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ABSTRACT We present an audio-visual model for generating food texture sounds from silent eating videos.
We designed a deep network-based model that takes the visual features of the detected faces as input and
outputs a magnitude spectrogram that aligns with the visual streams. Generating raw waveform samples
directly from a given input visual stream is challenging; in this study, we used the Griffin-Lim algorithm
for phase recovery from the predicted magnitude to generate raw waveform samples using inverse short-
time Fourier transform. Additionally, we produced waveforms from these magnitude spectrograms using
an example-based synthesis procedure. To train the model, we created a dataset containing several food
autonomous sensory meridian response videos. We evaluated our model on this dataset and found that the
predicted sound features exhibit appropriate temporal synchronization with the visual inputs. Our subjective
evaluation experiments demonstrated that the predicted sounds are considerably realistic to fool participants
in a ‘‘real’’ or ‘‘fake’’ psychophysical experiment.

INDEX TERMS Multi-modal deep neural network, autonomous sensory meridian response, eating sound
generation.

I. INTRODUCTION
We often hear phrases such as ‘‘this fried chicken is so
crunchy’’ or ‘‘the cheese is melted’’ in food review shows.
These videos generally mention the food texture besides its
taste. Food items makes distinctive sounds when they are
bitten or chewed. These sounds stimulate our appetite and
they are often emphasized in food advertisements. By empha-
sizing the food texture with relevant sound, the consumer
appetite can be significantly influenced, thereby generating
more sales. In contrast, a study demonstrated that the chew-
ing sounds activate the feeling of satiety [8]; considering
the results of this study, the generation of emphasized eat-
ing sounds could achieve similar satisfaction with smaller
amounts of food intake to prevent obesity.

In this research, we propose a deep learning model
that generates food texture sounds from silent eating
videos. To generate eating sounds from visual information,
we require a dataset with sounds corresponding to eating
behaviors; accordingly, we used food autonomous sensory
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meridian response (ASMR) videos from YouTube. They are
also known as ‘‘mukbang’’ (a portmanteau of the South
Korean words for ‘‘eating’’ [‘‘meokneun’’] and ‘‘broadcast’’
[‘‘bangsong’’] that refers to online broadcasts where individu-
als eat food and interact with the viewers). These food ASMR
videos record the eating behaviors that specialize in texture
sounds. They have become popular in America following a
similar trend that circulated in South Korea in 2016. Viewers
watch food ASMR videos for social reasons, sexual reasons,
entertainment, eating reasons, and/or as an escapist compen-
satory strategy. We trained the proposed model using such
videos.

The consistency with the corresponding visual informa-
tion is an essential characteristic for the generated sounds.
The sound generating method should produce a sound event
at exactly the same time or soon after the occurrence
of the corresponding visual event. For example, an eat-
ing sound should be synchronized with the visual event in
which the person closes his mouth. Various recent research
works have attempted to implement deep generative mod-
els with speech synthesis and voice conversion to pro-
duce visually aligned sounds that correspond to the visual
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features [4], [20]; nevertheless, the alignment issue is still a
challenge.

Our model takes the facial features acquired from a video
frame as input and predicts the amplitude spectrogram corre-
sponding to the time series. To generate a waveform from the
amplitude spectrogram, we used the Griffin-Lim algorithm
[12] to restore the phase and implemented inverse short-time
Fourier transform (STFT).

The contributions of this study can be summarized as
follows:

• We introduced a learning framework for generating food
texture sounds from silent food eating videos.

• We proposed a multi-modal deep neural network archi-
tecture comprising a convolutional network, recurrent
network, and fully connected layers.

• We showed that the proposed structure outperformed the
baseline in eating sound reconstruction.

• We created a dataset consisting of food ASMR videos
from YouTube. It contains videos of people grabbing,
biting, chewing, and swallowing food items.

The demonstration video can be found at the following link:
https://youtu.be/xFA7nU4K8aE

II. RELATED RESEARCH
Videos with audios include the audio information associated
with the visual information of the videos. The correlation
between the visual and audio information has been studied
in the field of multi-modal deep learning.

A. VISUALLY ALIGNED SOUND SYNTHESIS
Owens et al. [13] proposed a method for predicting sound
features from videos considering the interactions between
various objects, and demonstrated that sound contains impor-
tant information for recognizing the material properties and
interactions. Chen et al. [4] proposed a method to gener-
ate sound considering the sound class and used the percep-
tual loss to align the semantic information. In this study,
we conducted subjective experiments to evaluate the gen-
erated eating sounds. To generate a plausible eating sound,
we utilized the example-based synthesis method proposed
in [13]. Zhou et al. [20] collected an unconstrained dataset
(VEGAS) that included 10 types of sounds recorded in the
wild and proposed a recurrent neural network-based method
to directly generate a waveform from videos. Chen et al. [5]
exploited conditional generative adversarial networks to gen-
erate cross-modal audio visuals of musical performances.
Chen et al. [6] designed an audio forwarding regularizer that
could control the irrelevant sound component, thereby pre-
venting the model from learning incorrect mapping between
the video frames and the sound emitted by the out-of-screen
objects. Akbari et al. [3] tried to reconstruct natural sound-
ing speech using a neural network that takes as input the
face region of the talker and estimates bottleneck features
extracted from the auditory spectrogram by a pre-trained
autoencoder.

FIGURE 1. Example of dataset [1].

B. SOUND SEPARATION
Gao and Grauman [11] proposed a model to detect each
musical instrument in a video clip of multiple sounds and
divide the sound emitted from each instrument. Gan et al.
[10] improved the performance of time-frequency mask esti-
mation for sound source separation using a context-aware
graph network to extract information from the time series of
the performer key points. In the research on human speech
segmentation, a method to predict complex ratio masks with
the amplitude and phase information was proposed to extract
speech from the spectrogram of synthetic speech [2], [9]. The
human speaking and eating processes are similar in terms of
human mouth movement. In this study, the proposed model
and a visual input procedure are constructed based on the
aforementioned studies.

III. FOOD ASMR DATASET
We collected a dataset with sounds corresponding to eat-
ing behaviors. We used food ASMR videos from YouTube,
as shown in Figure 1, and created a dataset.1 This is the
first dataset that includes food ASMR videos and focuses
on eating sounds (up to our knowledge). From these videos,
we selected those that did not contain any noise such as
human voice; we only included food texture sounds. More-
over, because the food does not occlude much of a scene,
we can also observe what happens to the food after it is
eaten. To train the model, we used segmented images of
faces extracted by MTCNN [19] for each frame, as shown
in Figure 1. There are two main types of food texture sounds:
sounds that are ‘‘generally’’ pleasant to humans (e.g., fried
food, vegetables, and fruit) and those that are unpleasant to
humans (e.g., slurping noise). We focused on the former type
of sound in this study. The recorded food videos included
fried food such as fried chicken, corn dog, and fried potato,
which have the texture of ‘‘crispy’’ onomatopoeias. We col-
lected 45 different types of videos which are approximately
5-16 min and divided each of these videos into 3-second
segments. We collected 3588 segment data from the videos in
total. Additionally, in each clip, the visible face in the video
and audible sound in the soundtrack belonged to a single
eating person.

1https://github.com/KodaiUchiyama/Food-ASMR-Dataset
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FIGURE 2. Video representation.

IV. EATING SOUND GENERATION FRAMEWORK
The proposedmodel takes the detected facial features as input
and predicts the amplitude spectrogram corresponding to the
time series of the input.

A. VIDEO REPRESENTATION
To generate the input features, we converted the frame rate of
the dataset to 25 FPS. We also divided the video into a frame
set of 75 frames (3 seconds) each. We use MTCNN [19] to
extract the face segments and resized them to 160× 160.
We used a pretrained face recognition model [16] and

obtained 1792× 1 face features per frame. The procedure for
creating the input image features is illustrated in Figure 2. The
face features were used as the input because they eliminate
the irrelevant variations between images and retain the infor-
mation necessary for recognizing millions of faces. A related
study [15] showed that face features are effective in interpret-
ing facial expressions. In this study, experiments were also
conducted using RGB images as input data; however, they
did not improve the prediction accuracy.

B. AUDIO REPRESENTATION
For the audio features, we downsampled the sample rate of
sound to 16 kHz, and the stereo audio was converted to
mono. We computed the STFT of the 3 s audio segments to
obtain the amplitude spectrogram. The STFT was computed
using a Hann window of length 25 ms with a hop length
of 160 and fast fourier transform size of 512, resulting in an
output audio feature of 300×256 scalars. However, the over-
all distribution of the magnitude values was not Gaussian
because several entries in the spectrogram were close to zero,
which can impede the learning process. Therefore, the fol-
lowing equation (1) was applied to each time-frequency unit,
i.

Mi = log(Mi + C), C = 10−7 (1)

The constant, C, was set empirically to ensure that the sound
features approach a normal distribution. Finally, we applied
the sigmoid function to each time-frequency unit, i; subse-
quently, the values of each unit were normalized in the range
of 0 to 1.

C. GENERATING WAVEFORMS
We used two methods to generate a waveform from the
amplitude spectrogram.

1) RAW SOUND METHOD
We generated a waveform based on phase reconstruction and
inverse STFT from the amplitude spectrogram. We used the
Griffin/Limmethod [12] for phase restoration from the ampli-

TABLE 1. Convolutional layer architecture.

tude spectrogram; random values were used as the initial
values of the phase. Thewaveform obtained by this raw sound
method was used for evaluating the information obtained by
the deep neural network (DNN) model.

2) EXAMPLE-BASED SYNTHESIS METHOD
This method synthesized the waveform data from the ampli-
tude spectrograms predicted by the DNN model, and the
sound generated by this method included a texture sound
plausible for a human ear. We used this method for the sub-
jective evaluation experiments. The procedure can be sum-
marized as follows. a) We decomposed the feature vector
of the amplitude spectrogram, Es1, Es2, · · · , EsN , (N = 300),
predicted by the DNN model into 25 samples along the time
scale. b) For each feature vector of the decomposed ampli-
tude spectrogram, Es1, Es2, · · · , Es25, the sound feature with the
L2 distance as the nearest neighbor was selected from the
training data. c) We obtained the final waveform data by
synthesizing the waveform data corresponding to the selected
sound features.

D. NETWORK ARCHITECTURE
In the researches on human speech separation, various meth-
ods have been proposed to predict complex ratio masks with
the amplitude and phase information to extract speech from
synthetic speech [4], [9]. In this study, the model was con-
structed based on such studies. The proposed model takes
the facial features obtained by pre-processing the input video
frames and outputs the spectrogram of the corresponding
sound features.

As shown in Figure 3, themodel structure consists of a con-
volutional neural network (CNN), a single-layer bidirectional
long-short-term memory (LSTM) with 400 cells, and three
fully connected layers. Details of the CNN module are listed
in Table 1. The dimensions of the input face features do not
represent the spatial information; they retain the information
required for face recognition in a similar manner as [7].
To prevent over fitting, we discarded 20% of the neurons
in all three fully connected layers during the learning itera-
tions [17]. The convolutional network of our model processes
the input face features; it consists of dilated convolutions,
as presented in Table 1. Note that ‘‘spatial’’ convolutions and
dilations in the convolutional network are performed over the
temporal axis (not over the 1792-D face features channel).

V. EXPERIMENTS AND RESULTS
A. IMPLEMENTATION DETAILS
The experiments were conducted using the Food ASMR
DATASET. We split the food ASMR DATASET into training
sets (35 kinds of videos) and testing sets (10 kinds of videos)
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FIGURE 3. Proposed model architecture. The convolutional network takes the segments of the faces detected in each
frame of the video as inputs. The convolutional network extracts the face features for each segment using a pretrained
face recognition model; it then learns each visual feature using a dilated convolutional network. The visual features are
further processed using a bidirectional LSTM and three fully connected layers. The network outputs a spectrogram of
eating sounds; it is converted back to waveforms using phase restoration and inverse STFT.

and performed 4-fold cross validation to ensure that the same
kind of video is not represented in both testing and training
sets, which enables the model to avoid data bias and overfit-
ting. In each fold, we trained the proposed model with 90%
of the data and validated it on the rest 10%.

The proposed model was implemented in TensorFlow. We
used a batch size of four samples and trained using an Adam
optimizer with a learning rate of 1.0× 10−3.
The mean square error of the predicted sound features and

the ground truth features were used as the loss functions.
To generate a waveform, we used the 1) raw sound method
and 2) example-based synthesis method.

B. EXPERIMENT RESULTS
1) QUALITATIVE VISUALIZATION
Figure 4 shows the results of the predicted amplitude spectro-
grams in the test data. Figure 5 shows the sound wave shapes
generated from the predicted amplitude spectrograms. We
compared the predicted spectrograms with the ground truth
spectrograms. The pronunciation timing features were found
to be consistent although this method failed in capturing high
frequency information which is mainly due to the nature of
the task. This can be attributed to the timing of the high-
frequency band sounds in the eating behaviors. The ‘‘crispy’’
sound in the high frequency band is emitted when a person
starts eating a food item. Therefore, the model experiences
difficulties in learning the sounds in the high frequency band
because the duration of the first eating action is less than
that of eating from the entire eating behavior. Note that the
accuracy of the spectrogram predicted by the example-based
synthesis method depends on the spectrogram of the raw
soundmethod; thus, it is necessary to improve the accuracy of
the raw sound method to enhance the quality of the example-
based synthesis method.

2) QUALITY AND ACCURACY MEASUREMENT OF THE
RECONSTRUCTIONS
Lip2Audspec [3] is a method for reconstructing natural
sounding speech given visual input, which applies a neural

FIGURE 4. Predicted spectrogram. The top row shows the ground truth
spectrogram. The results of the raw sound method and example-based
synthesis method are demonstrated in the middle and bottom rows,
respectively.

network to estimate bottleneck features extracted from the
auditory spectrogram by a pre-trained autoencoder. We con-
sider it our baseline because it is relevant in terms of gen-
erating sounds from silent videos which recorded the area
around the faces. We adapted food ASMR dataset to this
baseline model and compared the accuracy of predicted spec-
trograms and generated audio waveforms for performance
comparisons. We also performed the 4-fold cross validation
to train the baseline model using the same cross validation
partitions with the proposed model. In Table2, we show the
4-fold average of L2 distance between the predicted spectro-
gram and the ground truth spectrogram in the experiments.
Note that we consider the original audio the ground truth.
The sound quality is measured with the 4-fold average of
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FIGURE 5. Generated waveform. The top row shows the ground truth
waveform. The waveforms produced using the raw sound and
example-based synthesis methods are presented in the middle and
bottom rows, respectively.

TABLE 2. Average L2 distances and PESQ (higher is better) between the
predicted and the ground truth spectrograms using simulated data.

perceptual evaluation of speech quality (PESQ) metric [14]
(higher is better). PESQ was originally designed to quantify
degradation due to codecs and transmission channel errors.
As it can be seen from the Table2, the predicted spectrograms
and the reconstructed audios using the proposed method have
both higher accuracy and quality compared to the baseline.
We argue that because the face features given as the input
to our proposed model can eliminate the irrelevant features
such as food around the mouth and retain the lip-movement
information necessary for generating eating sound.

3) SUBJECTIVE EVALUATION EXPERIMENT
It is difficult to quantify the human perception of synthesized
sound using objective measures. Therefore, we evaluated
the realism of the generated sounds on Amazon Mechanical
Turk. We wanted to determine whether the generated sounds
can trick people into believing that they were real. For this
test, we used the generated results of the model that showed
the best performances in cross-validation. 60 turkers were
shown 20 videos (10 real and 10 synthesized). They were
asked to label each video as real (originally belonging to this
video) or fake (synthesized by the example-based synthesis
method). Figure 6 shows an example of the evaluation exper-

FIGURE 6. Example of the evaluation experiment. Turkers were shown 3 s
videos for each question. They were asked to label each video as real
(original sound) or fake (synthesized by the model).

FIGURE 7. Distribution of answers labeling fake sound as real of turkers
in subjective evaluation. The top figure shows the results of the proposed
model. The bottom figure shows the results of the baseline model:
Lip2audspec.

iment. A total of 66% of the generated audio was rated as real.
The distribution of turker scores is depicted in Figure 7.

We also evaluated the results of the baseline model trained
with the food ASMR dataset. The 60 turkers were shown
20 videos (10 real and 10 synthesized). Each video was 3 s
long. A total of 56.5% of the generated audio was rated
as real. The distribution of turker scores is depicted in Fig-
ure 7. Subjective evaluations of the results also show that our
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proposed model received higher rating in terms of realness
than the baseline model.

VI. CONCLUSION
We examined a method for generating food texture sounds
from silent food eating videos. To train the proposed model,
we created a dataset using food ASMR videos fromYouTube.
The proposed multimodal deep learning model took facial
features from video frames as input and predicted the ampli-
tude spectrograms corresponding to the time series. The
waveforms were generated from the spectrograms based
on phase restoration and inverse STFT. We showed that
the predicted amplitude spectrogram confirmed that the
sound timing was accurately captured. We also showed
that the proposed structure outperformed the baseline in
eating sound reconstruction. An example-based synthesis
method was used to generate food texture sounds for subjec-
tive evaluation. We demonstrated that the sounds predicted
by our model are realistic enough to fool the participants
in a ‘‘real’’ or ‘‘fake’’ subjective evaluation; additionally,
it demonstrated efficient temporal synchronization with the
visual inputs. In the future, to build the end to end model,
we want to train a model such as Wavenet [18] to generate
waveforms from spectrograms. In addition, because the phase
information is important for predicting impact sounds such
as food texture sounds, we want to examine a model that
uses DNN to predict the phase information. We envision that
our work will open up the new research on studying the
generation of food texture sounds.
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