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ABSTRACT Network traffic prediction plays a vital role in effective network management, load evaluation
and security warning. Extreme learning machine has the advantages of fast convergence speed and strong
generalization ability. Also, it does not easily fall into local optima. The evolutionary algorithm can be used
to optimize the number of its hidden layer nodes. However, most of the existing evolutionary algorithms
have some adjustable parameters which depend on subjective experience or prior knowledge. Hence, this
can affect the model prediction accuracy. Given this context, this paper proposes a network traffic prediction
mechanism based on optimized Variational Mode Decomposition (VMD) and Integrated Extreme Learning
Machine (ELM). A Scalable Artificial Bee Colony (SABC) algorithmwhich has fewer adjustable parameters
and can thus guarantee the accuracy and stability of the prediction mechanism is also proposed. It can
be used in the optimization selection of VMD, Phase Space Reconstruction (PSR) and ELM to achieve
higher prediction performance. Finally, we utilize Mackey-Glass, Lorenz chaotic time series of recognized
benchmark and a WIDE backbone actual network traffic data to prove the validity of the proposed network
traffic prediction mechanism.

INDEX TERMS Network traffic, time series analysis, variational mode decomposition, extreme learning
machine, artificial bee colony algorithm.

I. INTRODUCTION
A. BACKGROUND
Network traffic is the amount of data transmitted over the net-
work. The size of network traffic is of great significance to the
design of network architecture. With the continuous expan-
sion of the Internet structure, various network types have
consistently emerged in recent years. The constant improve-
ment of the scale of network users has significantly increased
the network traffic data, which in turn bring new challenges
to the effective management, load evaluation and security
warning of the network. Network traffic is time-related data
with chaotic characteristics, which can be transformed into a
time series problem [1]. Network traffic prediction is to use
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the network traffic data of the past period to predict the data
of a specific moment in the future to grasp the development
trend of the incoming network and improve the management
ability of network load.

At the beginning of the development of the computer net-
work, the amount of data transmitted by the network was
small. Hence, Poisson model and Markov model could be
effectively used to describe network traffic data and establish
prediction model. In the 1990s, Leland [2] et al. found that
self-similar characteristics existed in traffic data; a finding
which opened a new chapter of traffic prediction. Some
self-similar and linear models were thus used to model and
predict network traffic data. Nowadays, with the rapid devel-
opment of network scale, network traffic proved to be a
typical nonlinear time series with the characteristics of time-
varying, long correlation, self-similarity, sudden, chaotic and
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so on [3], [4]. Given that, the traditional linear models are
unable to accurately describe network traffic characteristics,
leading to poor prediction performance and low accuracy of
prediction problems. Thus, researchers shifted from linear
model to nonlinear model based on Neural Network (NN),
Chaotic Theory (CT) and Statistical Theory (ST), particularly
the nonlinear analysis which is mainly based on Neural Net-
work. With the recent research development, the problems of
some neural network models were gradually exposed. These
issues include gradient explosion of Back Propagation neu-
ral network [5], slow training speed and low generalization
ability of Radial Basis Function neural network [6], more
adjustable parameters of ESN network [7] and so on. In light
of the aforementioned, a type of feed forward neural net-
work, Extreme Learning Machine (ELM), was proposed by
Huang et al. The ELM model has the advantages of fast
convergence speed, strong generalization ability, and not
easily falling into the local optima, etc [8]. Hence, it is
not surprising that in recent years, time series-based pre-
diction model of ELM has attracted wide research atten-
tion. This resulted in an ELM network traffic prediction
model based on Map Reduce, proposed by Liu et al. [9].
Tian et al. [10] introduced an improvedArtificial Bee Colony
algorithm to optimize the number of nodes in the hid-
den layer of ELM for network traffic prediction. In the
same year, he proposed a prediction model based on
Empirical Mode Decomposition and ELM [11]. In 2017,
Li et al. [12] put forward anOS-ELMpredictionmodel based
on down-hole working condition. In the following year,
Li et al. advocated a time series decomposition and optimiza-
tion of ELM short-term wind speed prediction method [13].

Along with the complexity of network traffic data in the
current large network, the randomness and non-stationarity
could make the actual data have strong nonlinearity, which
would decrease the computational accuracy of the predic-
tion model. The time-series decomposition (abbreviated by
TSD) analysis seems to be an effective method to handle this
problem [13]. In recent years, some TSD methods, such as:
empirical mode decomposition (EMD) [14]–[16], local mean
decomposition (LMD) [17], variational mode decomposition
(VMD) [18]–[20], etc. have caught many scholar’s attentions.
Variational Mode Decomposition (VMD) is a signal process-
ing method which transfers the signal decomposition process
adaptively to a variational framework. It then realizes the
signal decomposition by searching for the optimal solution
of the constrained variational model [21]. VMD splits the
signal into several modal components to minimise the sum
of estimated bandwidth of each mode. VMD is an improved
version of EMD which has better robustness for the data
decomposition [22]; compared to EMD, VMD has a superior
denoising property and ability to separate tones of similar
frequencies [23]; compared to wavelet decomposition (WD)
and EMD, VMD is foremost in decomposing signals non-
recursively by adaptively determining the frequency center
of the processing data and thereby optimally fixing each
subcomponents limit [24].

Moreover, in our research, the Phase Space Reconstruction
(PSR) is employed to reflect the real change of system by
the original data sequence. The dynamic change process of
any variables in the system can reflect the influence of other
variables related to it, and the phase space obtained through
reconstruction can reflect the change rule of the system state.
So, after VMD decomposition, the original signal sequence
is decomposed into K sub-sequence; before ELM modeling
each sub-sequence, PSR can be carried out to construct the
input and output variables of the ELM model.

In the combination of VMD, PSR and ELM, there is one
crucial problem needs to be better solved. That is, the value of
some tuning parameters in themodel should be accurately set,
such as: the number of modes and the iterative factor in VMD,
the embedding dimension and the delay time in PSR, and the
number of hidden layer nodes in ELM. In some applications,
the value of these adjustable parameters is highly dependent
on subjective experience or prior knowledge. Hence, when
the setting is not reasonable it will negatively affect the
optimization result of model parameters and the calculation
accuracy and stability of the model.

Evolutionary Computation is a research direction of
Computational Intelligence that involves combinational
optimization. Its algorithm is influenced by the natural selec-
tion mechanism of ‘‘survival of the fittest’’ and the transmis-
sion law of genetic information in the process of biological
evolution. It simulates this process through program itera-
tion, treats the problem to be solved as the environment,
and seeks for the optimal solution through a natural evo-
lution in a population composed of some possible solu-
tions. At present, Particle Swarm Optimization (PSO) [25],
improved Artificial Bee Colony algorithm (IABC) [10],
improved Harmony Search algorithm (IHS) [26], improved
Free Search algorithm (IFS) [27], improved Gravity Search
algorithm (IGSA) [13], Levy-Cloud-Model Fruit Fly Opti-
mization algorithm (LVCMFOA) [28] and other different
types of evolutionary algorithms have attracted the atten-
tion of researchers. ABC algorithm is a swarm intelligence
optimization algorithm which imitates the honey gathering
mechanism of bees. Its principle and implementation are
relatively simple so as to it has been studied and applied in
many fields. ABC algorithm [29] involves three kinds of bee
colonies, namely, lead bee, follow bee and scout bee. One
leading bee corresponds to a food source and searches the
food source first. Follow bees are to select dancing areas and
visit food sources. Scout bees conduct random searches of
food sources.When the food source is exhausted, the lead bee
for the intended food source is transformed into a scout bee.

B. RELATED WORKS
In this paper, in order to decrease the computation amount
when conducting many repeated times’ VMD decomposi-
tion and ELM modeling, an improved Artificial Bee Colony
algorithm, named Scalable Artificial Bee Colony (SABC)
algorithm, is proposed to ensure the reliability of the selec-
tion of different tuning parameters. In this regard, this study
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optimizes the VMD and an integrated ELM to establish
the prediction model mechanism. The study also utilizes
the SABC algorithm to realize the optimization selection of
VMD, PSR and various adjustable parameters in ELM. The
proposed prediction mechanism can be applied to network
traffic data prediction to ensure that the prediction results
are less affected by adjustable parameters and have higher
stability and prediction accuracy.

In recent years, the time series prediction based on
VMD and ELM has caught many scholars’ attentions.
Literature [30] used Robust Kernel based Extreme Learn-
ing Machine (RKELM) integrated with VMD to predict
stock price and movement, but they did not consider the
phase space reconstruction of each subset and the optimized
selection of two control parameters. Literature [31] com-
bined the VMD, Singular Spectrum Analysis (SSA), Long
Short Term Memory (LSTM) network and ELM to fore-
cast wind speed, but many tuning parameters of the VMD,
ELMwere not optimized for better choice. In Literature [23],
VMD and a new low rank robust kernel based Extreme
Learning Machine (RKELM) were combined to forecast
solar irradiation, but they did not consider the optimized
selection of different tuning parameters. In Literature [32],
a hybrid mode decomposition (HMD) method (comprised of
VMD, sample entropy (SE) and wavelet packet decompo-
sition (WPD)) and online sequential outlier robust extreme
learning machine (OSORELM) was proposed to predict wind
speed, but they did not use the phase space reconstruction
to reflect characteristics of the real system, and meanwhile
the optimized selection of different control parameters was
not conducted. Literature [24], proposed a combination of
an adaptive regularized extreme learning machine (ARELM)
and an improved VMD, and used the Ant Colony Optimiza-
tion (ACO) algorithm to select the optimal value of some
tuning parameters, but they did not consider a synchronous
optimization of several control parameters in VMD, PSR
and ELM. In Literature [22], VMD and an optimized outlier-
robust ELM was used for point and interval forecasting of
metal prices, but GWO was only used to optimize several
tuning parameters in DFs and ORELM, and a synchronous
optimization of several control parameters in VMD, PSR and
ELM was not considered.

From the above analysis, main contributions of our work
are summarized as follows:

(1) The synchronous optimization of VMD, PSR and ELM
parameter is used to improve the calculation accuracy and
stability of the prediction model.

(2) A Scalable Artificial Bee Colony (SABC) algorithm
is designed to improve the convergence accuracy and speed
of the algorithm through the new solution generation mech-
anism and the addition of fine-tuning disturbance to the new
solution.

The rest of our works is organized as follows. Section II
has a brief overview of VMD, ELM and PSR. In Section III,
main steps of the classical Artificial Bee Colony algorithm
are firstly given, and then a new Scalable Artificial Bee

Colony (SABC) algorithm is introduced, including some
improvements. Section IV gives the proposed prediction
mechanism for the network traffic data, in which a syn-
chronous optimization of VMD, ELM and PSR is used.
In Section V, the validity of the proposed mechanism is
verified using three datasets. Finally, Section VI concludes
our works.

II. NETORK TRAFFIC PREDICTION MODEL
A. VARIATIONAL MODE DECOMPOSITION METHOD
According to VMD [21], its constrained variational model is:

min
{uK },{ωK }

{∑
K

∥∥∥∥∂t [(δ(t)+ j
π t

) ∗ uK (t)]e-jωK t
∥∥∥∥2
2

}
s.t.

∑
K

uK = f
(1)

where, uK isK modal components,ωK is the centre frequency
of each modal component, δ(t) is the impulse function.
‖·‖

2 denotes the Euclidean norm.
To address the limitations of the constrained variational

model as mentioned earlier, two parameters are introduced;
they are quadratic penalty factor α and Lagrange multiplier λ.
The constrained variational problem is transformed into an
unconstrained variational problem. The transformed uncon-
strained variational model is:

L({uK }, {ωK }, λ) :

= α
∑
K

∥∥∥∥∂t [(δ(t)+ j
π t

) ∗ uK (t)]e-jωK t
∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
K

uK (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
K

uK (t)

〉
(2)

The main steps for solving the unconstrained variational
model of Equation (2) are as follows:

Step 1: Initialise each modal component, centre frequency
and Lagrange multiplier, denoised as: u1K , ω

1
K and λ1. Let the

counter n = 0.
Step 2: Transform each variable from the time domain to

the frequency domain. For the n+1 count, in the non-negative
frequency interval, K modal component uK is updated as
follows:

ûn+1K (ω)←
f̂ (ω)−

∑
i6=K ûi(ω)+

λ̂(ω)
2

1+ 2α(ω − ωK )2
(3)

where, ûK (ω), f̂ (ω) and λ̂(ω) are the Fourier transforms of
uK , f (t) and λ, respectively.
Step 3: For the n+1 count, update the centre frequency ωK

of each modal component as follows:

ωn+1K ←

∫
∞

0 ω
∣∣ûK (ω)∣∣2 dω∫

∞

0

∣∣ûK (ω)∣∣2 dω (4)
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Step 4: For the n+1 count, update the Lagrange multiplier
as follows:

λ̂n+1(ω)← λ̂n(ω)+ τ1(f̂ (ω)−
∑
K

ûn+1K (ω)) (5)

Among them, τ1 is the iteration factor.
Step 5: Set the convergence accuracy ε >0, iteration ter-

mination conditions as follows:∑
K

∥∥∥ûn+1K − ûnK

∥∥∥2
2∥∥ûnK∥∥22 < ε (6)

If equation (6) is true, the iteration is stopped and the result
is output. Otherwise, return to Step 2 to continue.

The VMD method involves two main controllable param-
eters: the number of modes K and the iterative factor τ1.
The values of the signals need to be pre-set before they
can be decomposed. For the purpose of reducing the influ-
ence of artificial subjective experience and prior knowledge
onset values, an optimization method is used to realize their
adaptive selection to adapt to the decomposition of different
signals. Therefore, after the signal is decomposed into the
optimized number of K modes, the ELM method is then
introduced to model each mode.

B. EXTREME LEARNING MACHINE
Extreme Learning Machine (ELM) is a neural Network train-
ing method and the purpose is to solve the back propagation
algorithm learning efficiency which is low and the parameter
setting of complicated issues. ELM can better improve the
learning speed of network structure, which avoids the prob-
lems of local minimum, iteration number and performance
index. Determine the training sample set as {(xi, yi)}, i =
1, 2, . . . ,N , N is the number of samples in the sample set.
The mathematical model of the Extreme Learning Machine
(ELM) can be described by Equation (7):

ti =
L∑
j=1

βjig(ωj, bj, xi) (7)

where, ti is the ith training output, βji is the connection weight
between the hidden layer neuron and the ith output neuron, ωj
is the connection weight between the hidden layer neuron and
the input neuron, bj is the bias of the jth hidden layer neuron,
L is the number of hidden layer node; g(·) is the activation
function.

Equation (7) can be expressed as the following matrix
form:

t = G · β (8)

where t = [t1, · · · , tN ]T , gl = [g(ω1, b1, x1), · · · ,
g(ωN , bN , xN )]T , G =

[
g1
∣∣ · · · , ∣∣gL ]T , and β =

[β1, · · · , βL]T . G is the hidden layer output matrix, connec-
tion weight ω and bias b are randomly given when the system
is initialized, and remain unchanged in the training process.

The purpose of ELM training is to find the optimal output
weight matrix

[
β1 β2 · · · βL

]T so that the following
formula is true.

‖t − y‖ =min
β
‖t − y‖ (9)

where y = [y1, · · · , yN ]T and ‖·‖ denotes the Euclidean
norm.

By solving equation (9), the output weight matrix β̂ is
obtained as follows:

β̂ = G+ · y (10)

where G+ is the pseudo-inverse of the output matrix of the
hidden layer.

Since ω and b do not change during the model training,
the output of hidden layer is only related to the input xi and
the number of hidden layer nodes L. The output of the ELM
model can be described by the following formula:

y =
L∑
i=1

β̂ · g(ωi, bi, x) (11)

The output accuracy of ELMmodel is closely related to the
number of hidden layer nodes L. ELMmodeling is conducted
for the K modes after VMD decomposition, involving the
setting of the number of K hidden layer nodes L. Therefore,
an optimization method is suggested to realize the adaptive
selection in order to minimize the influence of artificial sub-
jective experience and prior knowledge onset values.

C. PHASE SPACE RECONSTRUCTION
After VMD decomposition, the original signal sequence is
decomposed into K sub-sequence. Before ELM modeling
each sub-sequence, Phase Space Reconstruction (PSR) can
be carried out to construct the input and output variables
of the ELM model. Let the chaotic time series be {xi, i =
1, 2, . . . ,N}, where N is the number of samples in the
sequence. Then, the input variables after the reconstruction of
the phase space can be expressed in the following form [33]:

x(Nτ2) = (x(Nτ2), x((N − 1)τ2), · · · , x((N − m)τ2))

(12)

And the training set can be expressed by

{(x((N − 1)τ2), x(Nτ2)) : N = m+ 1, · · · ,N0} (13)

where x((N -1)τ2) is the input vector and x(Nτ2) is the target,
N0 is an arbitrary value of N .
Among them, m is the embedding dimension and τ2 is the

delay time. ELM modeling can be completed according to
equations (12) and (13). In this paper, a one-step prediction
is adopted, that is, to predict the value of the next time point
from a period of the data sequence.
m and τ2 are two critical parameters in phase space

reconstruction. With reasonable values, they can make the
reconstructed phase space close to the original system to a
certain extent. In traditional studies, C-C method [34] and
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G-P method [35] are often used to determine their values, but
the advance calculation is required for specific time series.
In this paper, the VMD method is used to decompose the
signal, and the phase space reconstruction parameters of each
mode cannot be calculated in advance. Therefore, to enablem
and τ2 to have an adaptive capacity for eachmodel after VMD
decomposition, the optimization method can be adopted in
the training process.

III. ARTIFICIAL BEE COLONY ALGORITHM
In this study, the cluster intelligent optimization algorithm is
used to optimize several critical parameters in the network
traffic prediction model. These parameters are the number of
modesK , iterative factor τ1, the number of hidden layer nodes
L of each ELM model, and the phase-space reconstruction
parameters m and τ2 after decomposition. Although some
intelligent optimization algorithms can be used, such as: PSO,
IABC, IHS, IFS, IGSA, and so on, there are some adjustable
parameters involved. That are, learning factor in PSO, elas-
ticity coefficient of velocity update and population update,
parameter iteration velocity coefficient, and forth; In IABC,
control parameters of the food source, random step size and
location update coefficient moving towards the optimal solu-
tion are given up; In IHS, the harmony number, the retention
probability of the harmony memory bank, the likelihood of
memory disturbance, the minimum bandwidth, the maximum
bandwidth, etc.; In IFS, search small steps, search radius, etc;
and coefficient of gravity, coefficient of iteration, percentage
of attraction in IGSA, etc. These adjustable parameters could
reduce the stability and accuracy of the prediction model.
Therefore, in order to solve this problem, the study advo-
cates a Scalable Artificial Bee Colony (SABC) algorithm to
minimize the problem of uncertainty and poor stability of the
prediction model.

A. CLASSICAL ARTIFICIAL BEE COLONY ALGORITHM
The ABC algorithm realizes the search of the food source
(the optimal solution) through the cooperation of the three
kinds of bee colonies. The search process of the algorithm is
as follows:

(1) Randomly generate initial solution xi =

{xi1, xi2, . . . , xid}, i = 1, 2, . . . ,M ,M is the number of honey
sources, d is the dimension of solution. The initial solution is
generated as follows:

xi = xdowni + (xupi − x
down
i ) · rand() (14)

where, [xdowni , xupi ] is the value range of xi, and rand() is the
random number within [0,1].

(2) In the initial stage of the search, each lead bee generates
a new solution as follows:

newxi,j = xi,j + (xi,j − xk,j) · rands() (15)

Among them, the k ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , d},
and k 6= i, rands() is the random number in [−1, 1].

(3) After all the lead bees have completed the search pro-
cess, they will share the solution information with the follow
bees in the recruitment area.

The follow bee calculates the selection probability of each
solution as follows:

Pi =
fiti

M∑
k=1

fitk

(16)

where the fit is the fitness function value. Then, a random
number is generated in the interval [−1,1]. If Pi is greater
than the random number, the follow bee will generate a new
solution from Equation (15). If the fiti of the new solution is
better than the previous one, the follow bee will remember the
new solution and forget the old solution; otherwise, the old
solution will be retained.

(4) After all the follow bees have completed the search pro-
cess, if a solution has not been updated after several cycles,
the honey source will be abandoned (considered to be trapped
in the local optima). When a honey source is abandoned, its
corresponding lead bee turns into a scout bee, generating a
new honey source from Equation (14).

Artificial Bee Colony algorithm finds the optimal solution
through the above cyclic search. The main steps of Artificial
Bee Colony algorithm are as follows:

Step 1: The initialization phase. Set parameters such as
colony number, maximum iteration times, solution search
range, etc., and then generate the initial solution within the
solution search range according to Equation (14). The number
of which is half of the population.

Step 2: Calculate the fitness function value of each initial
solution, then sort the advantages and disadvantages accord-
ing to the results. Take the first 50% as the lead bee and
the second 50% as the follow bee.

Step 3: Set the loop conditions and begin the search
process.

Step 4: For the leading bees, generate a new solution
according to Equation (15), and calculate its fitness value.

Step 5: Evaluate the fitness function value of the new
solution. If it is better than the old solution, the bees will be
led to remember the new solution and forget the old solution.
Otherwise, the old solution will still be kept.

Step 6: Calculate the selection probability of each solution
according to Equation (16). The following bee selects the
honey source according to probability Pi, and produces a new
solution according to Equation (15), and calculates its fitness
value. If the fitness function value of the new solution is better
than the old solution, the bees will be guided to remember the
new solution and forget the old solution; otherwise, the old
solution will be retained.

Step 7: Judge whether there are any solutions to be
given up. If there are, the scout bees will randomly gen-
erate new solutions according to Equation (14) and replace
them.

Step 8: Record the optimal solution for each iteration.
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Step 9: Determine whether the loop termination condition
is met; if so, end the loop and output the optimal solution;
otherwise, return to Step 4 to continue the search.

B. NEW SCALABLE ARTIFICIAL BEE COLONY ALGORITHM
The search of Artificial Bee Colony algorithm involves three
main processes: initial population evaluation, lead bee pop-
ulation renewal, and reconnaissance honey source renewal.
Decomposition and modeling calculation will be repeated
many times when VMD decomposition and ELM prediction
is applied, resulting in the complex calculation and long
optimization process time. Also, in the process of lead bee
populations’ update, there is a need to update each lead
through several neighboring lead bees. When applied in pre-
dicting VMD decomposition and ELM, every solution of the
decomposition and modeling calculation has to be updated.
If there is too much focus on local waste and its calculations
overlap computing resources, it will take a long time to
calculate the optimization. In this regard, this paper improves
the search mechanism of artificial bee colony algorithm by
reducing the number of iterations of VMD decomposition
and ELM prediction required. New Scalable Artificial Bee
Colony Algorithm (SABC) was proposed to improve the
convergence speed and prediction accuracy.

C. UPDATE MODEL WITH NEW SOLUTIONS
According to the population dimension, each dimension is
traversed successively, and an individual lead bee in the lead
bee population (the first 50% of the whole population) is
randomly selected for the updating every time.

We update the selection formula of the solution as follows: newxi,j = xi,j

j = ceil(rand() ·
popsize

2
)

(17)

where i represents the ith dimension variable, j represents the
jth selected individual, and popsizemeans the population size.

The updated and revised formulae for the new solution are
as follows:

newxi,j = xi,j + δ · (xi,j − neigxi,k ) · rand s() (18)

k =


fix(rand() ·

popsize
2

), k 6= j

fix(rand() ·
popsize

2
)+ 1, k = j

(19)

where neigxi,k is the K th nearest neighbour solution of xi,j,
δ is the search step size.

D. FINE-TUNE DISTURBANCES THAT GENERATE
NEW SOLUTIONS
After the new solution is generated, falling into local opti-
mum is a concern which should be addressed. Hence, set
the probability of fine-tuning disturbance PA, and randomly
generate a number in the interval [0,1]. When it is less than
PA, a positive fine-tuning disturbance will be generated for

the new solution, with the following relationship:

newxi,j = newxi,j + σ · rand(), rand < PA (20)

where σ is the disturbance step size.
When the random number generated in the interval of

[0, 1] is greater than or equal to PA, a negative fine-tuning
disturbance is generated to arrive at the new solution which
has the following relationship:

newxi,j = newxi,j − σ · rand(), rand ≥ PA (21)

The choice of the PA value of the fine-tuning perturbation
probability can be set according to the specific application
problem. A larger PA value can accelerate the speed of
searching solution space and make the optimization process
converge as soon as possible. Smaller PA values focus on
local searches, particularly in more detailed searches around
the global optimal solution.
Remark: According to equations (17)-(21), the update

mechanism of our algorithm can be implemented by the
following procedures:

1. j ← I (1,
⌈
popsize

2

⌉
), where I (1,

⌈
popsize

2

⌉
) is an integer

randomly chosen from the interval [1,
⌈
popsize

2

⌉
] (with uni-

form probability);

2. k ← I (1,
⌈
popsize

2

⌉
);

3. If k = j, then k ← k+1;
4. newxi,j ← xi,j + δ · (xi,j − neigxi,k ) · U (−1, 1), where

U (−1,1) is a uniform random variable on (−1,1);
5. If U [0, 1] < PA, newxi,j← newxi,j + σ · U [0, 1];
else newxi,j← newxi,j − σ · U [0, 1].

IV. PROPOSED PREDICTION MECHANISM
We begin by utilizing the VMD method to decompose the
data sequence to obtain K modes corresponding to K data
subset sequences. Then, the data subsets in each mode are
reconstructed in phase space to get the data sequences in high
dimensional space. Finally, the reconstructed data of K group
phase space is substituted into the K ELM models as input
to obtain the predicted output. During the whole prediction
process, the proposed Scalable Artificial Bee Colony (SABC)
algorithm is used to optimize the selection of different model
parameters. It includes the control parameters K and τ1 for
VMD decomposition, control parameters m and τ2 for phase
space reconstruction and the number of hidden layer nodes L
in the ELM model.

The main calculation steps of the proposed prediction
method are as follows:

Step 1: Initialization. Set the population size, themaximum
number of iterations, and the range of control parameters to
be optimized.

Step 2: Make the initial population and each individual
in the population to be the 5-dimensional variable, which is
represented as [L, m, τ2, K , τ1]. Each individual of the initial
population is randomly assigned within its range.

Step 3: VMD decomposition is carried out for the data
sequence; phase space reconstruction is carried out for each
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data subset sequence after decomposition. Then K ELM
models are established, and the training samples are used for
training.

Step 4: Evaluate each individual in the initial population by
the fitness function defined in Equation (22) to determine the
optimal individual and global optimal solution in the initial
population.

RMSE =

√√√√√Ndata∑
i=1

(yi − y′i)
2

Ndata
(22)

where Ndata is the number of samples, yi and y′i are the actual
value and predicted value of the ith sample, respectively.
Step 5: Following the main stages of the Scalable Artifi-

cial Bee Colony (SABC) algorithm and Equations (17)-(21),
update the population using the SABC and obtain the revised
new solution.

Step 6: Calculate the fitness function value of the updated
new solution according to Equation (22) and compare it with
the historical global optimal solution. If it is better than
the historical global optimal solution, update the historical
global optimal solution; otherwise, keep the historical global
optimal solution.

Step 7: If the search termination condition is met, terminate
the iteration and output the global optimal solution; other-
wise, return to Step 5 to continue the iteration.

The flow chart of the prediction method is shown
in Figure 1.

V. THE SIMULATION VERIFICATION
The validity of the proposed mechanism is verified using
three datasets. They are Mackey-glass chaotic time series,
Lorenz chaotic time series and WIDE backbone actual net-
work traffic data of MAWIWorking Group. The experiments
are conducted in a simulated testbed. Six swarm intelligence
optimization algorithms (IGSA [13], IABC [10], IFS [27],
IHS [26], LVCMFOA [28] and PSO [25]) are applied to con-
struct the optimal modeling for VMD and ELM, respectively.
The results are used to compare the findings of our proposed
algorithm, Scalable Artificial Bee Colony (SABC) algorithm.
The adjustable parameters setting in different swarm intelli-
gence algorithms are shown in Table 1.

The different values in the parameters may have some
impact on the performance of the algorithm. To avoid the
bias, the experiments are conducted repeatedly by randomly
selecting the parameter value within the range. The computer
configuration is as follows: ‘‘Windows 7’’ system, ‘‘Matlab
2015a’’, Intel core i7 4.00GHz CPU, 16GB RAM.

A. MACKEY-GLASS CHAOTIC TIME SERIES
The following differential equations describe Mackey-Glass
chaotic sequences:

dx(t)
dt
=

0.2x(t − η)
η

− 0.1x(t) (23)

FIGURE 1. Flow chart of the prediction method.

FIGURE 2. Mackey-Glass chaotic time series.

When η >17, the Mackey-Glass sequence has chaotic
behavior. In this paper, the η = 30 and the initial value
x(t) |t=0 = 0.9 are selected. One thousand data points are
generated, as shown in Figure 2.

51824 VOLUME 9, 2021



J. Shi et al.: Optimal VMD and Integrated ELM for Network Traffic Prediction

TABLE 1. Parameters setting.

As shown in Figure 2, 1000 data points are generated;
the first 700 groups are taken as training samples, while
the last 300 groups are taken as test samples. Seven swarm
intelligence optimization algorithms (IGSA [13], IABC [10],
IFS [27], IHS [26], LVCMFOA [28], PSO [25] and SABC)
are used to conduct optimization modeling for VMD and
ELM, respectively. Each model is run repeatedly for several
times. The optimal value and worst value predicted by differ-
ent data sets under the three indicators of Root Mean Squared
Error (RMSE),MeanAbsolute Error (MAE) andMeanAbso-
lute Percentage Error (MAPE) as well as the average training
time and test time of the model are accordingly recorded. The
average fitness curves of different models at the training stage
are displayed in Figure 3.

FIGURE 3. Average fitness curve of different models in the training stage
(Mackey-Glass).

FIGURE 4. Average predicted output curves of different models in the test
phase (Mackey-Glass).

As seen in Figure 3, the convergence performance of
IABC-VMD-ELM is the worst in Mackey-Glass chaotic
time series. Meanwhile, the IFS-VMD-ELM and IGSA-
VMD-ELM fall into the local optima state. The convergence
speed of IHS-VMD-ELM is relatively slow. IFS-VMD-ELM,
LVCMFOA-VMD-ELM and SABC-VMD-ELM all have a
good convergence performance, but the SABC-VMD-ELM
has a good effect on the convergence accuracy.

The average output curves of different models in the test
stage are shown in Figure 4.

According to Figure 4, IFS-VMD-ELM, IGSA-VMD-
ELM and LVCMFOA-VMD-ELM all have poor general-
ization ability. However, SABC-VMD-ELM can track the
actual output better and has better prediction ability compar-
atively. The predictive performance metrics (RMSE, MAE,
and MAPE) for several models run repeatedly are shown
in Table 2.

The findings in Table 2 depict that IGSA-VMD-ELM, IFS-
VMD-ELM, LVCMFOA-VMD-ELM and PSO-VMD-ELM
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TABLE 2. Comparison of predictive performance metrics of the models (Mackey-Glass).

FIGURE 5. Calculation time of different models.

have a wide range of variations. It indicates that different
values of adjustable model parameters in the intelligent opti-
mization algorithms will affect the prediction results. The
optimal predictive performance metrics of IHS-VMD-ELM
is better than that of IABC-VMD-ELM. Yet its overall pre-
dictive performance and stability are weaker than that of
IABC-VMD-ELM. Compared with the other six models,
SABC-VMD-ELM has better prediction performance, over-
all prediction performance and stability.

The comparison of the average training time and average
test time of the seven models is shown in Figure 5.

Figure 5 shows that in comparison with the IABC-VMD-
ELMmodel, SABC-VMD-ELM can significantly reduce the
training time. Although SABC-VMD-ELM does not have the
least training time among all models, it is acceptable when
overall predictive performance and stability are taken into
account.

B. LORENZ CHAOTIC TIME SERIES
The differential equation of the Lorenz equation is described
as follows:

dx
dt
= A · (y(t)− x(t))

dy
dt
= B · x(t)− y(t)− x(t) · z(t)

dz
dt
= x(t) · y(t)− C · z(t)

(24)

where A = 10, B = 2 and C = 8/3, and the initial values of
x(0), y(0) and z(0) are 12, 2 and 9, respectively.
One thousand sets of x(t) component data are generated,

as shown in Figure 6. The first 700 groups are taken as
training samples, while the last 300 groups are taken as test
samples.

FIGURE 6. Lorenz chaotic time series.

The seven models are run repeatedly for several times. The
optimal value and the worst value predicted by different data
sets under RMSE, MAE and MAPE as well as the model’s
average training time and test time, are recorded, respectively.

The average fitness curves of different models at the train-
ing stage are shown in Figure 7.
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TABLE 3. Comparison of predictive performance metrics of the models (Lorenz).

FIGURE 7. Mean fitness curve of different models in the training
stage (Lorenz).

As shown in Figure 7, the convergence performance of
IABC-VMD-ELM is the worst for Lorenz chaotic time series.
Whereas IGSA-VMD-ELM, LVCMFOA-VMD-ELM, IFS-
VMD-ELM and PSO-VMD-ELM fall into the local optima
in the initial stage. IHS-VMD-ELM has good convergence
accuracy, but its convergence speed is slow. On the contrary,
the SABC-VMD-ELM has a good effect in both convergence
speed and convergence accuracy.

The average output curves of different models in the test
stage are shown in Figure 8.

It can be seen in Figure 8 that the random value of
adjustable parameters will affect the stability of the pre-
dicted output of the model when repeated many times.
Compared with the other models, SABC-VMD-ELM is
the least affected and has certain advantages in prediction

FIGURE 8. Average predicted output curve of different models in the test
phase (Lorenz).

accuracy and stability. The predictive performance metrics
(RMSE,MAE, andMAPE) for several models run repeatedly
are shown in Table 3.

Based on Table 3, it can be concluded that after many
repeated operations, the predictive performance metrics of
IGSA-VMD-ELMand LVCMFOA-VMD-ELMhave a broad
range of variations, indicating that the predictive performance
of the two models is greatly affected by the random value
of adjustable parameters. IHS-VMD-ELM, IFS-VMD-ELM
and PSO-VMD-ELM have good predictive stability, but
the prediction accuracy is low. Although IABC-VMD-ELM
proves to have the best prediction accuracy, its prediction
stability is still poor. Compared with the other models,
SABC-VMD-ELM demonstrates better prediction perfor-
mance and stability on the whole.
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FIGURE 9. Calculation time of different models (Lorenz).

FIGURE 10. Network traffic data set of ‘‘Hour.’’

The comparison of the average training time and average
test time of the seven models is shown in Figure 9.

As shown in Figure 9, SABC-VMD-ELM can signifi-
cantly reduce the training time when compared with the
IABC-VMD-ELMmodel. Moreover, SABC-VMD-ELM has
an advantage over the latter when considering the overall
prediction performance, stability and training time.

C. WIDE BACKBONE NETWORK TRAFFIC DATA
WIDE backbone network traffic data is MAWI Working
Group which investigates the Internet service records of net-
work traffic datasets (http://mawi.wide.ad.jp/mawi/) in rou-
tine work. From July 1 to July 21 2018, 480 data points in the
data set were collected and processed and used for simulation
experiment. The sampling period of the data was 1 Hour and
recorded as ‘‘Hour’’ data set [28]. The 480 data points in the
data are shown in Figure 10, in which the first 430 data points

FIGURE 11. Mean fitness curves of different models at the training
stage (‘‘Hour’’).

are used as training samples, and the last 50 groups of data are
used as test samples.

The 7 models are run repeatedly for several times. The
optimal value and the worst value predicted by different data
sets under RMSE, MAE and MAPE as well as the model’s
average training time and test time are recorded, respectively.

The average fitness curves of different models at the train-
ing stage are shown in Figure 11.

As shown in Figure 11, for the ‘‘Hour’’ data set, IFS-
VMD-ELM, LVCMFOA-VMD-ELM and PSO-VMD-ELM
fall into the local optima state at the initial stage as well
as demonstrate poor convergence effect. Although IHS-
VMD-ELM gradually converges, it does not achieve the
best convergence accuracy. The convergence precision of
IABC-VMD-ELM is better than that of IHS-VMD-ELM, but
the convergence speed is slow. Compared with the other mod-
els, SABC-VMD-ELM has a better effect on convergence
speed and convergence precision.

The average output curves of different models in the test
stage are shown in Figure 12.

Figure 12 shows that IGSA-VMD-ELM, IFS-VMD-ELM,
IHS-VMD-ELM, LVCMFOA-VMD-ELM and PSO-VMD-
ELM have low generalization ability when the adjustable
parameters are randomly taken in this actual network traffic
data. IABC-VMD-ELM and SABC-VMD-ELM can track
the actual output better, but the latter has an advantage in
prediction accuracy.

The predictive performance metrics (RMSE, MAE, and
MAPE) for several models run repeatedly are shown
in Table 4.

Based on the results in table 4 and on the actual
network traffic data, it can be surmised that the ran-
dom value of adjustable parameters will have a great
impact on the generalization ability of IGSA-VMD-ELM,
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TABLE 4. Comparison of predictive performance metrics of the models (‘‘Hour’’).

FIGURE 12. Average predicted output curves of different models in the
test phase (‘‘hour’’).

IFS-VMD-ELM, IHS-VMD-ELM and LVCMFOA-VMD-
ELM, resulting in a large deviation in the predicted output.
Although the optimal value of PSO-VMD-ELM prediction
is acceptable, the overall prediction performance is unstable.
On the other hand, IABC-VMD-ELM and SABC-VMD-
ELM can track the actual value well and are less affected
by the random value of adjustable parameters. At the same
time, SABC-VMD-ELM has better prediction accuracy and
stability.

The comparison of the average training time and average
test time of the seven models is shown in Figure 13.

As can be seen from Figure 13, SABC-VMD-ELM sig-
nificantly reduces the training time when compared with
IABC-VMD-ELM. However, in comparison with the other
five models, it has a longer training time; yet it has a clear

FIGURE 13. Calculation time of different models‘‘Hour.’’

advantage in testing time. In sum, the prediction performance
of SABC-VMD-ELM is the best when considering the pre-
diction accuracy, stability and calculation time.

VI. CONCLUSION
This paper proposed a prediction mechanism based on opti-
mal variational mode decomposition and integrated extreme
learning machine to predict the network traffic. To reduce
the influence of different scale characteristics of network
traffic on the prediction accuracy, firstly, the variational mode
decomposition method is used to decompose the network
traffic data. Then, for the sub-data set corresponding to
each mode after decomposition, the predictive sub-models
are established respectively using the integrated extreme
learning machine. Finally, the outputs of all the sub-models
are integrated to get the outcome [36]. In the process of
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designing a prediction model, several optimized parameters
are involved in VMD, PSR and ELM. A Scalable Artificial
Bee Colony (SABC) algorithm is thus proposed to train
their optimal values. Compared with other evolutionary algo-
rithms, the proposed SABC algorithm has less adjustable
parameters. Another advantage is its optimization accuracy
and stability. It improves the performance of network traffic
prediction model by optimizing multiple parameters in the
prediction model. Simulation experiments are carried out
with Mackey-Glass chaotic time series, Lorenz chaotic time
series and WIDE backbone-network traffic data. The results
proved that the proposed model demonstrates better accuracy
in predicting network traffic.
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