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ABSTRACT Considering smartphone-based indoor localization and tracking, combination of Wi-Fi fin-
gerprinting and pedestrian dead reckoning (PDR) becomes prevalent due to wide deployment of indoor
Wi-Fi access points and easily access of inertial measurement units (IMUs) on smartphones. Since Wi-Fi
fingerprinting depends on the similarities between online and offline received signal strengths, it suffers
from the fluctuation of radio signal measurements. Meanwhile, the PDR relies on the IMUs, which undergo
accumulated errors in long walking distance. In this paper, we aim to improve the indoor tracking accuracy,
while filling up the gap between two popular Android and iOS platforms. In particular, we propose a hybrid
tracking algorithm that integrates the PDR with Wi-Fi/iBeacon signal features. There are three key points in
our paper. First, we process Wi-Fi/iBeacon signals to build conversion functions to convert signals to related
proximity distances. Besides, in order to support mobile tracking, we introduce a placement methodology
for iBeacon installation for a specific region of interest. Second, a mobile smartphone uses an improved
PDR to localize itself, while incorporating Wi-Fi/iBeacon data for estimating a starting point and correcting
its location along the walking path. Finally, we build an iOS app to implement the proposed scheme and
display visual tracking results. Experiment results show that our proposed scheme ismore robust and accurate
compared to the conventional schemes.

INDEX TERMS Smartphone based indoor localization, pedestrian dead reckoning, iBeacon placement
methodology, Wi-Fi proximity.

I. INTRODUCTION
The development of emerging indoor localization
technologies has enabled plenty of applications such as
tracking, navigation and pinpointing user’s location in real
time. By perceiving and collecting data, the aim of tracking
task is to identify the location of a moving object continu-
ously by using the hybrid signals generated through wireless
sensing [1]–[3]. In order to support indoor user’s experiences,
different signals such asWi-Fi, radio-frequency identification
(RFID), Bluetooth, ultra wide band (UWB), to name a few
[1]–[4], have been utilized. Global positioning system (GPS)
available on smartphones is able to determine user location
in real time regardless of whether or not it is connected
the Internet. Unfortunately, it drains smartphone battery life
quickly due to the signaling and computing processes with
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the GPS satellites. Also, the GPS does not work well in
indoor environments because the satellite signals become too
weak when they penetrate through indoor building materi-
als. In order to provide accurate locations for indoor users,
it requires to develop new indoor localization technologies
which reflect user behavior in buildings, while supporting
mobile computing and energy-aware localization.

Nowadays, Wi-Fi access points (APs) become more
prevalent not only in indoor buildings but also in public
common places (e.g., parks, airports, malls, etc.). Wi-Fi-
based localization has been used widely in the last decades
since it does not require extra infrastructure and special-
ized hardware. Wi-Fi fingerprinting is one of common
techniques [1]–[5]. With this approach, we explore the
spatial features of signals at different reference locations
and analyze distinctive signal patterns as fingerprints. For
better accuracy, fingerprints are collected at several loca-
tions and then the locations are determined through the

49522 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8477-4104
https://orcid.org/0000-0002-9456-8603
https://orcid.org/0000-0002-4722-6387
https://orcid.org/0000-0002-4408-9153


T. D. Vy et al.: Precise Tracking Algorithm Using PDR and Wi-Fi/iBeacon Corrections for Smartphones

matching process of the signal patterns. However, Wi-Fi
fingerprinting-based approaches require labor effort and
maintenance costs. Regarding indoor tracking assisted by
smartphones, recent indoorWi-Fi-based localization schemes
have incorporated with the pedestrian dead reckoning (PDR)
to provide meter-level tracking accuracy as well as sup-
port multiple mobile users [6]–[9]. Those schemes become
applicable to modern smartphones because Wi-Fi antenna
and motion-sensitive inertial measurement units (IMUs)
(e.g., pedometer, accelerometer, gyroscope, etc.) are already
equipped on the smartphones. To accomplish a tracking task,
a typical hybrid Wi-Fi and PDR based system involves three
main components: fingerprint collection, location estimation
and location update. During the data collection, fingerprints
from mobile user are recorded at several reference points in
the area of interest (AoI). For example, we adopt received
signal strength indicator (RSSI) to build an offline RSSI
database. At each single time, RSSI is measured by the
smartphone and used for estimating the user location. When
the user is moving, IMU data are collected and fed the
PDR to update this location continuously, while utilizing
Wi-Fi measurements for correcting the location when a user
veers off the correct path. Therefore, the hybrid schemes
between Wi-Fi and PDR not only improve the localization
accuracy but also have low complexity. While most of the
studies [6]–[9] focus on developing localization schemes
on popular Android OS, there are not many works
on iOS because of its secure platform since iOS
13 updates. For instance, iPhone cannot get raw RSSI from
currently-connected Wi-Fi AP because the public applica-
tion programming interface (API) no longer returns valid
Wi-Fi service set identifiers and basic service set identifiers
information [10], [11]. Tracking apps running on iPhones
becomemore restricted compares toAndroid ones.Moreover,
the PDR often suffers from large drifts and significant errors
over a longwalking path. Several works [7]–[9] tried to utilize
geometrical constraints by the trajectory to reduce location
estimation errors. In [12]–[19], they exploited improved
user’s mobility factors such as step detection, step length
estimation and heading direction to ensure accurate inputs
to the PDR.

Currently, Bluetooth low energy (BLE)-based localiza-
tion approaches are useful since BLE beacons are cheap
and energy-efficient, while achieving room-level accuracy.
In order to improve accuracy, BLE beacon usually combines
with other technologies (e.g., Wi-Fi, PDR). Recently, Apple
Inc. releases iBeacon protocol since 2013 [20]. An iBeacon
is a BLE proximity beacon and compatible under an Apple
licensing program. Unlike GPS, Wi-Fi or conventional Blue-
tooth, iBeacon offers high-precision location information and
saves much more energy. Recent works [21]–[24] demon-
strate that the hybrid PDR and Wi-Fi/PDR approaches can
benefit from user mobility information and additional mea-
surements from nearby Wi-Fi APs and iBeacons. Specially,
Wi-Fi/iBeacon measurements collected by the smartphones
can be served as reference data. The collected data may

contain two parts: RSSI samples at static state and RSSI read-
ings along mobility data during moving. Then, data received
at the smartphone are fed to localization engine to calculate
and to calibrate its location.

In this paper, we aim to build a simple self-adaptive pedes-
trian tracking scheme for current smartphone constraints and
Wi-Fi/iBeacon deployment. We try to solve the following
issues that researchers have not investigated yet.
(i) Limited public Wi-Fi information on iPhones:

Regarding currently-connected Wi-Fi AP information,
it can be obtained easily on Android smartphones via
Google public API but very difficult on iPhones due
to newest Apple policy [10], [11]. To exploit nearby
Wi-Fi network information on iOS when no public
API to access, we build a conversion function to clas-
sify Wi-Fi proximity zones between the iPhone and
the currently-connected AP. To our best acknowledge,
we are the first ones to try and tackle this issue under
current iOS circumstances, where we learn how to
build localization design specific for iPhones to obtain
precise locations in indoor spaces.

(ii) Compatibility issues with current Wi-Fi
infrastructure: In the aforementioned studies [6]–[9],
they assume that the Wi-Fi AP density must cover
the entire indoor building to ensure that the collected
fingerprint database is reliable to be used in the online
phase. If the AP density is low as Fig. 1 illustrates, these
studies produce a huge errors in the calculation of the
user’s location. This is because at the locations that are
not covered by Wi-Fi (wall corner, side corridor), only
the PDR is deployed. Since the PDR is only effective
over a short distance, accumulated errors become larger
as the walking distance increases. Either replacing or
associating with Wi-Fi, alternative technologies such
as BLE should have corresponding deployment costs
that are equivalent to currently existing Wi-Fi infras-
tructure, while are able to support tracking via the
PDR over long walking path.

FIGURE 1. An example of low Wi-Fi AP density scenario.

(iii) Improved PDR: We observe that the localization
accuracy can be greatly improved by reducing the
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IMU bias. For instance, instead of using default
services that report movement detected by the smart-
phone’s IMUs, we can derive displacement and direc-
tion information then applying correction techniques to
obtain more robust IMU data. Moreover, with a given
floor plan along with Wi-Fi AP/iBeacon placement
map, we add a new module to estimate a starting point
for the tracking path.

(iv) Joint location estimation: In order to handle mobile
trajectories, we need to design a localization engine that
jointly estimates user’s location, while pursuing better
accuracy by combining the hybrid signal inputs. Thus,
we employ a set of weighted factors of Wi-Fi/iBeacon
which iteratively updates depending on how strong the
received signals are.

Finally, in order to evaluate the proposed tracking scheme we
build an iOS app and conduct several experiments in a typical
university building.

The organization of this paper is as follows. Section II
presents a background on indoor infrastructure such as PDR,
Wi-Fi and iBeacon used in this paper. Section III introduces
the related works on hybrid indoor localization algorithms
on smartphones, the current issues and the motivation of
our paper. In Section IV, we present the proposed system
including a function of Wi-Fi proximity conversion, iBeacon
measurements and deployment methodology, an improved
smartphone-based PDR and a hybrid localization engine.
Section V introduces device information and some extensive
experiment results that have been carried out in a real indoor
environments. Finally, Section VI concludes the paper and
provides some future research directions.
Notations: The following notations are used throughout

the paper. Matrix and vectors are denoted in bold faces, e.g.,
matrix A or vector a. In denotes n× n square identity matrix.
The transpose operator is denoted as (·)T . The distance
between two given sets C and D is defined as dist(C,D) =
inf{||c−d || | c ∈ C, d ∈ D}. The circle with center point a and
radius r is denoted asC(a, r). We denote g as the acceleration
of gravity which has the value of 9.8 m/s2 on Earth. A random
variable X follows the normal distribution with mean µ and
variance σ 2, we write X ∼ N (µ, σ 2). The operation of
taking the cardinality of a given set is denoted as #{·}. The
line between two points A and B are denoted by

−→
AB. S ∩ T

denotes the intersection between two sets S and T . The big-O
notation O(·) denotes the algorithmic complexity. The floor
function of an input x is denoted by bxc, which gives the
greatest integer less than or equal to x.

II. PRELIMINARIES AND MEASUREMENTS
Before going on to the subsequent sections, we aim in this
section to help readers to understand the core techniques
(e.g., Wi-Fi, BLE, IMU) on building indoor localization sys-
tem. First, we provide technical background in collecting data
on pedestrians’ spatial movements towards smartphone iner-
tial sensing and inputting to the PDR. We also present some
literature on Wi-Fi infrastructure and typical rules on radio

map construction to enable a ubiquitous fingerprint-based
solution for practical applications. Regarding BLE beacon
capability, we describe iBeacon protocols and how to imple-
ment a beacon by an application running on a mobile device.

A. PEDESTRIAN DEAD RECKONING
1) IMU COMPONENTS AND GETTING IMU ON
SMARTPHONES
In order to measure the mobility for smartphones, IMU is
primarily designed for reading motion data. A typical
smartphone-based IMU consists of several sensors such
as accelerometer, gyroscope and magnetometer which
enable for real-time motion detection, indoor localization
and activity recognition. Generally, each mobile platform
(i.e., iOS, Android) has different framework support for pro-
gramming and accessing IMUs data from these sensors. For
instance, the Android platform provides motion data through
SensorEvent framework [25], while in iOS devices theCore-
Motion framework [26] reports and process the IMU and the
environment-related events. Each IMU has different charac-
teristics according its translational function as we presented
in Table 1.

TABLE 1. Smartphone IMU sensors.

2) SMARTPHONE ORIENTATION
Since the IMU data is measured in local coordinate system
(LCS), i.e., smartphone body frame, in order to obtain the true
value in global coordinate system (GCS) we need to apply
transformations from LCS to GCS according to the phone
orientation. For instance, for given a measured gyroscope
data in local frame gLCS = [gx , gy, gz]T , the value in global
frame gGCS is given by [21].

gGCS = OT gLCS , (1)

OT = OxOyOz, (2)

whereOx ,Oy andOz are rotation matrices along three frame
axes. Here, we present

Ox =

1 0 0
0 − cos(gx) sin(gx)
0 sin(gx) cos(gx)

 , (3)
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Oy =

 cos(gy) 0 sin(gy)
0 1 0

− sin(gy) 0 cos(gy)

 , (4)

Oz =

 cos(gz) sin(gz) 0
− sin(gz) cos(gz) 0

0 0 1

 . (5)

Similarly, the local acceleration vector aLCS is converted to
the global value aGCS by subtract the Earth’s gravity vector.

aGCS = aLCS −G, (6)

where G = [0 0 g]T . To reduce noise effects, an averaging
filter can be applied on aGCS as the authors in [21] suggested.
Henceforth, we refer the IMU data as the one in the GCS for
further processing.

3) SMARTPHONE DEAD RECKONING INFRASTRUCTURE
PDR is a popular tracking method which offers low complex-
ity and supports user mobility monitoring.With the input data
about step, stride, heading direction and other related human
mobility information from the IMU, the PDR elaborates them
to derive the user position Pk (xk , yk ) at each time tk as

xk = x0 +
k∑

m=1

λm cosαm

yk = y0 +
k∑

m=1

λm sinαm.

(7)

Here, P0(x0, y0) is the starting location of the track, λk and
αk are the corresponding estimated step length and the orien-
tation angle obtained from the IMUs, respectively.

Since the PDR achieves a good accuracy within a short
walking distance, various works [7]–[9], [12]–[19], [27] have
tried to improve tracking accuracy along long trajectories,
which may fall into following categories.
• Enhance step related data: To detect a step, any
step detection scheme relies on the fact that every step
generates a notable impulse in the notable impulse read-
ing along horizontal plane. By capturing such impulse,
the authors in [7], [8] defined different acceleration
thresholds for step detection. In particular, i) a step is
recorded if the magnitude of the corresponding accel-
eration is larger than the predefined thresholds. Mean-
while, the works [9], [17] defined a step must satisfy
(i) and the interval between two adjacent peaks/valleys
must be greater than the given threshold value. Concern-
ing step length estimation, there are two approaches to
determine the step length: deterministic and dynamic.
In the deterministic approach, the step length is fixed
according to user height and gender [12], while in the
dynamic approach the step length is calculated based on
the acceleration readings [13]–[16], [18], [19].

• Correct heading direction estimation: To determine
the heading direction, many conventional works [18],
[19] used the inertial compass to measure the angle
between the smartphone and the North of the Earth.

However, if the user walks into an indoor building with
various structures along the path, there exist inevitable
noises integrated with the heading measurements of the
walk. To mitigate the influence of such noises, several
techniques [17], [27] proposed noise reduction methods
for removing noises from the heading direction signals.

• Provide initial location of tracking path: To
avoid accumulative errors from the start, many
studies [7]–[9] assumed the starting location of the
track is known in advance. In practice, this assumption
is impractical because the user often does not aware
his location in the building. Only few works set this
point as (i) the first Wi-Fi AP that the smartphone con-
nects with [18], [19], (ii) the strongest iBeacon that the
smartphones captures on its scanning list [24], [28], or
(iii) a fusion location by weighting factors between
(i) and (ii) [21]–[23].

B. WI-FI AP PROCESSING
Conventional Wi-Fi fingerprinting-based localization tech-
niques utilize an RSS profile for location estimation,
which typically consists of two phases: offline phase and
online phase. During the offline phase, RSSI fingerprint
database is collected at several reference points (RPs). For L
Wi-Fi APs and N RPs, we denoted the RSSI database as
{pi,ψ i(1), · · · ,ψ i(T ) | i = 1, · · · ,N }, where pi is the i-th
RP coordinates, ψ i = [ψ i,j(t)] is the RSSI reading vector
from the j-th Wi-Fi AP at the i-th RP at time t , T is the
number of sample numbers. During the online phase, a smart-
phone first measures RSSI between detectable APs within
its communication range and forms its own RSSI fingerprint
R = [R1, · · · ,RL]. The Euclidean distance between the
online RSSI vector and the stored RSSI in the database is
calculated as

D(i) = ||R− ψ̄ i||, (8)

where ψ̄ i =
∑T
τ=1 ψi,j(τ ). To compensate for RSSI bias

among different devices when it comes online, RSSI deduc-
tion [2] can be applied. In particular, let Duv be the Euclidean
distance between the two fingerprints collected at two RPs
Ru = [Ru1, · · · ,RuL]T and Rv = [Rv1, · · · ,RvM ]T , which is
defined as

Duv =

√√√√ m∑
i=1

|rui − rvi|2. (9)

Concerning heterogeneity issue, the RSSIs between two
devices A and B can be written as RSSIB = α1 RSSIA + α2
where α1 closes to 1 and α2 is an adjust number. Thus,
the optimal RSSI offset is calculated by [1].

Ouv = argmin
α2

Duv, (10)

Duv =

√√√√ m∑
i=1

|rui − rvi +Ouv|
2. (11)
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There are several approaches to utilizing RSSI database
to calculate the location such as deterministic methods (e.g.
K -NN [29]) or probabilistic methods (e.g., histogram [30],
kernel-based [31]). The famous K -nearest neighbors (KNN)
method uses weights of K closest RPs to obtain the estimate
location p̂ as

p̄ =
1∑K
i=1

1
Di

K∑
i=1

1
Di

pi. (12)

Generally, fingerprinting technique can obtain several levels
of average localization errors from meter to few meters,
which depends on the quality of the fingerprinting database.
For instance, if there are more number of collected RPs,
the resolution of radio map becomes finer, thus allow a better
location estimation. However, maintenance of such database
and update of RSSI propagation environments over time and
different devices cause a big disadvantage of the techniques.

C. iBeacon BACKGROUND
iBeacon is a transmit-only BLE beacon testing under an
Apple Inc.’s licensing program. It provides proximity infor-
mation which indicates the closeness level between two
devices. As illustrated in Fig. 2, an iBeacon advertising packet
consists of three numerical identifiers: universal unique iden-
tifier, major number and minor number. A proximity estima-
tion measures RSSI of a frame at the receiver.

FIGURE 2. Typical iBeacon advertising packet.

After importing CoreLocation [32] and CoreBluetooth
frameworks [33] into project, it scans nearby iBeacons and
obtains beacon distances from the smartphone in meters.
The iBeacon major and minor numbers are retrieved from
CLBeacon object. In general, iOS does not reveal the trans-
mission power of an iBeacon. If the transmission power
of iBeacon is known, it can be useful for determining
how far away the iBeacon from the iPhone is. Alterna-
tively, an iBeacon’s proximity can be approximated by using
CLBeacon.proximity property. In particular, it calculates
the distance from an iPhone to an iBeacon using the RSSI
reported at this distance as

d ≈ 10(RSSI0−RSSI )/10η. (13)

Here, RSSI (dBm) and RSSI0 (dBm) are the reading RSSI at
distance d (m) and reference distance d0 = 1 (m), respec-
tively. η is the path loss exponent, typically between 2.7
and 4.3. Due to radio interference and absorption affects from
surrounding objects, the default proximity (13) may not be
accurate.

III. RELATED WORKS AND MOTIVATION
Several works [21]–[24] adopted fusion algorithms that com-
bine PDR and Wi-Fi/iBeacon to achieve consistently precise
localization. In general, given an indoor map which con-
sists of Wi-Fi AP/iBeacon locations and their corresponding
offline training database, the key ideas of the fusion algo-
rithms can be summarized as follows.
(i) Initialization: In practice, the starting location P0 of

the tracking path is often unknown (i.e., the user does
not know where he/she is in the indoor building).
We denoteNDev as the total number of detectableWi-Fi
APs and iBeacons, the location of P0(x0, y0) is esti-
mated by combining Wi-Fi/iBeacon as

P0(x0, y0) =
NDev∑
i=1

βiai, (14)

where ai is the locations of the available Wi-Fi APs
and iBeacons on the smartphone scanning list, and
βi indicate the weight factors indicating how strong the
received signals are.

(ii) Location updates: At each step k , we denote λk as the
user’s step length and αk as the heading direction angle,
which are obtained from the IMU measurements. The
position of the smartphone Pk (xk , yk ) is updated by the
PDR as

Ppdrk = Ppdrk−1 + λk [sinαk cosαk ]T . (15)

(iii) Position calibration: Particle filter (PF) is a common
approach to reduce the cumulative errors in the PDR.
With NPF particles, each particle xik = [xk , yi] around
Pk (xk , yk ) is predicted according to the movement state
and the observed heading direction as{

x ik = x ik−1 + λk sin(αk )
yik = yik−1 + λk cos(αk ).

(16)

Thus, the smartphone location is re-calculated based on
the particles set as

xk =
NPF∑
i=1

w̄ikx
i
k

yk =
NPF∑
i=1

w̄iky
i
k .

(17)

Here, the weights of particles are calculated as
wik = wik−1 × p(x ik |mML), then normalized as w̄ik =
wik/

∑NPF
j=1 w

j
k , wheremML is maximum a posterior esti-

mation. We note that the localization accuracy depends
on particle selection. That is, if the number of particles
is not enough to accurately represent the distribution,
the PF is depleted to track user trajectory. Meanwhile,
increasing the number of particles NPF may increase
computational cost and delay on calculating user loca-
tion.

Unfortunately, the following problems have not been
solved yet in the aforementioned works.
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1) LIMITED PUBLIC WI-FI INFORMATION ON iOS DEVICES
To retrieve Wi-Fi information in iOS devices, an iOS
app requests the user’s authorization and enables the access
of Wi-Fi information capability. In particular, it uses the
CNCopyCurrentNetworkInfo API to configure the cur-
rent Wi-Fi network for a given network interface. However,
according to Apple Inc.’s newest update, calling this function
returns NULL since iOS 12 or later. From iOS 13 updates,
Apple Inc. is tighter on providing public application pro-
gramming interface since they no longer return valid Wi-Fi
service set identifier (SSID) and basic service set identifier
information (BSSID). For example, the requesting app is only
able to access the signal strength information of a single
Wi-Fi AP in status bar instead of raw RSSI in dBm [10].
Thus, the PDRSC scheme [18] and its enhanced version
[19] cannot function well without raw RSSI readings from
the currently-connected Wi-Fi AP. Alternatively, to perform
localization task on iPhone it must be done with a single
Wi-Fi AP so that using Wi-Fi information and extracting
them are very limited. As a result, iPhones-based Wi-Fi/PDR
should be combined with other alternative techniques to
improve indoor localization performance. In fact, if we can
resolve the tracking problem under iOS limitations, we can
get better results on the Android smartphones because they
provide more information (e.g., Wi-Fi scan list, BLE channel
selection, etc.) compared to the iOS counterparts.

2) BLE DEPLOYMENT METHODOLOGY
The applicability of any hybrid Wi-Fi/PDR scheme may fail
in the indoor environments due to low Wi-Fi AP density.
This problem can happen in practice because the Wi-Fi APs
may be pre-established in the AoI before designing a tracking
application. A lowWi-Fi AP density may contain two scenar-
ios: (a) APs do not cover all theAoI. (b) Their cover ranges do
not overlap enough to execute the tracking purpose. Towards
applications of associating IoT, BLE technology enables low
power wireless communication that can be used over a short
distance. To integrate BLE to smartphone-based localization
system, it can be installed in one of two ways:
• Co-exist with Wi-Fi AP: Since both Wi-Fi and BLE
techniques share the 2.4 GHz spectrum, there exists
interference among these devices. In order to reduce
such interference, the BLE utilizes frequency hopping
spread spectrum [20]. By deploying BLE beacons beside
Wi-Fi APs, it helps to cover all locations thatWi-Fi is not
accessible (e.g., corridors, office rooms, staircases, etc.).
At this point, the problem is how to design the tracking
algorithm using the aggregated information from IMU,
BLE and Wi-Fi signals.

• BLE beacons only: If only BLE beacon are deployed,
the tracking app needs to able to control the infor-
mation flow from multiple beacons and gather BLE
readings for localization purpose. In this case, the BLE
deployment must satisfy following two requirements.
First, the number of BLE beacons must be sufficient
to reach currently-existing Wi-Fi coverage. Second,

BLE beacons must be placed in separate areas to avoid
interference with other nearby iBeacons.

Depending on the applications, we need to choose whether
deploying BLE with or without Wi-Fi in order to balance the
trade-off between the localization accuracy and the deploy-
ment cost.

3) IMU INPUTS AND IMPROVED PDR OVER LONG
TRAJECTORIES
In order to achieve high localization accuracy over long tra-
jectories via PDR, we must prevent the biases from the IMU
components. Instead of using the default hardware-generated
data, we need to modify on the PDR inputs according to raw
IMU readings on devices. In particular, each component of
the IMU data (e.g., step detection, step length estimation and
heading direction estimation) needs to be precisely quantified
before inputting to the PDR. Thus, in this work we aim to per-
form self-tracking with current smartphone constraints, while
utilizing an adjustment method to reduce the misalignment
between the desired path and the estimated one.

IV. PROPOSED HYBRID PDR/iBeacon LOCALIZATION
AND TRACKING
Different from aforementioned works [7]–[9], [12]–[19],
[21]–[24], [27], we identify several practical issues when
applying PDR and Wi-Fi/iBeacon for mobile smartphones,
especially for iPhones. In particular, we resolve the traditional
Wi-Fi/iBeacon fingerprint problem in Section II-B without
time-consuming and labor-intensive site survey, which has
not been considered in the aforementioned works. On the
other hand, the iBeacon has some attractive features which
can be designed to support self-localization on the smart-
phones. More importantly, the beacons should be organized
to accomplish their tasks without human supervision. Despite
the fact that several works have tried to improve the PDR
tracking accuracy along trajectories, there are still many
aspects that have not been fully exploited (e.g. remove bias
from the IMU components). Aiming at a simple and easy
adaptive tracking system, we follow a typical Wi-Fi/iBeacon
infrastructure with little efforts and try to incorporate with an
improved PDR version to make it a promising hybrid scheme
for practical applications.

In this section, we present an enery-aware hybrid track-
ing scheme based on PDR and Wi-Fi/iBeacon, which sat-
isfies the following properties. First, it is able to extract
AP information when scanning nearby Wi-Fi, thus fills the
gap between the Android and the iOS platforms. Instead of
maintaining a radio map, we only use Wi-Fi proximity range
and Wi-Fi AP location map for estimating the user loca-
tion. Second, it can work in general office buildings without
changing current existing Wi-Fi deployment over the area.
Moreover, in order to install and find an optimal placement
for iBeacons, general rules on iBeacon deployment spacing
must be established. During a training phase, RSSI readings
from different iBeacons are collected by the smartphones
at known positions (e.g., reference points) to determine
an appropriate iBeacon deployment spacing and to classify
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iBeacon proximity zones based on distance between the
smartphone and the iBeacon. Third, it provides a good accu-
racy with current Wi-Fi/BLE constraints when performing
real-time tracking on the smartphones. The IMU readings
provide the heading of the mobile smartphone and avoid the
complexity of radio map maintenance, while Wi-Fi/iBeacon
readings choose the relevant regions that the smartphone is
inside and fix its location during moving. In order to evaluate
the efficiency of the proposed tracking system, we built an
iOS app, deployed iBeacon beacons and conducted several
experiments in a typical office building.

A. WI-FI INFRASTRUCTURE
Regarding Android devices, an app requests a starScan()
command inWifiManagerAPI [34] to scan nearbyWi-Fi AP
signals. Once the scan has completed, the app can obtain the
scanning results by commanding a getScanResults(). It also
can return the RSSI in dBm. In order to convert a real-time
RSSI value to a related distance D, we build a mapping
between them as

RSSIin = RSSIreg + RSSIoffset , (18)

D = 10−
RSSIin+RSSI0

β . (19)

Here, RSSI0 is the RSSI at a reference distance d0 = 1m,
β is the path loss exponent (typically between 2.7 and 4.3.)
and RSSIoffset is a constant bias value that reflects device
dependency.

On the other hand, in order to retrieve public Wi-Fi
AP information, iPhone needs to turn on the function
‘‘Auto connecting Wi-Fi without asking’’ in the ‘‘Settings".
According to the newest documents that summarize cur-
rent issues with Wi-Fi APIs available on iOS [10], [11],
an iOS app only receives a specific Wi-Fi AP information
(i.e., currently-connected Wi-Fi AP) instead of the user’s
list of all available Wi-Fi APs in the area. Besides, it no
longer obtains RSSI measurements of currently-connected
AP since iOS 13 updates. In fact, the module CNCopyCur-
rentNetworkInfo was used to return the information about
the currently-connected AP for a given network interface.
However, with the latest iOS Apple Inc. has changed per-
mission to access location, where the public API does not
bring back validWi-Fi SSID andBSSID information. Instead,
the information is returned by a Boolean value, which indi-
catesWi-Fi status bar. Using this value, we classify proximity
zones into four classes as Table 2. We would like to note that
an iPhone carried by the user collects Wi-Fi AP status at vari-
ous locations along the moving path, and converted distances
are also recorded. The distance D may vary depending on
Wi-Fi AP installed in the AoI.

In our approach, an iPhone only detects its proximity zone
with Wi-Fi AP based on its connected status value. The
advantage of Table 2 is simple implementation since there is
no computation involved in. Scanning this value on iPhone is
very quick, thus it is suitable for tracking a fast moving user.

TABLE 2. Classification of proximity zone based on distance between the
user and the connected Wi-Fi AP.

One big disadvantage is that it is only sufficient for coarse
localization stage due to limited accuracy.

B. iBeacon MEASUREMENTS AND DEPLOYMENT
PRINCIPLES
We use a simple path loss model to describe the relation-
ship between an RSSI sample readings rssii and a related
distance di as

rssii = rssi0 − 10β log
(
di
d0

)
+ Xσ , (20)

where rssi0 [dBm] is the reference RSSI at the distance
d0 = 1 [m]. In Fig. 3 shows real-time RSSI readings of a
RedBear iBeacon measured by iPhone 7.

FIGURE 3. RSSI sample readings of a RedBear iBeacon.

In practice, the path loss (20) also depends on the transmit
power Tx, thus the distance conversion can be given by

di ≈ d0 exp
(
rssi0 − rssii − Tx

10β

)
. (21)

In our previous work [28], we conducted several measure-
ments for RedBear iBeacons. As a result, we classify iBeacon
measurements into four zones as in Table 3.

TABLE 3. Classification of iBeacon proximity zones.

This table is used to select the zones with similar RSSI
readings, so that the localization system is able to quickly
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look up a feasible region where the smartphone may belong
to. The reasons we do not divide the zones greater than four
are two-folds. First, it is easy to implement onmobile devices.
Second, from our practical experiments we recognize that it
is difficult to distinguish two neighbor RPs which have the
sameRSSI signals. This observation can be clearly seen in the
below experiment. In order to overcome this problem, if the
RSSI reading indicates that the current user’s location is in
the same zone as its previous one, it is still updated via the
PDR until the user walks into a different signal zone.

In order to find an appropriate iBeacon deployment spac-
ing, we performed several experiments to evaluate iBeacon
ranging. The experiment setting is illustrated in Fig. 4(a). Our
idea is that an iPhone collects the sampled RSSI from nearby
iBeacons. Suppose there are m iBeacons in a given area. For
each RP, the RSS fingerprint at this location is denoted as
r = [r1, · · · , rm]T , where ri is the RSSI of the i-th iBeacon.
If the smartphone does not detect this iBeacon, we set ri = 0.
For given two fingerprints ri and rj, we define the RSSI
difference function between them as

δij(ri, rj) = ||ri − rj||1 =
m∑
k=1

|rik − rjk |. (22)

If the RSSI difference δij is smaller than a predefined thresh-
old (i.e., δij < ε), we treat ri and rj as a same point in
the fingerprint space. Otherwise, we indicate them as two
different points. After data collection, we set ε as the average
maximum dissimilarity of fingerprints from distinct RPs.
In order to test this scheme, we use four RedBear iBeacons
(i.e., m = 4) that are operated under BLE 4.0 specifica-
tion (details in Section V). At a static reference position,
the iPhone 7 used as a BLE scanner measures real RSSI sig-
nals during two minutes. With each spacing SP, we define the
distinguished fingerprint percentage Pdf (SP) as the percent
that two RSSI samples are identified as different fingerprints.
Mathematically, we write

Pdf (SP) =
#{δij : δij ≥ ε}
Number of RPs

× 100 (%). (23)

Fig. 4(b) shows the distinguished fingerprint percentage
with different spacing when the number of RPs is 25.
We observe that the spacing between two iBeacons should be
set as 3 ∼ 4m to achieve a distinguished fingerprint percent-
age of 70% or more. From this result, we set the minimum
spacing between two iBeacons as SPmin = 4.

Regarding iBeacon deployment with current existing
Wi-Fi infrastructure, if the Wi-Fi AP density in the area
is low as in Fig. 1, the iBeacon positions are expected to
cover the non-overlapping areas between any two adjacent
Wi-Fi APs. We assume that the current Wi-Fi deployment
over the area is not changeable. For eachAPi, all intersection
points (yellow points in Fig.1) form a set Si = {si1, · · · , simi},
where mi is the corresponding number of intersection points,
i.e., mi = #{Si}. The iBeacon deployment principles can be
mainly summarized by two following points:

FIGURE 4. iBeacon spacing experiment and result.

(P1) Ensuring appropriate coverage for the area between
two adjacent Wi-Fi APs: Let κi = dist(Si,Si+1),
the corresponding closest pair of points between the
two sets are denoted as u ∈ Si and v ∈ Si+1. If κi ≥
SPmin, we put an iBeacon a between u and v satisfying
SPmin
2 away from u along the line through u and v.

a = u+
SPmin

2
(u− v). (24)

(P2) Check iBeacon coverage consistency: Let C =

C(p, SPmin
2 ), we recalculate κi = dist(C,Si+1).

If κi ≤ 4, it means that the last iBeacon location has
been covered enough. Otherwise, we repeat (P1) with
C and Si+1 until the area between two intersection
points is filled up from the installed iBeacons.

C. IMPROVED SMARTPHONE-BASED PDR
After installing our localization app, iPhone collects the read-
ings of IMU sensors. With a simple Xcode project, we imple-
ment IMU data collection for iPhone 7. A sample of the IMU
can be found in our previous paper [19]. We choose to pursue
better accuracy of IMU inputs to the PDR by modifying step
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detection, step length estimation and heading direction. After
a step is recognized, it will be added each time to the user
walks. Denoting the total number of steps as nk , the distance
of walking path is calculated as follows.

dpdr =
nk∑
i=1

λi. (25)

The procedure of step detection is described as follows.
A step is recorded if it satisfies the following two rules:
(i) The corresponding acceleration measurements form a
peak followed by a valley. The peak acceleration value at
must be higher than an upper bound threshold aupper and the
valley acceleration valuemust be lower than a lower threshold
alower . Mathematically, we write

{at ≥ aupper , at+ω ≤ alower , 0 < ω < 1}. (26)

To find the best thresholds aupper and alower , an user walks a
certain number of steps (e.g., 10 steps) to learn the changes
in vertical acceleration data. In practice, we set aupper =
1 [m/s2] and alower = −1 [m/s2] under the settings in
Section V. (ii) The time spacing between two adjacent
peaks/valleys must be greater than a given threshold value.
It is usually set as two third of the walking step period. For
instance, assuming that a human typically takes two steps
per second, we set this value around 0.33s in this paper.

Inspired by the step length estimation model proposed
in [19] and by suggestions from [35], in order to address the
relationship between walking frequency and velocity, we use
the following regression model to estimate λi in (7) under
the condition that no Wi-Fi AP/iBeacon was detected in the
walking area.

λ = π0 + π1 × f + π2 × |āmax|. (27)

Here, π0, π1 and π2 are regression coefficients which can
be obtained through training, āmax is the maximum acceler-
ation magnitude after applying a threshold on the variance
of acceleration over a sliding window ϕ. For instance, with
the user holding an iPhone 7 in Section V, we obtain those
parameters as π0 = 0.39, π1 = −0.10 and π2 = 0.02,
where the walking frequency follows a uniform distribution,
i.e., f ∼ U[1.8 2.2] Hz and the slide window ϕ = 5. Through
several experiments in [19], we observe that either too low
or too high acceleration sensitivity may cause large errors in
step length estimation because the errors accumulate rapidly
along the walking path. The step length estimation based on
a linear model should be taken in priority due to its simplicity
and efficient computation. It has been shown in [8] that when
tracking a real-time user moving in a long path, a modified
linear model as (27) is more stable and has lower estimation
error compared to nonlinear ones in [13]–[15].

For iOS app development, the heading direction can be
directly read fromCLHeading class ofCoreLocation frame-
work [32]. To obtain the heading direction, there are two
choices: gyroscope-based method (reading user’s orientation
change using the gyroscope) and compass-based method

(using compass reading directly). As shown by the authors
in [18], [19], compass-based method is stable in a long walk
but easily affected by metal and conducting material in the
area, while the gyroscope-based [36] method remains unaf-
fected bymagnetic fields but suffers from accumulated errors.
In this section, we denote αg and αc as the gyroscope-based
reading and the compass-based reading, respectively. The
value of α is calculated by

α = αc + δt × αg + δα, (28)

where δt is the time interval and δα is assumed to be a
Gaussian error with zero mean and variance σ 2. To reduce
the heading estimation bias, we use the best linear unbiased
estimator (BLUE) [37] for the Cartesian coordinates of cur-
rent heading. The idea here is to avoid the ambiguity problem
associated with averaging angular measurements, while tak-
ing advantage of sample variances from the measurements
collected in a certain window size. Mathematically, denoting
M as the time window size of the heading measurements,
we assume that the measured heading is α̂i = αtruei + νi,
where αtruei is the true heading and νi ∼ N (0, σ 2

i ) is the
measurement noise. Then, we let ρxi = sin α̂i and ρyi =
cos α̂i for i = 1, · · · ,M , where M is the number of heading
samples. In practice, we set M = 5, that is, only the last five
heading samples will be used to correct the current heading
direction. It is a recursive procedure with a given window size
M . By setting the variances of ρx and ρx as weight factors,
we perform the BLUEs for both ρx and ρy as follows.

ρ̂x =
1∑M

i=1 σ
2
i

M∑
i=1

ρxi/σ
2
i , ρ̂y =

1∑M
i=1 σ

2
i

M∑
i=1

ρyi/σ
2
i .

(29)

Thus, a new heading estimation is given by

ĥi = tan−1
(
ρ̂xi

ρ̂yi

)
. (30)

D. HYBRID LOCALIZATION ENGINE
Our proposed hybrid PDR/iBeacon tracking system is divided
into three components: iBeacon/Wi-Fi profile module, smart-
phone IMU module and a localization engine as shown
in Fig. 5. After the app installed on user iPhone, it collects
the readings from IMUs and associates with Wi-Fi/iBeacon
readings to perform self-localization and tracking. We would
like to take a few notes on the working flow.

1) INITIAL LOCATION ESTIMATION
In many studies [7]–[9], the starting location of the track-
ing path is assumed to be known, which is an impractical
assumption. In [18], [19], we suggest P0 as the strongest
Wi-Fi AP that connects to the smartphone. Under the iPhone’s
constraints, if the Wi-Fi status bar is at 1 (weak connection)
or 2 (medium connection), the use of this Wi-Fi AP as the
starting point of the track causes a huge error in localization
accuracy. In this work, we set the initial point as the output of
a fusion algorithm between iBeacon and Wi-Fi AP locations
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FIGURE 5. Working flow of the proposed hybrid localization scheme.

based on RSSIs. Let AP1 and a1 are the strongest Wi-Fi AP
and the strongest iBeacon on the scanning list. Mathemati-
cally, we write

AP1 = {Aj : i = argmaxj=1,··· ,NAP RSSIj}. (31)

a1 = {ai : i = argmaxi=1,··· ,NiBeacon RSSIi}. (32)

To obtain the starting point of the tracking path, we follow
two simple rules:

(i) If either the status bar of the Wi-Fi AP AP1 is at
s = 3 (strong connection) or the iBeacon a1 is in the
near/immediate zone, we setP0(x0, y0) at thisWi-Fi AP
or this iBeacon.

(ii) Otherwise, we use a weighted centroid algorithm to
determine P0(x0, y0) as

P0(x0, y0) =
NiBeacon∑
i=1

wiai +
NAP∑
j=1

WjAPj. (33)

Here, NiBeacon and NAP are the number of the available iBea-
cons {ai, i = 1, · · · ,NiBeacon} and Wi-Fi APs {APj, j =
1, · · · ,NAP}which appear on the smartphone’s scanning list.
We note that, unlike the Android operating system, an iPhone
can only get information of a single AP instead of all available
APs in the area, i.e., NAP = 1. The weight factors in (33)
are assigned according to the strongness levels of Wi-Fi
AP/iBeacon signals. Mathematically, we write

wi =
ri − rmin

rmax − rmin
, Wj =

(1/Dj)∑NAP
j=1 (1/Dj)

. (34)

The value ri is the recorded RSSI at the i-th iBeacon, rmin and
rmin are the minimum and the maximum iBeacon RSSI read-
ings on the scanning list. The values of Di are obtained from
Table 2. Apparently, the proposed hybrid localization scheme
requires no prior knowledge of starting point in the PDR.

2) CORRECTION MATCHING
Beside the use of the online RSSI readings to choose the
relevant Wi-Fi AP/iBeacon positions, we can use a possible
range of the user’s current position. Using the fact that a
normal person cannot walk far away within a short period
of time, it is reasonable to limit a feasible region that the user
steps in based on the PDRwalking range. At step k , we denote
DkAPj , d

k
i and dkpdr as the corresponding Wi-Fi range, iBeacon

range and thewalking distance (25) via the PDR, respectively.
We define the dissimilarities among them as

ϒk =

NAP∑
j=1

Wi|DAPj − d
k
pdr |, (35)

υk =

NiBeacon∑
i=1

wi|dki − d
k
pdr |. (36)

We employ a calibration process that jointly estimates the
smartphone’s previous location and Wi-Fi/iBeacon gains
according to a specific iBeacon placement method as follows.
• If AP1 is in immediate Wi-Fi zone or a1 is within
iBeacon near zone, the smartphone takes the location of
this Wi-Fi AP/iBeacon as its corrected location.

• If either ϒk ≤ 1th or υk ≤ 1th (in practice, we set
1th = 3m), the smartphone location keeps its current
location estimation.

• If ϒk > 1th and AP1 is in near Wi-Fi zone, the smart-
phone location is corrected as the intersection of the
circle made by AP1 with radius D1 and the line segment
made by Pk−1 and Pk as

P(x, y) = C(AP1,D1)
⋂−−−−→

Pk−1Pk . (37)

Otherwise, the smartphone location is updated accord-
ing to a1 as

P(x, y) = C(a1, d1)
⋂−−−−→

Pk−1Pk . (38)

Similarly, if only iBeacons are installed and υk > 1th,
the smartphone location is calibrated as (38).

E. OPEN DISCUSSIONS
In this section, we discuss the system performance in several
aspects such as complexity, power consumption analysis, and
alternative approaches for designing localization algorithms.
Remark 1 (Computational Complexity): In each step k ,

the complexity of the proposed hybrid localization algorithm
in Fig. 5 is divided into two parts: (i) sort the available Wi-Fi
APs and iBeacons in the area according to their RSSI read-
ings, (ii) check the distance dissimilarity conflicts and adjust
the estimated location according to the correction match-
ing procedure in Section IV-D2. The first part (i) requires
a complexity of O(max{NAP,NiBeacon}). The procedure of
calculating the dissimilarities (35) and (36) has a linear com-
plexity in terms of NAP and NiBeacon, thus it can be easily
implemented in real-time applications. A worst-case includes
the computation from finding an intersection of two objects
C(AP1,D1) (orC(a1, d1)) and

−−−−→
Pk−1Pk that takesO(1). After-

wards, the corresponding complexity of the second part (ii)
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is O(max{NAP,NiBeacon}). Since mobile iPhone can obtain
the information from a single currently-connected AP only,
instead of a full list of currently-available APs in the AoI (i.e.,
NAP = 1), the total complexity of hybrid localization at k-th
step is O(max{1,NiBeacon}).
Remark 2 (Deployment Cost and Power Consumption

Analyses): As we have introduced in Section I, since Wi-Fi
deployment becomes popular in indoor environments and off-
the-shelf accessible on smartphone, the total deployment cost
of the hybrid system mostly depends on the total number of
iBeacons, TNiBeacon, which has been used in the AoI. For a
single iBeacon with average price c, we can expect to pay
around c × TNiBeacon. In order to choose the right number
of TNiBeacon, we must consider the app features as well as
the acquired localization accuracy. Generally, iBeacon instal-
lation layout varies across different indoor environments.
Recently, best practice guidelines [38], [39] show that BLE
positions should be installed above user head height to avoid
interference from human body (up to 1.5m) and above 2.5m
from floor level. Assuming that SPmin = 4m and SPmax =

10m, a rough number of TNiBeacon can be approximated as⌊
S(AoI)

SP2min

⌋
≤ TNiBeacon ≤

⌊
S(AoI)
SP2max

⌋
, (39)

where S(AoI) is the total area of the AoI.
Regarding power consumption, since the whole system is

running on the smartphone, it depends on how much power
has been consumed in each Wi-Fi/iBeacon scanning, which
consists of three main steps: register a broadcast listener,
request a scan and get scan results. For a certain scanning
activity, the average power for each Wi-Fi/iBeacon scan-
ning depends on the scanning intervals and its corresponding
current. According to [40], an approximation for the power
consumption of scanning activity is given by

PC =
1

Period

∑
i

(Intvi × Ii), (40)

where Intvi is the time interval with its corresponding cur-
rent Ii, respectively. For our experiments, given Wi-Fi scan-
ning interval of 100∼ 300 ms, average current consumption1

is around 100∼ 120mA for continuouslyWi-Fi scanning and
25 ∼ 47mA for iBeacon scanning in one hour recording. For
an iPhone 7 (i.e., battery capacity of 1960mAh), our localiza-
tion app consumes about 5.1 ∼ 6.12% of battery for Wi-Fi
scanning and 1.27 ∼ 2.4% per hour for iBeacon scanning.
We note that other apps have been disabled from running in
the background until the scanning schedule finished.
Remark 3 (Alternative Design Choices to Improve Track-

ing Performance): First, in this paper we more focus on
client-based localization approach, i.e., the smartphone car-
ried by a user collects the RSSI measurements of detectable

1 Power consumption measured in mW is the operating voltage multiplied
by the current, but it is more difficult when using discharge batteries and
the voltage changes overtime and loading conditions. In terms of low power
application, current consumption measured in mA is often used.

Wi-Fi APs and iBeacons for self-localization. Alternatively,
the computation workload handled by the mobile device
should be reasonable to give real-time updates for the user.
Existing approaches such as particle filters (PFs) [5], [12],
Kalman filters (KFs) and their variants [9], [13], [17] offer
high resolution accuracy, but require more expensive com-
putation, power consumption and proper planning strategy.
For example, the smartphone location is updated according to
PF weights as (16), where the PF weights indicate the signal
variability from nearby Wi-Fi APs or iBeacons. Regarding
Table 2, there are not much changes in the PF weights
within a certain Wi-Fi zone because the particle locations
have equal weights for the same observation window. Thus,
it further causes time delay in computing outputs’ weighted
sum when tracking the user in real-time. On the other hand,
the application of theKFs and their variants need to be learned
from experiments to set the optimal parameters on each
step based on indoor map information. Second, the client-
based approaches are flexible when it comes to optimization
strategy and can adapt quickly to user’s behavior. Those
approaches have their limitations and in some cases they
need to adopt a server-side to engage integrated information
such as clustering trajectories for tracking multiple users
and combining with context landmarks. These opportunistic
suggestions are suitable for server-based approaches rather
than client-based ones, that leads to other research direc-
tions. In summary, depending on target application, we may
incorporate our current proposed schemewith other enhanced
techniques, which we consider as our future work.

V. EXPERIMENTAL RESULTS
In this section, we present how we collect data and con-
duct several practical experiments to validate our proposed
tracking system. To accomplish the above tasks, we build
an iOS app to implement three main modules in Section IV.
Moreover, a graphic user interface is designed to visualize the
tracking results.

A. ASSUMPTIONS
Before going through the experiment results, we make the
following three assumptions.

First, the starting point of the tracking path is not given.
That means, before the user starts using our localization app,
he does not know where he is in the testing area. According
to Section IV-D, the starting point of the tracking path is set
as a fusion point of nearby Wi-Fi APs and iBeacons to which
smartphone detects. If he cannot find any Wi-Fi AP/iBeacon
on the scanning list, the app forces him towalk around until he
has found the nearest one. For example, Fig. 6 illustrates how
the starting point has been selected. The actual user location is
not necessary near or underneathWi-Fi AP/iBeacon location.
The first estimated point of the tracking path (e.g., red point)
is only recorded by (33) when the smartphone connects to any
nearby Wi-Fi AP/iBeacon.

Second, the user may show complex humanmobility infor-
mation. For example, he may walk at different speeds or
motion patterns even on the same path. At each time, he holds
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FIGURE 6. Illustration of the estimated starting point.

his smartphone in hand and naturally walks along the path
during the data collection.

Third, the accuracy rate is leveraged after few times
the user finishes the desired path. In our experiments,
the recorded data are collected at three different times
(morning, afternoon, night) during a day. Thus, there exist
inevitable noises caused by other occasionally pedestrians
or various obstacles along the path. We collect the statistics
of localization results under those conditions. Concerning
the design of walking path, we only have rights to access
certain public areas (e.g., public corridor and lobby) for
conducting the experiments. They consist of accessing Wi-Fi
AP, deploying iBeacons and performing localization testing.
Consequently, the correspondingwaking path is meant for the
pedestrians in public area only.

B. EXPERIMENT DESIGN AND DEVICE INFORMATION
We performed several experiments at the third floor of Huyn-
gnam Engineering Building in Soongsil University. The test-
ing area of our experiments consists of two parts: one part
of 39m × 17m and another one of 86m × 24m. A user is
1.75m in height and holds the phone face up when he is mea-
suring iBeacon signals and walking in a given track. We use
an iPhone 7 with iOS 14.3 and 256GB storage for testing.
All steps along the tracking path are recorded and saved in
the device storage. Since we do not have any local server,
all floor plan map, Wi-Fi AP/iBeacon related information
(e.g., AP/iBeacon list, AP/iBeacon locations, etc.) and user
tracking history are stored in the smartphone. He holds the
iPhone in hand for data collection and tracking. The smart-
phone is placed in front of him, where the iPhone’s screen
is pointed up that let the user view its screen. Moreover,
the designed mobile app is specifically implemented for
iOS devices, thus it makes the Wi-Fi proximity conversion
table (i.e., Table 2) meaningful.

In the testing area, there are four Alcatel Lucent IAP-305
2x/3x 11acWi-Fi APs deployed over the area. EachWi-Fi AP
is attached to the ceiling of 2.5m height at various locations
in the building. Detailed description of the specifications of
this AP can be found at [41]. The coverage of this Wi-Fi
AP is expected about 45m indoors and about 91m in open
areas. However, it may be much shorter in practice due to

obstacles like walls, human bodies, various steel structures,
etc. Throughout our experiments, we found practical radius
of this Wi-Fi AP is about 20m.

Regarding iBeacon deployment, we use RedBear iBea-
cons that are operated under BLE 4.0 specification [42]. The
dimension is (W)25mm × (H)70mm × (D)18.3mm as illus-
trated in Fig. 7. It uses two tripple-A batteries for power
supply. The average battery life is about 1 year. As we
mentioned in [18], the trusted-range of a RedBear iBeacon
is within 4.5m. According to Section III-2, we install the
iBeacons using the following two settings.

FIGURE 7. RedBear BLE iBeacon.

• (CH1)Wi-Fi APs and iBeacons are co-existed: we install
iBeacons to cover the area that two adjacent Wi-Fi
AP radii do not overlap according to the principles in
Section IV-B. For example, we can put an iBeacon in the
area between WiFi2 and WiFi3 as illustrated in Fig. 8.

• (CH2) iBeacon-only: Since the BLE signal is typically
weaker than the Wi-Fi signal, the iBeacon density must
be at approximately equaled to or greater than a current
deployment of existingWi-Fi infrastructure. In the areas
where the iBeacon signals do not reach to the iPhone, our
app uses the PDR-only approach to continuously track
the iPhone location.

Moreover, iBeacons are placed on the ceiling as theWi-Fi AP
in order to reduce the disturbance when people are walking
by. We transform a three-dimensional iBeacon range dm to
two-dimensional space value dg as

dg =
√
d2m − h

2
d . (41)

Here, dm is the actual iBeacon range which is calculated
by (21), hd is the height difference between iBeacon and
user’s smartphone. In practice, we set hd as one third of user
height.

C. LOCALIZATION METRIC
We use the accuracy rate (AR) as a metric to evaluate the
localization performance. Given a localization error bound ε,
the AR is defined as the percentage of number of estimate
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FIGURE 8. CH1: Tracking results.

points that fall inside the path of thickness ε. Mathematically,
we write

AR(ε) =
#{Pk : Pk ⊂ Path(ε)}

Nstep
× 100(%), (42)

where Nstep is the actual number of steps that the user has
finished a given path Path(ε) with the thickness ε.

D. TRACKING RESULTS
Fig. 8 shows the tracking results of three schemes: the con-
ventional PDR-only, the improved pedestrian dead reckoning
with step compensation (PDRSC) [19] and the proposed
hybrid scheme in the given testing area in case of CH1. The
ground-truth resolution of the grid cells is 1 meter on the map
display. In the figure, we plot the actual path in green color
and Wi-Fi AP/iBeacon locations in bright yellow circle. The
thickness of this actual path is set to ε = 2 m in this experi-
ment. The footsteps estimated by the PDR-only, the improved
PDRSC [19] and the proposed scheme are marked in brown,
blue and red, respectively. As we notice from the figure,
the conventional PDR-only scheme suffers from large drifts
and significant accumulative errors over the walking path.
With the improved PDRSC [19], this drift has been corrected
by integrating Wi-Fi information and the improved version
of the PDR. From the figure, we observe that due to location
correction process, it produces a large jump in the footstep
records, especially nearWiFi3 andWiFi4. This is because the
Wi-Fi signals are strong at those points, so it sets the Wi-Fi
AP location as the current iPhone location. On the other hand,
with the help of iBeacon, our proposed approach produces
a smaller jump because those iBeacons cover the areas of
weak Wi-Fi signals. Thus, our approach helps to improve the
accuracy of the localization system.

Similarly, Fig. 9 shows the tracking results of two schemes:
the conventional PDR-only and the proposed hybrid scheme
in the given testing area in case of CH2. The results show
that about 81% of testing cases are successfully localized
within 2m error bound via our proposed approach, which is
sufficiently accurate and promising.

Regarding the proposed-hybrid only scheme only with
iBeacons, Fig. 10 plots the AR versus error bound with
different iBeacon spacing. From the results of Section IV-B,
we start with SP = SPmin and increase the value of SP until
it almost reaches the current Wi-Fi AP deployment spacing
in the testing area. Since Beacon signals are weaker than
Wi-Fi signals, the iBeacon density cannot be sparse than the

FIGURE 9. CH2: Tracking results.

FIGURE 10. Accuracy rate versus iBeacon spacing.

Wi-Fi density. Note that we only evaluate the localiza-
tion performance of the proposed approach with differ-
ent iBeacon spacing where iBeacons were installed only.
We observe that the localization AR decreases as the iBeacon
spacing increases. However, this decrement gradually
changes because of the PDR support. In particular, even when
SP = 10m, the PDR still keeps updating the user location
with IMU readings until the smartphone reaches another
nearby iBeacon.

Fig. 11 shows the average localization AR with different
error bound in which a user walks three times on the same
path. In order to make a fair comparison among three tracking
schemes (PDR-only, improved PDRSC [19] and the proposed
schemes in CH1 and CH2 cases), we examine the these
schemes for the samewalking path, record the tracking results
and leverage them under same settings. For the proposed
hybrid scheme only with iBeacon (i.e., CH2), we use six
iBeacons and installed them as shown in Fig. 9. We observe
that the PDR-only does not perform well as the three other
schemes. At 2m error bound, the improved PDRSC and our
proposed schemes achieve AR of 76%. We also observe that
the proposed-WiFi/PDR achieves the best AR, while remain-
ing a stable performance over error bound. This shows that if
we know how to properly deploy theWi-Fi APs and iBeacons,
we can achieve a meter-level localization accuracy.
Remark 4 (Effectiveness of the Proposed System and

Other Suggestions): We would like to note that the loca-
tion of the iPhone at each step was estimated by (7).
To accomplish the task of tracking, its location is recursively
updated by the PDR and calibrated according the workflow
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FIGURE 11. Accuracy rate versus error bound.

in Fig. 5. In summary, our proposed localization scheme
achieves a good performance in mobile iPhone cases with
a reasonable Wi-Fi AP/iBeacon density. For overall accu-
racy performance, we observe that the proposed localization
scheme achieves an average accuracy rate of above 70% with
2.0m location error, which is a competitive accuracy level.
Although latest iOS updates do not support much on raw
RSSI readings from Wi-Fi AP as well as BLE channel selec-
tion for iPhones, our proposed tracking system overcomes
these issues and requires no prior knowledge of starting point
for selecting a conservative starting point for the PDR.

Our experiments show that the proposed tracking system
is good enough within the testing area such as long corridor,
which is a common practice in indoor environments. Due to
various reasons, however, the tracking results within rooms
have not been demonstrated yet. In order to determine the
iPhone location at a room level with sufficient reliability,
we provide some suggestions to accomplish this goal. First,
with a typical floor construction above, we can place iBea-
cons in two categories: office room and office corridor. Since
the iBeacon’s major and minor values in Fig. 2 can be modi-
fied, we can mark an iBeacon as either office room or office
corridor according to its placement within the floor plan.
During online phase an iPhone is able to separate iBeacons
scanning list according to their types of locations. Then,
the tracking app can be incorporated with the series of iBea-
cons to help the iPhone to accurately place itself on a map.
Second, because an office room is typically much smaller
than the floor area, room-positioning would make more sense
if we perform the localization task on a small object such
as BLE tag rather than smartphones. This is because, with
only one BLE beacons in the certain office room, a user can
pinpoint exactly where he is in the room without using the
tracking app.

VI. CONCLUSION
In this paper, we propose a hybrid Wi-Fi/iBeacon indoor
tracking system for smartphones. The proposed algorithm

is simple, but surpasses the conventional approaches when
tracking an iPhone location in a typical office building.
We tackle the indoor localization problem under sev-
eral issues such as limited Wi-Fi AP information, smart-
phone characteristics, iBeacon placement methodology and
PDR-based displacement mitigation. Smartphones collect
the IMU readings which provide basic information on user
motion and inputs to the improved PDR. Then, we extract
related WiFi/iBeacon information to fix accumulated errors,
while automatically self-updating user locations. Experiment
results show that the localization accuracy is greatly improved
by the proposed schemes.

Through practical experiments, we discuss some future
works to adopt this technique to various indoor environments.
In order to enable meter-level accuracy assisted by smart-
phones, we may construct user trajectories with precisely
identifying indoor pinpoints and floor constraints. Regarding
our proposed localization scheme, even with limit informa-
tion onWi-Fi ranging we still explore alternatives solutions to
estimate the smartphone location with mobility information.
Depending on the applications, we need to choose whether
applying filters (e.g., particle filters, Kalman filters and their
variants) or not in order to balance the trade-off between
the localization accuracy and the computation cost. Thus,
a framework of optimization strategy can be pursued as a
separate line of research as a future work.
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