
Received February 15, 2021, accepted March 13, 2021, date of publication March 29, 2021, date of current version April 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069367

Academic Source Code Plagiarism Detection by
Measuring Program Behavioral Similarity
HAYDEN CHEERS , YUQING LIN , AND SHAMUS P. SMITH
School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW 2308, Australia

Corresponding author: Hayden Cheers (hayden.cheers@newcastle.edu.au)

This work was supported by an Australian Government Research Training Program Scholarship at The University of Newcastle, Australia.

ABSTRACT Source code plagiarism is a long-standing issue in tertiary computer science education. Many
source code plagiarism detection tools have been proposed to aid in the detection of source code plagiarism.
However, existing detection tools are not robust to pervasive plagiarism-hiding transformations and can be
inaccurate in the detection of plagiarised source code. This article presents BPlag, a behavioural approach
to source code plagiarism detection. BPlag is designed to be both robust to pervasive plagiarism-hiding
transformations and accurate in the detection of plagiarised source code. Greater robustness and accuracy is
afforded by analyzing the behavior of a program, as behavior is perceived to be the least susceptible aspect
of a program impacted upon by plagiarism-hiding transformations. BPlag applies symbolic execution to
analyses execution behavior and represents a program in a novel graph-based format. Plagiarism is then
detected by comparing these graphs and evaluating similarity scores. BPlag is evaluated for robustness,
accuracy and efficiency against five commonly used source code plagiarism detection tools. It is then
shown that BPlag is more robust to plagiarism-hiding transformations and more accurate in the detection
of plagiarised source code, but is less efficient than the compared tools.

INDEX TERMS Source code plagiarism detection, behavioral similarity, source code similarity.

I. INTRODUCTION
Plagiarism is a long-standing issue in academic institutions.
Studies have indicated between 50% to 79% of undergraduate
students will plagiarise at least once during their academic
careers [1]–[4]. With such a high rate, it is highly likely
that an academic will have to assess a suspected case of
plagiarism. In computer science courses, plagiarism is com-
monly encountered as source code plagiarism. Source code
plagiarism occurs when one student appropriates the source
code of another and proceeds to submit it as their own work.
Subsequently, source code plagiarism can be suspected when
either: one assignment shares a large subset of code with
another [5] (e.g. via copy and paste); or one assignment is
a complete copy of another [6]. However, plagiarism can
be a difficult and time-consuming task to identify [7], often
requiring a large effort on the part of academics to review and
assess assignment submissions for plagiarism.

To aid in the detection of source code plagiarism, many
Source Code Plagiarism Detection Tools (SCPDTs) [8], [9]
have been proposed. A SCPDT analyses a pair of assignment

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tan .

submissions to identify indications of plagiarism. This is
typically by evaluating the similarity of submission pairs
by measuring specific aspects of source code. The mea-
sured aspects of source code are SCPDT-dependent, how-
ever, in most SCPDTs, the similarity score indicates what
percentage of one submission can be found in another.
Subsequently, a high similarity score implies plagiarism has
occurred (due to a large overlap of source code), a mid-
range similarity score may imply students have collabo-
rated on an assignment (a form of academic misconduct),
while a low similarity score implies plagiarism has not
occurred.

A plagiarising student may attempt to hide the act of
plagiarism by applying source code transformations to a mis-
appropriated assignment. This is in order to make the misap-
propirated assignment appear superficially distinct in order to
evade detection. Such source code transformations are typi-
cally cosmetic in nature, in that they change the appearance
and structure of the source code [6], [7], [10], but retain the
original behaviour of the plagiarised assignment. In this work,
such transformations are referred to as plagiarism-hiding
transformations. Subsequently, it is desirable for a SCPDT
to be:

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 50391

https://orcid.org/0000-0002-3004-5563
https://orcid.org/0000-0002-6693-0433
https://orcid.org/0000-0001-9135-1356
https://orcid.org/0000-0001-5146-4807

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

1) Robust to plagiarism-hiding transformations.
2) Accurate detecting plagiarised and transformed

works.
Robustness and accuracy are related but distinct qualities

of a SCPDT. A SCPDT is robust when it can accommodate
for plagiarism-hiding transformations. This will result in a
SCPDT reporting a high similarity between a plagiarised
assignment with applied source code transformations and its
source. Similarly, a SCPDT is accurate when it measures a
high level of similarity between a plagiarised assignment and
its source to imply plagiarism is present; while also measur-
ing a low similarity between unrelated works, implying that
plagiarism is not present.

A SCPDT can gain robustness to plagiarism-hiding trans-
formations by ignoring aspects of source code that plagia-
risers commonly modify (e.g. ignoring comments or iden-
tifiers in source code [11]). However, if a SCPDT ignores
too many aspects of a program, the SCPDT may measure
greater similarity between unrelated works. This can result in
the SCPDT being inaccurate by indicating unrelated works as
being plagiarised (a false positive). Conversely, if a SCPDT
is not robust to plagiarism-hiding transformations, and anal-
yses aspects of source code that change due to plagiarism-
hiding transformations, a SCPDT may become too reserved
in measuring similarity. This can result in the tool failing
to measure a high enough similarity to indicate plagiarism
(a false negative). Therefore, a SCPDT should be both robust
and accurate in the detection of plagiarism.

Although existing SCPDTs are largely robust and accurate
in the presence of plagiarism-hiding transformations, they
are vulnerable to pervasive plagiarism-hiding transforma-
tions [12]. Pervasive plagiarism-hiding transformations rep-
resent extreme cases of plagiarism-hiding transformations,
where a plagiariser has applied source code transformations
entirely throughout a body of source code, transforming
it such that it bares little cosmetic or structural similarity.
Such transformations can greatly impact upon the ability of
SCPDTs to measure similarity. Subsequently, when a plagia-
rised work is pervasively transformed, SCPDTs can report
a low enough similarity that it does not raise suspicion of
plagiarism [12].

To address this issue, this article presents a novel approach
to source code plagiarism detection (SCPD) titled BPlag.
BPlag finds indications of plagiarism through the analysis of
behavioural similarity between two programs as expressed
through their source codes. At no point is the source code
of two programs directly compared to measure similarity.
Instead, the execution behavior of two programs (in terms
of how data is used and transformed, and how the program
interacts with the execution environment) is used to derive
a measure of behavioural similarity. BPlag applies symbolic
execution to record a programs execution behaviour. The
behaviour of a program is represented in a novel graph-based
format that is used to evaluate similarity of two programs, and
subsequently identify indications of plagiarism. By applying
the utilizedmethod of evaluating similarity, BPlag is shown to

be both robust to plagiarism-hiding transformations in source
code, and accurate in the detection of pervasively transformed
plagiarised assignments.

In this work, BPlag is limited to the detection of source
code plagiarism in Java programming assignments. This is
as the current implementation of BPlag is modeled after the
design of the Java Virtual Machine (JVM), and is hence
limited to the analysis of Java source code. However, the fun-
damental principles of the approach can be applied to any
similar high-level programming languages (e.g. C#, Python)
by utilizing an appropriate symbolic execution tool. The
implementation of BPlag is available at [13].

The remainder of this article is structured as followes.
Section II presents background on approaches to measur-
ing program similarity and plagiarism-hiding transforma-
tions. Section III discusses the use of behavioural similarity
for SCPD, and its expected benefits. Section IV presents
the design and justification of BPlag. Section V presents a
comprehensive evaluation of BPlag in comparison to five
commonly used SCPDTs. Sections VI and VII discuss the
significance of BPlag and compare it to related works. Lastly,
section VIII concludes this article and identifies future direc-
tions of work.

II. BACKGROUND
A. MEASURING PROGRAM SIMILARITY
Approaches to measuring the similarity of two programs
can be broadly classified by what aspects of the programs
are being compared. While there are many unique and
novel approaches for measuring similarity, in this work
they are generalised as being either: structural, semantic or
behavioural.

Structural approaches measure similarity by identifying
common structures in source code. In its most basic form,
structural similarity can be measured with textual strings.
This is by applying techniques such as string edit dis-
tance or string alignment to measure the similarity of source
code [7], [15]–[17]. However, it is more common to see struc-
tural similaritymeasuredwith the comparison of lexical token
sequences, representing the structure of the source code in
terms of important lexical elements. Subsequently, structural
similarity can be measured with token edit distance or tiling-
based approaches [7], [11], [18]–[21]. Other approachesmea-
sure the structural similarity of parse trees or abstract syntax
trees, representing the source code within the grammar of a
programming language [22]–[24].

Semantic approaches measure similarity through the
meaning of source code. This is through semantic analy-
sis, that analyses source code to extract information not
expressed through the grammar of a programming language.
Semantic approaches typically analyse a program through
program dependence graphs [25]. The program dependence
graph identifies the relations between terms within a pro-
cedure or method. Subsequently, the similarity of these
graphs can be calculated (e.g. with graph edit distance or

50392 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

sub-graph embedding) to identify indications of plagiarism
(e.g. [26]–[28]). While other methods include applying latent
semantic analysis to identify similarly referenced terms [29]
or identifying similar call graph structures [30]. Other
works sometimes term semantic approaches as measuring
behavioural similarity (e.g. [14]). However, in this article,
a behavioural approach formeasuring similarity is considered
to require dynamic (i.e. runtime) analysis of a program.

Behavioural approaches analyse the runtime behaviour of
a program. There exist a diverse range of techniques that can
be applied to identify behavioural similarity. For example,
analysing the functional equivalence of a program [14], [31],
the use of data at runtime [32], identifying similar interactions
with the execution environment [33], or identifying similar
program logic [34], [35]. Such approaches are based on the
assumption that the behaviour of a program is a uniquely
identifying feature, and that similar behaviours indicate sim-
ilar programs.

B. PLAGIARISM-HIDING TRANSFORMATIONS
Plagiarism-hiding transformations are very broad. There is
are countless methods that can be used to modify a program
such that plagiarism can go unnoticed. Joy and Luck [7]
provide examples of source code transformations used by stu-
dents to hide plagiarism. These transformations are grouped
as lexical (i.e. cosmetic) and structural changes. For example,
lexical changes modify identifiers or the formatting of source
code; while structural changes modify statements and expres-
sions in source code. A commonly referenced taxonomy
of source code transformations applied to hide plagiarism
was presented by Faidhi and Robinson [10]. This taxonomy
categorises transformations into six levels:

L1) Changes to comments and indentation.
L2) Changes to identifiers.
L3) Changes in declarations (e.g. declaring extra constants,

changing the order of functions and variables).
L4) Modifying functions (e.g. modifying signature, merg-

ing and creating new functions).
L5) Changing program statements to semantic equivalents

(e.g. for to while, if to switch).
L6) Changes in decision logic and modifying expressions.

In this taxonomy, each level of transformation includes the
transformations of the previous. For example, L6 transforma-
tions also include all L1 to L5 transformations. Each level of
transformation implies a greater difficulty in application to
preserve the original program correctness, and hence requires
a greater understanding of the program. However, it does not
imply that higher levels of obfuscation require more effort,
nor that it has a greater impact on reducing similarity. The
lower levels are more typical of novice programmers, while
higher levels are more representative of skilled programmers.

The majority of these transformations do not modify the
execution behaviour of a program. This is as a plagiariser is
commonly somebody who is either: inept, lazy or time-poor
[7], [36], [37]. In order to correctly modify the behaviour

of a program, the plagiariser would have to take the time to
understand the program and be skilled enough not to break
it in the process. Hence, typically the original behaviour of a
plagiarised program remains largely unchanged.

III. BEHAVIOUR FOR ACADEMIC SOURCE CODE
PLAGIARISM DETECTION
When analysing program behaviour for identifying indica-
tions of plagiarism, it raises the question of what aspects
of behaviour are most appropriate for measuring similarity.
Zhang et al. [34] describe program behaviour at a high level as
‘‘input, output and the computation used to achieve the input-
output mapping’’. This serves as a basis for use in source
code plagiarism detection. However the nature of assignment
submissions need to be taken into account before applying
behavioural analysis to SCPD.

All assignment submissions implementing the same
assessment task are all inherently behaviourally similar. This
is as they implement the same assignment specification,
meaning it can be expected that all submissions for the same
assessment task will accept the same inputs, and if correctly
implemented, produce the same outputs. The mapping of
inputs to outputs as a method of measuring similarity is
termed functional equivalence, i.e. programs A and B are
functionally equivalent if given inputs I , they both produce
outputs O. Therefore, comparing the behaviour of a program
with functional equivalence is not suitable in source code
plagiarism detection, as it would result in all correctly imple-
mented submissions being detected as identical.

By discounting input and output, the ‘‘computation used to
achieve the input-output’’ needs to be considered in how it can
be represented and applied to measure similarity. To derive
a behavioural representation of the computation of a pro-
gram, the nature of the program is considered from a high
level object-oriented perspective, and contrasted with a low-
level procedural perspective. This is exemplified using Java,
as Java SCPD is the focus of this work. From an object-
oriented perspective, a program is a series of objects com-
municating. Each object has state (data) and relations that are
transformed through the execution of a program. However,
from a procedural perspective, a program is fundamentally a
series of primary operations on primitive values, causing it to
change state. Both perspectives share the calling of services
from the execution environment through method calls, and
passing and receiving data in the same process.

Java is an object-oriented language, and as such, there is a
wealth of knowledge expressed in the object-oriented design
of the program. Such knowledge indicates how a problem
(i.e. an assignment specification) has been modelled by a pro-
grammer and is subsequently implemented. This is expressed
in how objects are composed, interact and the logic defined
within them. Therefore, the object-oriented nature of the
program needs to be considered by representing the compo-
sition of objects and the relations between them. To describe
the procedural nature a program, it is considered in terms
of binary instructions as Java bytecode. The Java bytecode

VOLUME 9, 2021 50393

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

instruction set1 describes three categories of instruction:
data-oriented (create/read/store values), arithmetic-oriented
(mutate values with mathematical or logical operations),
and branching-oriented (conditional execution and method
calls). These categories of instructions allow for describ-
ing the behaviour of a program through three important
aspects: data, the transformation of data, and the invocation
of methods. These three aspects essentially describe a pro-
gram from a procedural perspective. If these perspectives are
combined, the behaviour of a program, while also including
a high-level object-oriented design can be described as three
aspects:

1) Data and its relations.
2) The transformation of data through arithmetic

operations.
3) Interactions with the execution environment.
Fundamentally, a Java program is no more than these three

aspects. Hence, they are an potential method of describing
the computation of a Java program. Using this model, two
behaviourally-equivalent programs have the same design,
implement the same processes, and execute the same oper-
ations at runtime. This model will be used for analysis and
measurement of behavioural similarity of Java programs,
applied for SCPD. However, this model can only be termed
to provide an ‘approximate’ representation of the execution
behaviour of a program. The term ‘approximate’ is used as
there are other aspects of execution behaviour that have been
analysed in prior works, but not included here. For example
prior works have analysed: input-output relations [34], exe-
cuted instruction sequences (i.e. execution traces) [38], stack
usage patterns [39], heap structures [40], and API method call
sequences [33], [41]. However, these three analysed aspects
are sufficient for representing behaviour for source code
plagiarism detection. This will be demonstrated through the
evaluation of the proposed SCPDT, BPlag, that implements
this model (Section V).

A. BEHAVIOUR AND ITS ROBUSTNESS TO
PLAGIARISM-HIDING TRANSFORMATIONS
Analysing program behaviour is expected to be most ben-
eficial in the detection of plagiarism with pervasively
applied structural transformations. Structural transformations
are equivalent to L3+ transformations from Faidhi and
Robinson’s [10] taxonomy. Such transformations modify the
appearance and structure of source code, but not behaviour.
Applying pervasive structural transformations is expected to
be performed by ‘‘skilled but time-poor’’ plagiarisers. This is
a student who has the skills to implement an assessment item,
but does not have the time or motivation to do so.

It is conceivable that such a student has the skills to perva-
sively transform source code such that it no longer warrants
suspicion of plagiarism. Cheers et al. [12] noted that with the
use of modern integrated development environments, many
automated source code transformations can be applied to

1https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html

a misappropriated assignment in order to transform it such
that currently available SCPDTs would not measure a high
enough similarity to warrant suspicion. Such transformations
took approximately 1-2 hours to apply, being much less time
than a typical major programming assignment.

While it is easy to transform the structure of a pro-
gram, it is argued that it is much more difficult to trans-
form the behaviour of a program to evade detection. Using
the utilized aspects of behaviour, in order to change the
execution behaviour of a program into an unrecognisable
form, a plagiariser would have to gain intimate knowl-
edge of a misappropriated work and reverse engineer it into
a functionally-equivalent but a behaviourally-distinct form.
This means a plagiariser would have to transform the imple-
mentation of a programs execution behaviour such that it uses
a different data model, different process of transforming data,
and different interactions with the execution environment;
while retaining the original input-output relations. To do so,
the plagiariser would effectively have to rewrite significant
portions of the mis-appropriated program. When considering
the motivations of a plagiariser, it is unlikely they would
spend so much time to hide their plagiarism.

IV. BPlag
BPlag models the behaviour of a program using the three
identified aspects: data and its relations; the transforma-
tion of data through arithmetic operations; and interactions
with the execution environment. Data is considered to be a
value in memory, that may be a primitive value or complex
object. Complex objects have Relations, indicating concepts
such as aggregation and ownership. Transformations occur
when primary operations are executed upon primitive values
(through language operators). Interactionswith the execution
environment are calls to library methods (as the implementa-
tion of BPlag is for Java SCPD, the execution environment
is the JVM, and library methods are defined in .jar files).
By combining both high-level and low-level perspectives of
a program, this allows for representing an approximation of
program behaviour as a reflection of a program’s conceptual
design and implementation. Subsequently, this allows for a
behavioural approach to SCPD that can differentiate between
programs that are behaviourally similar due to implementing
the same specification, and those that are behaviourally sim-
ilar due to plagiarism; in a manner that is both robust and
accurate.

The design of BPlag is divided into two phases. Firstly,
assignment submissions are analysed to derive an approxi-
mate behavioural representation. Secondly, the behavioural
representation of all programs are analysed for similarity.
Fig. 1 presents an overview of this process. This is decom-
posed into three main components:

1) A symbolic execution tool to record and extract a pro-
gram’s execution behaviour.

2) A component to construct the behavioural represen-
tation of a program as a set of Program Interaction
Dependency Graphs [42] (PIDG).

50394 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

FIGURE 1. Overview of BPlag. Firstly, assignment submissions are
analysed and transformed to represent program behaviour. Secondly,
the submissions are compared for behavioural similarity, reporting a list
of similarity scores.

3) A component to evaluate analyse the similarity of two
programs by comparing PIDGs.

The behaviour of a program is extracted through sym-
bolic execution [43]. Symbolic execution is a program testing
and validation technique that simulates the execution of a
program. Typically it is applied to determine what set of
inputs cause specific code to be executed in a program. BPlag
applies symbolic execution to analyse and record the execu-
tion behaviour of a program. The behaviour of a program
is extracted as a set of execution traces, recording impor-
tant execution events. The execution traces extracted from
a program are used to construct a set of PIDGs. A single
PIDG represents the behaviour of one execution of a program,
identifying the utilised data and its relations, how the data
is transformed and mutated, as well as interactions with the
execution environment as API method calls. A set of PIDGs
are used to represent the entire behaviour of a program across
all possible executions. The behavioural similarity of two
programs can then be evaluated by comparing the sets of
PIDGs for similarity. This is by identifying similar data with
similar relations, that are transformed by similar operations
and are used in similar interactions with the execution envi-
ronment. The following sub-sections describe each compo-
nent of BPlag in further detail.

A. SYMBOLIC EXECUTOR
The symbolic executor component simulates the execution of
a program. It is the core component of BPlag that enables
the recording of execution behaviour. Symbolic execution is
applied in BPlag as it is perceived to provide greater coverage
in the analysis of execution behaviour. To derive a compre-
hensive behavioural representation of a program, all possible
execution paths of a program need to be explored. If concrete
execution (i.e. ‘conventional’ execution) was applied to anal-
yse behaviour, it would require providing a large set of test
inputs to recordmultiple execution paths under different input
sets. This was deemed infeasible for a SCPDT. However,
recording all potential execution paths is easily afforded with
symbolic execution. This is achieved by providing symbolic

FIGURE 2. Symbolic executor design. The symbolic executor is modelled
after the JVM, but implemented as a tree-walk interpreter.

values as input to the program, causing it to execute all possi-
ble execution paths. Hence, with symbolic execution, BPlag
can analyse any valid Java program without user-provided
test inputs.

The purpose-built symbolic executor is designed for
recording the three aspects of behavioural similarity anal-
ysed by BPlag. As such it enables fine-grained analysis of
a program’s execution behaviour, and is optimised for the
requirements of a SCPDT. Fig. 2 presents the design of the
symbolic executor. The symbolic executor is modelled after
the Java 8 virtual machine. However, instead of accepting
Java bytecode as input (as per existing symbolic execution
tools), it accepts Abstract Syntax Trees (AST) that are inter-
preted. ASTs are parsed using the Eclipse JDT toolkit2 and
interpreted with a simple tree-walk. Technically, this compo-
nent is architected as a ‘symbolic source code interpreter’.
Hence, it would be more appropriate to term it a ‘symbolic
interpreter’ (as a Java symbolic executor would execute Java
bytecode), however for simplicity, it is referred to as an
executor.

The symbolic executor supports exploring all potential exe-
cution paths defined by a program. The executor encapsulates
the state of a single execution path in an execution context.
The execution context maintains a stack of execution frames,
each containing: the instructions being executed, operands
the instructions execute upon, a reference to the class area
(also referred to as the meta-space), and the heap area (where
object types are stored). When the executor encounters a
branching statement (i.e. if or switch), it will clone the current
context (containing the execution frame stack, class area and
heap area), enabling a fork to explore all subsequent paths
independently.

The symbolic executor only supports executing source
code, it does not execute Java bytecode. Subsequently, all
interactions with the execution environment (as API method
calls) are stubbed. For example, when calling a method
defined in source code, it is executed as appropriate; however,
calling an API method call (defined in a .jar file) results in
a stubbed interaction. Subsequently, when an API method
is invoked, the invocation is recorded and symbolic data is
returned as appropriate. This was deemed appropriate as the
approach is only concerned with representing the behaviour
of the user-written program expressed through source code.

2https://www.eclipse.org/jdt/

VOLUME 9, 2021 50395

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

FIGURE 3. Types of data utilised by the symbolic executor component.

The behaviour of an API method is not considered important
in this context.

Data (see Fig. 3) is modelled by the executor as either val-
ues or objects. Values are one of the eight Java primitive types
(byte, short, int, long, float, double, char, boolean). Objects
(and arrays) are Java reference-types. Both values and objects
come in ‘symbolic’ and ‘concrete’ variants. A concrete value
is well-known at runtime (i.e. can be resolved to an exact
value); similarity, concrete objects are of a well-known type
with a well-defined set of fields. Conversely, a symbolic value
is represented as a symbol that has mathematical constraints
upon it; while symbolic objects have the potential to have
fields dynamically ‘created’ and assigned to. Arrays are spe-
cial cases of objects and are considered symbolic as any
interaction can result in storing a value at an index represented
by a symbolic value. As a generalisation, concrete data is
created directly in user-defined code and have well-known
values; while symbolic data is created by interactions with
the execution environment.

TABLE 1. Recorded Execution Trace Events.

The executor records important events that reflect a pro-
gram’s behaviour, listed in table 1. These events form the
execution trace, identifying what data is used, how it is trans-
formed, and how the program interacts with the execution
environment. Most recorded events correspond to language-
level statements, and occur during both concrete and sym-
bolic execution. This allows for recording what data is used

during execution, the relations between data, how it is trans-
formed, and any interactions with the execution environment.
The only unique events recorded by the symbolic executor
are ‘‘asserted constraints on symbolic values’’. This is used
to narrow the mathematical range a symbolic value could
be in, as by definition, a symbolic value by definition does
not have a well-known value. However, if it is used in a
conditional expression (e.g. in an if branch), the executor is
required to assert that it is either true or false, and continue
along the appropriate execution path. In the current imple-
mentation of the symbolic executor, both cases are explored
independently (i.e. with a conditional value asserted as true
and false). However, such assertions are not used by BPlag
to measure similarity, as conditional constraints are not an
analysed aspect of behaviour.

1) COMPARISON WITH EXISTING SYMBOLIC
EXECUTION TOOLS
There exist many Java symbolic execution tools that could
have been applied in BPlag. For example, JPF3, JDart4, and
JBSE5. However, a custom-built symbolic execution tool is
used due to three main quality concerns:

1) Computational complexity of existing tools.
2) Impacts of compilation on execution behaviour.
3) Quality of student assignments for analysis.
Firstly, existing symbolic execution tools are designed for

applying symbolic execution to program testing. In particular,
they seek to identify the constraints on inputs that result
in certain execution paths to aid software quality activities
such as software testing or identifying bugs in code [43].
Analysing the constraints placed upon inputs requires the
use of a constraint solver that can determine if encountered
path conditions are mutually compatible/exclusive. Solving
constraints is a computationally intensive process, and is not
required by BPlag. Furthermore, existing symbolic execution
tools execute all Java bytecode, even that provided as part of
system libraries. BPlag is not concernedwith the behaviour of
system libraries, hence by stubbing their interaction it lowers
the amount of computation. Hence, a custom built tool that
omits constraint solving and library bytecode execution was
deemed to provide greater efficiency.

Secondly, during the compilation pipeline, compilers are
known to optimise source code. While the standard Java
compiler is known not to optimise bytecode, it was observed
that it may rewrite and transform conditional code. In order
to eliminate any risks associated with using compiled code,
it was deemed that a source code interpreter would be appro-
priate. Furthermore, as BPlag is a SCPDT, it was desirable to
record program behaviour as expressed through source code,
and not as bytecode.

Thirdly, the quality of student code is known to vary. It is
not uncommon to see assignment submissions with syntactic

3https://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
4https://github.com/psycopaths/jdart
5http://pietrobraione.github.io/jbse/

50396 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

or semantic errors in them. If an existing symbolic execution
tool was applied, it would stop BPlag from analysing such
submissions; as it would require analysing only compilable
assignments. When using a source code interpreter, there is
the potential for submissions with syntactic or semantic errors
to be partially-evaluated. In a best-case scenario this would
result in some execution paths terminating early, while in
a worst case scenario this would prohibit assignments from
being compared. Furthermore, as most existing SCPDTs only
require submissions to be parseable, this was another desired
quality of BPlag.

The symbolic executor also makes some assumptions
regarding the execution of any program to accommodate for
the quality of student code. This is for largely for stability, and
to bring assurances that any analysed program will terminate.
Firstly, the execution of any loop (i.e. for, enhanced for, while,
do-while) is limited to at most n executions (default n = 3).
This ensures that there are no infinite loops, as not all loops
have well-defined exit conditions identifiable through sym-
bolic execution. This avoids repeating the behaviour of the
loop when represented as a PIDG under such circumstances.
Secondly, any recursive method will execute at most m times
(default m = 2). This is to ensure that there is no potential
for infinite recursion. This is often seen when calculating a
value or searching for a value with a recursive algorithm.
Thirdly, no object or field will ever be null, unless null is
explicitly assigned. This is to account for cases where fields
have an assigned value that is not exposed to the symbolic
executor. Subsequently, when a null field is encountered,
a symbolic value is created in its place. Finally, array indexes
are never out of bounds, and will always contain a value
(i.e. will never be null). This is to account for situations
where an array index is accessed by a symbolic value. In such
situations the index value is ambiguous, and hence a symbolic
value is returned.

B. REPRESENTING PROGRAM BEHAVIOUR
BPlag utilises the Program Interaction Dependency
Graph [42] (PIDG) to represent program behaviour for eval-
uating similarity. The PIDG combines the representation of:
data and its relations, the transformation of data, and inter-
actions with the execution environment; into a single graph-
based format. A PIDG is defined as a labelled directed graph,
G = (N ,E), where N is the set of labelled nodes and E is
the set of directed edges. All nodes on the graph are of one of
four types, listed in table 2a. The edges between PIDG nodes
represent how data is utilised in the execution of the program.
These represent the dependencies between data (how it is
composed), the transformation of data and interactions with
the execution environment. Edges conform to one of 5 types,
listed in table 2b. The nodes of the PIDG contain semantic
attributes to aid in the analysis of the graph for similarity.
These attributes attempt to provide context to how the node is
used in the program. The list of possible attributes are listed
in table 2c. To enable fine-grained analysis of the graph in
determining the scoping and life-cycle of data, life-cycle flags

TABLE 2. Description of PIDG elements.

are recorded for Data nodes. Valid Data node flags are listed
in table 2d.

By expressing program behaviour as PIDGs, linearity is
removed from the representation of a program. All programs
are inherently executed in sequence. However, the behaviour
of a program does not need to be represented linearly.
By removing linearity, it allows BPlag to analyse program
behaviour irrespective of how the program is structured.

It is argued that this method of program representation is
sufficient to correctly differentiate between maliciously and

VOLUME 9, 2021 50397

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

TABLE 3. Mapping of execution trace events to PIDG elements.

FIGURE 4. Example of a password hashing function (left) when represented as a PIDG (right). Solid node indicates the entry point. Empty nodes
indicate Data. Dashed node indicates Operator. Square node indicates API Method Call. Solid arrow indicates Supplies. Dashed arrow indicates
Transform. Diamond arrow indicates Aggregation. Round arrow indicates Scope.

innocently similar programs. It is unlikely that given two
students working on a complex assignment in parallel that
they will implement it with the same data model (i.e. rela-
tions between data). Likewise, it is unlikely they will process
data in the same form, and subsequently write a program
that utilises the same library calls identically. It is expected
that two unrelated programs may exhibit similarity in these
three aspects, however, it is not expected that any two given
programs will have identical representations unless they have
been plagiarised.

1) GRAPH CONSTRUCTION
A single PIDG is created for each execution trace returned
from the symbolic executor component. An individual PIDG
represents the behaviour of a program over a single execu-
tion. This is in a ‘flattened’ manner, representing the utilised
data and relations, its transformation, and interactions with
the execution environment. An individual PIDG does not
describe the branching of a program. However, a set of
constructed PIDGs represents the execution behaviour of a
program over all possible executions.

The PIDG is constructed by mapping runtime events
(recorded by the symbolic executor) to graph components.
Table 3 describes the mapping of each event to elements in
the constructed graph. The first node created in any graph
is the Entry point node. This is followed by the inclusion
of any entry point parameters. The recorded runtime events
are subsequently mapped to graph elements, representing
program behaviour in terms of data and its relations, how it

is transformed, and interactions with the execution environ-
ment. Object, Array and Symbolic Value nodes appear once
per graph (as they are unique). Concrete Value nodes are
duplicated on each reference, allowing for the same primitive
value to appear multiple times. API Method Call and Opera-
tor nodes are created for each distinct usage.

2) WORKED EXAMPLE
Fig. 4 exemplifies representing a program as a PIDG. This
example exemplifies the hashing of a password and with
an appended salt value. A User object (User@0) and Hash-
Function object (HashFunction@1) are passed to the method
call ‘hashPassword’ as entry point parameters. The fields
‘password’ (String@2) and ‘salt’ (String@3) are implicitly
retrieved from the ‘user’ object (User@0) (it is assumed the
User class is defined in source code, and hence the getter
methods are followed upon invocation). The salt password
and salt values are then string concatenated (i.e. the ‘+’ oper-
ator) into the variable ‘input’ (String@4). This value is then
passed to the ‘hash’ function (hash(String)), resulting in the
hashed representation stored in variable ‘hash’ (String@5).
In this example all values are symbolic and the program
contains only 1 execution path as there are no branching
statements. If the program contained branching statements,
it would be represented by multiple PIDGs.

C. MEASURING BEHAVIOURAL SIMILARITY
BPlag applies a bottom-up approach to evaluate the similarity
of two programs. It starts by evaluating the similarity of all

50398 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

PIDGs between two programs. Given programs A and B,
with PIDG sets PA and PB, the pairwise similarity of PIDGs
between the two programs is calculated with the PIDG sim-
ilarity function, simg(X ,Y) (described in the following sub-
sections). PIDGs are then mapped between programs A and B
based on their highest evaluated similarity, i.e. PIDG ax ∈ PA
is mapped to PIDG bx ∈ PB if simg(ax , bx) is the maximum
of all PIDGs contained in PB. By identifying the highest
similarity between two PIDGs, this is considered an indica-
tion of potentially similar execution behaviours between two
programs. The mapping of PIDGs is not exclusive, mean-
ing each PIDG may be mapped to multiple other compared
PIDGs. This is to account for cases where one execution
path may be executedmultiple times due to plagiarism-hiding
transformations.

The similarity of two programs is then calculated as the
average similarity of the best-mapped mapped PIDGs. This
similarity value is then considered to represent the approxi-
mate similarity of two programs. The approach for evaluat-
ing the similarity of two PIDGs is defined in the following
sub-sections.

1) PIDG COMPARISON PROCESS
A common method to evaluate graph similarity is to iden-
tify isomorphic sub-graphs. While accurate, sub-graph iso-
morphism suffers from high computational complexity and
does not scale to large graph sizes [26], [44]. As the PIDG
has the potential to contain a large number of elements,
sub-graph isomorphism is not an applicable method for eval-
uating the similarity of PIDGs. To compare the PIDGs effi-
ciently, an approach was developed that takes advantage of
the semantics between two programs. The graph comparison
approach maps data nodes between two graphs by their local
usage. The approach begins by mapping points-of-reference
between two graphs (i.e. API method calls and primary oper-
ations) and incrementally expands out, mapping nodes and
edges with similar local usages between two graphs.

This approach effectively identifies common sub-graphs
between two PIDGs. It is reminiscent of token-tiling (as com-
monly used in SCPDTs [11]). However, applies this concept
to the tiling of graph nodes and edges. The similarity of two
execution traces is then measured by the size of overlapping
sub-graphs. This is considered to represent the quantity of
behaviour in common between the programs in a single exe-
cution trace. Subsequently, the similarity of two programs can
be evaluated by the overall similarity between all extracted
PIDGs.

PIDGs are compared in a two-step iterativemanner. Firstly,
points of reference are mapped between two graphs, indicat-
ing areas that may be semantic matches. Secondly, the map-
ping between two graphs is iteratively expanded by exploring
the graph outwards from the set of mapped nodes and subse-
quently expanding the mapped nodes and edges until no more
nodes can be mapped.

The usage of primary operators and API method calls are
considered as points of reference between two programs.

This is as in any two sufficiently complex programs, it can
be guaranteed there will be some usage of primary operators
and API method calls. By iterating out from these points of
reference, two graphs can be mapped with greater efficiency
than using sub-graph isomorphism. In all comparisons, two
nodes are considered potential matches if:
• They have the same node type, semantic attributes
(excluding runtime type if the type is defined in source
code), and flags; and

• They are connected by the same type of edge to the last
mapped node they are connected to.

2) PIDG MAPPING PROCESS
Firstly, the initial mappings between the two graphs are iden-
tified. Let A, B be the set of all operator and API call nodes in
graphs X and Y . The elements a ∈ A and b ∈ B are compared
pairwise if they are considered a valid match. The similarity
of a and b is then calculated by the percentage of immediate
neighbours that may also constitute valid matches. This set
of candidates is then mapped by the optimal assignment of
their evaluated similarity scores. This results in the initial set
of all mapped primary operator and API call nodes, and their
immediate neighbours.

Secondly, the mappings between the two graphs are itera-
tively expanded. Each node a ∈ Ma and b ∈ Mb (where Ma
and Mb are the sets of last mapped nodes in X and Y respec-
tively) are compared pairwise for similarity. The similarity
of the nodes is once again calculated by the percentage of
valid mappings of immediate neighbours to the current node,
that are then mapped pairwise. This process is continued at
increasing depths from the initial mapped points of reference
until the sets of last mapped nodes are empty (i.e. there are
no more nodes that can be mapped).

The evaluated similarity of two graphs is reduced to being
the intersection between the graphs. This is the number of
elements that can be mapped between the graphs as a percent-
age of the total size of the two graphs. For example, given two
graphsX and Y with amapped sub-graphX∩Y , the similarity
of X and Y is evaluated as:

simg(X ,Y) =
2× |X ∩ Y |
|X | + |Y |

The utilised algorithm is designed for speed as opposed
to accuracy. Hence, it is a heuristic. If the initial points
of reference are not mapped correctly in the first step,
there is the potential that sections of the graph will not be
mapped correctly. Furthermore, if there are dis-connected
components of the graphs that do not contain primary opera-
tors or API calls, they will not be mapped. However, in pilot
evaluations this has minimal impact on the evaluation of
similarity.

D. ACCOMMODATING FOR PLAGIARISM-HIDING
TRANSFORMATIONS
It is expected that BPlag is robust against L1-L5 transfor-
mations as BPlag focuses on the behaviour of a program.

VOLUME 9, 2021 50399

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

This is as all such transformations are cosmetic or structural,
and do not affect the behaviour of a program. However,
L6 transformations are expected to have an impact upon the
approach. L6 transformations consist of changes to decision
logic (e.g. the condition applied to an if statement) and mod-
ifying expressions (e.g. changing the order of operations).
BPlag is in theory, robust to L6 transformations on the condi-
tion that such transformations do not change the behavioural
representation of a program. However, if transformations
introduce functionally-equivalent but behaviourally-distinct
code, BPlag is expected to see an impact on the evaluation of
similarity.

Changing the decision logic of a program would not
grossly affect BPlag, as long as it results in the same
code executed. The only impact is if the condition value
itself is modified. For example, if a relational operator is
flipped as part of an if condition, it would result in a minor
difference in behaviour. By flipping relational operations,
functionally equivalent code is executed, but it is not the
same behaviourally as a different operator is used. However,
assuming this does not affect the overall execution behaviour
of a program, such transformations would have minimal
impact on the overall similarity of a program.

Conversely, modifying expressions can have a large impact
on the approach. Many functionally-equivalent transforma-
tions may be applied to change the recorded execution
behaviour. For example, consider equivalent methods of read-
ing from a file in Java using the Files, FileReader and
FileInputStream APIs. These are functionally equivalent but
behaviourally distinct methods in terms of how they interact
with the execution environment. Hence, there is potential for
such transformations to evade BPlag by introducing func-
tionally equivalent code; that subsequently has a distinct
behavioural representation. However, this vulnerability to
functionally equivalent code is necessary in BPlag. If BPlag
were to identify plagiarism with functionally equivalent
code, it would risk identifying all assignments implementing
the same specification as being plagiarised. However, it is
expected that such transformations would have to be applied
through an entire program in order to evade detection by
BPlag. This is considered unlikely as rewriting a program to
be functionally equivalent but behaviourally distinct would
be a time-intensive task for a skilled but lazy plagiariser,
and would require a level of programming skill above that
expected from an inept plagiariser.

V. EVALUATION
A. DESIGN
The following evaluation is to show that in the presence of
pervasive plagiarism-hiding transformations, BPlag is both
robust and accurate, and is also reasonablly efficient at com-
paring programs for detecting plagiarsm. The evaluation is
broken down into three experiments. Experiment 1 evaluates
the approach for robustness to pervasive plagiarism-hiding
transformations. Experiment 2 evaluates the approach for

accuracy in detecting suspicious program pairs transformed
with pervasive plagiarism-hiding transformations. Experi-
ment 3 evaluates the approach for efficiency in the time taken
to evaluate program similarity.

1) COMPARED SCPDTs
BPlag is evaluated against commonly utilised SCPDTs. Ide-
ally, the approach would be evaluated against as many
SCPDTs as possible to ensure a thorough comparison.
However, as identified in prior works [9], [12], not all
SCPDTs are made available by their authors after publi-
cation. For this evaluation, six SCPDTs were identified as
accessible for reuse: MOSS [18], JPlag [11], Plaggie [19],
Sim [20], Sherlock-Warwick [7], Sherlock-Sydney [15].
However, from these six tools, only five could be consistently
used for the evaluation of similarity. Unfortunately, MOSS
proved to be unreliable in its use, as it cannot be run locally
(MOSS is only made available as a web service). In initial
evaluations, large data sets would cause MOSS to perform
unreliably when evaluating the pairwise similarity of all sub-
missions in the data sets. It was found that MOSS would
pause for large intervals, and subsequently fail to respond.
Hence, it could not be included in this evaluation. However,
in a prior study [12], MOSS performed with poorer results
than JPlag, but greater results than Sim; hence similar results
can be assumed in its absence.

JPlag [11] operates by applying a token tiling algorithm
to cover one source code file with tokens extracted from
another. If two source files have a large degree of coverage,
they can be considered similar and hence a candidate for pla-
giarism. Firstly, source code files are converted into a stream
of tokens. JPlag uses its own set of tokens that abstract stan-
dard language tokens to avoid matching the same token with
different meanings. Secondly, extracted tokens are compared
between files to determine similarity by the Running-Karp-
Rabin Greedy-String-Tiling algorithm [45] where tokens
from one file are covered over another within a tolerance of
mismatch. Program similarity is evaluated as the percentage
of tokens from one program that can be tiled over another
program.

Plaggie [19] is a tool that is claimed to operate similarly
to JPlag. However, it is an entirely local application, com-
pared to JPlag that was originally provided as a web service.
No known publication describes the operation of Plaggie;
however, from examining its source code, it operates upon
tokenised representations of code evaluating similarity by
token tiling.

Sim [20] analyses programs for structural similarity
through the use of string alignment. For two programs, Sim
will first parse the source code creating a parse tree. The tool
will then represent the parse trees as strings and align them by
inserting spaces to obtain a maximal common sub-sequence
of their contained tokens. The similarity of programs is then
evaluated as the number of matches.

Sherlock-Warwick [7] (Sherlock-W) implements both text
and tokenised comparison methods. In the tool, a pair of

50400 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

programs are compared for similarity 5 times: in their original
form, whitespace removed, comments removed, whitespace
and comments removed, and as a tokenised source file. In all
cases, the comparisons measure similarity through the iden-
tification of ‘runs’ - a sequence of lines common to two files
that may be interrupted by anomalies (e.g. extra lines).

Sherlock-Sydney [15] (Sherlock-S) analyses programs for
lexical similarity. Digital signatures of source code are gen-
erated by hashing string token sequences (not lexical tokens)
extracted from text files. The digital signatures are then
compared, with the similarity of files being evaluated as the
number of digital signatures in common.

2) DATA SET GENERATION
BPlag will be evaluated and compared against the five
SCPDTs using generated test data sets. A collection of base
programs will be used in each evaluation. These base pro-
grams are then used for the generation of simulated plagia-
rised ‘variants’ of the program. These variants are then used
in comparing the robustness and accuracy of the SCPDTs.

Ideally, the evaluation would be performed on a public
ground-truth data set containing known cases of undergradu-
ate plagiarism that are labelled with any applied plagiarism-
hiding transformations. However, to date, there exists no such
data set [9]. As an alternative, BPlag could be evaluated on
real collections of undergraduate assignment submissions.
However, there are three underlying concerns in the use of
real data sets of undergraduate plagiarism:

1) Using real data sets impacts upon the reproducibility of
any experimental results.

2) The difficulty in collecting significant quantities of real
cases of confirmed undergraduate plagiarism.

3) The quality of such cases in containing a diverse num-
ber of plagiarism-hiding transformations.

The first concern is a result of legal and ownership restric-
tions over the use of student works for research purposes.
At the authors institution, students retain ownership of their
assignments after submission, hence, any data sets could
not be shared for future use resulting to a lack of repro-
ducibility of the evaluations. By using generated test data,
a semi-reproducible method of test data is afforded, partially
addressing this concern.

The second and third concerns are a result of the unknow-
ingness associated with accurately identifying real cases of
plagiarism. In any real data set of assignment submissions,
there is no guarantee that there exists cases of plagiarism;
let alone plagiarism with a diverse range of plagiarism-hiding
modifications, that is sourced from students with diverse
skill sets. The most readily identifiable cases of plagiarism
are likely to be simple, with more advanced cases requir-
ing considerable effort and analysis. Furthermore, any indi-
cations of plagiarism must be confirmed by a third party,
who will investigate if or if not plagiarism has occurred [7];
but such identification is often confidential and cannot be
shared. Hence, by using generated test data, known cases
of simulated plagiarism can be generated, in significant

quantities, with well-known sets of applied plagiarism-hiding
transformations.

In consideration of these issues, generated data sets are
used for the evaluation of BPlag. This is to provide a semi-
reproducible and reliable method of evaluation, and will
be in a similar manner to prior works that have used data
set generation for the evaluation of code similarity tools
[46]–[48]. The test data sets will be generated using the tool
SPPlagiarise [49]. SPPlagiarise applies a randomly selected
set of source code transformations a random number of times
at randomly selected locations to a body of source code to
produce simulated plagiarised variant programs.

TABLE 4. SPPlagiarise Source Code Transformations.

To ensure the generated programs are representative of
undergraduate plagiarism, all implemented source code trans-
formations (listed in table 4) are referenced from prior liter-
ature [7], [10], [50], [51], and conform to the first 5 levels
of Faidhi and Robinson’s [10] transformation taxonomy.
Furthermore, all implemented transformations are of a struc-
tural and/or cosmetic nature, meaning they will transform the
appearance of a program to make it appear superficially dis-
tinct, inline with the goals and motivations of an undergrad-
uate plagiariser. However, the transformations do not affect
the correctness of the program. This is a requirement of the
generated test data as BPlag will often fail on non-compilable
programs. Additionally, most transformations are semantics-
preserving (i.e. they do not change themeaning of a program),
and largely retain the original execution behaviour of the base
programs. However, some variation is expected.

For this evaluation, SPPlagiarise has been extended to
afford the configuration of how pervasively source code
transformations are applied to the generated data sets. This
is to replace the random number of times transformations
are applied, allowing a semi-fixed number of time search
transformation is applied. The pervasiveness is represented as

VOLUME 9, 2021 50401

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

a transformation chance, a percentage value indicating how
likely a transformation will be applied at any valid location in
code. This allows for the evaluation of SCPDTs with different
intensities of plagiarism-hiding transformations.

B. EXPERIMENT 1: ROBUSTNESS TO TRANSFORMATION
The purpose of this experiment is to demonstrate that
BPlag is more robust to pervasive plagiarism-hiding trans-
formations than the five compared SCPDTs. Robustness
is considered to be the ability of a SCPDT to withstand
source code transformations. A more robust SCPDT will
experience a lower decrease in evaluated similarity due to
plagiarism-hiding transformations, compared to a less robust
SCPDT. This experiment does not evaluate robustness to
individual plagiarism-hiding transformations, instead, evalu-
ates robustness on average to each level of plagiarism-hiding
transformation.

1) DATA SET
Two groups of programs are used to evaluate robustness.
Group 1 consists of 5 undergraduate assignment submissions
implemented in Java that have been collected from GitHub
(previously used in [12]). Group 2 consists of a collection
of 24 samples of 4 families of algorithms implemented in
Java. These algorithm implementations consist of: 6 change-
making (2 dynamic programming, 2 iterative, 2 recur-
sive); 6 string search (2 Boyer-Moore, 2 Knuth-Morris-Pratt,
2 Rabin-Karp); 6 sorting (2 bubble sort, 2 merge sort, 2 quick
sort); and 6 Minimum Spanning Tree (2 Kruskal’s, 2 Prim’s,
2 reverse delete).

2) METHOD
Firstly, test data is generated using SPPlagiarise. The 29 test
programs (from data sets 1 and 2) are used as ‘base’ pro-
grams for the generation of simulated plagiarised ‘variant’
programs. Variant programs are generated with varying
configuration parameters, changing the levels of applied
transformations, and pervasiveness of applied transforma-
tions. For each base program, 3 sets of 150 simulated pla-
giarised variants are generated, consisting of: 10 L1 variants,
20 L2 variants, 30 L3 variants, 40 L4 variants, and 50 L5 vari-
ants. Each set of variants is generated with a transformation
chance of: 20%, 40% and 60%. This results in 450 variant
programs for each base program (13,050 variants in total),
enabling the measurement of SCPDT robustness to various
source code transformations with varying pervasiveness.

The number of variants generated at each transformation
level is increased to offset an increasing number of potential
transformations to be selected at each level. A large num-
ber of variants are generated to minimise the impact of the
randomness in the data set generation method. This reduces
the impact of any outliers (i.e. inconsistent decreases in sim-
ilarity caused by specific transformations) and allows for the
evaluation of tool robustness to transformation on average.
Higher transformation chances could be applied for generated
test data, however, the 3 utilised values are sufficient for this
experiment.

Secondly, robustness is evaluated bymeasuring the average
decrease in similarity of each variant compared to its base
program. The average decrease in similarity is considered
to represent the vulnerability of a SCPDT to transformation.
Hence, a SCPDT that shows a lesser decrease in similarity
is more robust than a SCPDT with a greater decrease in
similarity. An initial reading of similarity is first measured
for each base program by comparing it against itself with
each SCPDT. The similarity of each variant against its base
program is then measured. Subsequently, the decrease in
similarity of each variant from the initial similarity read-
ing is calculated. All decreases are then summed and aver-
aged based on the combination of transformation level and
transformation chance the variant was generated with. This
average decrease in similarity is then considered to represent
the vulnerability of a tool to the applied plagiarism-hiding
transformations.

The initial similarity value is considered to be the highest
possible similarity value each SCPDT can measure for a base
program compared to its variants. However, most SCPDTs
(BPlag included) utilise heuristics to afford fast compari-
son and hence may not measure a 100% initial similarity.
A SCPDT will not always evaluate a program as being 100%
similar to itself, hence this value offsets any errors.

3) RESULTS
Fig. 5 compares the average drop in similarity as evaluated
by each SCPDT for variants generated with the five levels
of transformation. Lower average drops in similarity are con-
sidered to represent greater robustness to source code trans-
formation. Over the three transformation chances, two trends
can be observed. Firstly, as the chance of transformation
increases, the average drop in similarity increases for each
level of transformation. Secondly, all tools begin to show a
sudden increase in the average drop in similarity for variants
constructed with L3 transformations. For all tools but BPlag,
this drop continues with the L4 and L5 transformations.

At the 20% transformation chance, most tools show
high robustness to transformation. All but Sherlock-W and
Sherlock-S fall within a tight range below 10% across all
5 levels of transformation. It can be seen that the average
drop in similarity slowly increases at higher levels of transfor-
mation. However, this is not significant, attributed to the low
transformation chance. At this transformation chance, there is
a negligible decrease in similarity, however, BPlag is slightly
more robust than all other tools.

At the 40% transformation chance, the tools begin to
show greater vulnerability to the plagiarism-hiding transfor-
mations. For variants created with the L1 and L2 transfor-
mations, all tools (excluding Sherlock-S and Sherlock-W)
demonstrate negligible decreases in similarity. However,
starting with the application of L3 transformations, the tools
suffer from a sharp and noticeable decrease in measured simi-
larity. For the five compared SCPDTs, this decrease continues
at the L4 and L5 transformations. However, for BPlag, this
decrease in similarity begins to stabilise. This implies that

50402 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

FIGURE 5. Average drop in similarity evaluated by each SCPDT for variants generated with each level of source code transformation.
Lower values indicate greater robustness to source code transformations.

at L3, certain transformations have a large impact on the
similarity of the variants as evaluated by BPlag. However,
the transformations applied to the L4 and L5 variants do not
impact upon BPlag.

The 60% transformation chance provides clear evidence
that BPlag has greater robustness to transformation. Initially,
for variants created with L1 and L2 transformations, all tools
(excluding Sherlock-S and Sherlock-W) again show negli-
gible decreases in similarity. However, for variants created
with the L3 transformations, a much larger average drop
in similarity is recorded for all tools. However, the greater
robustness of BPlag is demonstrated against L4 and L5 trans-
formations. Where the compared tools see a progressively
greater decrease in average similarity, BPlag maintains a
near-constant average drop in similarity. Technically, BPlag
shows slightly greater robustness to L4 and L5 transforma-
tions, however, this can largely be explained by the sample
size and is not significant.

In summary of these results, BPlag is shown to be more
robust to plagiarism-hiding transformations. The five com-
pared tools show greater vulnerability to transformation at
all levels of transformation, with all transformation chances.
This is opposed to BPlag that consistently ranks lowest in
terms of the average drop in similarity. However, BPlag
shows a sharp decrease in robustness to L3 transformations.
The lack of decrease in robustness to L4 and L5 transforma-
tions implies that BPlag is robust to such transformations.
This is expected, as L4 and L5 transformations do not mod-
ify the behaviour of a program. However, from the results,
BPlag is vulnerable to specific L3 transformations. On further
analysis, this is a result of ‘value-injecting transformations’:
transformations that result in new values represented on
PIDGs. Hence, a supplementary experiment is performed to
investigate their impact.

4) ROBUSTNESS WITHOUT VALUE-INJECTING
TRANSFORMATIONS
The drop in similarity against L3 transformations is largely
caused by two specific source transformations: ‘declare
redundant constants’, and ‘assign default value to variable

declaration’. Both of these transformations result in the addi-
tion of new values represented in PIDGs. As a result of this,
it introduces new data nodes to the graphs that cannot be
matched to the base program. Hence, it results in a decrease
in similarity. To demonstrate the impact of value-injecting
transformations, the results of BPlag are analysed in further
depth. This is to identify the average drop in similarity experi-
enced by BPlag when analysing variants created with value-
injection transformations, and those without value-injecting
transformations.

TABLE 5. Average drop in measured similarity by BPlag for variants
created with and without value-injecting transformations.

Table 5 compares the average drop in similarity of vari-
ants created with and without value-injecting transforma-
tions. It can be seen that there is a much larger average
drop in similarity for variants created with value-injecting
transformations, compared to those that do not contain value-
injecting transformations. In all cases, for L3+ variants there
is a substantial reduction in the drop of similarity for variants
createdwithout value-injecting transformations. Hence, it can
be concluded that BPlag is much more robust to transforma-
tion compared to the SCPDTs; however, it does have a vulner-
ability to value-injecting transformations, that subsequently
introduce noise into the PIDGs.

It should be noted that value injection is a vulnerability of
all SCPDTs, and not just BPlag. Value-injection is analogous
to the addition of new source code to a plagiarised program.
When a conventional SCPDT attempts to evaluate similarity
in such a case, it cannot match the injected source code and
hence results in a drop in similarity. In BPlag, value injection

VOLUME 9, 2021 50403

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

TABLE 6. Average drop in measured similarity by BPlag when using noise
filtering with t = 2, and the overlap coefficient.

changes the representation used to compare programs for
similarity (i.e. PIDGs), and hence, results in a reduction of
similarity.

5) ACCOMMODATING FOR VALUE-INJECTING
TRANSFORMATIONS
Value-injecting transformations are the most apparent weak-
ness of BPlag. They could be addressed by analysing the
functional equivalence of two programs, assuming such trans-
formations do not affect the output of a program. However,
as discussed, analysing functional equivalence is not suitable
for SCPD as it does not consider the design and imple-
mentation of a program. Hence, would most likely result in
identifying all correct assignment implementations that are
plagiarised, and hence a disastrous false positive rate.

Logically, value-injecting transformations add ‘noise’, that
manifests as increased node and edge counts of the PIDGs
representing a program. In this experiment, the noise is man-
ifested as small value additions to the PIDGs, that cannot
otherwise be mapped between two programs. Hence, this
results in a decrease in similarity. In order to mitigate the
impact of value injection, two modifications can be applied
to BPlag:

1) Noise filtering by removing isolated PIDG components.
2) PIDG similarity evaluation through the use of the over-

lap (also known as Szymkiewicz-Simpson) coefficient.
Noise filtering can be used to remove any non-functional

‘junk’ that is represented on the PIDGs. This would be by
simply removing any isolated components of a PIDG with
node counts smaller than a threshold value, t . Similarity,
the overlap coefficient could be used to effectively ignore the
addition of new code. This would evaluate a high similarity
between two programs when one program is a subset of
another. For programs X and Y , this is evaluated as:

simg−overlap(X ,Y) =
|X ∩ Y |

min(|X |, |Y |)

Table 6 presents the average decrease in similarity of the
variants calculated using the revised method. It can be seen
that these results are somewhat reminiscent of the results in
table 5 for variants without noise injection. However, there is
much greater variability in these scores, and they also contain
some outliers. For example, the average drop in similarity
against L1 transformations is larger than the L2 transforma-
tions. This would indicate the occurrence of errors in the
graph-matching algorithm, as a result of the ‘lossy’ of added
noise. However, as this is a lossy filtering method applied to
a graph-matching heuristic, the introduction of some errors is

expected. However, overall, these results show that in combi-
nation with the lossy filtering method and overlap coefficient,
BPlag can gain even greater robustness to plagiarism-hiding
transformations.

6) DISCUSSION OF RESULTS
From the results in Fig. 5, BPlag demonstrates greater robust-
ness to plagiarism-hiding transformations. As the chance of
transformation increases, BPlag demonstrates progressively
greater robustness to transformation, indicated by the lower
average drop in similarity. However, as identified, BPlag is
vulnerable to value-injecting transformations. Without value-
injecting transformations, BPlag demonstrates much greater
robustness to transformation.

Through the introduction of lossy filtering, and similarity
evaluation through the overlap coefficient, it was shown that
BPlag can largely accommodate for value-injecting transfor-
mations. However, there are some notable limitations to this
approach. The overlap coefficient does not consider if the fil-
tered graph nodes are legitimately part of a program, or sim-
ple injected noise. Furthermore, if two PIDGs are of vastly
different sizes, but one is a subset of the other, it can result
in a false positive through the evaluation of an unexpectedly
high similarity score. Hence, as future work, the exploration
of a ‘lossless’ method of accommodating for value-injecting
transformations is required.

The five compared SCPDTs are less robust to the applied
source code transformations as they measure the structural
similarity of source code. As the applied source code trans-
formations are mostly structural and cosmetic in nature, they
are shown to have a considerable impact on the tools abil-
ity to measure similarity. This is an important observation
as these tools measure similairty through aspects of source
code that are modified by undergraduate plagiarisers. This is
opposed to BPlag that measures the behavioural similarity of
programs, and as a result is largely immune to the transforma-
tions, except those that modify its behavioural representation
of the source code. However, this was shown to be largelymit-
igated through the noise filtering accommodation. Overall,
these results have shown that by measuring the behavioural
similarity of the programs, greater robustness can be gained
against source code transformations that are representative of
undergraduate plagiarisers.

C. EXPERIMENT 2: DETECTION ACCURACY
The purpose of this experiment is to demonstrate that BPlag
is more accurate in the detection of pervasively transformed
plagiarised assignment submissions. This will be in com-
parison to the accuracy of the five compared SCPDTs. The
tools will be evaluated by injecting simulated plagiarised
variant programs into existing data sets of undergraduate
assignment submissions. The accuracy of the tools will be
measured by the ability of each tool to correctly differentiate
between plagiarised (i.e. the variants) and innocent program
pairs.

50404 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

1) MEASURING ACCURACY
Accuracy is a difficult aspect of a SCPDT to measure.
Contrary to as the name suggests, a SCPDT does not detect
plagiarism. Instead, a SCPDT identifies indications of pla-
giarism [7]. If two programs have a high similarity, it can
be considered an indication that plagiarism may be present.
However, there is no consensus as to what is considered a
high similarity. Hence, this has resulted in different interpre-
tations of what is considered an indication of plagiarism for
use in SCPDT evaluations, and how to evaluate SCPDTs in
general [9].

FIGURE 6. Example error case. If scores cannot be separated at threshold
x into homogeneous groups of plagiarised (p) and innocent (i), errors
have occurred.

In this evaluation, the accuracy of SCPDTs is compared
by the number of errors made when analysing a set of
assignments. A SCPDT makes an error when it evaluates
a plagiarised pair of programs as having a lower similarity
score than an innocent pair of programs. Subsequently, if all
similarity scores for a data set are plotted on a number line,
this results in it being impossible to linearly separate those
that are plagiarised and innocent into homogeneous groups.
An example of this is demonstrated in Fig. 6. On top, innocent
scores (labelled i) can be cleanly separated from the plagia-
rised scores (p). However, on bottom, the innocent scores
cannot be cleanly separated from the plagiarised scores as
an innocent score is more similar than a plagiarised score.
Hence, an error has occurred by measuring an innocent pair
with a higher similarity than a plagiarised pair.

Using this evaluation method allows for measuring accu-
racy by the relative value of plagiarised and innocent similar-
ity scores. This allows for comparison of SCPDTs in terms
of the number of errors they make when evaluating program
similarity. A SCPDT that commits many errors is considered
to be less accurate than a tool that commits few errors. Hence,
the purpose of this experiment will be to show that BPlag is
more accurate than other SCPDTs by committing fewer errors
when detecting plagiarism.

2) DATA SET
A collection of 12 sets of undergraduate assignment submis-
sions are used to evaluate SCPDT accuracy. Each set of sub-
missions are for an individual programming assignment for
first and second-year programming courses. All assignment

TABLE 7. Size of accuracy evaluation data sets.

sets differ in code size, complexity, and the number of sub-
missions. Table 7 provides an overview of this data set.

3) EXPERIMENTAL METHOD
Firstly, test data is generated with SPPlagiarise. Using gen-
erated test data allows for the construction of a data set with
known plagiarised programs pairs that can be injected into an
existing data set of innocent assignment submissions. Hence,
this allows the accurate evaluation of SCPDT accuracy with
a ground-truth data set with known types of plagiarism-
hiding transformations applied. This experiment will be per-
formed with different combinations of transformations and
pervasiveness of transformation. Simulated plagiarised vari-
ants will be generated with the five levels of transforma-
tion, as well as with 4 increasing levels of transformation
pervasiveness: 40%, 60%, 80% and 100%. Higher transfor-
mation chances are used in this experiment, as experiment
1 demonstrated that BPlag is largely robust to the 20% and
40% transformation chances. From each of the assignment
collections, 5 assignment submissions are randomly selected
as base programs for the generation of simulated plagiarised
variant programs. For each base program: 10 L1, 10 L2,
10 L3, 10 L4 and 10 L5 variants are created for each of the
4 chances of transformation (40%, 60%, 80%, 100%). This
results in the generation of 200 variants for each selected base
program, totalling 12,000 variants across the 12 data sets.
This will enable a comprehensive and large scale evaluation
of SCPDT accuracy.

Secondly, the SCPDTs are used to evaluate the pair-
wise similarity scores of all programs in the base data sets,
as well as the similarity of the variants to their respective
base programs. This results in 12 sets of pairwise similar-
ity scores (one for each collection of assignments), as well
as 12,000 similarity scores to be injected into these data
sets. Amongst the 12 collections of assignments, there are
known cases of academic misconduct present. To maintain
the integrity of the experiment (in that only generated variants
are considered plagiarised), all scores representing the known
cases of academic misconduct are removed from the data
sets. This was through manual review of the similarity scores
reported by each SCPDT.

Thirdly, the error counts of the SCPDTs are evaluated.
The scores of the simulated plagiarised variants (for each

VOLUME 9, 2021 50405

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

transformation level and chance combination) are placed into
their respective base data sets. The scores are then sorted, and
the error count is evaluated. The error count is evaluated by
identifying the best possible separation between the plagia-
rised and innocent scores (i.e. when the lowest number of
errors occur). This results in a worst-case of 600 errors for
each transformation level and transformation chance combi-
nation (i.e. the number of variants generated). Subsequently,
any innocent pairs above the score separation point, and any
plagiarised scores below this point are considered errors.

TABLE 8. Error counts of each SCPDT detecting simulated plagiarism.
Lower error counts indicate higher accuracy.

4) RESULTS
Table 8 lists the error counts for each SCPDT for detecting the
simulated plagiarism. This is broken down into error counts
at each level of transformation and chance of transformation
combination, and are aggregated for all data sets for ease of
review. From the results, BPlag is much more accurate in
the presence of pervasive plagiarism-hiding transformations.
For example, at the 40% transformation chance, BPlag has
cumulatively 17 errors over the five levels of transformation.
This is compared to the next closest tool, Sim, that has cumu-
latively 46 errors recorded. At the 60%, 80% and 100% trans-
formation chances, the error counts of all tools, including
BPlag, continue to increase. However, BPlag experiences the
least increase in errors out of all the tools. Hence, it commits
the fewest errors when detecting the simulated plagiarised
variants.

All errors in this experiment result from submission pairs
being incorrectly identified as plagiarised (for programs
originally contained in the 12 data sets) or innocent

(for the generated variants). This is caused by the similarity
scores of some variant programs dropping to a point where
correctly innocent scores are ranked higher. This effectively
results in the similarity scores of the plagiarised and innocent
program pairs becoming no longer linearly separable. Hence,
there are unavoidable errors that occur when identifying the
plagiarised programs. Note, the L3+ variants in this exper-
iment were generated with value-injecting transformations.
Thus, it was expected errors would occur as this is a known
vulnerability of BPlag.

5) ACCOMMODATING FOR VALUE-INJECTING
TRANSFORMATIONS
In order to accommodate for the addition of noise as a result
of the value-injecting transformations, BPlag is re-applied
to evaluate the similarity of the generated variant programs
using the lossy noise filtering approach and overlap coeffi-
cient. Table 9 presents the errors counts of BPlag using this
revised approach. Overall, there is an immediately noticeable
decrease in the error counts at all transformation chances.
Most profound is the decrease of 230 errors at the 100%
transformation chance. By removing any injected noise into
the programs, BPlag is capable of evaluating a much higher
similarity score, that overall reduces the occurrence of errors.
Hence, by integrating the accommodations for the introduc-
tion of noise, BPlag is shown to achieve greater accuracy
against the value-injecting transformations.

TABLE 9. Error counts of BPlag detecting simulated plagiarism using
lossy noise filtering and overlap coefficient. Lower counts indicate higher
accuracy.

6) DISCUSSION OF RESULTS
From the results in table 8, BPlag is shown to be the most
accurate in detecting the simulated cases of plagiarism across
the six compared SCPDTs. By analysing program behaviour,
it is capable of consistently measuring a higher similarity
between the simulated plagiarised programs, as compared
to the five compared SCPDTs. Overall, this has resulted
in a lower error count at all levels of transformation and
transformation chance combinations.

However, BPlag does suffer a decrease in accuracy when
detecting the L3+ variants. In theory BPlag should not
be affected by such transformations, however, this is again
explained by the value-injecting transformations identified in
experiment 1. For L3+ transformations applied with higher
transformation chances (i.e. with transformations that are
more pervasively applied), this appears to have a signifi-
cant impact on accuracy. However, the results of BPlag at
the 100% transformation chance are more similar to the

50406 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

five compared tools results at the 40% or 60% transformation
chances. However, by including the modifications to accom-
modate for value-injecting transformations, the error counts
of BPlag are significantly decreased at all transformation
chances, as shown in table 9. Hence, in consideration of both
results, BPlag is shown to be the most accurate tool on this
data set, both with and without the described accommoda-
tions for value-injecting transformations.

The results roughly correspond to the robustness evaluation
in Fig. 5. The SCPDTs will generally see a small decrease in
similarity against L1 and L2 transformations. This is reflected
in this experiment by a low error rate against L1 and L2 trans-
formations (that are largely consistent across the 4 trans-
formation levels, excluding Sherlock-S and Sherlock-W).
Furthermore, the compared tools saw progressively larger
decreases of accuracy against the L3+ transformations. This
agrees with the large average drop in similarity when exposed
to L3+ transformations in Fig. 5. Hence, these results are
largely consistent with experiment 1. Comparatively, BPlag is
subject to a progressively smaller decrease in accuracy when
exposed to L3+ transformations.
The accuracy of the compared SCPDTs can be also be com-

pared in general from the results. If the tools are ranked by
lowest cumulative errors, BPlag is consistently first. This is
followed by Sim, JPlag, and Sherlock-W that shuffle between
second, third and fourth place. Plaggie and Sherlock-S are
consistently ranked fifth and sixth, both having significantly
higher error counts than the other tools. Overall, this demon-
strates that greater accuracy can be gained by measuring
similarity through the behaviour of source code, when detect-
ing source code plagiarism hidden with plagiarism-hiding
transformations.

D. EXPERIMENT 3: EFFICIENCY OF COMPARISON
This experiment will evaluate BPlag in its efficiency in
measuring source code similarity. Efficiency is an important
aspect of a SCPDT. It is unreasonable for a tool to be so com-
putationally complex that it requires large periods of time to
analyse a set of assignment submissions. Therefore a SCPDT
must be able to evaluate a data set in a reasonable amount of
time. BPlag combines two computationally intensive areas:
symbolic execution and graph similarity. Therefore, it is not
expected that this approach is more efficient than the five
compared SCPDTs. However, this evaluation will show that
BPlag is capable of measuring similarity without an excessive
run time.

This experiment was conducted on a single workstation
with a 32-core/64-thread CPU with 128GB of RAM running
Ubuntu 20.04 LTS. All tools are executed in parallel. For
all Java-based tools, Java version 11 is utilised with the
GraalVM6 JVM. GraalVM is used as opposed to the standard
Oracle HotSpot JVM as the authors have observed that it
has a lower peak memory usage in long-running experi-
ments, or when analysing large data sets.

6https://www.graalvm.org

1) METHOD
This experiment is controlled by two scripts written in Kotlin
(a Java-like programming language). Both scripts handle the
invocation of the SCPDTs on a pair of programs and monitor
the time each SCPDT spends executing on each data set.
This experiment utilises the data set of experiment 2 (i.e. the
collection of 12 sets of undergraduate assignment submis-
sions) while evaluating all pairwise similarity scores of the
assignment collections.

The first script manages the execution of the five compared
tools. Each of these tools is exposed through a Java binding
(i.e. a Java class exposing the tool) that affords procedural
invocation of the tool from Java code. The script enforces
that at any one time: only one data set can be analysed by a
single tool, and each tool can be executed at most 32 times in
parallel. Subsequently, this script records the runtime of each
tool invocation and calculates the average execution time per
program pair.

The second script manages the invocation of and monitors
the execution time of BPlag. BPlag is not implemented as
a single ‘tool’, but as three separate programs as part of a
pipeline (i.e. execution trace generation, PIDG construction
and PIDG comparison, as per Fig. 1). In this setup, the outputs
of the first stage (i.e. execution traces) and second stage
(i.e. PIDGs) are serialised and stored on disk before being
passed to the next stage. This script manages the execution
of each stage and the intermediate storing of data. Like the
compared tools, BPlag is executed in parallel, however, exe-
cution traces are extracted at most 32 times in parallel, PIDGs
constructed at most 8 times in parallel, and PIDGs compared
at most 8 times in parallel.

Many SCPDTs (e.g. JPlag) support the evaluation of all
submissions in a data set simultaneously (i.e. comparing all
submissions in a single execution of a tool). While other tools
(e.g. Sherlock-S), only support evaluating a single pair of
submissions. To ensure a consistent comparison, this exper-
iment evaluates the efficiency of the SCPDTs in evaluating
similarity on a per-submission-pair basis, i.e. the SCPDTs are
executed once per submission pair in each data set. The total
execution time for each tool is then summed, normalised and
averaged to identify the average execution time per program
pair. As multi-processing is utilised, it can distort the per-
ceived efficiency of the tools. Hence, the execution times are
subsequently normalised by the maximum number of parallel
invocations. Therefore, the time taken by the compared tools
is multiplied by 32, and the time taken by BPlag is multiplied
by 32, 8, and 8 for its three stages (respectively); with both
being averaged on a per-submission basis. This results in the
normalised average execution times for each tool to evaluate
the similarity of a single pair of programs.

The construction and comparison of PIDGs can consume
large amounts of memory, hence the parallelism of the last
2 phases of BPlag is limited for stability and reliability.
If the three stages are amalgamated into a single program,
it can result in poor efficiency. This is caused by the JVM
garbage collector constantly working to free up heap space

VOLUME 9, 2021 50407

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

TABLE 10. Average execution time of each SCPDT per submission pair (in seconds) for each collection of assignment submissions.

(as the current implementation uses large quantities of
memory). By implementing the three stages as separate pro-
grams, it effectively allows the approach to run without any
garbage collection overhead. Hence, it avoids this garbage
collection issue. However, this is at the added cost of passing
data between the three stages on disk. The compared SCPDTs
do not incur a significant garbage collection overhead, hence
this does not provide an unfair advantage for BPlag.

2) RESULTS
Table 10 presents the average execution times per program
pair in each of the 12 collections of assignment submis-
sions, normalised for concurrent execution. It can be seen
that Sherlock-S is by far the most efficient tool on average.
This is followed by Sim, Plaggie, JPlag, Sherlock-W, and
finally, BPlag. BPlag is approximately 38 times slower than
Sherlock-S and almost 2 times slower than JPlag. This is
expected, as BPlag is more computationally complex.

3) DISCUSSION OF RESULTS
From these results, BPlag is not the most efficient SCPDT.
The poorer efficiency is attributed to the comparatively
more complex implementation of the approach. Being largely
graph-based, it is expected that BPlag will require greater
run time. The impact of greater complexity is minimised
with the presented graph-matching heuristic that is designed
to operate in approximately O(n2) time. This is the same
complexity of the algorithms used by JPlag and Plaggie.
However, BPlag still has a much greater run time due to
the sheer number of graphs extracted to represent a single
program that all require pairwise comparison. Hence, BPlag
is inherently more complex, requiring a greater run time.

The greater runtime does not mean BPlag is impractical
to use. If only a pair of programs are analysed, the runtime
would not cause a human reviewer to wait an unreasonable
amount of time. If BPlag was running on the largest data
set (collection 1, 170 programs), it would take approximately
24 hrs to run single-threaded. While this is, of course, a long
time for the analysis of a single (large) data set, modern
CPUs are multi-cored, and as such BPlag takes advantage
of this. On a modern 8-core machine, BPlag would take

approximately 3 hrs to execute on collection 1. Further-
more, if a more reasonably sized data set was analysed,
(e.g. 100 submissions) it would take approximately 45 mins
on an 8-core machine.

It must also be considered that there is greater benefit in
a SCPDT being more accurate than efficient. A SCPDT is
typically used once per assessment task to identify indications
of plagiarism. In this single execution, a SCPDT needs to
accurately identify any indications of plagiarism, especially
in the presence of plagiarism-hiding transformations. This is
afforded by BPlag.

VI. DISCUSSION
The approach to SCPD utilised by BPlag was designed to be
both robust to plagiarism-hiding transformations, and accu-
rate in the detection pervasively transformed works. In doing
so the approach analyses the behaviour of assignment sub-
missions, as the behaviour of a program typically does not
change due to plagiarism-hiding transformations. Greater
robustness to plagiarism-hiding transformations is afforded
by the approach analysing the behaviour of a program.
As demonstrated in experiment 1, by analysing behaviour,
the plagiarism-hiding modifications that transform the struc-
ture of source code are rendered largely inert. This is as
the plagiarism-hiding transformations do not have a signif-
icant impact on the behavioural representation of a program.
However, the approach does show vulnerability to transfor-
mations that modify the behaviour of a program. That is by
transforming to functionally-equivalent code or the identified
value-injecting transformations. However, in the latter case,
it was shown to be accommodated for using a simple filtering
of noise from the generated PIDGs, and the use of the overlap
coefficient to evaluate similarity. Subsequently, the approach
is more accurate in the detection of plagiarism, where the
plagiarised work is pervasively transformed with plagiarism-
hiding transformations, as demonstrated in experiment 2.
Greater accuracy is largely a result of the greater robustness,
allowing for BPlag to evaluate a higher similarity between
plagiarised works (with pervasive plagiarism-hiding transfor-
mations) than innocent works. However the greater accuracy
is also influenced by the approach representing the unique

50408 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

implemented behaviour of a program, as expressed through
source code. As a trade-off for greater robustness and accu-
racy, BPlag is less efficient than the five compared SCPDTs
due to the greater complexity of the approach. However,
the greater computational complexity does not make the
approach infeasible to use.

A. GENERATED EVALUATION TEST DATA
The conducted evaluations rely on generated test data cre-
ated with SPPlagiarise. Test data generation was used to
balance a perceived issue of quality in the evaluation data set,
and to allow for a semi-reproducible evaluation. However,
the use of generated test data is a notable limitation of the
evaluation. If real data sets were used it would provide a
more authentic evaluation of the SCPDTs, however, as dis-
cussed, if real data sets were used it would limit the size of
the evaluation data sets, and limit the scope of encountered
plagiarism-hiding transformations. By using generated data
sets, a known number of plagiarised programs can be gen-
erated with well-known types of plagiarism-hiding transfor-
mations. This balances the issue of quality in the evaluation.
While BPlag was not evaluated on real cases of plagiarism,
it was evaluated on a more comprehensive data set, being
larger and containing more samples of plagiarism-hiding
transformations.

The number of implemented source code transformations
is limited in this evaluation. SPPlagiarise implements a total
of 19 source code transformations conforming to L1-L5 of
Faidhi and Robinson’s [10] taxonomy. The transformations
are applied in a manner characteristic of undergraduate pla-
giarisers. Hence, the variants can be said to be representative
of undergraduate plagiarisers. However, there are many more
than 19 source code transformations that could be applied
to hide plagiarism, and in many combinations than that was
evaluated in this experiment. Hence, while there are a large
number of transformations than can be applied, there are
always more that BPlag could be evaluated against. Further-
more, SPPlagiarise does not implement L6 transformations.
L6 transformations are in particular difficult to automate.
It requires transforming expressions into functional equiv-
alents (e.g. using functionally-equivalent APIs) and poten-
tially complex rewriting of conditional expressions. Hence,
extending SPPlagiarise to support L6 transformations in a
meaningful manner was omitted from this work. However,
it can be expected that BPlag, along with the five compared
SCPDTs, will suffer a decrease in robustness and accuracy in
the presence of such L6 transformations.

All implemented transformations are applied in a manner
that maintains the correctness of the base program, ensuring
that the generated variant can be compiled. This means the
transformations are largely structural and cosmetic, and are
functionally-equivalent. It is important that the variants are
compilable, as if a program cannot be compiled, it will likely
cause errors during program analysis, or premature termina-
tion during symbolic execution. Hence, thismay lead to errors
in the evaluation.

There are also important limitations of the evaluation
caused by the composition of the base programs used to
generate test data. All data sets have very different compo-
sitions in terms of source code (i.e. the number and type of
declarations, statements and expressions); and each source
code transformation applied by SPPlagiarise can only be used
if there is a valid location for it to applied in code. Hence,
on data sets generated with different base programs, there
is a potential for very different results to be obtained as
different counts of transformations can be applied. Therefore,
the results presented here can only conclusively determine the
performance of BPlag on the utilised data set. However, this
problem is common to all evaluations that measure source
code similarity, and is mitigated in this experiment with a
large and diverse data set.

B. VULNERABILITY TO TRANSFORMATIONS
As identified, BPlag is vulnerable to transformations that
change the behavioural representation of a program. This
raises the question of what types of plagiarism-hiding trans-
formations, either human-applied or applied in an automated
manner, that BPlag can and cannot detect. In general, it can
be assumed that BPlag is capable of accommodating for
plagiarism-hiding transformations that are cosmetic or struc-
tural in nature (as expected from undergraduate plagia-
rism), and those that are semantics and behaviour-preserving.
Hence, it should be expected that BPlag is robust against
source code transformations characteristic of undergraduate
plagiarisers. But, BPlag is vulnerable to the identified intro-
duction of functionally-equivalent code, or value-injecting
transformations. These are transformations that change the
behavioural representation of a program. As shown in exper-
iments 1 and 2, the vulnerability to value-injecting transfor-
mations can be accommodated for using the presented lossy
filtering method, and the use of the overlap coefficient for
measuring similarity. However, the vulnerability to function-
ally equivalent code is a required deficiency of BPlag to avoid
false positive errors when detecting plagiarism. Measuring
functional equivalence is not the purpose of BPlag as there
are already tools that exist tomeasure similarity through func-
tional equivalence (e.g. [14], [31], [32], [34], [35]). However,
considering these vulnerabilities, for either attacks to have
a significant impact on the evaluation of similarity, it would
require rewriting significant portions of a program, or adding
large quantities of code to increase the size of PIDGs. Neither
attacks are expected from undergraduate plagiarisers as it
would require considerable programming skills and/or time.
Hence, this is not considered a critical issue of the approach.

However, as a generalisation, it must be considered that
all SCPDTs are vulnerable to transformations that change
the representation of a program used by the SCPDT. When
the representation of a program is modified, it is inevitable
any source code similarity tool will measure a decrease in
similarity. This was shown in the evaluation where the exist-
ing SCPDTs that measure structural similarity of source code
are impacted by all transformations (as the transformations

VOLUME 9, 2021 50409

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

modify the source code structure). As plagiarism-hiding
transformations are largely structural and cosmetic in nature,
this is a significant vulnerability of existing tools. This is
opposed to BPlag that is more robust and accurate in the
presence of plagiarism-hiding transformations as it measures
the behavioural similarity of source code. Hence, the char-
acteristic plagiarism-hiding transformations do not have a
significant impact on the approach, except for those that
modify the behavioural representation of the programs.

C. LIMITATIONS OF APPROACH
The current implementation of BPlag is limited to the analysis
of Java source code. However, the design of BPlag can be
re-applied to other high-level object-oriented programming
languages, and in particular those that are interpreted or inter-
mediately compiled to a high-level binary representation.
This can be achieved by replacing the current symbolic execu-
tor component with a symbolic executor for another targeted
language, and modifying the represented PIDG elements to
express any otherwise currently unsupported language fea-
tures (if required). The approach is most appropriate to high-
level languages as the design of BPlag takes advantage of
the simplified execution model of Java, and can in general,
be applied to any programming language that uses similar
simplified execution models. However, it could also be in
theory applied to low-level languages such as C or C++
by using an appropriate symbolic executor component. But
any extension to low-level languages would require making
accommodations for the limitations of symbolic execution
applied to such languages. For example, low-level languages
that support raw memory access and pointer arithmetic are
known to pose issues with memory aliasing and arrays as it
is not always determinable what memory location is being
referred to with pointer arithmetic [52]. This has potential to
be a source of errors if the approach were to be re-applied
to low-level languages. Hence, future work is required to
explore the feasibility of applying the approach to such low
level languages.

VII. RELATED WORK
BPlag is a distinctly behavioural approach to academic
SCPD. The approach does not share similarity with existing
approaches to SCPD. All known proposed SCPDTs imple-
ment structural or semantic measures of similarity. Further-
more, all known available SCPDTs implement structural
measures of similarity only. The lack of similar approaches
to SCPD is supported by the recent literature reviews
[8], [9] that identify various structural and/or semantic
SCPDTs, however, fail to identify any behavioural SCPDTs.

The implemented approach to academic SCPD shares
more in common with program plagiarism detection tools
than conventional SCPDTs. Program plagiarism detection
tools typically analyse program binaries or execution traces
to identify ‘fingerprints’ of similarity that may indicate a
program (or a component of it) has been stolen. Such tools
implement similar methods in how program similarity is

analysed, for example similar tools include: Cop [35], [53],
LoPD [34], [54], and VaPD [32], [55].

Cop identifies similar components between two programs
by analysing semantics (behaviour) through symbolic execu-
tion. It is concerned with identifying basic blocks of code
(i.e. a continuous sequence of instructions that do not con-
tain branching instructions) that have the same input/output
relations. Subsequently, common sub-sequences of semanti-
cally equivalent basic blocks can be identified between two
programs, enabling the evaluation of similarity. LoPD iden-
tifies the similarity of programs based on their implemented
program logic to determine if they are semantically equiv-
alent. The approach utilises symbolic execution to identify
the usage of data in an execution path of a program and
any mathematical constraints that are placed upon it. Instead
of identifying if two programs are the same under a set of
inputs, the approach aims to prove that two programs are
not semantically equivalent by identifying an input where the
programs behave differently. If one such case can be found,
it can be proven that the programs are not semantically equiv-
alent. VaPD identifies program similarity through runtime
execution analysis of the values stored in memory during
program execution. The foundation of this approach is the
observation that certain runtime values of a program can-
not be changed through semantics-preserving obfuscations.
These values are identified, extracted and refined to charac-
terise a program. The values are then compared to evaluate
similarity.

BPlag is similar to these works by measuring simi-
larity with behavioural means. Furthermore, they utilises
some similar techniques (e.g. symbolic execution) to analyse
behaviour. While these works share individual aspects of
similarity with BPlag, there are noticeable differences. The
major difference between BPlag and these tools is the form
a program takes when analysed. BPlag analyses source code
to derive a behavioural representation, while the compared
works analyse machine code or bytecode. There are also
fundamental differences in their operations. CoP and LoPD
look for elements of functional equivalence between two
programs through input-output relations. This is more akin
to a ‘black-box’ method of identifying if two programs are
similar. While BPlag seeks to identify similar programs by
analysing how the program behaves at runtime by identifying
data and its relations, transformation of data, and method
calls. This is more akin to a ‘white-box’method of identifying
if two programs are similar, explicitly looking at the logical
implementation of a program. Similarly, BPlag does not seek
to identify plagiarism by identifying functionally equivalent
code, due to the expectation that academic assignments are
expected to be largely functionally equivalent. Instead, BPlag
looks for the same execution behaviour. VaPD implements a
value-based fingerprinting method to characterise programs.
This is a much lower-level approach compared to BPlag,
and fingerprinting is different from the approach of BPlag.
In comparison, fingerprinting identifies indications of pla-
giarism as a ‘subset’ of a program. This is in contrast to

50410 VOLUME 9, 2021

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

BPlag that identifies the ‘global’ similarity of two programs
by comparing all represented execution behaviour.

Overall, BPlag is designed as a SCPDT. Any similar-
ity with program plagiarism detection tools is a result of
analysing program behaviour. However, as seen from the
results of the evaluation, utilising similar approaches has
resulted in a SCPDT that is both more robust and accurate
than currently available SCPDTs.

VIII. CONCLUSION AND FUTURE WORK
In this article, the design and evaluation of BPlag, a novel
behavioural approach to SCPD, has been presented. BPlag
is intended to identify the most extreme cases of academic
source code plagiarism, where a skilled plagiariser has per-
vasively transformed source code, and submitted it as their
own work. The presented evaluations support that in the pres-
ence of pervasive plagiarism-hiding transformations: BPlag
is both more robust to source code transformations, and more
accurate in detecting the simulated plagiarised programs.
However, the evaluations have also shown that BPlag is com-
paratively less efficient. This was expected due to the com-
plexity of BPlag, and the potential for further optimisation
(e.g. comparison pruning). There are numerous directions of
future work for improving, extending or re-applying BPlag.
Firstly, BPlag is vulnerable to value-injecting transforma-
tions. An area of future work is investigating an appropriate
means for mitigating the impact of such transformations.
Furthermore, BPlag needs to be evaluated against more
diverse transformations, as well as data sets of real plagiarism
to identify any more vulnerabilities that may occur with real
data. Secondly, different approaches to measuring similarity
(i.e. structural, semantic and behavioural) provide valuable
insights into how a program is similar. It would be interesting
to explore if BPlag could be combined with structural and
semantic tools to provide a much more comprehensive view
of how two programs may be similar. This could be applied
to investigate if two programs are accidentally or maliciously
similar, or identify what types of transformations have been
applied to a program to hide plagiarism. Thirdly, a useful fea-
ture of SCPDTs is the ability to provide a graphical overview
of what code fragments are similar or identical between two
programs (for example, as provided by MOSS and JPlag).
This is used as evidence by a human reviewer investigating
if plagiarism has occurred. It would be helpful for BPlag
to be extended with such a feature. Finally, there are many
similar fields to SCPD, for example code clone detection
and program plagiarism detection. It would be interesting to
explore if the basic approach of BPlag could be applied to
these fields. For example, code clones or program theft could
be identified by detecting similar PIDG sub-graphs.

REFERENCES
[1] S. Yeo, ‘‘First-year university science and engineering students’ under-

standing of plagiarism,’’ Higher Educ. Res. Develop., vol. 26, no. 2,
pp. 199–216, Jun. 2007.

[2] D. Sraka and B. Kaucic, ‘‘Source code plagiarism,’’ in Proc. 31st Int. Conf.
Inf. Technol. Interfaces (ITI), Jun. 2009, pp. 461–466.

[3] G. J. Curtis and R. Popal, ‘‘An examination of factors related to plagiarism
and a five-year follow-up of plagiarism at an Australian university,’’ Int. J.
Educ. Integrity, vol. 7, no. 1, pp. 30–42, Jun. 2011.

[4] J. Pierce and C. Zilles, ‘‘Investigating student plagiarism patterns and cor-
relations to grades,’’ inProc. ACMSIGCSETech. Symp. Comput. Sci. Educ.
(SIGCSE). New York, NY, USA: Association for Computing Machinery,
2017, pp. 471–476.

[5] G. Cosma and M. Joy, ‘‘Towards a definition of source-code plagiarism,’’
IEEE Trans. Educ., vol. 51, no. 2, pp. 195–200, May 2008.

[6] A. Parker and J. O. Hamblen, ‘‘Computer algorithms for plagiarism detec-
tion,’’ IEEE Trans. Educ., vol. 32, no. 2, pp. 94–99, May 1989.

[7] M. Joy and M. Luck, ‘‘Plagiarism in programming assignments,’’ IEEE
Trans. Educ., vol. 42, no. 2, pp. 129–133, May 1999.

[8] V. T. Martins, D. Fonte, P. R. Henriques, and D. da Cruz, ‘‘Plagiarism
detection: A tool survey and comparison,’’ in Proc. 3rd Symp. Lang., Appl.
Technol., in OpenAccess Series in Informatics, vol. 38, M. J. V. Pereira,
J. P. Leal, and A. Simões, Eds. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2014, pp. 143–158.

[9] M. Novak, M. Joy, and D. Kermek, ‘‘Source-code similarity detection
and detection tools used in academia: A systematic review,’’ ACM Trans.
Comput. Educ., vol. 19, no. 3, pp. 1–37, Jun. 2019.

[10] J. A. W. Faidhi and S. K. Robinson, ‘‘An empirical approach for detecting
program similarity and plagiarism within a university programming envi-
ronment,’’ Comput. Educ., vol. 11, no. 1, pp. 11–19, Jan. 1987.

[11] L. Prechelt, G. Malpohl, and M. Philippsen, ‘‘Finding plagiarisms among
a set of programs with JPlag,’’ J-JUCS, vol. 8, no. 11, pp. 1016–1038,
Nov. 2002.

[12] H. Cheers, Y. Lin, and S. P. Smith, ‘‘Detecting pervasive source code
plagiarism through dynamic program behaviours,’’ in Proc. 22nd Aus-
tralas. Comput. Educ. Conf. (ACE). New York, NY, USA: Association for
Computing Machinery, 2020, pp. 21–30.

[13] HJC Cheers. (2020). BPlag Source Code Plagiarism Detection Tool.
[Online]. Available: https://github.com/hjc851/BPlag

[14] S. Li, X. Xiao, B. Bassett, T. Xie, and N. Tillmann, ‘‘Measuring code
behavioral similarity for programming and software engineering educa-
tion,’’ in Proc. 38th Int. Conf. Softw. Eng. Companion (ICSE). New York,
NY, USA: Association for Computing Machinery, 2016, pp. 501–510, doi:
10.1145/2889160.2889204.

[15] R. Pike. Sherlock Plagiarism Detector. Accessed: Feb. 10, 2021. [Online].
Available: https://web.archive.org/web/20150323030146/

[16] D. Gitchell and N. Tran, ‘‘Sim: A utility for detecting similarity in
computer programs,’’ ACM SIGCSE Bull., vol. 31, no. 1, pp. 266–270,
Mar. 1999.

[17] S. Rani and J. Singh, ‘‘Enhancing Levenshtein’s edit distance algorithm
for evaluating document similarity,’’ in Computing, Analytics and Net-
works, R. Sharma, A. Mantri, and S. Dua, Eds. Singapore: Springer, 2018,
pp. 72–80.

[18] S. Schleimer, D. S. Wilkerson, and A. Aiken, ‘‘Winnowing: Local
algorithms for document fingerprinting,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data (SIGMOD), New York, NY, USA, 2003,
pp. 76–85.

[19] A. Ahtiainen, S. Surakka, and M. Rahikainen, ‘‘Plaggie: GNU-licensed
source code plagiarism detection engine for java exercises,’’ in Proc. 6th
Baltic Sea Conf. Comput. Educ. Res., Koli Calling (Baltic Sea). New York,
NY, USA: Association for Computing Machinery, 2006, pp. 141–142.

[20] D. Grune and M. Huntjens, ‘‘Het detecteren van kopieën bij informatica-
practica,’’ Informatie, vol. 31, no. 11, pp. 864–867, Nov. 1989.

[21] K. Anzai and Y. Watanobe, ‘‘Algorithm to determine extended edit dis-
tance between program codes,’’ in Proc. IEEE 13th Int. Symp. Embedded
Multicore/Many-Core Syst.-Chip (MCSoC), Oct. 2019, pp. 180–186.

[22] X. Li and X. J. Zhong, ‘‘The source code plagiarism detection using
AST,’’ in Proc. Int. Symp. Intell. Inf. Process. Trusted Comput., Oct. 2010,
pp. 406–408.

[23] J. Zhao, K. Xia, Y. Fu, and B. Cui, ‘‘An AST-based code plagiarism detec-
tion algorithm,’’ in Proc. 10th Int. Conf. Broadband Wireless Comput.,
Commun. Appl. (BWCCA), Nov. 2015, pp. 178–182.

[24] D. Fu, Y. Xu, H. Yu, and B. Yang, ‘‘WASTK: A weighted abstract syntax
tree kernel method for source code plagiarism detection,’’ Sci. Program.,
vol. 2017, no. 1, pp. 103–126, 2017.

[25] J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence
graph and its use in optimization,’’ ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, Jul. 1987.

VOLUME 9, 2021 50411

http://dx.doi.org/10.1145/2889160.2889204

H. Cheers et al.: Academic Source Code Plagiarism Detection by Measuring Program Behavioral Similarity

[26] C. Liu, C. Chen, J. Han, and P. S. Yu, ‘‘GPLAG: Detection of software
plagiarism by program dependence graph analysis,’’ in Proc. 12th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining (KDD). NewYork, NY,
USA: Association for Computing Machinery, 2006, pp. 872–881.

[27] R. Chen, L. Hong, C. Lu, and W. Deng, ‘‘Author identification of software
source code with program dependence graphs,’’ in Proc. IEEE 34th Annu.
Comput. Softw. Appl. Conf. Workshops, Jul. 2010, pp. 281–286.

[28] D.-K. Chae, J. Ha, S.-W.Kim, B. Kang, and E. G. Im, ‘‘Software plagiarism
detection: A graph-based approach,’’ in Proc. 22nd ACM Int. Conf. Inf.
Knowl. Manage. (CIKM). New York, NY, USA: Association for Comput-
ing Machinery, 2013, pp. 1577–1580.

[29] G. Cosma and M. Joy, ‘‘An approach to source-code plagiarism detection
and investigation using latent semantic analysis,’’ IEEE Trans. Comput.,
vol. 61, no. 3, pp. 379–394, Mar. 2012.

[30] B. Prado, K. Bispo, and R. Andrade, ‘‘X9: An obfuscation resilient
approach for source code plagiarism detection in virtual learning environ-
ments,’’ in Proc. ICEIS, Jan. 2018, pp. 517–524.

[31] M. Bertran, F.-X. Babot, and A. Climent, ‘‘An input/output semantics
for distributed program equivalence reasoning,’’ Electron. Notes Theor.
Comput. Sci., vol. 137, no. 1, pp. 25–46, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066105050814

[32] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, ‘‘Value-based pro-
gram characterization and its application to software plagiarism detection,’’
in Proc. 33rd Int. Conf. Softw. Eng. (ICSE), 2011, pp. 756–765.

[33] V. Anjali, T. Swapna, and B. Jayaraman, ‘‘Plagiarism detection for
java programs without source codes,’’ Procedia Comput. Sci., vol. 46,
pp. 749–758, Jan. 2015.

[34] F. Zhang, D. Wu, P. Liu, and S. Zhu, ‘‘Program logic based software
plagiarism detection,’’ in Proc. IEEE 25th Int. Symp. Softw. Rel. Eng.,
Nov. 2014, pp. 66–77.

[35] L. Luo, J. Ming, D.Wu, P. Liu, and S. Zhu, ‘‘Semantics-based obfuscation-
resilient binary code similarity comparison with applications to software
and algorithm plagiarism detection,’’ IEEE Trans. Softw. Eng., vol. 43,
no. 12, pp. 1157–1177, Dec. 2017.

[36] J. Sheard, S. Markham, and M. Dick, ‘‘Investigating differences in cheat-
ing behaviours of IT undergraduate and graduate students: The maturity
and motivation factors,’’ Higher Educ. Res. Develop., vol. 22, no. 1,
pp. 91–108, May 2003.

[37] Simon, T. Myers, D. Hardy, and R. Mason, ‘‘Variations on a theme:
Academic integrity and program code,’’ in Proc. 21st Australas. Comput.
Educ. Conf. (ACE). New York, NY, USA: Association for Computing
Machinery, 2019, pp. 56–63, doi: 10.1145/3286960.3286967.

[38] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, ‘‘Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences,’’ IEEE Trans. Softw. Eng., vol. 41, no. 12, pp. 1217–1235,
Dec. 2015.

[39] J. Park, D. Son, D. Kang, J. Choi, and G. Jeon, ‘‘Software similarity
analysis based on dynamic stack usage patterns,’’ inProc. Conf. Res. Adapt.
Convergent Syst. (RACS). New York, NY, USA: Association for Comput-
ing Machinery, 2015, pp. 285–290, doi: 10.1145/2811411.2811508.

[40] P. P. F. Chan, L. C. K. Hui, and S.M. Yiu, ‘‘Heap graph based software theft
detection,’’ IEEE Trans. Inf. Forensics Security, vol. 8, no. 1, pp. 101–110,
Oct. 2013.

[41] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, ‘‘Behavior based software theft
detection,’’ in Proc. 16th ACM Conf. Comput. Commun. Secur. (CCS).
New York, NY, USA: Association for Computing Machinery, 2009,
pp. 280–290, doi: 10.1145/1653662.1653696.

[42] H. Cheers and Y. Lin, ‘‘A novel graph-based program representation
for java code plagiarism detection,’’ in Proc. 3rd Int. Conf. Softw. Eng.
Inf. Manage. (ICSIM). New York, NY, USA: Association for Computing
Machinery, 2020, pp. 115–122, doi: 10.1145/3378936.3378960.

[43] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
‘‘A survey of symbolic execution techniques,’’ACMComput. Surv., vol. 51,
no. 3, pp. 1–39, 2018.

[44] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, ‘‘Clone
detection using abstract syntax trees,’’ in Proc. Int. Conf. Softw. Main-
tenance (ICSM). Washington, DC, USA: IEEE Computer Society, 1998,
pp. 368–377.

[45] R. M. Karp and M. O. Rabin, ‘‘Efficient randomized pattern-matching
algorithms,’’ IBM J. Res. Develop., vol. 31, no. 2, pp. 249–260, Mar. 1987.

[46] J. Svajlenko, C. K. Roy, and S. Duszynski, ‘‘ForkSim: Generating software
forks for evaluating cross-project similarity analysis tools,’’ in Proc. IEEE
13th Int. Work. Conf. Source Code Anal. Manipulation (SCAM), Sep. 2013,
pp. 37–42.

[47] S. Ko, J. Choi, and H. Kim, ‘‘COAT: Code obfuscation tool to evaluate the
performance of code plagiarism detection tools,’’ in Proc. Int. Conf. Softw.
Secur. Assurance (ICSSA), Jul. 2017, pp. 32–37.

[48] C. Ragkhitwetsagul, J. Krinke, and D. Clark, ‘‘A comparison of code
similarity analysers,’’ Empirical Softw. Eng., vol. 23, no. 4, pp. 2464–2519,
Aug. 2018.

[49] H. Cheers, Y. Lin, and S. P. Smith, ‘‘SPPlagiarise: A tool for generat-
ing simulated semantics-preserving plagiarism of java source code,’’ in
Proc. IEEE 10th Int. Conf. Softw. Eng. Service Sci. (ICSESS), Oct. 2019,
pp. 617–622.

[50] M.Mozgovoy, ‘‘Desktop tools for offline plagiarism detection in computer
programs,’’ Informat. Educ., vol. 5, no. 1, pp. 97–112, Jan. 2006.

[51] O. Karnalim, ‘‘Detecting source code plagiarism on introductory program-
ming course assignments using a bytecode approach,’’ in Proc. Int. Conf.
Inf. Commun. Technol. Syst. (ICTS), 2016, pp. 63–68.

[52] R. A. DeMilli and A. J. Offutt, ‘‘Constraint-based automatic test data gen-
eration,’’ IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 900–910, Sep. 1991.

[53] L. Luo, J. Ming, D.Wu, P. Liu, and S. Zhu, ‘‘Semantics-based obfuscation-
resilient binary code similarity comparison with applications to software
plagiarism detection,’’ in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng. (FSE). New York, NY, USA: Association for Computing
Machinery, 2014, pp. 389–400, doi: 10.1145/2635868.2635900.

[54] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, ‘‘Deviation-based
obfuscation-resilient program equivalence checking with application
to software plagiarism detection,’’ IEEE Trans. Rel., vol. 65, no. 4,
pp. 1647–1664, Jun. 2016.

[55] Y. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, ‘‘Program charac-
terization using runtime values and its application to software plagiarism
detection,’’ IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 925–943, Apr. 2015.

HAYDEN CHEERS received the B.Eng. (Hons.)
degree in software engineering from The Univer-
sity of Newcastle, Australia, in 2016, where he is
currently pursuing the Ph.D. degree.

Since 2015, he has been a Casual Academic
Staff Member with the School of Electrical Engi-
neering and Computing. His research interests
include source code similarity, plagiarism detec-
tion, and applied software engineering.

YUQING LIN received the B.Sc. degree in
mathematics from Lanzhou University, in China,
in 1995, and the M.Inf.Tech. and Ph.D. degrees in
computer science, in 2000 and 2004, respectively.

He continued his studies at The University of
Newcastle, Australia. He joined The University of
Newcastle, in 2004, where he is currently an Asso-
ciate Professor. His research interests include theo-
retical computer science, including discrete math,
algorithm design, and graph theory. He has also

focused on the applications and been collaborating actively with researchers
in other disciplines, such as data mining and natural language processing.

SHAMUS P. SMITH received the B.Sc., B.Sc.
(Hons.), and Ph.D. degrees in computer science
from Massey University, New Zealand, in 1999.

He is currently an Associate Professor with
the School of Electrical Engineering and Com-
puting, The University of Newcastle, Australia.
He specializes in virtual environments and
human–computer interaction. His interdisci-
plinary research explores how advanced interac-
tive technologies and gamification can be applied

to real-world problems. His current research interests include immersive
virtual environments, and serious games and simulation.

50412 VOLUME 9, 2021

http://dx.doi.org/10.1145/3286960.3286967
http://dx.doi.org/10.1145/2811411.2811508
http://dx.doi.org/10.1145/1653662.1653696
http://dx.doi.org/10.1145/3378936.3378960
http://dx.doi.org/10.1145/2635868.2635900

