is the availability of data for training ML
algorithms to solve network problems. However, these data
are often inaccessible due to privacy issues. This problem is
particularly severe in cases where the required data for train-
ing ML algorithms are extracted from different domains or
vendors. Proietti et al. [62] addressed the data privacy issues
in multi-domain networks by using a multi-domain virtual
topology to estimate the QoT for light path provisioning.
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FIGURE 23. Run-time and accuracy comparison between different ML
algorithms using a sample dataset.

FIGURE 24. Basic framework of FL [130].

Federated learning (FL) has recently become popular in the
field of networking. FL is a new distributed ML technique
that usually operates in a wireless edge network. Each edge
device contributes to the learning model by independently
computing the gradient based on local training data. The
basic workflow of FL is depicted in Fig. 24. First, users
perform local computing by using their own data to minimize
a predefined empirical risk function and then updates the
trained weights to the access point (AP). Second, AP collects
updates from users and consults the FL unit to produce an
improved global model. The output from the FL is even-
tually redistributed to the users, who, in turn, will conduct
further training by using the global model as reference [130].
Decoupling data acquisition and computation at the AP is
viewed as a promising solution that can maintain the privacy
of ML-based solutions in a network.

However, implementing FL in a network remains a chal-
lenge. For instance, wireless edge networks have limited
bandwidth, and only a small portion of edge devices can
be scheduled for updates in each iteration. Given the shared
nature of the wireless medium, the transmission is subjected
to interference and is therefore not guaranteed [130], [131].
The design challenges in FL, namely, resource and data
challenges, should also be addressed. In terms of resources,
edge devices have different computation power with limited

storage. In terms of data, edge devices generate large and
redundant raw data, and the FL paradigm needs to use these
data to create meaningful solutions. Although one of the main
advantages of FL is privacy preservation, the authors in [132]
argued that during the training process, the data transmitted to
the AP can still be reverse engineered by a malicious central
server to reveal sensitive personal information.

The resource limitations of edge devices may also neg-
atively affect the training of high computational learning
algorithms, such as DL. Studies on the application of FL
for solving network privacy issues are still in their infancy.
Recent studies on FL, such as by Chen et al. [131] and
Yang et al. [130], reveal scheduling policies as one of those
issues that need to be tackled. With the future emergence of
wireless edge networks, such as IoT, and 5G networks that
involve a higher number of edge devices, FL can be seen
as a very promising algorithm for improving user experience
without invading their privacy.

FIGURE 25. Performance comparison between balanced and unbalanced
sample dataset.

C. IMBALANCED DATASET
Before feeding data for training ML algorithms, the dataset
should be checked for any imbalanced problem. This problem
has been widely reported in the literature, especially in the
application of IDS in a network. In an imbalanced dataset,
the feature inputs are favored over the other outputs in the
dataset. For instance, in IDS, most of the publicly available
intrusion datasets are heavily imbalanced toward the benign
class with only a small percentage for the attack class output.
As a result, the ML provides a prediction that is biased
toward the benign class, thereby reducing the accuracy of
ML-based IDS. Results in Fig. 25 shows the performance of
an ML algorithm using a balanced and imbalanced sample
dataset. The results show significant improvement of the ML
algorithm when trained using balanced dataset algorithm in
terms of accuracy, recall and F-measure compared to the
ML algorithm trained using imbalanced dataset. Although
several solutions have been proposed for this problem, includ-
ing synthesizing low-frequency samples [88] and synthetic
oversampling [83], previous studies are mostly limited to
using publicly available datasets. Studies on an imbalanced
dataset that is collected in real time remain limited, and a
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real-time sampling of datasets presents a challenge. Many
edge devices, including IoT devices, sensors, or smartphones,
only have a small number of data samples, thereby limit-
ing the application of ML. Learning from small and imbal-
anced data may affect the performance of ML algorithms.
Therefore, future research must investigate this problem. The
amount of data is also expected to increase further in the
future due to the increasing number of edge devices.

D. TESTBED FOR A REAL-WORLD ML IMPLEMENTATION
STUDY
Most studies on the application of ML in networking are
simulation based. Simulations are essential for evaluating
the performance of ML-based schemes. However, simula-
tions are restricted to several assumptions and are run in
controlled environments. Future studies on the application
of ML-based algorithms in a real-world environment should
utilize real-time data to evaluate the performance of these
algorithms and to serve as proof of concept before network
providers can decide whether or not to implement ML in
their networks. Several testbeds have been developed in the
literature to evaluate the performance of ML-based schemes
in real environments. For instance, Cheng et al. [133] studied
indoor localization by using frequency modulation and dig-
ital video broadcasting terrestrial signals, Nithin et al. [134]
used a face tracking robot to assess the performance of ML
techniques, and Liu et al. [135] developed the first testbed
for cognitive end-to-end optical service provisioning. How-
ever, only few studies have tested the performance of these
approaches by using a lab-scale testbed. With the advance-
ment of computing platforms and GPUs, the real-world
implementation of ML can be evaluated on a testbed. In addi-
tion, software-defined radios or routers into which ML
algorithms can be programmed can facilitate performance
evaluations and can be considered a future trend in ML
research.

E. HYBRID ML ALGORITHMS FOR DIFFERENT NETWORK
APPLICATIONS
The data extracted from networks can be used for applications
other than for training ML algorithms. For instance, when
inspecting the incoming traffic in the ingress router, the input
data can be used to perform IDS and to classify the traffic
as either benign or attack. Afterward, by cascading with data
from the network domain, IDS can be combined with differ-
ent applications, including resource management, congestion
control, or routing. The available data in the network can also
be used to train ML algorithms for different applications. For
instance, Choudhury et al. [64] proposed a hybrid ML model
that predicts the traffic volume and optical performance of
a new wavelength in multi-vendor environments. However,
studies on hybrid ML algorithms are still in their infancy.
Therefore, the hybridization of ML algorithms presents a
promising direction for future research.

F. ADVANCEMENT OF 5G AND FUTURE 6G
5G is the next-generation mobile communication technology
that aims to offer better network capacity and data rates
compared with the previous LTE technology. 5G applications
can be divided into enhanced mobile broadband (eMBB),
ultra-reliable low-latency communication (URLLC), and
massive machine-type communication (mMTC). Each of
these applications faces a unique set of challenges. ML opti-
mization has the potential to support 5G requirements. Wire-
less network virtualization (WNV) is expected to become one
of the main trends in 5G systems that provides better QoE for
users. Given that WNV relies on SDN, the programmability
of SDN will introduce opportunities of applying autonomous
and ML algorithms in a 5G environment.

For eMBB applications that offer high peak rates, the target
throughput can reach up to 20 Gbps for downlink, which
is 20 times higher than that in the previous LTE tech-
nology. A significant amount of spectrum resources [136],
such as centimeter and millimeter waves, is needed to
exploit the full potential of eMBB. Meanwhile, massive or
large multiple-input multiple-output (MIMO) is essential to
improve spectral efficiency in 5G [136]. ML can be also
be used for channel or direction of arrival estimations in
MIMO technology. Classification using ML can produce
channel state information that facilitates the selection of opti-
mal antenna indices [136], [137]. ML can also be used to
predict future demand from users and to dynamically perform
resource management, determine the topology setup, and
identify a suitable bitrate based on connectivity performance
to further enhance user experience [138]. Similar to other
networks, 5G is also vulnerable tomalicious activities. There-
fore, ML-based anomaly detection in the wireless spectrum
is crucial. ML-based IDS has been proven to be a promising
solution for intrusion detection with outstanding accuracy.
Future research should then focus on the detection of anoma-
lies in the 5G wireless spectrum.

In the 5G network environment, a large amount of sensors,
actuators, electronic appliances, drones, and smart devices
are wirelessly connected to the Internet and to one another
via mMTC [139]. These devices generate sporadic traffic
amongmany geographically spread equipment, thereby intro-
ducing connection density and network energy efficiency
issues. One promising solution to these connection density
issues is incorporating an intelligent proactive caching [140].
Caching refers to the intelligent buffering of data at the nodes
based on their demand rate with an aim to reduce the delay
and power consumption in data routing. ML can also be
exploited for processing, classifying, and manipulating con-
tent to improve the caching process in 5G IoT environments.
Given the potential ofML, an intelligent caching of data at the
base station allows a significant offloading of heavy traffic
from the network backhaul. At the same time, the latency
of popular and on-demand content can be reduced. The use
of ML for proactive caching in the emerging big data era
also presents a potential future research direction. Given the
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limited computational power and battery life of edge devices,
various tasks are often performed at the base station or in
the cloud. However, doing so will introduce several chal-
lenges, including limited capacity, especially in highly dense
networks. An ML-assisted solution, such as incorporating
FL and dynamic intelligent scheduling, can be viewed as a
potential trend in 5G research.

Numerous network services, including healthcare, remote
surgery, and mission-critical applications, will be made pos-
sible soon with the advancement of URLLC. However,
URLLC requirements come with their own set of challenges.
In terms of reliability, the expected packet error rates are less
than10−5, whereas the end-to-end latency is within 1 ms.
Such is made possible after the introduction of the revolu-
tionary concept of end-to-end network slicing (NS) [140].
Specifically, NS allows multiple logical networks or slices
to operate in a shared physical infrastructure. ML can also
be exploited for intelligent network slicing to allocate com-
putation and storage resources. At the same time, ML can
assist in isolating data traffic from other slices to create a true
end-to-end virtual network. The application of ML for NS
is just one solution for realizing URLLC. Other promising
ML-assisted solutions, such as intelligent network function
virtualization, are also worth exploring.

Although several works have already exploited the advan-
tages of ML algorithms in 5G, some room for improvement is
always present. The challenges in incorporating ML into 5G
networks are still unsolved, such as the availability of qual-
ity datasets, poor interpretability of ML algorithms, privacy
and security issues, and limited learning resources at edge
networks [129]. These challenges need to be addressed in
future research before network providers decide to incorpo-
rate ML-assisted solutions into their complex and fast-paced
networks. Researchers have recently begun to venture toward
the 6G realm such as in [140], [141], which is expected
to have volumetric spectral and energy efficiency that is a
hundred times higher than that of 5G. 6G is also expected
to have a very complex structure due to its high connectivity.
A tremendous amount of data may be collected from users,
and approaches with strong processing and learning capabili-
ties, such as ML algorithms, may show potential in managing
complex networks at different levels and applications.

XI. CONCLUSION
This study surveys the recent applications of ML algorithms
in networking, such as congestion control, predictive net-
work model, intrusion detection system, route and path allo-
cation, QoS improvement, and resource management. The
fundamental workflow of state-of-the-art ML models, such
as supervised, unsupervised, and semi-supervised learning,
are also discussed. Apart from explaining the above appli-
cations, the recent issues and related works on ML are also
discussed. As the volume of network traffic grows expo-
nentially, a flexible and intelligent network management
is essential to cater to the bandwidth-hungry and stringent
delay demand. Although conventional approaches can solve

networking issues to some extent, they may be unable to cater
to the complexity of future networks. Some limitations of
these approaches include their manual configurations with
a fixed matrix, limited computing capacity, long execution
time with high overhead load, and slow response to network
changes. ML has recently emerged as a disruptive technology
that fills the computational complexity and performance gap
to solve problems in a network. ML has gained considerable
popularity due to its ability to provide frameworks for solving
problems that involve large-scale data processing, classifi-
cation, and intelligent decision making. ML algorithms can
learn from the complexity of networks and provide decisions
dynamically according to the changes in these networks. This
study summarizes the simulation and experimental results
that prove the superiority of ML-based algorithms over con-
ventional approaches.

However, network providers need to address some other
issues before implementing ML algorithms in their net-
works. As discussed above, despite its outstanding accu-
racy, ML suffers from a high computational load, especially
those algorithms with iterative-based learning, such as the
ANN, RL, or online-based learning algorithms. A trade-off
between computation load and accuracy must be taken into
consideration. A high computational load can also increase
the cost for real-world implementation. Moreover, histori-
cal data are essential elements of ML algorithms. Network
providers must consider solving network problems by using
easily accessible data to train ML algorithms. Otherwise,
the accuracy of these ML algorithms may be compromised.
Imbalanced dataset issues and sophisticated feature engi-
neering works, as discussed for IDS, must also be taken
into consideration. The ML algorithm may also issue false
predictions when high-priority applications, especially those
that involve protection, are involved. This algorithm must
work in a way that when a false prediction occurs, the appli-
cations can still satisfy the QoS requirements. Whether the
ML algorithm can improve the efficiency and quality of
the network in practice is a problem worth exploring. The
advancement of network technologies that are expected to
support higher data volumes per unit area with lower latency,
such as 5G networks, can motivate researchers to continue
exploring the possibility of exploiting the advantages of ML
algorithms. Besides, computing technology has also been
improving along with the introduction of better processing
units and programmability features. In sum, ML algorithms
hold much application potential in network communication
systems.
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