
Received March 10, 2021, accepted March 19, 2021, date of publication March 29, 2021, date of current version April 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069248

CaPBug-A Framework for Automatic Bug
Categorization and Prioritization Using
NLP and Machine Learning Algorithms
HAFIZA ANISA AHMED 1, NARMEEN ZAKARIA BAWANY 1, AND
JAWWAD AHMED SHAMSI 2
1Department of Computer Science and Software Engineering, Jinnah University for Women, Karachi 74600, Pakistan
2Department of Computer Science, National University of Computer and Emerging Sciences (NUCES), Karachi 75400, Pakistan

Corresponding author: Narmeen Zakaria Bawany (nshawoo@gmail.com)

ABSTRACT Bug reports facilitate software development teams in improving the quality of software.
These reports include significant information related to problems encountered within a software, possible
enhancement suggestions, and other potential issues. Bug reports are typically complex and are too detailed;
hence a lot of resources are required to analyze and process themmanually. Moreover, it leads to delays in the
resolution of high priority bugs. Accurate and timely processing of bug reports based on their category and
priority plays a significant role in improving the quality of software maintenance. Therefore, an automated
process of categorization and prioritization of bug reports is needed to address the aforementioned issues.
Automated categorization and prioritization of bug reports have been explored recently by many researchers;
however, limited progress has been made in this regard. In this research, we present a novel framework, titled
CaPBug, for automated categorization and prioritization of bug reports. The framework is implemented
using Natural Language Processing (NLP) and supervised machine learning algorithms. A baseline corpus
is built with six categories and five prioritization levels by analyzing more than 2000 bug reports of Mozilla
and Eclipse repository. Four classification algorithms i.e., Naive Bayes, Random Forest, Decision Tree, and
Logistic Regression have been used to categorize and prioritize bug reports.We demonstrate that the CaPBug
framework achieved an accuracy of 88.78% by using a Random Forest classifier with a textual feature for
predicting the category. Similarly, using the CaPBug framework, an accuracy of 90.43% was achieved in
predicting the priority of bug reports. Synthetic Minority Over-Sampling Technique (SMOTE) has been
applied to address the class imbalance issue in priority classes.

INDEX TERMS Bug reports, natural language processing, machine learning, bug report categorization, bug
report prioritization.

I. INTRODUCTION
Software testing and maintenance are the most critical phases
of software development. Bug reports play a vital role in these
stages of development activities [1], [2]. A bug report is gen-
erated by the software quality assurance team while testing
software modules. It contains detailed information about a
specific component or problem that is needed to be fixed
[3]–[5]. The information in a bug report includes many
attributes such as feature request, functionality enhance-
ment request, code errors, logical errors, and compatibility
issues. The report consists of several headings including
priority, summary, description of the affected component,

The associate editor coordinating the review of this manuscript and

approving it for publication was Ikramullah Lali .

and open/close status [6], [7]. However, the major problem
encountered during the analysis of bug reports is that the
information is in natural language. Therefore, it is very diffi-
cult to process and extract information from it. It requires a
tedious effort from the development team to understand and
address the reported issues [8]–[12]. Many studies exist that
address the issues related to bug reports [13]. These include
bug categorization [14]–[19], bug prioritization [20]–[23],
bug localization [24], bug assignment [25], bug classification
[10], [26], [27], bug severity prediction [28], and bug report
summarization [29]–[31].

Bug categorization and bug prioritization remain the most
important element of information that is required from any
bug report. Most of the studies used supervised machine
learning algorithms to automate the information extraction

50496 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0470-7778
https://orcid.org/0000-0003-2975-6824
https://orcid.org/0000-0001-6813-2673
https://orcid.org/0000-0003-2208-5853


H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

process [32]. Through these algorithms, a classification
model is constructed by training the manually labeled data of
bug reports, which are then used to automatically categorize
and prioritize new bugs with pre-defined labels. Supervised
learning techniques need a large labeled dataset, which is not
easily available. In most of the available datasets, category
and priority information is missing. Furthermore, most of the
available research is focused on one problem independently,
i.e., either automating bug categorization [11], [33] or bug
prioritization [34], [35]. Consequently, very limited work has
been done in the area of categorization and prioritization of
bug reports simultaneously [36]. Therefore, there is a need for
a capable framework that automates both bug categorization
and bug prioritization at the same time.

This research is motivated to address the above-mentioned
requirements. To this end, the key objective of this research
is to develop a framework that categorizes and prioritizes
each issue in the bug reports automatically. We propose and
implement an automated framework for categorizing and
prioritizing bug reports called CaPBug. The framework –
CaPBug uses NLP and machine learning algorithms to cat-
egorize and prioritize bug reports based on their textual and
categorical features. Baseline corpus is built by using the
XML files of Mozilla and Eclipse repository. Different NLP
techniques have been applied in bug reports’ textual descrip-
tions to create a feature vector-set. Afterwards, the Term
Frequency–Inverse Document Frequency (TF-IDF) feature
extractionmethod has been used to extract relative and impor-
tant words from the feature vector-set. Due to the imbalanced
nature of priority classes, Synthetic Minority Over-sampling
Technique (SMOTE) is used for oversampling the records.
Finally, four machine learning algorithms i.e., Naive Bayes
(NB), Random Forest (RF), Decision Tree (DT) and Logistic
Regression (LR) have been used to train the models that
predict the category and priority of bug reports.

Below are the major contributions of this research.
• We created a baseline corpus with six labeled categories
of bugs and five priorities by using two online bug
repositories of Eclipse and Mozilla that are available on
Bugzilla. Labeled dataset with predefined categories for
bug reports from year 2016 to year 2019 is not available
publically.

• We proposed and implemented a framework named
CaPBug for categorization and prioritization of bug
reports usingNLP and supervisedmachine learning. The
novel contribution of this research is that it addresses
the need for both automated bug categorization and
prioritization.

• We applied SMOTE to address class imbalance problem
and to improve the model’s accuracy that prioritizes the
bug reports. Limited work has been done using SMOTE
to adjust the number of bug reports for each priority level
so that the model can accurately predict the priority of
bug reports.

• We performed extensive experiments with the most
recent dataset comprising of reports from year 2016 to

TABLE 1. List of experiments conducted.

year 2019. It includes a comparison of textual and cat-
egorical features for categorizing and prioritizing bug
reports using four machine learning algorithms.

Table 1 summarizes our experiments and the correspond-
ing section number in which results are presented.

We anticipate that our work will be useful for the com-
munity in automating categorization and prioritization of bug
reports. This will be beneficial in maintenance and debugging
of large software projects.

The remainder of this paper is organized as follows.
Section II presents literature review of bug categorization as
well as bug prioritization. Section III introduces proposed
methodology for the CaPBug framework. Next, Section IV
discusses the results after training and testing of the CaPBug
framework. Finally, Section V concludes the research.

II. LITERATURE REVIEW
Researchers have addressed various aspects of automated
software bug management, classification and prioritiza-
tion. These include automation of bug assignment, dupli-
cate or similar bug detection, bug fixing time prediction,
bug localization, bug categorization, bug severity and priority
predictions etc. Z. Weiqin et al. [36] conducted a survey
of 327 participants to gain insight into bug management tech-
niques and confirmed that these techniques play an important
role in improving the automatic management of bug reports.

Y. Tan et al. [37] proposed a novel approach for pre-
dicting severity. They linked the bug repositories post on
stack overflows to the contents of Mozilla, Eclipse, and GCC
bug reports. Three classification algorithms of K-Nearest
Neighbor algorithm (KNN), Naive Bayes and Long Short-
Term Memory (LSTM) were used to predict the severity of
bugs. The results of the experiments showed an increase of

VOLUME 9, 2021 50497



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

23.03%, 21.86%, and 20.59% in the average F-measurement
of Mozilla, Eclipse, and GCC in the proposed method.

R. Chen et al. [38] implemented an improved SMOTE
technique called Rectangle SMOTE (RSMOTE) to avoid
the poor performance for severity prediction. Due to class
imbalance problem in bug reports dataset, RSMOTE was
used to balance the size of datasets. Furthermore, a technique
of repeated sampling was used to avoid indeterminate results
due to over-sampling of records and to acquire multiple
balance datasets. Further, ensemble approach, named Fusion
of Multi-RSMOTE with Fuzzy Integral (FMR-FI), was used
to integrate the trained classifiers that were built on multi-
ple balanced datasets. Four evaluation metrics were used to
evaluate the performance of the FMR-FI algorithm, namely
accuracy, precision, recall and f1-score. The results show
that the FMR-FI algorithm with RSMOTE worked well to
improve the classifier’s performance for severity prediction.

Y. Xiao et al. [39] proposed an enhanced Convolu-
tional Neural Networks (CNN) based model called DeepLoc
for automated bug localization. Based on CNN, DeepLoc
replaced the features of bug reports and source files with word
embedding techniques. The experiments were performed
on 18,500 bug reports from 2001 to 2014 that have been
extracted from five projects of Aspect J, Eclipse UI, JDT,
SWT and Tomcat. They compared DeepLoc’s performance
from the four bug localization approaches of BugLocator,
LR+WE, HyLoc and DeepLocator. The results of the exper-
iments show that with the use of DeepLoc, Mean Average
Precision (MAP) has improved from 10.87% to 13.4% for
bug localization compared to traditional CNN.

To improve the automatic bug assignment,
R. Shakripur et al. [25] suggested a time-based approach
named ABA-TF-IDF using the Time TF-IDF weighting tech-
nique. The data was collected from the software repository
of the Version Control System (VCS) where changes to
the source codes are managed and other project facts are
documented. Four machine learning algorithms i.e., Support
Vector Machine (SVM), Naive Bayes, Vector Space Model
(VSM) and Smooth Unigram Model (SUM) were used to
train the model. The results show that the proposed approach
performed well with a Mean Reciprocal Rank (MRR) up to
11.8% and 8.94%.

The focus of this research is to automate the process of
bug categorization as well as bug prioritization. Therefore,
the literature review has been presented in two parts. The first
part presents a comprehensive overview of studies related to
bug categorization. The next part explores the work that has
been conducted on the bug priority. The previous studies of
each group are discussed below.

A. BUG CATEGORIZATION
Bug categorization is the process of automatically labeling
bug reports with its relevant category. N. Limsettho et al. [14]
proposed a model to automatically categorize bug reports
using clustering and Hierarchical Dirichlet Process (HDP)
techniques with NLP chunking. The clustering algorithms

of X-means and Expectation Maximization (EM) were used
and implemented using Weka 3.6. Two experiments were
conducted on the online bug reports of Lucene, Jackrab-
bit (JCR) and HttpClient projects and evaluated by using
cluster purity/accuracy and f1-score. The clustering result
was compared with two classification methods of J48 and
Logistic Regression. Results demonstrated that the approach
of X-means performed well and cluster purity/accuracy and
f1-score were high. Also, comparable results recommend that
the algorithm of logistic regression may perform better with
a supervised learning approach.

Labeled Latent Dirichlet Allocation (LLDA) based topic
modeling was implemented by M. F. Zibran [15] for classi-
fying bug reports. These reports were collected from online
projects of Eclipse, GNOME and Python. The dataset com-
prises 1,138 bug reports from which 428 reports were
selected. The results show that the accuracy in terms of
precision, recall, and f1-score improved considerably when
the LLDA is trained using the larger corpus.

N. Limsettho et al. [16] extended their work [14] and
proposed an automated framework without labeled data and
used topic modeling and clustering technique to categorize
bug reports. Also, a new technique of NLP Chunking was
used to automatically label a cluster and top words of that
cluster. To solve the labeling problems of terms in previous
studies, a weighted-reduction algorithm was chosen to pro-
vide a variety of words. Five experiments were conducted
and the dataset comprises three online projects from Lucene,
Jackrabbit (JCR) and HTTPClient. The results showed that
the topic model performed well with a higher average of f1-
score. The performance of their proposed framework with no
labeled datasets is better than the labeled projects which are
trained using the training models. The result of Phrase-level
labeling by NLP chunking provided the high-quality labels
that are related to the bug.

C. Zhou et al. [17] proposed a new approach called
Bug Named-Entity Recognition (BNER). Three features i.e.,
description phrases, solid distribution, and Parts of Speech
(POS) of bug reports’ entities were summarized and the cate-
gory method was created to categorize bugs into a predefined
set of 16 categories based on these features. A baseline corpus
was built with all related information and a semi-supervised
system of BNER. To extract features from the bug repository,
an embedded technique was used. The two online software
bug repositories of Mozilla and Eclipse were used to train
and evaluate the proposed approach. The result showed that
it is very useful to design a baseline corpus in initial phases
and their approach increased the accuracy by 70% to 80%.
Also, BNER can be effective for entities of cross-projects’
bug recognition.

B. BUG PRIORITIZATION
The process of bug prioritization involves automatically pri-
oritizing highly influenced bugs so that the critical bug is
identified immediately. An automated approach to prioritize
bug reports named Drone was proposed by Y. Tian et al. [20].

50498 VOLUME 9, 2021



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

For handling imbalanced data of bug reports, a new clas-
sification engine called GREY was built by merging linear
regression and their thresholding approach. Different dimen-
sions i.e., author, product, related-report, severity, textual
and temporal were reviewed to predict bug reports’ pri-
ority. The dataset was collected from the Eclipse project
with 100,0000 bug reports and divided them into three-set:
REP−training data (for identifying similar reports), train-
ing data of Drone and testing data of Drone. The proposed
approach was compared with the baseline solution of pre-
vious studies and the result showed that their approach per-
formed well comparatively up to the f1-score of 209%.

Another study for prioritizing bug reports was proposed
by P. A. Choudhary and D. S. Singh [40]. The research
focused on five priority levels with six features i.e., temporal,
textual, author, related-report, severity and product, to predict
the priorities of bug reports using the Artificial Neural Net-
work and Naive Byes classifier. Five versions of the Eclipse
project, i.e., 2.0, 2.1, 3.0, 3.1, and 3.2, with three products,
i.e., JDT, PDE and Platform are collected from Bugzilla that
have been used to train and test the model. To evaluate the
model, Receiver Operating Characteristic (ROC) curve and
f1-score measures were used. The results showed that the
model predicated priority level P3 with 82.7% precision and
80.9% recall measures in Eclipse 2.0. Furthermore, the model
performed more efficiently by using Naïve Bayes with ROC
ranging from 89% to 98% for different priority levels.

To automate bug prioritization, Y. Wang et al. [22] intro-
duced methods of feature selection by using the classification
models on the two most popular bug prioritization projects:
WordPress and Trac. By accompanying the two main feature
selection methods of wrapper and filter, seven techniques of
feature selection: Correlation, CfsSubset, OneR, InfoGain,
SymmetricalUncert, GainRatio and ReliefF were considered.
Two classification algorithms of Naive Bayes and SVMwere
also used like previous studies, to train the set of feature
vectors. Results were evaluated using precision, recall, and
accuracy measures and it shows that the GainRatio, InfoGain
and Correlation performed better for bug prioritization.

Q. Umer et al. [23] proposed a new Emotion-based
approach for predicting the priority of bug reports. The
dataset consists of bug reports from four online projects of
JDT, Eclipse, CDT and PDE. The effectiveness of differ-
ent classification algorithms of Naive Bayes, SVM, Linear
Regression, and Multi-Nomial Naive Bayes was investi-
gated. To prioritize bug reports, five class labels were used.
To identify and analyze emotion words from the bug reports,
the feature vector set was compared with the emotion-word
corpus available online. For performance evaluation, Recall,
Precision, and f1-score measures were used. Experimental
results showed that the proposed approach has improved
with f1-score of more than 6%. Also, Pearson correlation
coefficient (r=0.405) showed that there is a strong correlation
between priority and emotions.

An automated approach for predicting bug priority and
severity using machine learning classification algorithms was

investigated by H. Manh et al. [41]. The performance of dif-
ferent classifiers: SVM, Naive Bayes, Artificial Neural Net-
work (ANN), K-Nearest Neighbors and DT was compared.
Random Forest and Decision Tree classifiers were selected
to conduct experiments on the datasets of open-source Bug
Tracking Systems: Bugzilla, Launchpad, Mantis and Debian.
The proposed model used four classes of priority i.e., urgent,
high, normal and low and for severity, it was classified into
critical, normal and minor. The performance of both the
classifiers was evaluated by using time consumption, Mean-
Squared Error (MSE) andMedian-Absolute Error (MAE) and
the result showed that Random Forest outperforms DT with
the accuracy of 0.75, which is average.

Existing research is mostly focused on either automating
bug categorization [11], [33] or bug prioritization [34], [35].
Limited work has been found in the area of categorization
and prioritization of bug reports simultaneously [36] and
therefore we present CaPBug framework that automates both
bug categorization and bug prioritization. The summary of
existing studies which includes datasets, methodology, and
results is shown in TABLE 2 whereas, the comparison of
the existing studies with the proposed framework is shown
in TABLE 3.

III. METHODOLOGY
We now explain the methodology of the CaPBug framework.
It includes six phases: 1. Data collection, 2. Pre-Processing,
3. Feature extraction, 4. Class imbalance 5. Classification,
and 6. Performances’ evaluation.

In the first phase, data has been collected by using the two
online software bug repositories of Mozilla1 and Eclipse2

from Bugzilla. In the next phase, pre-processing NLP tech-
niques have been applied to bug reports’ content. This phase
converts the bug reports’ textual feature into topic vector sets
which is helpful for machine learning algorithms to easily
train the model and predict categories and priorities of bug
reports correctly. In the third phase, the topic vector set
which has been projected in the second phase is evaluated
and important words are extracted based on their similar
textual structure by using the TF-IDF approach. Afterward,
the class imbalance problem has been resolved for priority
levels. In the fifth phase, textual and categorical features
are trained by using machine learning algorithms for future
inference to automate bug prioritization and categorization.
Finally, performance of different algorithms has been ana-
lyzed to measure the accuracy of the proposed framework.
Fig. 1 shows the overall framework of this research.

We now describe each phase of the CaPBug framework in
detail.

A. DATA COLLECTION PHASE
The dataset used in this research is collected from the two
online software bug repositories of Mozilla and Eclipse from

1https://bugzilla.mozilla.org/
2https://bugs.eclipse.org/bugs/

VOLUME 9, 2021 50499



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 2. Summary of existing studies related to bug categorization and prioritization.

50500 VOLUME 9, 2021



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 3. Comparison of existing studies with proposed-framework.

VOLUME 9, 2021 50501



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

FIGURE 1. Overall framework to categorize and prioritize Bug Reports.

the Bugzilla issue tracking system. Eclipse and Mozilla are
authentic and open-source datasets available for reporting
software bugs and have only real flaws. These are available
from Bugzilla’s system, which contains a large number of the
latest bug reports, including the entire bug life cycle, which
stores all the actions and information to solve bugs [42], [43].
Although a large number of bug reports are available in
the Bugzilla system, the category of bugs is not mentioned
in the bug reports for recent years. We randomly selected
bug reports and labeled them manually after a thorough

investigation, based on the 6 categories. Around 2000 bug
reports from both the repositories within the time period
of 2016 to 2019 have been selected for this research. We’ve
used keywords in the selection process to identify bug reports
in each category. For example: For GUI type reports, we used
keywords i.e., font, color, alignment, view, layout, etc. During
this process, we tried to ensure that the number of bug reports
in each category of our dataset is almost equal.

Both the textual and the categorical features are used
for predicting the category and priority of bug reports.

50502 VOLUME 9, 2021



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 4. Description of bug report features used in capbug framework.

The summary attribute of the dataset is included as a tex-
tual feature on which NLP techniques are applied. We have
chosen the summary feature as the textual feature because
it provides us detailed information about the problem.
Whereas, the categorical features include: product, compo-
nent, assignee, status, classification, priority and category
attributes of the dataset. We have chosen these features
because of their impact on categorizing and prioritizing bug
reports. The description of each feature is given in TABLE 4.

The dataset comprises of six categories: ProgramAnomaly,
GUI, Network or Security, Configuration, Performance, and
Test-Code. To label the dataset, a category was assigned to
each record manually by the developer after carefully reading
the summary. TABLE 5 summarizes the number of records in
each category in the dataset.

These categories of bug reports are explained below with
examples.

1) PROGRAM ANOMALY
This category refers to the issues that occur due to problems in
source code. Examples of such problems include exceptions,
logical errors, return value problems, and syntax errors [44],
etc. An example in TABLE 6 shows the summary contents of
a bug report in which code for the next line is automatically
assigned in if-else condition due to incorrect indentation.

2) GUI
This category refers to the issues that are related to the design
and event handling of user interfaces. It involves potential

bugs related to widget and text colors, layouts, CSS styles,
widgets appearance, visibility [45], [46], etc. An example of
the GUI related problem mentioned in the bug report is given
in TABLE 6. The report highlights the text unreadability issue
that occurred due to the side-scrolling in the text editor.

3) NETWORK OR SECURITY
This category refers to those bugs that are related to network
problems or security issues. Bugs related to the network cate-
gory include connection or server problems such as improper
usage of communication protocols, unexpected shutdowns
of server [47], [48], etc. The network related issue raised
due to sending larger files in one request and leading to
xmlHttpRequest hang up, is exemplified in TABLE 6.

Bugs related to security involves those bugs that are related
to vulnerabilities, deletion of unused permission, reloading of
certain parameters [49], etc. The example shown in TABLE 6,
is the summary content of a bug report related to the security
issue in which permission is denied when the user wants to
access windowUtils property.

4) CONFIGURATION
This category belongs to bugs in which the problem occurs
due to the integration of configuration files. Problems in
this bug category are caused by wrong file paths or direc-
tory paths in XML, updating in external libraries, fixing
external libraries, manifest artifacts, plug-in failures [50],
etc. An example in TABLE 6 shows that a bug is reported
when updating the application and because of this update,
the shared configuration area is missing.

5) PERFORMANCE
This category refers to those problems that are concerned
withmemory, which include infinite loops that causememory
to hang up, energy leaks, extra memory usage [51], etc.
An example in TABLE 6 shows the performance-related bug
in which during the debugging process, the Eclipse project is
very slow and consumed 100% of CPU usage.

6) TEST CODE
This category belongs to those problems that emerge in the
test code. When looking at the dataset, it is observed that
the bugs related to test-code occurred due to (1) intermit-
tent tests, (2) updating, repairing and running test-cases, and
(3) test failures when searching for de-localized bugs [52],
etc. A sample report summary in TABLE 6 shows that the
bug is reported due to the failure of intermittent JUnit testing
in API tools.

Software developers spend a lot of time resolving bug
reports that have been reported by their quality assurance
team. Sometimes, the number of bug reports for software bug
fixes exceeds the generally available resources. As a result,
critical bugs are not resolved at all or are handled very slowly.
Severity and priority both can be used to mark the level of
urgency with which the bug has to be resolved. Severity is
defined as the level of impact that a defect has on the product.

VOLUME 9, 2021 50503



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 5. Class distribution of bug categories in dataset.

TABLE 6. Example summary of bug categories.

As severity is typically reported by the user or customer
after the system has been deployed [21], we have worked
on predicting priority only. Priority is assigned by the
development and quality assurance team during the product
development [20], [21].

We have used five priority levels in this research i.e.,
P1 (Very High), P2 (High), P3 (Medium), P4 (Low) and
P5 (Very Low). These levels are assigned by the developers
in Bugzilla bug reports. The bug reports which are assigned
as P1 should be fixed on high priority [53], [54]. Priority
level three is more frequently used by the development and
testing team as common software bugs fall in this category.
Therefore, datasets available at Mozilla and Eclipse have
more records of priority level three that is P3. Furthermore,
if the development team is unsure about prioritizing any
defect or if it is a minor bug, they configure it as a P3 level
priority. They can proceed to fix this level of bugs after all
critical and high priority bugs are fixed. To ensure, that the
ratio of records of each priority level remains similar to the
actual dataset, we also selected more records of P3 as shown
in TABLE 7.

B. PRE-PROCESSING PHASE
In this phase, the textual feature of the bug report i.e.,
summary feature is converted into vectors of topics by

TABLE 7. Class distribution of bug prioritization in dataset.

using Python Natural Language Processing Toolkit (NLTK).
Three NLTK processing methods: Tokenization, Stop Words
Removal and Lemmatization [55] are applied in this phase.

• Tokenization: To easily understand the bug reports’ con-
tent, the text is transformed into a series of tokens
(or words) without unnecessary punctuation and special
symbols [56]–[58].

• Stop Words Removal: In this step, frequently used
words of any natural language with no useful meaning
(like articles, prepositions, etc. in English) are removed
becausewhen transformed into a feature vector set, these
words do not contribute as a meaningful word and do not
provide any useful information [59], [60].

• Lemmatization: The final step of the pre-processing
phase is Lemmatization. A bug report may contain sim-
ilar words in numerous forms i.e., ’performing’, ’per-
formed’, ‘performs’ have the same meaning. So, this
process converts various forms of a single word into
a meaningful base form [61]. The research uses the
Wordnet Lemmatizer package to perform this step as it
is the most frequently used lemmatizer.

C. FEATURE EXTRACTION PHASE
After the pre-processing phase, important words are extracted
from the feature vector set by examining each dimension
of features. To perform this process, the feature extraction
technique of Term Frequency–Inverse Document Frequency
(TF-IDF) is used. TF-IDF is the information retrieval tech-
nique and numerical statistical measure to find those words
which are relevant and important to a document in a corpus
[62], [63]. These words are calculated as follows.

TF_IDF = TF ∗ IDF

where,

TF =
Number of times the word occurs in the text

Total number if words in text

50504 VOLUME 9, 2021



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

and

IDF =
Total number of documents

Number of documents with word t in it

D. CLASS IMBALANCE
Mozilla and Eclipse datasets are highly imbalanced with
respect to priority levels as there are abundant records for
priority level P3, while there are very few records for other
priority levels. As shown in TABLE 7, priority levels P1,
P4 and P5 have very few records. There are a number of
common issues that normally occur in software and the
development team labels these types of issues as P3. Besides
that, the dataset also has many P2 level bug reports but not
equivalent to P3. However, the bug reports of other priority
levels i.e., P1, P4 and P5 are very rare and as a result, a class
imbalance problem occurs in a dataset.

This class imbalance problem makes it difficult to train
the model and to accurately predict the priority of bug
reports [64]. To overcome this issue, Synthetic Minor-
ity Oversampling Technique (SMOTE) is used in this
research. SMOTE adjusts the class distribution by oversam-
pling and under-sampling classes of the dataset [65].

The distribution of each priority level before and after
applying SMOTE is shown in TABLE 7.

E. CLASSIFICATION PHASE
This phase consists of two steps: training and testing.We have
divided the datasets of both Mozilla and Eclipse projects into
80% for training and 20% for testing. Four machine learning
classification algorithms i.e., Naive Bayes (NB), Random
Forest (RF), Decision Tree (DT) and Logistic Regression
(LR) were applied to train the model.

1) NAIVE BAYES CLASSIFIER
A Naive Bayes classifier is a classification algorithm that
relies on Bayes’ Theorem. It has the concept of independence
between features i.e., the presence of one feature does not
affect the other. It is a very simple and fast algorithm that is
highly sophisticated for large datasets [66]. Bayes’ Theorem
describes the equation in which the probability of label is
found according to the observed features and this can be
written as:

P(A|B) =
P(B|A)P(A)

P(B)

Here, the probability of a target class A can be found
if B (predictors or features) are given. This shows that the
features or predictors are independent of one other [67], [68].

2) DECISION TREE CLASSIFIER
Decision Tree is a classification algorithm that has a tree-like
structure in which data is constantly distributed according to
certain parameters. A tree consists of (i) nodes for testing the
value of each feature, (ii) edges or branches that are connected
to the next node or leaf and have the results of a test and
(ii) leaf nodes that predict the target label. This research

uses the ID3 algorithm that has measures of Entropy and
Information Gain (IG) for building a decision tree [69].

3) RANDOM FOREST CLASSIFIER
Random Forest is an ensemble classification-based algorithm
that contains a set of decision trees. These decision trees
give classifications and are created from data samples that
decide which classification has the most votes [70]. Then,
the algorithm selects the trees that give the best predic-
tion result. The combination of different trees makes this
classifier ensemble as it gives the best result and reduces
overfitting [71].

4) LOGISTIC REGRESSION
Logistic regression is a statistical and classification-based
machine learning algorithm that assigns prediction to a num-
ber of distinct classes. It is built-up upon the concept of
probability and applied when the target class’s value has
categorical data. The algorithm uses the cost function i.e.
Sigmoid function to map the probability of predicting values
between 0 and 1 by using the following equation [72].

f (x) =
1

1+ e−x

F. Evaluation Metrics
Classifiers’ performance is evaluated using a confusion
matrix which is used to create different metrics in conjunction
with True Positive (TP), False Positive (FP), True Negative
(TN) and False Negative (FN) values [73]. Accuracy, Pre-
cision, Recall, and f1-score are also used to evaluate the
performance of the CaPBug framework. Accuracy shows how
correctly the algorithm classifies the target class. It is the
portion of correctly predicted values out of the total number of
input samples [38], [74]. Below is the formula for calculating
the accuracy of the model.

Accuracy =
TP+ TN

TP+ TN + FN + FP

Precision is the proportion of positive predictions which
is positive and how accurate the proposed model is [75].
It computes the accuracy of minority classes. The following
formula shows how to calculate precision.

Precision =
TP

TP+ FP

A recall is the ratio of correct instances among all related
instances [76]. It is calculated by looking into a number of
False Negatives (FN) in the confusion matrix. It is sometimes
referred to as True Positive Rate (TPR) or sensitivity. The
formula which is used to compute the recall is:

Recall =
TP

TP+ FN

F1-score is used to find the weighted average of precision
and recall [77]. When the dataset has a large number of actual
negatives or uneven distribution of classes, it finds out the

VOLUME 9, 2021 50505



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 8. Results of classification algorithms from textual feature.

balance between precision and recall [78]. The following
formula shows how to calculate f1-score.

f 1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

IV. RESULTS AND DISCUSSION
We randomly selected more than 2000 reports of two projects
i.e., Eclipse and Mozilla from Bugzilla. The baseline corpus
has been built by manually labeling the category in these
reports to be used for training and testing algorithms.We have
predicted categories and priorities of bug reports using four
classification algorithms i.e., Naive Bayes, Decision Tree,
Random Forest and Logistic Regression. Both textual and
categorical features have been used for training and testing
the CaPBug framework. Finally, results have been evaluated
using evaluation metrics and conducting a comparative anal-
ysis between textual and categorical features.

A. PREDICTING CATEGORY AND PRIORITY
FROM TEXTUAL FEATURE
The textual feature of the dataset i.e., a summary has been
used to predict the category and priority of bug reports.
NLP techniques and TF-IDF in textual feature is used to
create a feature vector set and extract important features.
TABLE 8 shows the results obtained using four classification
algorithms.

For predicting category, it is observed from TABLE 8 that
the Random Forest classifier achieved the highest accuracy
of 88.78% with the highest precision, recall, and f1-score
measures of approximately 90.00%, 87.16% and 86.66%.
Whereas, Naive Bayes classifier showed the lowest accu-
racy of 67.05% with the lowest precision of 66.00%, recall
of 65.50%, and f1-score of 65.16%. Decision Tree and
Logistic Regression classifiers performed moderately as their
accuracy is in between 83% to 86%. Both the classifiers
recorded precision from 84% to 89%, recall from 81% to
83%, and f1-score from 83% to 85% for category prediction.
However, in predicting the priority of bug reports, none of
the algorithms performed satisfactorily with a textual feature.
Decision Tree and Random Forest classifier achieved the
highest accuracy among four algorithmswith lower precision,
recall and f1-score measures. Both the algorithms did not
perform well as their accuracy is 68.22% which is not good
enough to train the model. The other two algorithms i.e.,

Naive Byes and Logistic Regression, both have very low-
performance measures as their accuracy is below 60%.

Hence, it is concluded that the category prediction of
bug reports performed well with a textual feature. However,
no algorithm with a textual feature achieved a good accuracy
for predicting priority as there is a class imbalance issue in
the dataset. The records of priority classes P1, P4 and P5 are
very rare. Most of the bug reports are prioritized with imme-
diate and normal priority levels of P2 and P3. As a result,
algorithms did not achieve good performance measures.

TABLE 9. Category wise results of classification algorithms from textual
feature.

1) CATEGORY WISE RESULTS FROM TEXTUAL FEATURE
TABLE 9 presents the accuracy of classification algorithms
for each category of bug reports that have been predicted from
a textual feature. It is observed that each of the categories
performed differently in classification algorithms. Using the
Naive Bayes classifier, only a ’GUI’ category achieved a bet-
ter accuracy of 85.71%whereas, ’ProgramAnomaly’ worked
fine with 71.71%. Other four categories did not acquire
good results as their accuracies were in between 50% to
69% with Naïve Bayes. Decision Tree, Random Forest and
Logistic Regression classifiers worked well with the cate-
gory of ProgramAnomaly, GUI, Performance and Test-Code.
The accuracy of these four categories falls within 84% to
98%. The other two categories of Network or Security and
Configuration achieved better results with the classifiers of
Decision Tree and Random Forest as their accuracies are
from 73% to 80%. However, both the categories achieved the

50506 VOLUME 9, 2021



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 10. Priority wise results of classification algorithms from textual
feature.

accuracy of 66% to 68% using the Logistic Regression clas-
sifier which is not good enough. Overall, the GUI category is
more accurately predicted by all algorithms as compared to
other categories and achieved the highest accuracy of 97.61%
using the Logistic Regression algorithm.

2) PRIORITY WISE RESULTS FROM TEXTUAL FEATURE
TABLE 10 presents the accuracy of algorithms at each pri-
ority level that has been predicted with a textual feature.
Using Naive Bayes, Decision Tree and Random Forest clas-
sifiers, the P4 priority level acquired the accuracy of 84%
to 91%, whereas, it achieved the lowest accuracy of 6.06%
with Logistic Regression. Priority level P3 obtained good
results using RandomForest and Logistic Regressionwith the
accuracy of 84.09% and 90.90% respectively. It achieved an
accuracy of 74.43% by using a Decision Tree classifier. The
other three priority levels of P1, P2 and P5 are not accurately
predicted by the classifiers. These levels obtained the lowest
accuracies i.e., P1 achieved the accuracy of 23% to 53%, P2
with 49% to 63% and P5 acquired 18% to 69%.

Hence, we conclude from the above results that only P3 and
P4 priority levels acquired a moderate level of accuracy with
machine learning algorithms. However, other priority levels
did not acquire good results using a textual feature of the
dataset.

B. PREDICTING CATEGORY AND PRIORITY
FROM CATEGORICAL FEATURES
The categorical features have also been used in this research
for the automatic prediction of categories and priorities of bug
reports. These features include product, component, assignee,
status, classification, priority and category. TABLE 11 shows
the results obtained after applying four classification algo-
rithms with the above-mentioned features.

When predicting the category of bug reports, we observed
that no classifiers worked well with categorical features.
The performance measures of Naive Bayes and Logistic
regression are from 28% to 42%, which is inadequate to
train the model correctly. Furthermore, the remaining two
classifiers of Decision Tree and Random Forest also did not
produce good results as they achieved the accuracy of 53.74%
and 54.43% respectively. Other performance measures of
these classifiers achieved accuracy in between 51% to 53%.

However, when we predicted the priority with categorical
features, it has been noted that all the classifiers worked
satisfactorily as compared to the results obtained with a tex-
tual feature. Random Forest achieved the highest accuracy
among all classifiers as their accuracy increased from 68.22%
to 77.33%. Furthermore, the recall and f1-score measure
of Random Forest performed slightly better as compared
to those results when we predicted the priority with a tex-
tual feature. Such as, recall has increased from 65.60% to
71.40% and f1-score from 69.00% to 72.20%. Decision Tree
obtained the accuracy of approximately 73.36%, but with
low-performance measures i.e., precision recorded 67.80%,
recall with 67.80% and f1-score with 56.66%. However,
the performance measures of Naive Bayes and Logistic
Regression acquired low results with the accuracy of approx.
61% to 66%, and, precision, recall and f1-score of 55% to
63% respectively.

It is evident from the results in TABLE 11 that the category
prediction is not working well with categorical features as
compared to those results when category prediction was done
with a textual feature. Furthermore, priority prediction has
also been affected by the class imbalance problem. Records
of P3 class are abundant while those of other classes are also
disproportionate, thereby creating a class imbalance.

1) CATEGORY WISE RESULTS FROM
CATEGORICAL FEATURES
TABLE 12 presents the accuracy of classification algorithms
for each category of bug reports using categorical features.
None of the algorithms have succeeded in achieving good
results by using categorical features. Only Random Forest
achieved a better accuracy of 71.71% in the category of
Program Anomaly which is also not good enough. The other
categories did not acquire good results using Random Forest.
The categories of Test-Code and Configuration achieved the
lowest accuracy i.e., 4.83% and 9.24%, by using Logistic
Regression classifier. The categories of Network or Security,
Configuration, Performance and Test-Code acquired very low
results using Naive Bayes and Logistic Regression classifiers.
Only the categories of GUI and Program Anomaly achieved
better results with all the algorithms.

A satisfactory level of results was not achieved using
categorical features to predict the category of bug reports.
We, therefore, conclude that the textual features should be
used to predict the category of the bug reports. Since textual
features provide detailed information about the bug and help
to train the model with the right category.

2) PRIORITY WISE RESULTS FROM CATEGORICAL FEATURES
The performance of each priority level is specified in
TABLE 13. We have evaluated that no classifiers succeeded
in accurately predicting the priority of bug reports using cat-
egorical features. At most, P2 and P3 priority levels obtained
better results with all the algorithms. Both priority levels
achieved the highest accuracy of 82.96% and 81.81% respec-
tively using the Random Forest classifier. They acquired the

VOLUME 9, 2021 50507



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 11. Results of classification algorithms from categorical features.

TABLE 12. Category wise results of classification algorithms from
categorical features.

TABLE 13. Priority wise results of classification algorithms from
categorical features.

minimum accuracy of 73.63% and 67.25% with Logistic
Regression. P1 priority level also acquired better results with
the Decision Tree classifier as it achieved an accuracy of
81.63%. However, the remaining two priority levels of P4 and
P5 were not predicted accurately by the classifiers, except
P5 that achieved better results with Random Forest. The
accuracy of both priority levels is between 42% to 53% in
P4 and 58% to 76% in P5.

Considering the above low-performance measures of pri-
ority prediction, we have done an in-depth investigation of
each priority level results using both textual and categorical
features. After a detailed evaluation, we have concluded that
due to the class imbalance problem, no classifiers performed
well in priority prediction of bug reports. For this reason,
SMOTE has been used in this research to address the class
imbalance problem. In our initial experiments, the percentage
of P4 and P5 was kept same that is P4 had the smallest

percentage before and after the SMOTE. However, we could
not attain the satisfactory level of accuracy. It was only when
the records of P4 were increased to the level that bypassed
P5 as shown in TABLE 7, we reached the desired level of
accuracy.

C. PREDICTING PRIORITY FROM TEXTUAL
FEATURE WITH SMOTE
After applying SMOTE, all the classifiers performed well for
predicting the priority of bug reports using a textual feature.
It is evaluated from TABLE 14 that the framework achieved
the highest accuracy of 90.43% using the Random Forest
classifier with the precision and recall of 91.60% and f1-score
measure of 91.50%. Decision Tree acquired an accuracy of
88.94% which is closer to the Random Forest classifier with
other performance measures i.e., 89.80% precision, 90.40%
recall and 90.20% f1-score. Moreover, the other two clas-
sifiers Naive Bayes and Logistic Regression achieved an
accuracy of 83.29% and 84.33% respectively. The other per-
formance measures of these two classifiers achieved the best
results as well.

TABLE 14. Results of classification algorithms from textual feature with
SMOTE.

When we compared the results of priority prediction using
SMOTEwith the results before class imbalance, it is observed
that the performance measures have been improved using
SMOTE with a textual feature. The performance of all the
classifiers succeeded in achieving good results. Hence, it is
concluded that the framework performed well with a textual
feature after applying SMOTE for priority prediction.

1) PRIORITY WISE RESULTS FROM TEXTUAL FEATURE
WITH SMOTE
TABLE 15 presents the accuracy of each priority level with
a textual feature after applying SMOTE. Priority level P1

50508 VOLUME 9, 2021



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

TABLE 15. Priority wise results of classification algorithms from textual
feature with SMOTE.

obtained good results with all the classifiers and achieved
accuracy in between 84.34% to 93.43%. Furthermore, pri-
ority level P4 and P5 also predicted well with all the clas-
sifiers. P4 achieved the highest accuracy of 98.56% against
all priority levels. P5 achieved accuracy in between 86.60%
to 97.32%. Priority level P2 acquired better results with
all the classifiers except Logistic Regression. It achieved
the maximum accuracy of 84.45% using Naive Bayes and
minimum accuracy of 78.23% using Logistic Regression.
However, priority level P3 did not obtain good results with
Naive Bayes and achieved an accuracy of 70. 61%. It obtained
the maximum accuracy of 85.84% using the Random Forest
classifier.

We have concluded that after applying SMOTE, almost
each priority level succeeded in acquired good results with a
textual feature. Textual features give detailed information of
the bug reports. Based on these features, we might train the
model to accurately predict the priority of bug reports after
handling the class imbalance problem.

D. PREDICTING PRIORITY FROM CATEGORICAL
FEATURES WITH SMOTE
When predicting the priority of bug reports after apply-
ing SMOTE by using categorical features, results shown in
TABLE 16 were obtained.

TABLE 16. Results of classification algorithms from categorical features
with SMOTE.

After handling the class imbalance problem, the framework
performed well with Decision Tree and Random Forest clas-
sifier as their accuracy is 87.32% and 88.47% respectively.
The other performance measures of these classifiers are:
87.20% precision, 88.40% recall and 87.60% f1-score in
Decision Tree whereas, 88.20% precision, 89.00% recall

and 88.40% f1-score in Random Forest classifier. The other
two classifiers of Naive Bayes and Logistic Regression
didn’t work well with categorical features after applying
SMOTE. Naive Bayes achieved the accuracy of 43.31%
with 41.20% precision, 42.40% recall and 42.20% f1-score
measure. Logistic Regression acquired the lowest accuracy
of 41.24% as well as with the lowest performance measures
i.e., 40.80% precision, 38.80% recall and 38.49% f1-score.

When we compared these results with the results before
class balancing, it has been shown that there is an improve-
ment only in Decision Tree and Random Forest classifiers
after applying SMOTE using categorical features. Whereas,
the performance measures are decreased in Naive Bayes and
Logistic Regression. They didn’t perform well after handling
the class imbalance problem. Therefore, we have concluded
that after applying SMOTE, the framework performed well
with categorical features by using only Decision Tree and
Random Forest classifiers.

1) PRIORITY WISE RESULTS FROM CATEGORICAL
FEATURES WITH SMOTE
After applying SMOTE with categorical features, the accu-
racy of each priority level is shown in TABLE 17.

TABLE 17. Priority wise results of classification algorithms from
categorical features with SMOTE.

It is observed that Decision Tree and Random Forest
classifiers achieved good results in all priority levels except
P3, which obtained 75.22% accuracy using Decision Tree.
The Decision Tree classifier achieved the highest accuracy
of 94.96% in priority level P4 among all the priority lev-
els. Naive Bayes and Random Forest classifiers could not
attain a satisfactory level of accuracy in predicting priority
levels, even after applying SMOTE. Naive Bayes classifier
acquired the lowest accuracy of 25.25% in P1 and amaximum
of 70.46% in P2. The model worked poorly with Logistic
Regression as it acquired the lowest accuracy of 17.26% in
P4 among all priority levels while the maximum accuracy
is achieved in P2 which is 65.28%. Therefore, we have con-
cluded that Decision Tree and Logistic Regression classifiers
obtained better results in each priority level after applying
SMOTE by using categorical features.

V. CONCLUSION
Bug reports play a crucial role in software development
and maintenance activities. They allow software developers,

VOLUME 9, 2021 50509



H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

quality assurance team, and customers to identify and report
related issues. These reports entail extensive details, hence
manual extraction of this information is infeasible due to
large time complexity. Therefore, an automatedmechanism is
needed for their categorization and prioritization. The focus
of this research is to automate the process of categoriza-
tion and prioritization of bug reports. We propose CaPBug,
a machine learning based framework that recommends a
category and priority level to each issue based on informa-
tion available in the bug reports. The approach is based on
supervised machine learning that uses textual and categorical
features of the dataset. We conducted an experimental study
on 2,138 Eclipse and Mozilla bug reports from the Bugzilla
dataset. We manually labeled the dataset with bug categories
and applied NLP techniques and machine learning classifiers
for predicting category and priority of bug reports.

The CaPBug framework utilizes both textual and categor-
ical features to predict the category and priority of bugs. The
summary feature was taken as a textual feature for train-
ing the model. Since, the summary feature includes detailed
information about the bug reports, therefore, it was more
significant in predicting the category and priority. Moreover,
as the dataset was highly imbalanced with respect to priority
class, we applied SMOTE to correctly train the model with
each priority level. Categorical features worked well with
SMOTE in predicting priority, but only with few classifiers.
Nonetheless, it is evident from the above results that the
framework is giving better results with a textual feature for
predicting both the category and the priority of bug reports.

The research concluded that the framework achieved the
highest accuracy of 88.78% for category prediction and
90.43% for priority prediction by using the textual feature
with Random Forest classifier.

We intend to enhance the CaPBug framework by adding
more records in the training dataset. Consequently, the frame-
work can be used to predict both the priority and category of
new bug reports. Additionally, deep learning techniques can
be applied in future to further improve the performance and
results.

REFERENCES

[1] R. Lotufo, Z.Malik, and K. Czarnecki, ‘‘Modelling the ‘hurried’ bug report
reading process to summarize bug reports,’’ Empirical Softw. Eng., vol. 20,
no. 2, pp. 516–548, 2015.

[2] C.-Z. Yang, C.-M. Ao, and Y.-H. Chung, ‘‘Towards an improvement of
bug report summarization using two-layer semantic information,’’ IEICE
Trans. Inf. Syst., vol. 101, no. 7, pp. 1743–1750, 2018.

[3] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk,
‘‘Auto-completing bug reports for Android applications,’’ in Proc. 10th
Joint Meeting Found. Softw. Eng., Aug. 2015, pp. 673–686.

[4] W. Zhang, S. Wang, and Q. Wang, ‘‘KSAP: An approach to bug report
assignment using KNN search and heterogeneous proximity,’’ Inf. Softw.
Technol., vol. 70, pp. 68–84, Feb. 2016, doi: 10.1016/j.infsof.2015.10.004.

[5] M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, ‘‘Enhancements for
duplication detection in bug reports with manifold correlation features,’’
J. Syst. Softw., vol. 121, pp. 223–233, Nov. 2016.

[6] X. Xia, D. Lo, E. Shihab, and X. Wang, ‘‘Automated bug report field
reassignment and refinement prediction,’’ IEEE Trans. Rel., vol. 65, no. 3,
pp. 1094–1113, Sep. 2016.

[7] D.-G. Lee and Y.-S. Seo, ‘‘Improving bug report triage performance using
artificial intelligence based document generation model,’’ Hum.-Centric
Comput. Inf. Sci., vol. 10, no. 1, pp. 1–22, Dec. 2020, doi: 10.1186/s13673-
020-00229-7.

[8] H. Zhong and Z. Su, ‘‘An empirical study on real bug fixes,’’ in Proc.
IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., May 2015, pp. 913–923, doi:
10.1109/ICSE.2015.101.

[9] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved bug localization based on
code change histories and bug reports,’’ Inf. Softw. Technol., vol. 82,
pp. 177–192, Feb. 2017.

[10] A. Kukkar and R. Mohana, ‘‘A supervised bug report classification
with incorporate and textual field knowledge,’’ in Proc. Int. Conf.
Comput. Intell. Data Sci. (ICCIDS), vol. 132, 2018, pp. 352–361, doi:
10.1016/j.procs.2018.05.194.

[11] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, ‘‘Not all bugs are the
same: Understanding, characterizing, and classifying bug types,’’ J. Syst.
Softw., vol. 152, pp. 165–181, Jun. 2019.

[12] M. R. Karim, ‘‘Key features recommendation to improve bug reporting,’’
in Proc. IEEE/ACM Int. Conf. Softw. Syst. Processes (ICSSP), May 2019,
pp. 1–4, doi: 10.1109/ICSSP.2019.00010.

[13] Y. Fan, X. Xia, D. Lo, and A. E. Hassan, ‘‘Chaff from the wheat:
Characterizing and determining valid bug reports,’’ IEEE Trans. Softw.
Eng., vol. 46, no. 5, pp. 495–525, May 2020, doi: 10.1109/TSE.2018.
2864217.

[14] N. Limsettho, H. Hata, A. Monden, and K. Matsumoto, ‘‘Automatic unsu-
pervised bug report categorization,’’ in Proc. 6th Int. Workshop Empirical
Softw. Eng. Pract., Nov. 2014, pp. 7–12.

[15] M. F. Zibran, ‘‘On the effectiveness of labeled latent Dirichlet allocation in
automatic bug-report categorization,’’ in Proc. 38th Int. Conf. Softw. Eng.
Companion, May 2016, pp. 713–715.

[16] N. Limsettho, H. Hata, A. Monden, and K. Matsumoto, ‘‘Unsupervised
bug report categorization using clustering and labeling algorithm,’’ Int.
J. Softw. Eng. Knowl. Eng., vol. 26, no. 7, pp. 1027–1053, Sep. 2016, doi:
10.1142/S0218194016500352.

[17] C. Zhou, B. Li, X. Sun, and H. Guo, ‘‘Recognizing software bug-
specific named entity in software bug repository,’’ in Proc. IEEE/ACM
26th Int. Conf. Program Comprehension (ICPC), May/Jun. 2018,
pp. 108–119.

[18] M. Hammad, R. Alzyoudi, and A. F. Otoom, ‘‘Automatic clustering of bug
reports,’’ Int. J. Adv. Comput. Res., vol. 8, no. 39, pp. 313–323, Nov. 2018,
doi: 10.19101/IJACR.2018.839013.

[19] X. Ren, Q. Huang, X. Xia, Z. Xing, L. Bao, and D. Lo, ‘‘Characterizing
common and domain-specific package bugs: A case study on ubuntu,’’
in Proc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMPSAC),
Jul. 2018, pp. 426–431.

[20] Y. Tian, D. Lo, X. Xia, and C. Sun, ‘‘Automated prediction of bug report
priority using multi-factor analysis,’’ Empirical Softw. Eng., vol. 20, no. 5,
pp. 1354–1383, Oct. 2015, doi: 10.1007/s10664-014-9331-y.

[21] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, ‘‘A survey
on bug prioritization,’’ Artif. Intell. Rev., vol. 47, no. 2, pp. 145–180,
Feb. 2017, doi: 10.1007/s10462-016-9478-6.

[22] Y. Wang, T. He, W. Zhang, C. Fang, and B. Luo, ‘‘Exploring the influence
of feature selection techniques on bug report prioritization,’’ in Proc. 29th
Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2017, pp. 179–184.

[23] Q. Umer, H. Liu, and Y. Sultan, ‘‘Emotion based automated priority
prediction for bug reports,’’ IEEE Access, vol. 6, pp. 35743–35752, 2018,
doi: 10.1109/ACCESS.2018.2850910.

[24] T.-D. B. Le, F. Thumg, and D. Lo, ‘‘Will this localization tool be effec-
tive for this bug? Mitigating the impact of unreliability of information
retrieval based bug localization tools,’’ Empirical Softw. Eng., vol. 22,
no. 4, pp. 2237–2279, 2017, doi: 10.1007/s10664-016-9484-y.

[25] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘A time-based
approach to automatic bug report assignment,’’ J. Syst. Softw., vol. 102,
pp. 109–122, Apr. 2015, doi: 10.1016/j.jss.2014.12.049.

[26] N. Pandey, D. Kumar, S. Abir, and H. Amitava, ‘‘Automated classification
of software issue reports using machine learning techniques: An empirical
study,’’ Innov. Syst. Softw. Eng., vol. 13, no. 4, pp. 279–297, 2017.

[27] A. F. Otoom, S. Al-jdaeh, and M. Hammad, ‘‘Automated classification
of software bug reports,’’ in Proc. 9th Int. Conf. Inf. Commun. Man-
age. (ICICM), 2019, pp. 17–21, doi: 10.1145/3357419.3357424.

[28] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, ‘‘On the unreliability of bug
severity data,’’ Empirical Softw. Eng., vol. 21, no. 6, pp. 2298–2323,
Dec. 2016, doi: 10.1007/s10664-015-9409-1.

50510 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.infsof.2015.10.004
http://dx.doi.org/10.1186/s13673-020-00229-7
http://dx.doi.org/10.1186/s13673-020-00229-7
http://dx.doi.org/10.1109/ICSE.2015.101
http://dx.doi.org/10.1016/j.procs.2018.05.194
http://dx.doi.org/10.1109/ICSSP.2019.00010
http://dx.doi.org/10.1109/TSE.2018.2864217
http://dx.doi.org/10.1109/TSE.2018.2864217
http://dx.doi.org/10.1142/S0218194016500352
http://dx.doi.org/10.19101/IJACR.2018.839013
http://dx.doi.org/10.1007/s10664-014-9331-y
http://dx.doi.org/10.1007/s10462-016-9478-6
http://dx.doi.org/10.1109/ACCESS.2018.2850910
http://dx.doi.org/10.1007/s10664-016-9484-y
http://dx.doi.org/10.1016/j.jss.2014.12.049
http://dx.doi.org/10.1145/3357419.3357424
http://dx.doi.org/10.1007/s10664-015-9409-1


H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

[29] I. Ferreira, E. Cirilo, V. Vieira, and F. Mourão, ‘‘Bug report summariza-
tion: An evaluation of ranking techniques,’’ in Proc. X Brazilian Symp.
Softw. Compon., Archit. Reuse (SBCARS), Sep. 2016, pp. 101–110, doi:
10.1109/SBCARS.2016.17.

[30] X. Li, H. Jiang, D. Liu, Z. Ren, and G. Li, ‘‘Unsupervised deep bug report
summarization,’’ in Proc. IEEE/ACM 26th Int. Conf. ProgramComprehen-
sion (ICPC), May/Jun. 2018, pp. 144–14411.

[31] H. Jiang, X. Li, Z. Ren, J. Xuan, and Z. Jin, ‘‘Toward better summarizing
bug reports with crowdsourcing elicited attributes,’’ IEEE Trans. Rel.,
vol. 68, no. 1, pp. 2–22, Mar. 2019.

[32] Z. Ge, Z. Song, S. X. Ding, and B. Huang, ‘‘Data mining and analytics in
the process industry: The role of machine learning,’’ IEEE Access, vol. 5,
pp. 20590–20616, 2017, doi: 10.1109/ACCESS.2017.2756872.

[33] R. R. Panda and N. K. Nagwani, ‘‘Software bug categorization technique
based on fuzzy similarity,’’ in Proc. IEEE 9th Int. Conf. Adv. Comput.
(IACC), Dec. 2019, pp. 1–6.

[34] M. Kumari and V. B. Singh, ‘‘An improved classifier based on entropy and
deep learning for bug priority prediction,’’ in Proc. 18th Int. Conf. Intell.
Syst. Design Appl. (ISDA), 2018, pp. 571–580.

[35] Q. Umer, H. Liu, and I. Illahi, ‘‘CNN-based automatic prioritization of bug
reports,’’ IEEE Trans. Rel., vol. 69, no. 4, pp. 1341–1354, Dec. 2020.

[36] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, ‘‘How practitioners
perceive automated bug report management techniques,’’ IEEE Trans.
Softw. Eng., vol. 46, no. 8, pp. 836–862, Aug. 2020.

[37] Y. Tan, S. Xu, Z.Wang, T. Zhang, Z. Xu, and X. Luo, ‘‘Bug severity predic-
tion using question-and-answer pairs from stack overflow,’’ J. Syst. Softw.,
vol. 165, Jul. 2020, Art. no. 110567, doi: 10.1016/j.jss.2020.110567.

[38] R. Chen, S.-K. Guo, X.-Z. Wang, and T.-L. Zhang, ‘‘Fusion of multi-
RSMOTE with fuzzy integral to classify bug reports with an imbalanced
distribution,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2406–2420,
Dec. 2019.

[39] Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi, ‘‘Improving bug local-
ization with word embedding and enhanced convolutional neural net-
works,’’ Inf. Softw. Technol., vol. 105, pp. 17–29, Jan. 2019, doi:
10.1016/j.infsof.2018.08.002.

[40] P. A. Choudhary and D. S. Singh, ‘‘Neural network based bug priority
prediction model using text classification techniques,’’ Int. J. Adv. Res.
Comput. Sci., vol. 8, no. 5, pp. 1315–1320, 2017.

[41] H. M. Tran, S. T. Le, S. V. Nguyen, and P. T. Ho, ‘‘An analysis of software
bug reports using machine learning techniques,’’ Social Netw. Comput.
Sci., vol. 1, no. 1, p. 4, Jan. 2020, doi: 10.1007/s42979-019-0004-1.

[42] A. Lamkanfi, J. Perez, and S. Demeyer, ‘‘The eclipse and mozilla defect
tracking dataset: A genuine dataset for mining bug information,’’ in
Proc. 10th Work. Conf. Mining Softw. Repositories (MSR), May 2013,
pp. 203–206, doi: 10.1109/MSR.2013.6624028.

[43] S. Banerjee, J. Helmick, Z. Syed, and B. Cukic, ‘‘Eclipse vs. Mozilla: A
comparison of two large-scale open source problem report repositories,’’
in Proc. IEEE 16th Int. Symp. High Assurance Syst. Eng., Jan. 2015,
pp. 263–270, doi: 10.1109/HASE.2015.45.

[44] R. M. Karampatsis and C. Sutton, ‘‘How often do single-statement bugs
occur? TheManySStuBs4J dataset,’’ in Proc. 17th Int. Conf. Mining Softw.
Repositories, Jun. 2020, pp. 573–577, doi: 10.1145/3379597.3387491.

[45] V. Lelli, A. Blouin, and B. Baudry, ‘‘Classifying and qualifying GUI
defects,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation
(ICST), Apr. 2015, pp. 1–10, doi: 10.1109/ICST.2015.7102582.

[46] Z. Wan, D. Lo, X. Xia, and L. Cai, ‘‘Bug characteristics in blockchain
systems: A large-scale empirical study,’’ in Proc. IEEE/ACM 14th Int.
Conf. Mining Softw. Repositories (MSR), May 2017, pp. 413–424, doi:
10.1109/MSR.2017.59.

[47] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, ‘‘Software-
defined networking (SDN): A survey,’’ Secur. Commun. Netw., vol. 9,
no. 18, pp. 5803–5833, Dec. 2016, doi: 10.1002/sec.1737.

[48] K. Sangeetha and K. Ravikumar, ‘‘Defense against protocol level attack in
tor network using deficit round robin queuing process,’’Egyptian Informat.
J., vol. 19, no. 3, pp. 199–205, Nov. 2018, doi: 10.1016/j.eij.2018.03.005.

[49] N. Munaiah, F. Camilo, W. Wigham, A. Meneely, and M. Nagappan,
‘‘Do bugs foreshadow vulnerabilities? An in-depth study of the chromium
project,’’ Empirical Softw. Eng., vol. 22, no. 3, pp. 1305–1347, Jun. 2017,
doi: 10.1007/s10664-016-9447-3.

[50] W. Wen, T. Yu, and J. H. Hayes, ‘‘CoLUA: Automatically predicting
configuration bug reports and extracting configuration options,’’ in Proc.
IEEE 27th Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2016, pp. 150–161.

[51] X. Han, T. Yu, and D. Lo, ‘‘PerfLearner: Learning from bug reports
to understand and generate performance test frames,’’ in Proc. 33rd
ACM/IEEE Int. Conf. Automated Softw. Eng., Sep. 2018, pp. 17–28.

[52] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sundmark,
‘‘Intermittently failing tests in the embedded systems domain,’’ in Proc.
29th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2020, pp. 337–348,
doi: 10.1145/3395363.3397359.

[53] D. G. Lee and Y. S. Seo, ‘‘Systematic review of bug report processing
techniques to improve softwaremanagement performance,’’ J. Inf. Process.
Syst., vol. 15, no. 4, pp. 967–985, 2019, doi: 10.3745/JIPS.04.0130.

[54] C. Sun, V. Le, Q. Zhang, and Z. Su, ‘‘Toward understanding compiler bugs
in GCC and LLVM,’’ in Proc. 25th Int. Symp. Softw. Test. Anal., Jul. 2016,
pp. 294–305, doi: 10.1145/2931037.2931074.

[55] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, ‘‘Deep neural
network-based severity prediction of bug reports,’’ IEEE Access, vol. 7,
pp. 46846–46857, 2019, doi: 10.1109/ACCESS.2019.2909746.

[56] A. Baarah, A. Aloqaily, Z. Salah, M. Zamzeer, and M. Sallam, ‘‘Machine
learning approaches for predicting the severity level of software bug reports
in closed source projects,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8,
pp. 285–294, 2019, doi: 10.14569/IJACSA.2019.0100836.

[57] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B.-G. Kang, and
N. Chilamkurti, ‘‘A novel deep-learning-based bug severity classification
technique using convolutional neural networks and random forest
with boosting,’’ Sensors, vol. 19, no. 13, p. 2964, Jul. 2019, doi:
10.3390/s19132964.

[58] A. A. Mohamed, ‘‘An effective dimension reduction algorithm for cluster-
ing arabic text,’’ Egyptian Informat. J., vol. 21, no. 1, pp. 1–5, Mar. 2020,
doi: 10.1016/j.eij.2019.05.002.

[59] X. Du, Z. Zhou, B. Yin, and G. Xiao, ‘‘Cross-project bug type prediction
based on transfer learning,’’ Softw. Qual. J., vol. 28, pp. 39–57, Sep. 2020,
doi: 10.1007/s11219-019-09467-0.

[60] T. Uçkan and A. Karci, ‘‘Extractive multi-document text summarization
based on graph independent sets,’’ Egyptian Informat. J., vol. 21, no. 3,
pp. 145–157, Sep. 2020, doi: 10.1016/j.eij.2019.12.002.

[61] Z. A. Nizamani, H. Liu, D. M. Chen, and Z. Niu, ‘‘Automatic approval
prediction for software enhancement requests,’’ Automated Softw. Eng.,
vol. 25, no. 2, pp. 347–381, Jun. 2018, doi: 10.1007/s10515-017-0229-y.

[62] S. Qaiser and R. Ali, ‘‘Text mining: Use of TF-IDF to examine the
relevance of words to documents,’’ Int. J. Comput. Appl., vol. 181, no. 1,
pp. 25–29, Jul. 2018, doi: 10.5120/ijca2018917395.

[63] S. W. Kim and J. M. Gil, ‘‘Research paper classification systems based on
TF-IDF and LDA schemes,’’ Hum.-Centric Comput. Inf. Sci., vol. 9, no. 1,
p. 30, 2019, doi: 10.1186/s13673-019-0192-7.

[64] N. K. Singha Roy and B. Rossi, ‘‘Cost-sensitive strategies for data imbal-
ance in bug severity classification: Experimental results,’’ in Proc. 43rd
Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2017, pp. 426–429,
doi: 10.1109/SEAA.2017.71.

[65] R. Shu, T. Xia, L. Williams, and T. Menzies, ‘‘Better security bug report
classification via hyperparameter optimization,’’ 2019, arXiv:1905.06872.
[Online]. Available: https://arxiv.org/abs/1905.06872

[66] W. Maalej and H. Nabil, ‘‘Bug report, feature request, or simply
praise? On automatically classifying app reviews,’’ in Proc. IEEE
23rd Int. Requirements Eng. Conf. (RE), Aug. 2015, pp. 116–125, doi:
10.1109/RE.2015.7320414.

[67] R. Punnoose and P. Ajit, ‘‘Prediction of employee turnover in organizations
using machine learning algorithms,’’ Int. J. Adv. Res. Artif. Intell., vol. 5,
no. 9, pp. 22–26, 2016, doi: 10.14569/ijarai.2016.050904.

[68] S. Delphine Immaculate, M. Farida Begam, and M. Floramary, ‘‘Soft-
ware bug prediction using supervised machine learning algorithms,’’ in
Proc. Int. Conf. Data Sci. Commun. (IconDSC), Mar. 2019, pp. 1–7, doi:
10.1109/icondsc.2019.8816965.

[69] C.-C.Wu, Y.-L. Chen, Y.-H. Liu, and X.-Y. Yang, ‘‘Decision tree induction
with a constrained number of leaf nodes,’’ Int. J. Speech Technol., vol. 45,
no. 3, pp. 673–685, Oct. 2016, doi: 10.1007/s10489-016-0785-z.

[70] D. Lin, C.-P. Bezemer, and A. E. Hassan, ‘‘Identifying gameplay videos
that exhibit bugs in computer games,’’ Empirical Softw. Eng., vol. 24, no. 6,
pp. 4006–4033, Dec. 2019, doi: 10.1007/s10664-019-09733-6.

[71] A. Alqudsi and A. El-Hag, ‘‘Application of machine learning in trans-
former health index prediction,’’ Energies, vol. 12, no. 14, p. 2694, 2019,
doi: 10.3390/en12142694.

[72] H. Kartal, A. Oztekin, A. Gunasekaran, and F. Cebi, ‘‘An integrated deci-
sion analytic framework of machine learning with multi-criteria decision
making for multi-attribute inventory classification,’’ Comput. Ind. Eng.,
vol. 101, pp. 599–613, Nov. 2016, doi: 10.1016/j.cie.2016.06.004.

VOLUME 9, 2021 50511

http://dx.doi.org/10.1109/SBCARS.2016.17
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1016/j.jss.2020.110567
http://dx.doi.org/10.1016/j.infsof.2018.08.002
http://dx.doi.org/10.1007/s42979-019-0004-1
http://dx.doi.org/10.1109/MSR.2013.6624028
http://dx.doi.org/10.1109/HASE.2015.45
http://dx.doi.org/10.1145/3379597.3387491
http://dx.doi.org/10.1109/ICST.2015.7102582
http://dx.doi.org/10.1109/MSR.2017.59
http://dx.doi.org/10.1002/sec.1737
http://dx.doi.org/10.1016/j.eij.2018.03.005
http://dx.doi.org/10.1007/s10664-016-9447-3
http://dx.doi.org/10.1145/3395363.3397359
http://dx.doi.org/10.3745/JIPS.04.0130
http://dx.doi.org/10.1145/2931037.2931074
http://dx.doi.org/10.1109/ACCESS.2019.2909746
http://dx.doi.org/10.14569/IJACSA.2019.0100836
http://dx.doi.org/10.3390/s19132964
http://dx.doi.org/10.1016/j.eij.2019.05.002
http://dx.doi.org/10.1007/s11219-019-09467-0
http://dx.doi.org/10.1016/j.eij.2019.12.002
http://dx.doi.org/10.1007/s10515-017-0229-y
http://dx.doi.org/10.5120/ijca2018917395
http://dx.doi.org/10.1186/s13673-019-0192-7
http://dx.doi.org/10.1109/SEAA.2017.71
http://dx.doi.org/10.1109/RE.2015.7320414
http://dx.doi.org/10.14569/ijarai.2016.050904
http://dx.doi.org/10.1109/icondsc.2019.8816965
http://dx.doi.org/10.1007/s10489-016-0785-z
http://dx.doi.org/10.1007/s10664-019-09733-6
http://dx.doi.org/10.3390/en12142694
http://dx.doi.org/10.1016/j.cie.2016.06.004


H. A. Ahmed et al.: CaPBug-A Framework for Automatic Bug Categorization and Prioritization

[73] S. Guo, R. Chen, M. Wei, H. Li, and Y. Liu, ‘‘Ensemble data
reduction techniques and multi-RSMOTE via fuzzy integral for bug
report classification,’’ IEEE Access, vol. 6, pp. 45934–45950, 2018, doi:
10.1109/ACCESS.2018.2865780.

[74] A. Hindle, A. Alipour, and E. Stroulia, ‘‘A contextual approach towards
more accurate duplicate bug report detection and ranking,’’ Empirical
Softw. Eng., vol. 21, no. 2, pp. 368–410, Apr. 2016.

[75] U. Subbiah, M. Ramachandran, and Z. Mahmood, ‘‘Software engineering
approach to bug prediction models using machine learning as a service
(MLaaS),’’ in Proc. 13th Int. Conf. Softw. Technol., 2018, pp. 879–887,
doi: 10.5220/0006926308790887.

[76] J. P. Winkler, J. Gronberg, and A. Vogelsang, ‘‘Optimizing for recall
in automatic requirements classification: An empirical study,’’ in Proc.
IEEE 27th Int. Requirements Eng. Conf. (RE), Sep. 2019, pp. 40–50, doi:
10.1109/RE.2019.00016.

[77] H. Jiang, N. Nazar, J. Zhang, T. Zhang, and Z. Ren, ‘‘PRST: A pagerank-
based summarization technique for summarizing bug reports with dupli-
cates,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 6, pp. 869–896, 2017,
doi: 10.1142/S0218194017500322.

[78] K. Goseva-Popstojanova and J. Tyo, ‘‘Identification of security related
bug reports via text mining using supervised and unsupervised classifica-
tion,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. (QRS), Jul. 2018,
pp. 344–355, doi: 10.1109/QRS.2018.00047.

HAFIZA ANISA AHMED received the bachelor’s
degree in computer science from JinnahUniversity
forWomen, Karachi, Pakistan, in 2012, secure sec-
ond position. She is currently pursuing the mas-
ter’s degree in computer science with the Virtual
University of Pakistan, Karachi campus. She is
currently working as a Lecturer with Jinnah Uni-
versity for Women. Her research interests include
machine learning and data mining, natural lan-
guage processing, algorithms, and programming
languages.

NARMEEN ZAKARIA BAWANY received the
Ph.D. degree in computer science from the
National University of Computer and Emerging
Sciences, Karachi. She is currently working as
a Professor and the Dean of the Faculty of Sci-
ence, Jinnah University for Women, Karachi. She
has supervised many projects. She had received
funding from Ignite (National Technology Fund,
Pakistan) for her projects. She has more than
30 publications in journals and conferences. Her

research interests include human–computer interaction, semantic web, cyber
security, and software defined networking.

JAWWAD AHMED SHAMSI received the Ph.D.
degree in computer science fromWayne State Uni-
versity, Detroit, MI, USA, in 2009. He is cur-
rently a Professor and the Director of the National
University of Computer and Emerging Sciences,
Karachi campus. His research has been funded by
the NVIDIA Research Center and HEC NRPU
grants. He has over 50 research publications in
reputable journals and conferences. His research
interests include distributed systems, networks,
security, and high-performance computing.

50512 VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2018.2865780
http://dx.doi.org/10.5220/0006926308790887
http://dx.doi.org/10.1109/RE.2019.00016
http://dx.doi.org/10.1142/S0218194017500322
http://dx.doi.org/10.1109/QRS.2018.00047

