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ABSTRACT In this work, we focus on the model-mismatch problem for model-based subspace channel
tracking in the correlated underwater acoustic channel. A model based on the underwater acoustic channel’s
correlation can be used as the state-space model in the Kalman filter to improve the underwater acoustic
channel tracking compared that without a model. Even though the data support the assumption that the
model is slow-varying and uncorrelated to some degree, to improve the tracking performance further,
we cannot ignore the model-mismatch problem because most channel models encounter this problem in the
underwater acoustic channel. Therefore, in this work, we provide a dynamic time-variant state-space model
for underwater acoustic channel tracking. This model is tolerant to the slight correlation after decorrelation.
Moreover, a forward-backward Kalman filter is combined to further improve the tracking performance.
The performance of our proposed algorithm is demonstrated with the same at-sea data as that used for
conventional channel tracking. Compared with the conventional algorithms, the proposed algorithm shows
significant improvement, especially in rough sea conditions in which the channels are fast-varying.

INDEX TERMS Correlated channels, model mismatch, underwater acoustic channels, channel tracking,
forward-backward Kalman filter.

I. INTRODUCTION
Underwater acoustic channels are some of the most
challenging channels in wireless communications [1] because
they may suffer from substantial multipath interference, sig-
nificant Doppler spread, and rapid time variation. Acquiring
the acoustic channel state information is usually cru-
cial for underwater acoustic communications and signal
processing [2].

With the development of underwater acoustic channel esti-
mation and tracking, there has emerged a trend of researchers
increasingly considering the physics of the channel before to
search for solutions in radio communications [3]–[6]. One of
the physical phenomena of the underwater acoustic channel
was demonstrated in [6]–[8], where it was shown that for
many underwater acoustic channel impulse responses (CIRs),
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themultipath taps are correlated. This result may be due to the
fluctuations of the water dividing the path into several similar
paths. The signals may travel through a common region with
similar sound speed variations. Additionally, the limitation
of the channel bandwidth or bandwidth of the receivers and
transmitters leads to the tap belonging to one path spreading
to multiple adjacent taps [6].

The correlation characteristic of the underwater acoustic
channels may potentially be used to improve the channel
tracking since after certain decorrelation, the channel can
become uncorrelated and may have a lower rank [9]. Even
though some artificial intelligence (AI)-based protocols have
been developed in recent studies of underwater acoustic com-
munication and networking [10]–[12], they usually incur a
high computational cost. However, based on the correlation
characteristic, the performance can be improved and the com-
putational cost can be reduced [9], [13], [14]. A model-based
signal subspace channel tracking approach is proposed in [13]
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for the correlated underwater acoustic channel. It is assumed
that after decorrelation, the channel components become
uncorrelated and slow-varying. A time-invariant autoregres-
sive (AR) model with low order is used as the model for
these uncorrelated channel components after decorrelation.
This AR model has a simple form and can be used for the
time evaluation of the channel components. Some experi-
mental results support the conclusion that this AR model
is reasonable for channel components [13], [14]. With this
time-invariant AR model, a Kalman filter is used to track
these channel components, thus realizing correlated underwa-
ter acoustic channel tracking. Based on this time-invariant AR
model for channel components, adaptive subspace-tracking
with reduced-rank model-based amplitude estimation (ASR-
MAE) in [14] improves this channel tracking by adding a
subspace tracker for the time variation of the subspace vector.
An adaptive factor is introduced into the tracker in [15] to
further improve the tracking ability.

However, model mismatch often happens in model-based
underwater acoustic channel tracking since to date, no model
has been able to fully describe the underwater acoustic chan-
nel. Once the channel components are not correlated and not
evaluated in a time-invariant manner, the time-invariant AR
model mismatches the channel components. Especially for
the rapid time-varying underwater acoustic channel, this prior
model mismatch is nonnegligible [16]. Thus, even though
improved trackers can compensate for the mismatch to some
degree [15], [16], a more tolerant model must be devel-
oped. The model itself needs to be tolerant to the occa-
sionally uncorrelated channel components and time-variant
evolutions, thereby improving the tracking performance in
principle.

Based on the above considerations, the main contributions
of this work are as follows:
• We propose a tolerant dynamic time-variant state-space
model for the channel components in channel tracking.
In the state-space model, we dynamically update the
state-space model during the tracking process. More-
over, the model is tolerant to the model mismatch if
the uncorrelated assumption for the channel components
does not hold in the nonstationary underwater acous-
tic channel. Through this approach, we improve the
state-space model for the rapid time-varying channel
tracking.

• Moreover, a forward-backward Kalman filter is com-
bined with the dynamic time-variant state-space model
for rapid time-varying channel tracking named as
dynamic forward-backwardASRMAE (DFB-ASRMAE).
Since the rapid time-varying channel requires a high
tracking ability, we provide the two-way tracker to
improve tracking efficiency based on the proposed
state-space model. Our results show that the proposed
channel tracking decreases the normalized signal pre-
diction error for rapid time-varying acoustic chan-
nels compared to the existing methods with the same
experimental data.

II. SYSTEM MODEL
A. CORRELATED UNDERWATER ACOUSTIC CHANNELS
A time-varying underwater acoustic channel hasM multipath
arrivals that each have an amplitude Am(t) and arrival (delay)
time τm(t):

c(τ, t) =
M∑
m=1

Am(t)δ(τ − τm(t)), (1)

where c(τ, t) is the channel impulse response at time t . Then,
at the receiver, the effective CIR can be obtained:

h(τ, t) = pR(τ )⊗ c(τ, t)⊗ pT(τ ), (2)

where pR(τ ) and pT(τ ) are the receive filter and transmit
filter, respectively. After sampling h(τ, t), we have hk (n) =
h(τ = kTb, t = nTg) for the kth tap at time n with n =
1, 2, . . . ,N , where Tb is the duration of a symbol, given
that the channel is acquired every Tg duration. Then, the
CIR can be expressed in terms of a K -tap vector h(n) =
[h1(n), . . . , hk (n), . . . , hK (n)]T . For many underwater acous-
tic channels, the taps are found to be experimentally cor-
related [6], [7]. This is reasonable because many physical
environments can make the taps correlated. The fluctuations
of the water can divide the path into several similar paths.
When many paths travel through a common region with
similar sound speed variations, they may become correlated.
Moreover, if the bandwidths of the receive filter and transmit
filter are too narrow, the tap belonging to one path can easily
spread to many adjacent taps [6].

The cross-path covariance matrix is given by Rh(n) =
E[h(n)hH (n)] where superscript H denotes the Hermitian
conjugate. Through eigenvalue decomposition (EVD) of the
covariance matrix,

Rh(n) = Q(n)3(n)QH (n), (3)

where Q(n) is a matrix of orthonormal eigenvectors, and
3(n) is a diagonal matrix of eigenvalues. Since channel taps
are correlated, Rh(n) is ill-conditioned with assumed r-rank,
where r � K . If the taps of the channel components in
the eigenvector space after decomposition are uncorrelated
[13] (we analyze this in Section V with experimental data),
we have

3(n) = E[z(n)zH (n)], (4)

where z(n) are the channel components. The channel taps can
be expressed as

h(n) = Q(n)z(n)

= Qr (n)zr (n), (5)

where zr (n) ∈ Cr×1 comprises the r largest channel
components in z(n), and the eigenvectors associated with
the r largest eigenvalues compose Qr (n) ∈ CK×r where
Qr

H (n)Qr (n) = Ir×r .
It is obvious that if we can obtain Qr (n) and zr (n) at

each state, then the underwater acoustic channel h(n) can be
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tracked. Compared to Qr (n), the channel principal compo-
nents zr (n) vary rapidly over time. To track the channel h(n),
it is more important to track zr (n). Therefore, in this work,
we focus on the tracking of channel components zr (n), with
the tracked the channel subspace Qr (n) according to [14].

B. AR MODEL TO THE CHANNEL PRINCIPLE
COMPONENTS
To track the channel, we can use an AR model to describe the
time evolution of the signal components zr (n). Based on this
model, the signal components zr (n) are considered to follow
a p-order discrete-time Markov process [17].

zr (n) =
p∑
l=1

8(n, l)zr (n− l)+ η(n), (6)

where 8(n, l) is the lth-order state transition matrix at time
n, and η(n) represents the process noise vector at time n
and η(n) = [η1(n), η2(n), . . . , ηr (n)]T . Multiplying (6) by
zHr (n − m) where 0 ≤ m ≤ p from the right side and taking
expectation, we obtain

E
[
zr (n)zHr (n− m)

]
= E

[
η(n)zHr (n− m)

]
+

p∑
l=1

8(n, l)× E
[
zr (n− l)zHr (n− m)

]
. (7)

If the taps of the signal components are uncorrelated,
E
[
zi(n)z∗j (l)

]
= Ri(n − l)δij, where zi(n) represents the ith

tap of zr (n), Ri(n − l) = E
[
zi(n)z∗i (l)

]
and is the autocorre-

lation of tap i component. Given that ηi(n) and zj(n− m) are
independent random variables,

E
[
ηi(n)z∗i (n− m)

]
=

p∑
l=1

8i(n, l)E
[
ηi(n)z∗i (n− m− l)

]
+E

[
ηi(n)η∗i (n− m)

]
= Rη,iδ(m), (8)

where Rη,i = E
[
ηi(n)η∗i (n)

]
and is the process noise variance

corresponding to the ith tap. Thus, (7) for the ith tap can be
expressed as [13], [14]

Ri(m)=
p∑
l=1

8i(n, l)Ri(m− l)+ Rη,iδ(m) i=1, 2, . . . , r .

(9)

The Yule-Walker equation can help us find the AR coeffi-
cients 8i(n, l).

III. CONVENTIONAL ASRMAE SUBSPACE CHANNEL
TRACKING
The following conventional ASRMAE subspace channel
tracking is taken from [13]–[15]. In conventional subspace
channel tracking, the state transition coefficient 8i(n, l) =
φi(l) and is assumed to be time invariant. The channel prin-
cipal components are modeled as an AR process (6), and
a Kalman filter recursively tracks the channel components

based on this AR model. The state-space and the observation
models in the Kalman filter are as follows:

Z(n) = 8zZ(n− 1)+ η∗(n), (10)

r(n) = D(n)Z(n)+ v(n), (11)

where Z(n) =
[
zTr (n), . . . , z

T
r (n− p+ 1)

]T , η∗(n) =[
ηT (n),01×r(p−1)

]T and is the process noise vector assumed
to be uncorrelated with each tap, and the state transition
matrix 8z is denoted by

8z =


8(1) 8(2) · · · 8(p)
Ir 0r · · · 0r
...

. . .
. . .

...

0r · · · Ir 0r

 , (12)

where 8(1) = diag ([φ1(1), φ2(1), . . . , φr (1)]) and is the
first-order state transition matrix with time-invariant assump-
tion. The state-space model (10) in the Kalman filter is
obtained by a rearranged (6) with time-invariant state transi-
tion coefficients. In the observation model (11), the received
signal r(n) can be expressed as r(n) = d(n)Th(n) + v(n),
where d(n) = [d(n), d(n−1), . . . d(n−K )]T and is the trans-
mitted data vector, and v(n) is the observation noise, which
is additive Gaussian white noise. dz(n)T = d(n)TQr (n), and
is the projection of the transmitted data vector on the signal
subspace. Additionally, D(n) =

[
dz(n)T , 01×r(p−1)

]
.

To achieve the Kalman filter with (10) and (11) to track
the channel components zr (n), we need to estimate the state
transition matrix 8z and process noise variance Rη [14].

A. ESTIMATION OF STATE TRANSITION MATRIX 8z

Since the state transition coefficients are assumed to be time
invariant, we convert {Ri(m)}

p
m=1 into a vector form as Ri =

[Ri(1),Ri(2), . . . ,Ri(p)]T , then (9) can be transformed into

Ri=


Ri(0) Ri(−1) · · ·Ri(−p+ 1)
Ri(1) Ri(0) · · ·Ri(−p+ 2)
...

. . .
. . .

...

Ri(p− 1)Ri(p− 2)· · · Ri(0)


︸ ︷︷ ︸

ri

×


φi(1)
φi(2)
...

φi(p)


︸ ︷︷ ︸

8i

.

(13)

(13) is known as the Yule-Walker equation, and then, the state
transition coefficients for the ith tap can be obtained as

8i = r−1i Ri. (14)

It is clear that the state transition matrix 8z in (10) can be
obtained by reshaping 8i as (12).

According to (13) and (14), to estimate 8i, it is necessary
to first estimate Ri(m). However, due to the lack of prior infor-
mation about the channel principle components, we resort
to using the least mean square (LMS) method for a coarse
estimation of the CIR in (5), and then, we can obtain the
channel components zr (n).

We denote ĥLMS(n) as the estimated CIR at time n by
LMS. The estimation error in LMS can be expressed as
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e(n) = r(n) − (ĥLMS)H (n)d(n). Then, iteratively, we can
roughly estimate the channel by LMS as follows:

ĥLMS(n+ 1) = ĥLMS(n)+ 2µe(n)d(n), (15)

where µ is the step factor. The estimated time-invariant
cross-correlation matrix of channel is given by

R̂h =
1
Np

Np∑
n=1

ĥLMS(n)(ĥLMS)H (n), (16)

where Np is the length of the training sequence. Through
EVD as described in (3), we can obtain the eigenvectors
Q̂r (n) corresponding to the r largest eigenvalues. A rough
estimation of the channel components can be obtained by pro-
jecting the ĥLMS(n) onto Q̂r (n) according to (5), ẑLMS

r (n) =
Q̂H
r (n)ĥ

LMS(n). With ẑLMS
r (n), we have

R̂i(m) =
1
Np

Np∑
n=1

ẑLMS
i (n)(ẑLMS

i )∗(n− m). (17)

After we obtain R̂i(m), we can find Ri and ri as in (13).
Then, with (14),8i can be estimated. Therefore, we can arrive
at the state transition matrix 8z.

B. ESTIMATION OF PROCESS NOISE VARIANCE Rη
The conventional estimation of Rη is based on the assump-
tion that the channel components of different taps z(n) are
uncorrelated.

Lettingm = 0 in (9), with the time-invariant state transition
coefficient φi(l), we have

Ri(0)=
p∑
l=1

φi(l)Ri(0− l)+ Rη,i, i=1, 2, . . . , r .

(18)

Since Ri(m) can be estimated from (17) and φi(l) can be
obtained from (14), Rη,i = Ri(0)−

∑p
l=1 φi(l)Ri(0− l).

By assuming that the channel components of different taps
z(n) are uncorrelated as in (4), the left and right sides of
(7) should be diagonal matrices, and the process noise is
uncorrelated with different taps. Then, according to (7), (8)
and (18), the noise variance matrix Rη is a diagonal matrix
and can be expressed as

Rη = diag
([
Rη,1,Rη,2, . . . ,Rη,r

])
. (19)

IV. DYNAMIC FORWARD-BACKWARD SUBSPACE
CHANNEL TRACKING FOR A RAPIDLY TIME-VARYING
UNDERWATER ACOUSTIC CHANNEL
In this section, we propose a dynamic forward-backward
subspace channel tracking method. We first provide
a time-variant state-space model. In the time-variant
state-space model, we update the state transition matrix
dynamically and provide a new estimation of process noise
statistics. The model mismatch due to the fast time-varying
channel can be effectively mitigated. Then, to further adjust
the time-varying property, a forward-backward Kalman filter

is combined with the dynamic state-space model as the
proposed DFB-ASRMAE.

A. DYNAMIC MODEL ESTIMATION FOR A RAPIDLY
TIME-VARYING CHANNEL
The proposed dynamic state-space model is as follows:

Z(n) = 8z(n)Z(n− 1)+ η∗(n). (20)

Different from (10), we assume that 8z(n) changes with
time n in (20), and η∗(n) is correlated with taps due to the
model-mismatch in the rapidly time-varying channel. Thus,
we can still use a low-order AR model to adapt to the rapidly
time-varying channel.

1) DYNAMICALLY UPDATING THE STATE TRANSITION
MATRIX FOR A RAPIDLY TIME-VARYING CHANNEL
Here, we introduce a dynamically updated state transi-
tion matrix 8z(n) in (20) based on the state-space model
(20) and (11).

Wefirst obtain the initial8z(0) = 8z with the conventional
method as in Section III. A. Then, we use the following algo-
rithm to update the state transition matrix every Tg duration
based on the Kalman filter. The Kalman filter includes two
main steps: update and prediction [18].
• Update

g(n) = D(n)K̂(n, n− 1)DH (n)+ σ 2
v , (21)

G(n) = K̂(n, n− 1)DH (n)g(n)−1, (22)

ξ (n) = r(n)− D(n)Ẑ(n, n− 1), (23)

Ẑ(n, n) = Ẑ(n, n− 1)+G(n)ξ (n), (24)

K̂(n, n) = K̂(n, n− 1)−G(n)D(n)K̂(n, n− 1), (25)

• Prediction

Ẑ(n+ 1, n) = 8z(n)Ẑ(n, n), (26)

K̂(n+ 1, n) = 8z(n)K̂(n, n)8H
z (n)+ Rη, (27)

where Ẑ(n, n) =
[
ẑTr (n), . . . , ẑ

T
r (n− p+ 1)

]T and is the esti-
mated state vector with the estimated channel components,
σ 2
v represents the variance of the observation noise, and8z(n)

is the state transition matrix at time n, which changes with
time. In the update step, given the state vector Ẑ(n, n−1) and
the Kalman error covariance matrix K̂(n, n − 1) predicted at
the previous moment, we can obtain the Kalman gain G(n)
and the signal prediction error ξ (n). In the prediction step,
the predicted state vector Ẑ(n+1, n) and predicted covariance
matrix K̂(n+ 1, n) are obtained.

To predict the state transition matrix8z(n+ 1), we extract
ẑi(n + 1) from the predicted state vector Ẑ(n + 1, n). The
predicted channel component autocorrelation for the ith tap
is as follows:

R̂i(m, n+ 1) =
1

n+ 1

n+1∑
l=1

ẑi(l)ẑ∗i (l − m)

=
n

n+ 1
R̂i(m, n)

+
1

n+ 1
ẑi(n+ 1)ẑ∗i (n+ 1− m), (28)
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where R̂i(m, n) is time variant R̂i(m), and R̂i(m, n) is esti-
mated with the data obtained before time n, rather than Np
as used in (17) for R̂i(m). With R̂i(m, n + 1), we can obtain
the predicted state transition matrix 8z(n + 1) according
to (14).

For many underwater acoustic channels, especially rapidly
time-varying channels, the model time variation is not
negligible. The conventional time-invariant state transition
matrix can lead to accumulative mismatch for the state-space
model. By contrast, the proposed dynamically updated state
transition matrix can lower such mismatch.

2) CORRELATED PROCESS NOISE COVARIANCE
ESTIMATION
For the conventional state-space model, it is assumed that
after EVD, the subspaces corresponding to the channel com-
ponents are orthogonal to each other, and the channel com-
ponents are uncorrelated; therefore, the noise in state-space
should be uncorrelated. However, for the fast-varying chan-
nel, after decorrelation, the channel components may still
be slightly correlated since the channel changes quickly.
Then, the process noise becomes correlated. The diagonal
assumption about the Rη in (19) no longer holds.
With the conventional method in Section III. A, we can

obtain 8z(0) and the rough channel components ẑLMS
r (n).

Then, with 8̂(l) extracted from 8z(0) and ẑLMS
r (n), we can

estimate the process noise vector based on (6) as follows:

η̂(n) = ẑLMS
r (n)−

p∑
l=1

8̂(l)ẑLMS
r (n− l). (29)

Then, for the correlated process noise, the estimated
covariance of the process noise R̂η is given by

R̂η =
1
Np

Np∑
n=1

η̂(n)η̂H (n), (30)

where Np is the time-length of the training data. Compared
with the conventional method, R̂η is no longer a diagonal
matrix. It can help the state-space model to adapt to the
fast-varying underwater acoustic channel tracking. R̂η does
not need to be updated at every time state.

B. FORWARD-BACKWARD KALMAN FILTER FOR
CHANNEL TRACKING
In this section, to further improve the channel tracking,
we combine the dynamically updated state-space model pro-
posed above with forward-backward Kalman filtering [19],
[20] as DFB-ASRMAE. The forward-backward Kalman fil-
ter can better adapt to the time-variant state-space model.
The forward-backward Kalman filtering includes three steps:
forward filtering, backward filtering, and optimal joint
estimation.

In the backward filtering, different from the conventional
Kalman filter tracking along time n = 1 to N as the forward
tracking, the backward Kalman filter recursively tracks from

time n = N back to 1. Since 8(n) is a nonsingular diagonal
matrix, multiplying the conventional state model (20) by
8−1(n) on the left, we have:

8−1(n)Z(n) = Z(n− 1)+8−1(n)η(n). (31)

Then, we have the backward Kalman filter with the backward
state-space model and the observation model as follows

Z(n− 1) = 8b(n)Z(n)+ ηb(n), (32)

r(n) = D(n)Z(n)+ v(n), (33)

where subscript b represents the parameters for the backward
Kalman filter. Clearly, the state transition matrix and the pro-
cess noise can be obtained as 8b(n) = 8−1(n) and ηb(n) =
8−1(n)η(n), respectively. Then, backward Kalman filtering
can similarly apply the sequential procedure in Kalman fil-
tering, from time n = N back to 1.
To explain the forward-backward Kalman filter for

the channel tracking, here, we simplify the forward
system (20)(11) and the backward system (32)(33) as
follows:

rf(n) = Df(n)Z(n)+ vf(n), (34)

rb(n) = Db(n)Z(n)+ vb(n), (35)

where Z(n) is to be estimated, rf(n) and rb(n) are the out-
puts of the forward and backward systems, Df(n) and Db(n)
represent the system matrix, and vf(n) and vb(n) represent
the observation noise vectors. Since Kalman filtering is a
generalization of sequential linear minimum mean square
estimation (LMMSE), we study the LMMSE of Ẑf(n) for the
forward system:

Ẑf(n) =
(
R−1z + Df

H (n)Df(n)/σ 2
vf

)−1
DH
f (n)rf(n)/σ

2
vf

= Mf(n)DH
f (n)rf(n)/σ

2
vf, (36)

where Rz is the covariance of Z(n), and σ 2
vf is the variance of

vf(n). Mf(n) represents the estimation error matrix of Ẑf(n).
Similar to (36), the LMMSE of Ẑb(n) obtained from the
backward system can be expressed as

Ẑb(n) =Mb(n)DH
b (n)rb(n)/σ

2
vb. (37)

Combining the linear system (34) with (35), we have[
rf(n)
rb(n)

]
︸ ︷︷ ︸
r̃(n)

=

[
Df(n)
Db(n)

]
︸ ︷︷ ︸Z(n)

D̃(n)

+

[
vf(n)
vb(n)

]
︸ ︷︷ ︸,
ṽ(n)

(38)

where Cṽ = diag
([
σ 2
vf, σ

2
vb

])
and is the covariance of ṽ(n).

In estimation theory, the estimation can be improved with
more informational data [21]. While the forward and back-
ward systems are not fully independent, the combined system
provides more information than either the forward system
or backward system only. Therefore, the estimation from
the combined approach (38) should be better than that from
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TABLE 1. Channel Tracking Algorithm DFB-ASRMAE.

simple forward or backward filtering. The LMMSE of Z(n)
for (38) is

Z̃(n) = (R−1z + D̃H (n)C−1ṽ D̃(n)D̃H (n)C−1ṽ r̃(n)

=

(
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2
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)
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(
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)−1
×

(
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f (n)rf(n)/σ

2
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b (n)rb(n)/σ
2
vb

)
= M̃(n)

(
DH
f (n)rf(n)/σ

2
vf + DH

b (n)rb(n)/σ
2
vb

)
. (39)

Therefore, the relationship between Ẑf(n), Ẑb(n) and Z̃(n)
is as follows:

M̃−1(n)Z̃(n) = M−1f (n)Ẑf(n)+M−1b (n)Ẑb(n), (40)

M̃−1(n) = M−1f (n)+M−1b (n)− R−1z (n), (41)

where Rz can be omitted in order to simplify the problem.
Ẑf(n) = Ẑ(n, n) as in (33). For LMMSE, the error covari-
ance M̃(n), Mf(n) and Mb(n) are also MSEs, and there-
fore, Mf(n) = K(n, n), and Mb(n) = Kb(n, n). Then, for
forward-backward Kalman filtering, a refined estimate Z̃(n)
at time n is as follows:

M̃(n) =
(
K−1(n, n)+K−1b (n, n)

)−1
, (42)

Z̃(n) = M̃(n)
(
K−1(n, n)Ẑ(n, n)+K−1b (n, n)Ẑb(n, n)

)
.

(43)

Then, Z̃(n) in (43) after the forward-backward Kalman
filter contains the final tracked channel components.
ĥDFB−ASRMAE(n) = Qr (n)Z̃(n), and is the tracked chan-
nel with the proposed DFB-ASRMAE algorithm. The
detailed steps of DFB-ASRMAE algorithm are given in
Table 1, and the algorithm has a complexity on the
order of O(max(6Kr, 10(rp)3)). Note that the ASRMAE
algorithm has a computation complexity on the order of
O(max(6Kr, 3(rp)3)) [14]. To obtain (43), we need param-
eters from forward filtering and backward filtering. Hence,
in the algorithm, we carry out forward filtering, backward
filtering, and then the optimal joint estimation, as shown in
Table 1.

V. EXPERIMENTAL RESULTS
The 2007 Autonomous Underwater Vehicle Festival
(AUVFest07) experiment acoustic communication data pre-
viously studied in [8], [13], [14] are used to verify our
proposed channel tracking algorithm. The experiment was
conducted in 20 m of coastal water under relatively calm
and rough sea conditions. Since the source and receiver are
mounted on the bottom of a rigid body, we do not need to
consider the signal fluctuations due to the source or receiver’s
movement. The measured CIRs are shown in Fig. 1. The
CIRs under both rough sea and calm sea are time variant
due to internal waves. Furthermore, the CIRs in the rough
sea are more rapidly time-varying than those in the calm
sea. For both sea conditions, three to four dominant paths
are clearly shown in Fig. 1, and the delay for each path
does not belong to a single delay tap but rather spreads to
multiple adjacent taps. This means that the channel taps are
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FIGURE 1. Measured CIRs for the AUVFest07 data under the calm sea (a) and the rough sea (b) [14].

FIGURE 2. The cross-path coherence estimated for AUVFest07 in the calm sea (a) and the rough sea (b). The Tap No. refers to
the k-th delay tap in hk (n) at time n.

correlated with respect to delay for both calm and rough
seas.

The cross-path coherence [8] can be given by

ph[j, k] =
E
[
h∗j (n)hk (n)

]
√
E
[∣∣hj(n)∣∣2]E [|hk (n)|2] , (44)

where E
[
|hk (n)|2

]
=

1
Np

∑Np
n=1 ĥ

∗
k (n)ĥk (n), and ĥk (n) corre-

sponds to the estimated k-th delay tap of channel at time n.
Fig. 2 shows the cross-path coherence in different sea con-
ditions. Even in the rough sea, some off-diagonal elements
still have magnitudes comparable to those of the diagonal
elements. This means that the channel taps are correlated in
both calm and rough sea conditions.

Due to the above correlation characteristic of the channel,
we can use EVD to obtain eigenvalues3(n). The normalized
eigenvalue spectra for the two different sea conditions (in
Fig. 1) are shown in Fig. 3. The eigenvalue drops rapidly
from k = 1 to 10 and becomes stable between 11 to 20. This
means that the rank of the channel subspace can be chosen
as 11 ≤ r ≤ 20. This is much smaller than the dimension of

FIGURE 3. The normalized eigenvalues (kth diagonal element in 3(n)) of
the channel for the calm sea and the rough sea.

the CIR taps (K ≥ 100). Moreover, the curves showing the
decrease in the eigenvalues in the calm seas and rough seas
are similar. Thus, we can choose the same r in different sea
conditions.

We define a cross-path coherence for the channel principle
components as follows, which is similar to the cross-path
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FIGURE 4. Cross-path coherence of the channel components with p = 1 and r = 12 for the calm sea (a) and the rough sea (b).
Tap No. refers to i -th tap in zi (n) at time n.

FIGURE 5. State transition coefficient |φi | for tap i = 1, · · · ,12, with p = 1 and r = 12 where zi were estimated by
LMS and DFB-ASRMAE algorithms with different data segments for the calm sea (a) and the rough sea (b).

coherence of a channel:

ρz[i, j] =
E
[
z∗i (n)zj(n)

]√
E
[
|zi(n)|2

]
E
[∣∣zj(n)∣∣2] , (45)

where E
[
|zi(n)|2

]
=

1
Np

∑Np
n=1 ẑ

∗
i (n)ẑi(n), and ẑi(n) corre-

sponds to the estimated channel component of the i-th tap
at time n. The cross-path coherence of the channel compo-
nents is shown in Fig. 4. We observe that diagonal elements
contain most of the power. It is reasonable that conventional
channel tracking assumes that the channel components are
generally uncorrelated for different taps. However, some of
the off-diagonal elements have magnitudes comparable to
those of the diagonal elements both in calm and rough sea
conditions (the cross-path covariance matrix is not a strict
diagonal matrix). Therefore, to compensate for the conven-
tional assumption, we assume that the process noise is corre-
lated in the space-time model.

To analyze the state transition matrix, here, we use a
low-order state-space AR model with p = 1, and then,
the state transition matrix becomes a diagonal matrix.

Figs. 5(a)-(b) show the state transition coefficients in the
diagonal matrix obtained by the conventional method based
on LMS as in Section III. A and the proposedDFB-ASRMAE
under different sea conditions. The dynamically updated
state transition coefficients obtained by DFB-ASRMAE are
different from the conventional state transition coefficients.
Moreover, the dynamically updated state transition coeffi-
cients in rough sea show more changes with different data
time-segments. This observation suggests that the state tran-
sition coefficients are time variant at a certain level and
that dynamically updating the state transition matrix can
improve channel tracking in the rough sea more than in the
calm sea.

To compare the conventional methods in [13]–[15],
we continue to use the normalize signal prediction error as
|ξ (n)|2/E|r(n)|2.

Figs. 6 (a) and (b) show the normalized signal predic-
tion error tracked by ASRMAE [14], A-ASRMAE [15] and
DFB-ASRMAE, separately, for the calm sea and rough sea
conditions with the AUVFest07 data. To compare the per-
formance of different algorithms, we set the same AR order
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FIGURE 6. Comparison of normalized signal prediction error as a function of time using various channel tracking
algorithms for AUVFest07 in calm sea (a) and in rough sea (b). The mean normalized signal prediction errors in the calm
sea are −25.1 dB for ASRMAE, −27.4 dB for A-ASRMAE, and −30.4 dB for DFB-ASRMAE, as marked on the right vertical
axis in (a). In the rough sea (b), the mean normalized signal prediction errors are −17.6 dB for ASRMAE, −19.3 dB for
A-ASRMAE, and −22.6 dB for DFB-ASRMAE.

FIGURE 7. Mean normalized signal prediction error by DFB-ASRMAE as a
function of r for the AUVFest07 data.

p = 1 and the same rank r = 6 as in [14], [15]. The mean
normalized signal prediction errors for the calm sea data are
−25.1 dB for ASRMAE, −27.4 dB for A-ASRMAE, and
−30.4 dB for DFB-ASRMAE, as shown in Fig. 6(a). For the
rough sea data, the mean normalized signal prediction errors
are −17.6 dB for ASRMAE, −19.3 dB for A-ASRMAE and
−22.6 dB for DFB-ASRMAE, as shown in Fig. 6(b).

The mean normalized signal prediction errors of
A-ASRMAE and DFB-ASRMAE are lower than those of
ASRMAE for both the calm sea and rough sea conditions.
A-ASRMAE yields a mean 2.3 dB improvement in the calm
sea and 1.7 dB improvement in the rough sea in the signal
prediction error compared with the ASRMAE algorithm
since it introduces an adaptive procedure to compensate for
the mismatch of the tracking model. For the DFB-ASRMAE
algorithm, the mean signal prediction error is the lowest
among the three algorithms: under the setting p = 1 and
r = 6, it is 5.3 dB and 5.0 dB lower than those obtained
by ASRMAE for the calm sea conditions and the rough sea

conditions, respectively. DFB-ASRMAE adopts a dynamic
time-variant space-time model with correlated tolerance.
Therefore, it can improve the channel tracking performance
in principle. Moreover, the forward-backward filtering can
further help to track the channel with this time-variant
model.

Furthermore, we discuss the parameter setting. Since
higher-order p can gives rise to a high complexity of
DFB-ASRMAE, we set p = 1 in this work. We provide
the tracking results of the DFB-ASRMAE algorithm with
changing r under p = 1 in Fig. 7. The results show that the
mean normalized prediction error reaches the lowest value
at approximately r = 12 with the proposed DFB-ASRMAE
for both the calm sea data and rough sea data. Based on
the examination of Figs. 7 and 3, we can reach the same
conclusion that it is reasonable to set the same rank r for
different sea conditions.

Therefore, we set p = 1 and r = 12 for DFB-ASRMAE
and compare it with TBA-ASRMAE [15] with the same
AUVFest07 data. In TBA-ASRMAE, all of the parameters
are set according to its training procedure, and the AR order
and subspace rank are p = 2 and r = 20, respectively,
and are the optimal parameters for TBA-ASRMAE in both
calm seas and rough seas. Both show performance supe-
rior to those of ASRMAE and A-ASRMAE (see Fig. 6)
with p = 1 and r = 6. DFB-ASRMAE yields a 2.9 dB
improvement in the signal error prediction error in the calm
sea and a 4.0 dB improvement in the rough sea compared
with TBA-ASRMAE, which has a higher AR order and
more subspaces. Furthermore, the DFB-ASRMAE shows
more improvement in the rough sea than in the calm sea.
Even though the rough channel changes strongly over time,
the dynamical time-variant space-time model with corre-
lated tolerance and a forward-backward Kalman filter in
DFB-ASRMAE can work well together to track the channel’s
rapid changes.

VOLUME 9, 2021 50493



Q. Huang et al.: Dynamic Underwater Acoustic Channel Tracking for Correlated Rapidly Time-Varying Channels

FIGURE 8. Comparison of the normalized signal prediction error as a function of time using various channel tracking
algorithms for AUVFest07 in calm sea (a) and in rough sea (b). The mean normalized signal prediction errors for the calm
sea data are −29.0 dB for TBA-ASRMAE (p = 2, r = 20) and −31.9 dB for DFB-ASRMAE (p = 1, r = 12). For the rough sea
(b), the mean normalized signal prediction errors for the rough sea data are 19.7 dB for TBA-ASRMAE (p = 2, r = 20) and
−23.7 dB for DFB-ASRMAE (p = 1, r = 12).

VI. CONCLUSION
In this work, we consider the model mismatch problem for
model-based channel tracking. Themodel is based on channel
physics in that the underwater acoustic channel is correlated.
In the model, the channel components are assumed to be
uncorrelated with a time-invariant transaction after decorre-
lation. However, this assumption does not always hold for
the real underwater acoustic channel. Therefore, we pro-
pose a dynamic state-space model that is more tolerant to
the rapid time-varying channel for channel tracking. Fur-
thermore, a forward-backward Kalman filter is combined
with the dynamic state-space model, further improving the
tracking performance. The proposed DFB-ASRMAE with
only a 1-order AR model can decrease the normalized signal
prediction error significantly with experimental data only.
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