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ABSTRACT A major challenge faced by popular massive open online courses (MOOCs) is the assessment
of large-scale open-ended assignments submitted by students. Recently, peer assessment has become a
mainstream paradigm that helps grade open-ended assignments on a large scale. In peer assessment, students
also become graders in grading a small number of their peers’ assignments, and the peer grades are then
aggregated to predict a true score for each assignment. The collected peer grades are usually inaccurate
because graders have different reliabilities and biases. To improve accuracy, several probabilistic graph
models have been proposed to model the reliability and bias of each grader. However, none of these models
consider graders’ competency information in the assignments to be graded, which has been found to be
very effective. We propose two new probabilistic graph models to improve the accuracy of cardinal peer
assessments based on the well-accepted cognitive diagnosis technique. Specifically, the cognitive diagnosis
model DINA is applied to determine grader competency based on historical tests or assignments. Then, this
information is used to optimize the modeling of grader reliability in each of the proposed models. Moreover,
an effective model inference algorithm is proposed to infer true scores of assignments. Experimental results
based on real world datasets show that the two proposed models outperform state-of-the-art models and that
consideration of grader competency contributes to improved score estimation.

INDEX TERMS Peer assessment, cognitive diagnosis, probabilistic graph models, MOOCs.

I. INTRODUCTION
Peer assessment (or peer review), which is also known as
peer grading, is an arrangement for peers to consider and
specify the level, value, or quality of a product or performance
of other equal-status peers [1]. Peer assessment is becoming
increasingly important for Massive Open Online Courses
(MOOCs) [2]–[4], since it provides a practical solution to the
large-scale grading problem brought by large-scale participa-
tion of students in MOOCs. Automated grading software also
offers help to solve the problem.However, there are less effec-
tive auto-grading solution for open-ended assignments (e.g.,
essays or problem-solving questions), since such assignments
do not have standardized answers. Considering open-ended
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assignments are arguably important for evaluating learning
outcomes of many MOOCs [5], many popular MOOC plat-
forms, such as Coursera1 and edX,2 have already provided
the function of peer assessment to help teachers assess mas-
sive submissions of students to open-ended assignments.
Specifically, in these platforms, students play an additional
role as graders of a small number of their peers’ assign-
ments, according to some rubrics or benchmarks given by the
teacher. Grades offered by students (i.e., peer grades) are then
aggregated by the MOOC platforms to produce an estimate
to the true score for each assignment. Besides the bene-
fit of reducing teachers’ workloads of grading large-scale
open-ended assignments, peer assessment is also believed to

1https://www.coursera.org/
2https://www.edx.org/
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bring other educational values, including learning from other
students’ solutions [6], inspiring of students’ learning inter-
ests [7], enhancing of students’ involvement in a course [8],
and developing of students’ higher-order thinking and
metacognition skills [9].

Although peer assessment is very helpful for MOOCs, it is
still a challenging problem to aggregate peer grades received
for an open-ended assignment so as to derive more accu-
rate estimates to the final scores of assignments. This paper
considers the case of cardinal peer assessment, where the
peer evaluations for assignments are in the form of numerical
grades. The cardinal setting is currently the most common
choice for popular MOOC platforms, e.g., Coursera and edX.
These MOOC platforms simply use the median (or mean) of
received peer grades as the final score. Considering the varied
skill levels and attitudes of online students [10], such a simple
aggregation strategy of peer grades used by existing MOOC
platforms may be inaccurate due to the impact of two factors,
namely grader bias and grader reliability [11]. Grader bias
reflects any constant inflation or deflation of the peer grades
given by the grader. The second impact factor, i.e., grader
reliability, represents the variance in the difference between
peer grades that the grader gives with respect to a group of
assignments and the true scores of these assignments. If a
grader gives grades randomly, the variance is large and the
grader is deemed unreliable. If a grader carefully assigns
grades based on the quality of assignments, the variance is
small and the grader is deemed reliable. Bias and reliability
of graders are twomajor factors concerned in peer assessment
of MOOCs. On one hand, the evaluation of these two factors
offers help in predicting the participation of students in the
next assignment, based on the theory that a reliable grader
would add a different dimension of information to a student’s
engagement in teaching activities [2]. On the other hand,
recent study [2] have proven that the consideration of these
two factors is very helpful in improving the estimates to final
scores of assignments. Recently, in order to introduce these
two factors into the procedure of peer assessment in MOOCs,
different probabilistic graph model are presented in top con-
ferences from education or computer science domain [2],
[12]–[14]. Each of these proposed probabilistic graph models
sets the true score of an assignment, the grader bias, and the
grader reliability as latent random variables of a graphical
network that follow certain distributions, and utilizes the con-
ditional dependency network of these variables to infer their
values by fitting the models on some observed values, such as
the peer grades. These models are supposed to optimize the
aggregation of peer grades in MOOCs.

Although these probabilistic graph models successfully
improve the accuracy of estimates to the final scores of
assignments, they build inadequate models for grader reli-
ability. In specific, these models either model grader relia-
bility based on a simple probability distribution [2], [13] or
based on a probability distribution related to the true score
of the grader to the graded assignment [12]–[14]. Cognitive
diagnosis models (CDMs) [15], [16], which are famous

FIGURE 1. Correlation between competency and RMSE.

psychometric models used to quantify the competency of a
student in a given question based on his/her performance
gained in historical records [17], provide possibility to opti-
mize the modeling of grader reliability. Fig. 1 illustrates the
results of 2,109 peer-assessment records given by 260 graders
regarding three open-ended assignments. Using historical test
and assignment results of these graders as input, the deter-
ministic input, noisy, ‘‘and’’ gate cognitive diagnosis model,
i.e., DINA [18], was used to compute their competency val-
ues in each open-ended assignment that they need to grade.
In Fig. 1, the X-axis displays different ranges of grader com-
petency values for the three open-ended assignments, and the
Y-axis shows the average RMSE between peer grades given
by graders whose competency values fall into a certain range
and the corresponding true score given by the teacher. As seen
in the figure, grader reliability is affected by the grader’s com-
petency in the assignments: the lower the competency value,
the larger the RMSE, and thus the lower the grader reliability;
the higher the competency value, the smaller the RMSE,
and therefore, the higher the grader reliability. Ignoring
grader competencies leads to a suboptimal model of grader
reliability, and, consequently, leads to a less accurate predic-
tion to the true scores of assignments.

Recognizing the importance of grader competency in the
assignments they grade, we developed two peer grading prob-
abilistic graph models (named CD-PG1 and CD-PG2) based
on graders’ competency information derived by cognitive
diagnosis. Specifically, the popular DINA model is used to
compute grader competency values in open-ended assign-
ments, based on their performances in previous tests and
assignments. Then, the proposed probabilistic graph models
estimate the true scores of the assignments from the peer
grades and the relative peer grades (i.e., the difference in the
grades given by the same grader to two different assignments)
by modeling grader reliability based on the grader’s compe-
tency and by modeling grader bias. Gaussian distributions
are applied to model the true scores, peer grades, relative
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peer grades, and grader biases separately in the probabilistic
graph models. Two different probabilistic distributions are
used to estimate grader reliability. In the CD-PG1 model,
the reliability of a grader follows a Gamma distribution, with
the shape parameter determined by the grader’s competency
in the assignment to be graded, while in the CD-PG2 model,
it follows a Gaussian distribution with the mean equal to the
grader’s competency in the assignment. To evaluate our pro-
posed probabilistic graph models, we conducted a group of
peer assessment activities for open-ended assignments on the
MOOC platform of Guangxi University3 and collected a peer
assessment dataset. Experimental results show that the pro-
posed models improve the accuracy of the predicted scores
of open-ended assignments by considering graders’ compe-
tency information. The main contributions of this paper are
summarized as follows:
(1) We find that a grader’s competency in an assignment to

be graded can help optimize the modeling of the grader’s
reliability for the assignment to improve the accuracy of
cardinal peer-assessment prediction.

(2) We proposed two probabilistic graph models (i.e.,
CD-PG1 and CD-PG2), which make novel optimization
to state-of-the-art models for cardinal peer assessment
in MOOCs. The novelty of the proposed models comes
from the utilization of a grader’s competency informa-
tion derived by cognitive diagnosis method to optimize
the modeling of his/her grading reliability.

(3) Our proposals are evaluated using a real MOOC peer
assessment dataset, and the experimental results show
that our methods are more accurate than the state-of-
the-art peer-assessment probabilistic graph models.

The rest of the paper is organized as follows. Section II
reviews related works. Section III describes preliminary
knowledge, including the DINA cognitive diagnosis model
and definitions relevant to our problem. Section IV then
discusses the proposed probabilistic graph models for peer
assessment. The algorithm for inferring latent variables
involved in the proposed probabilistic graph models is
explained in Section IV-D. Then, experimental results are
presented in Section V, followed by the conclusions and
future work in Section VI.

II. RELATED WORK
Since the probabilistic graph models we presented in this
paper can be viewed as part of a long tradition of models that
have been proposed for the purposes of aggregating opinions
from diverse people. In this section, we first review literature
about opinion aggregation techniques from different applica-
tion domains in Section II-A, and then we focus ourselves
in analyzing related works of peer assessment in MOOCs in
Section II-B.

A. OPINION AGGREGATION
In the rapidly growing domain called crowdsourcing [19],
labels of an item provided by many workers are aggregated to

3http://www.course.gxu.edu.cn/portal

render an estimation to the true label of the item. Probability
models [20]–[22], neural networks [23]–[25], weighted sum
[26], [27], or majority vote [28], [29] is used to achieve
the aggregation. Among these aggregation methods, majority
vote is the simplest aggregation way that chooses what the
majority of workers agree on as the final label to the item,
and thus is error-prone when there are many spammers. The
weighted sum method weights a label given by a worker and
then aggregates labels obtained from all workers by comput-
ing weighted sum based on their weights. The weight of a
label given by a worker, take literature [26] as an example,
is determined according to theworker’s performance or confi-
dence (generally defined as the worker’s reliability). Though
it is very direct to implement a weighted sum solution, it fails
to consider some complex factor, such as a worker’s bias,
which have important impact on the aggregation results. Neu-
ral networks currently have been successfully applied to per-
form the aggregation of labels in a crowdsourcing task. In par-
ticular, in [25], Rodrigues et al. proposed to embed a crowd
layer that considers the ability of individual worker in a neural
network to fulfill the predication of true labels for every item.
Lacking of interpretability is an eye-catching problem of neu-
ral network which is often criticized by researchers. Besides,
a large amount of ground-truth data which are used to train
the network are not available in most cases. For probability
models, they provide a principled way to infer the true label
of an item based on the observations (e.g., labels submitted
by workers) and the conditional dependencies among latent
variables. For example, in [20], Whitehill et al. proposed a
probabilistic model, called GLAD, where the expertise of
each worker and the difficulty of each image are set as latent
variables of the model and the EM algorithm is adopted
to infer true labels of items based on dependencies among
those latent variables. Since the probabilitymodel can capture
the dependencies between the true labels of items and other
impact variables and is highly interpretable, it has become a
hot research topic of recent years.

The peer review of journal/conference papers or funding
proposals are also related to our problem. Restate that our
most challenging problem is to improve the quality of aggre-
gation of noisy grades given by peers. For the works of
paper review, however, their major concerns are the policy
that deal with anonymity [30], [31], and the optimization
of the assignment of reviewer roles, based on some impact
factors, such as expertise of peers, citation link structure,
and conflicts of interest [32]–[34]. Only simple strategies
are employed to aggregate comments or grades of reviewers.
As to the review of funding proposals, the evidential rea-
soning (ER) approach [35], which is a generic probabilis-
tic reasoning process, is widely used to combine multiple
pieces of independent evidence with both weight and relia-
bility of evidence considered [36]–[39]. However, many con-
straints, such as the requirement of professional knowledge
background, are imposed to reviewers, which makes the ER
approach inappropriate to solve the peer assessment problem
in MOOCs.
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To sum up, there exist many related works that aggregate
opinions of diverse peers are proposed in non-educational
domains. Among these works, due to the interpretability and
the ability of modeling the impact factors to the estimation
of true labels and the dependencies among those factors,
methods built on probability inference procedure (i.e., proba-
bility models and ER approach) favored by most researchers.
However, the proposed methods in these works are not suit-
able to solve the peer assessment problem in MOOCs. For
one, in our problem setting, graders are also gradees, while
there is a dichotomy between the workers and the items being
labeled by the workers in crowdsourcing applications [2] and
papers or proposals are usually assigned to different set of
people to review. For another, when reviewing papers or pro-
posals, the most consideration is the precision at the top after
aggregating feedback of reviewers andmis-ranking items that
are far from the top-k carries no real consequence. While
in our peer assessment scenario, each evaluation towards
an assignment carries the same importance, and we do not
need to precisely rank students whose assignments have
approximately the same quality.

B. PEER ASSESSMENT IN MOOCs
Next, we review related works under the context of MOOCs.
Existing works on peer assessment aggregation can be
divided into two categories, based on the data types: the
ordinal estimation and the cardinal estimation.

In ordinal estimation, every grader is asked to rank a set
of submissions of an assignment according to each sub-
mission’s quality. Then, the goal is to aggregate the partial
rankings of submissions (e.g., x1 � x4 � x2 ) given
by each grader to derive a full ranking of all submissions
(e.g., x1 � · · · � . . . xn) [40]. For ordinal technologies,
the Bradley-Terry model [41] is generalized to learn latent
student scores by aggregating partial ranking information on
assignments provided by the students [42]. In [43], several
statistical ranking models for ordinal comparison, namely the
Bradley-Terry model [41], the Plackett-Luce model [44], and
the Mallows model [45], are used to learn the full ranking of
all submissions from the collected individual student’s partial
ranking of submissions. To further improve the accuracy of
the full ranking of submissions, on one hand, researchers
introduce a variability parameter into the statistical ranking
models to estimate the uncertainty inherent in the assessment
process (i.e., the reliability of graders). On the other hand,
the Bayesian approach is applied to estimate the uncertainty
of each submission’s position in the full ranking [46] and to
allocate the ranking tasks for the students [47]. To reduce
the sample complexity for partial ranking, Chan et al. pro-
posed a multi-armed-bandit-style online algorithm, which
optimizes both the allocation of ranking tasks among stu-
dents and the aggregation of partial ranking submissions by
taking students’ reliabilities into consideration [48]. Mi et al.
augmented ordinal models with cardinal predictions as priors
and proved that such a combination may achieve further per-
formance boosts in both cardinal and ordinal evaluations [12].

Recent years also witness the application of fuzzy set
theory in ordinal peer assessment. For example, in [49],
Capuano et al. presented a new model for ordinal peer
assessment based on the principles of fuzzy group decision
making, where the partial rankings provided by students are
first transformed in fuzzy preference relations and then those
relations are used to generate a global ranking between the
submissions and to estimate their absolute grades. Although
ordinal estimation does not require students to give specific
scores for submissions, and thus reduces the difficulty, it has
an important limitation [50]: by considering only partial rank-
ing information, it is very difficult to quantify the quality
difference between two submissions and assign reasonable
scores.

Unlike ordinal estimation, cardinal estimation asks each
grader to give a numerical grade (e.g., 96) for each assign-
ment. Then, the target of cardinal peer estimation is to pre-
dict the true score of each assignment based on a group of
peer grades of the assignment given by multiple graders.
A major approach for cardinal estimation is the iterative
algorithm, which updates the final scores of assignments
and the weights of graders in an iterative manner. In [50],
De Alfaro et al. proposed the Vancouver algorithm, which
iteratively updates the grading accuracy of each grader and
refines its prediction of the true score of every assignment
based on these updated grading accuracies. In addition,Walsh
proposed another iterative algorithm, named PeerRank [51],
which is inspired by the idea of Google’s well-known PageR-
ank algorithm [52]. When estimating the true score for an
assignment, the PeerRank algorithm weights a peer grade by
its corresponding grader’s ability to grade correctly, which is
determined by the grader’s performance in the course. In [53],
a reputation-based algorithm was proposed that builds a trust
graph over graders and uses that graph to compute weights
for the aggregation of peer grades. Another major category of
cardinal estimation methods is those based on probabilistic
graph models. Such methods model the true score of an
assignment and the bias and reliability of every grader as
latent random variables following certain probabilistic dis-
tributions and infer the values of those variables by fitting
the models based on observed peer grades. Our proposed
methods belong to this category. Piech et al. first proposed
three probabilistic graph models [2], namely PG1 (which
assumes that the true scores, observed peer grades, and grader
bias follow Gaussian distributions, and the grader reliability
follows a Gamma distribution), PG2 (which extends PG1 by
linking the bias of a grader derived from historical grading
tasks), and PG3 (which extends PG1 using the score of a
student’s assignment to estimate that student’s reliability in
grading peer assignments). Considering the assumption of
PG3, i.e., that the reliability of a grader fits a linear function of
the grader’s grade, is too strict, two extensions of PG3, called
PG4 and PG5, were proposed in [12]. PG4 and PG5 assume
that the reliability of a grader follows a Gamma distribution
where the shape parameter equals the score of the grader’s
own submission or follows a Gaussian distribution where the
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mean is equal to the score of the grader’s own submission.
Recent studies show that the bias of a grader can be affected
by the biases of the grader’s friends [54], [55]. In view of
this, Chan and King employ the social connections collected
from a MOOC platform to optimize the modeling of the
bias of each grader and thus extend the probabilistic graph
models of PG1, PG4, and PG5, separately [13]. However,
all the above probabilistic graph models have a limitation.
It stems from their assumption that the grades given by a
grader to different submissions of an assignment are mutually
independent, which is not in accordance with the actual situ-
ation. Therefore, Wang et al. introduced the observed relative
peer grades of a grader (i.e., the difference between the peer
grades given by the grader to two different submissions of an
assignment) into the probabilistic graph model and proposed
two novel models, referred to as PG6 (built on PG4) and PG7
(built on PG5), to estimate the true score of a submission
[14]. PG6 and PG7 have obtained promising performance
because the introduction of relative peer grades reduces the
negative impact of data sparsity on parameter estimation.
They are the probabilistic graph models most relevant to our
work.

In conclusion, cardinal peer assessment has an advan-
tage in quantifying the quality differences between two sub-
missions of assignments, and thus there are more related
models proposed in recent years. Similar to the conclusion
drawn from related works from other domains, methods built
on probability inference procedure, i.e., probabilistic graph
models here, are the mainstream solutions for cardinal peer
assessment inMOOCs. The effectiveness of thesemodels [2],
[12]–[14] are verified using the real-world peer assessment
datasets provided by popular MOOC platforms, including
Coursera, and XuetangX4 from China. However, none of the
existing probabilistic graph models consider the impact of
grader competency for the assignment on grader reliability,
which has been proven to be an important impact factor
of grader reliability (see Fig. 1 for details). To overcome
such limitations, a popular CDM – DINA – is applied to
determine graders’ competencies in open-ended assignments
and optimized thePG6 andPG7 models bymodeling graders’
reliabilities based on their competency values. To help readers
better get the differences between the state-of-the-art proba-
bilistic graph models and the proposed models in this paper,
a comparison are made in Table 1.

4www.xuetangx.com

III. PRELIMINARY
In this section, the popular CDM, i.e., DINA, is firstly intro-
duced, which is applied to quantify graders’ competencies
in the open-ended assignments to be graded (Section III-A).
Then, important concepts used throughout this paper and the
peer assessment problem solved in this study are described
(Section III-B).

A. DINA MODEL
Recently, there has been increasing interest in CDMs, which
are psychometric models used to provide fine-grained infor-
mation about students’ strengths and weaknesses in learn-
ing [56]–[58]. Although many CDMs have been proposed,
the DINA model [18] is highly preferred by researchers due
to its easy interpretation and good model-data fit [59], [60].
Thus, the DINA model has been widely applied in recent
years [61], [62]. In this paper, the DINA model is applied to
quantify students’ competencies in open-ended assignments
by considering their performances in historical tests and
assignments.

Let E = {e1, . . . , eM } represent a set of examinees and
T = {t1, . . . , tN } be a set of questions from tests or assign-
ments. Then, the R-matrix (i.e., response matrix) that records
the responses of each examinee in E to each question in
T can be denoted by R = [rmn]M×N with rmn ∈ [0, 1],
where rmn = 1 indicates that examinee em has given a
correct answer to question tn, and rmn = 0 means the answer
given by examinee em is wrong. The R-matrix is set based
on the examinees’ historical test and assignment results. Let
KP = {kp1, . . . , kpK } be a set of knowledge points examined
by the questions in E . The implementation of the DINA
model requires the construction of a Q-matrix [63] in the
form of Q = [qnk ]N×K with qnk ∈ {0, 1}, and the element
on the n-th row and k-th column of the matrix (i.e., qnk )
indicates whether knowledge point kpk is required to cor-
rectly answer question tn. The Q-matrix explicitly identifies
the cognitive specification for every question in T . In the
DINA model, a skill vector of examinee em in the form of
αm = {αm1, . . . , αmK } is used to represent the skill status
of em. Specifically, the value of αmk (αmk ∈ [0, 1]) is the
competency of em relating to the k-th knowledge point in KP.
αmk = 1 indicates that examinee em has fully mastered the
k-th knowledge point, while mk = 0 means that examinee
em has not mastered the k-th knowledge point. In the DINA
model, the skill vector of examinee em (i.e., αm) and the
Q-matrix produce a latent response vector δm = {δmn},

TABLE 1. Comparison of probabilistic graph models.
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where

δmn =

K∏
k=1

αmk
qnk . (1)

The latent response in Equation (1) assumes a value of 1
if examinee em masters all the knowledge points required for
question tn and a value of 0 if examinee em completely fails
to master at least one of the required knowledge points. Two
parameters required for examinee em’s response to question
tn are expressed by gn = P(rmn = 1|δmn = 0) and sn =

P(rmn = 0|δmn = 1). ðn represents the guessing probability
that examinee em, who has not mastered all the required
knowledge points for question tn will randomly respond cor-
rectly to the question, while sn is the slipping probability that
examinee em who has mastered all the required knowledge
points for question tn will still answer wrongly. By intro-
ducing these two parameters, the item response function for
examinee em on question tn in the DINA model is given as
follows.

P(αm) = P (rmn = 1 | αm) = g
1−δmn
n (1− sn)

δmn (2)

As shown in Equation (2), the DINA model is a con-
ditional distribution of rmn given a skill vector αm. Then,
the expectation-maximization (EM) algorithm is used to esti-
mate the marginalized likelihood of Equation (2) and derive
skill vector αm for examinee em [18].
In this work, it is assumed that all graders who participate

in peer assessments for open-ended assignments have com-
pleted some objective-form tests or assignments before the
peer assessment, and the objective-form tests or assignments
examine some knowledge points that are also required by
the open-ended assignments. This assumption is in line with
the actual teaching situation because teachers tend to arrange
objective-form tests or assignments in class to get timely
feedback from students and assign open-ended assignments
after class to help students consolidate the knowledge points
learned in the class. Using student em’s historical records of
objective-form tests and assignments and the Q-matrix as the
input, the DINA model can diagnose skill vector αm for the
student. Then, the competency of student em in open-ended
assignment tn can be defined by the latent response variable
δmn, which is computed by multiplying the competency value
(i.e.,αmk ) of every knowledge point required by assignment tn
(see Equation (1)). The proposed probabilistic graph models
of peer assessment in this study use the diagnosed compe-
tency values of graders in the open-ended assignment to be
graded to optimize the modeling of the graders’ reliabilities.

B. PROBLEM DEFINITION
Let U denote the set of students who have submitted their
open-ended assignments on a MOOC platform and ui denote
an arbitrary student in U . Let V represent the set of students
who act as graders for those open-ended assignments and
v represent an arbitrary grader in V . Because the students
who have submitted their open-ended assignments are usually

required to grade their peers’ submissions of those same
assignments, U and V actually correspond to the same set
of students, i.e., |U | = |V |. The following are definitions of
important concepts that will be used in this paper.

True score: It is assumed that each submission of an
open-ended assignment is associated with a true score. si
represents the true score of student ui’s submission.

Peer grade: Peer grades are the observable peer scores
given by graders to their peers’ submissions. The notation zvi
is used to denote the peer grade given by grader v to student
ui’s submission. The set of all observed peer grades is denoted
as Z = {zvi |ui ∈ U , v ∈ V }.
Relative peer grade: The relative peer grade is denoted

by dvij, which measures the difference between two observed
peer grades given by grader v for the submissions of students
ui and uj (i.e., zvi and z

v
j , respectively). The set of all relative

peer grades is denoted as D = {dvij|ui, uj ∈ U , v ∈ V }.
Grader bias: Grader bias is denoted by bv, which reflects

grader v’s tendency to either inflate or deflate peer grades.
For example, given the true grade of student ui’s submission
as si = 10, and grader v’s bias as bv = −2, the mean of the
peer grade given by v to ui’s submission is zvi = si + bv =
10+ (−2) = 8.

Grader reliability: Grader reliability is denoted by τv,
which is defined as the precision of the peer grades given
by grader v. Grader reliability, in fact, measures how close
on average the peer grades given by grader v are to the
corresponding true score of the submission after correcting
for the bias of grader v. In this work, given an open-ended
assignment, the reliability of grader v is modeled as a random
variable following a Gamma distribution, with the shape
parameter being set to v’s competency value in the assign-
ment in the proposed CD-PG1 model, or a random variable
following a Gaussian distribution with the mean being set to
the v’s competency value in the assignment in the proposed
CD-PG2 model. This means that we assume grader v with a
higher competency in an open-ended assignment to be a more
reliable grader for that assignment.

Unlike existing probabilistic graph models that estimate
the true scores of open-ended assignments only by observed
peer grades and relative grades [2], [12]–[14], this paper
introduces new probabilistic graph models (i.e., CD-PG1
andCD-PG2) by exploiting graders’ competency information
(derived from graders’ historical question-answering records)
in the assignments they are to grade to improve the estimation
accuracy. Our goal is to estimate the true score of each sub-
mission of an open-ended assignment effectively bymodeling
the relationships of the observed peer grades, grader relia-
bilities, grader biases, and true scores of submissions. More
formally, our cardinal peer-assessment problem is defined as
follows: given the set of students U , set of graders V , set of
all observed peer grades Z , set of all observed relative peer
grades D, and skill vectors of all graders represented as a
matrix A|V |×|KP| = [. . . ,αm, . . . ], our goal is to train our
probabilistic graph model to estimate the grader reliability τv,
grader bias bv for all graders v ∈ V , and true scores si for
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TABLE 2. Notations.

the submissions of all students ui ∈ U . Table 2 summarizes
all the notations used in our proposed probabilistic graph
models.

IV. PROBABILISTIC GRAPH MODELS
FOR PEER ASSESSMENT
In this work, two probabilistic graph models, namely CD-
PG1 and CD-PG2, are proposed for cardinal peer assessment
based on the cognitive diagnosis model – DINA. CD-PG1
and CD-PG2 both assume that a grader’s grading reliability
in an open-ended assignment is affected by the grader’s com-
petence in the assignment, which can be diagnosed by the
DINA model based on the grader’s performance in historical
tests and assignments. Specifically, the CD-PG1 model and
the CD-PG1 model are optimizations to the PG6 model and
the PG7 model proposed in [14], respectively.

A. CD-PG1 MODEL
The conditional dependence structure between the random
variables inCD-PG1 is illustrated by the graphical model [64]
shown in Fig. 2. As shown in the figure, peer grade zvi ,

relative peer grade dvij, and skill vector αv for grader v are
the observed random variables in the model. The true score
for student ui’s submission si, grader v’s reliability τv, and
bias bv are the latent variables in the model to be estimated.
The prior distribution of these latent variables is specified by
the hyper-parameters µ0, γ0, η0, and β0. Formal definition
of the CD-PG1 model is given in Equation (3).

τv ∼ 0

(
K∏
k=1

αvk
qk , β0

)

bv ∼ N
(
0,

1
η0

)
si ∼ N

(
µ0,

1
γ0

)
zvi ∼ N

(
si + bv,

1
τv

)
dvij ∼ N

(
si − sj,

2
τv

)
(3)

In the CD-PG1 model, it is assumed that the true score,
si, follows a Gaussian distribution with the mean equal to µ0
and the variance equal to 1/γ0. Though different graders may
have different biases in the peer assessment, we believe that
the average bias of all graders is 0. Hence, the grader bias bv
is assumed to follow a zero-mean Gaussian distribution with
the variance equal to 1/η0. Because grader reliability in an
open-ended assignment is affected by his/her competence in
the assignment, the reliability of grader v is modeled as a ran-
dom variable that is assumed to follow a Gamma distribution
where the shape parameter equals to v’s competency value
in the assignment (i.e.,

∏K
k=1 αvk

qk ), and the rate parameter
equals β0. Based on the characteristics of Gamma distribu-
tion, themean of grader v’s reliability is δv/β0. In theCD-PG1
model, peer grade zvi , which is given by grader v to student
ui’s submission, is assumed to follow a Gaussian distribution
with the mean equal to the true score of submission si plus
grader v’s bias bv, and the variance is inversely proportional to
grader v’s reliability (i.e., 1/τv). In themodel, the relative peer
grade dvij, corresponding to grader v for grading student ui’s
submission and student uj’s submission, is assumed to follow
a Gaussian distribution with the mean equal to the difference
between the true score for student ui’s submission and the

FIGURE 2. Graphical Model of CD-PG1 and CD-PG2.
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true score for student uj’s submission (i.e., si − sj), and the
variance equals 2/τv.

B. CD-PG2 MODEL
The formal definition of the CD-PG2 model is shown
in Equation 4, which shows the prior distribution informa-
tion of different variables. Because the CD-PG2 model also
assumes that there is a dependency between the reliability of a
grader and that grader’s competency value in the open-ended
assignment to be graded, the conditional dependence struc-
ture of CD-PG2 is the same as that of CD-PG1, which was
shown in Fig. 2.

τv ∼ N
(

K∏
k=1

αvk
qk ,

1
β0

)

bv ∼ N
(
0,

1
η0

)
si ∼ N

(
µ0,

1
γ0

)
zvi ∼ N

(
si + bv,

λ

τv

)
dvij ∼ N

(
si − sj,

2λ
τv

)
(4)

There are two differences between the CD-PG2 model
and the CD-PG1 model. First, CD-PG2 assumes that grader
v’s reliability τv follows a Gaussian distribution, while CD-
PG1 assumes that τv follows a Gamma distribution. Second,
because CD-PG2 assumes that grader v’s reliability τv fol-
lows a Gaussian distribution, the scale of τv is determined
by grader v’s competency in the assignment to be graded
by v (i.e.,

∏K
k=1 αvk

qk ), which cannot be tuned. Under such
circumstances, the variance of peer grade zvi and the variance
of relative peer grade dvij become non-tunable because they
all depend on τv. To make the variance of zvi and the vari-
ance of dvij tunable, CD-PG2 introduces a hyper-parameter, λ,
to specify the scale of the two variances. Then, zvi is assumed
to follow a Gaussian distribution with a variance equal to
λ/τv, and relative score dvij is assumed to follow a Gaussian
distribution with a variance equal to 2λ/τv.

C. MODEL INFERENCE
Given the above two formulated probabilistic graph models
for cardinal peer assessment, the next phase is to infer the
posterior distribution of every latent random variable (i.e.,
grader v’s reliability τv, grader v’s bias bv, and the true score
of student ui’s submission si), based on the values of observed
random variables (i.e., peer grade zvi , relative peer grade d

v
ij,

and grader v’s skill vector αv) in the model. Then, the esti-
mated value of the true score for each student’s submission
can be derived. Thus, our inference problem can be formal-
ized as P({bv|v ∈ V }, {τv|v ∈ V }, {si|ui ∈ U}|Z ,D,A).
One challenge in solving such inference problems comes

from the correlations between latent variables in both models.
For example, the dependency relationships among variables

(see Fig. 2) show that the true score of student ui’s submis-
sion, si, can be accurately estimated only if the reliability, τv,
of every grader who graded the submission can be accurately
estimated. On the other hand, the dependency relationships
among variables also indicate that to have a good estimation
of grader v’s reliability τv, a good estimation of the true
scores of submissions graded by grader v are required. There-
fore, our inference problem is a chicken-and-egg problem for
inferring the posterior probability distributions of the latent
variables based on the observable variables in the model [65].
To address this problem, the Gibbs sampling technique [66]
is applied in this work. First, the Gibbs sampling is run for
several iterations to draw a set of samples of a latent variable
(e.g., {s1i , s

2
i , . . . , s

IG
i }, where IG is the number of iterations)

from an approximated posterior distribution. Then, the value
of the latent variable is estimated based on the set of samples
by empirical mean (e.g., s̄i = 1

IG

∑IG
t=1 s

t
i ), when the distri-

bution of samples gradually tends to converge and stabilize.
Considering that samples of latent variables generated in
the burn-in iterations of Gibbs sampling are insufficiently
accurate, samples generated in the burn-in iterations for each
latent variable (generally the first n samples) are discarded.

The approximated posterior distributions for the latent
variables in the CD-PG1 model are as follows.

s ∼ N
(
Y
R
,
1
R

)
,

where

R = γ0 +
∑
v∈Vui

τv +
∑
v∈Vui

∑
uj∈Uv

τv

2
, and

Y = µ0γ0

+ τv

∑
v∈Vui

(
zvi − bv

)
+

∑
v∈Vui

∑
uj∈Uv

(
dvij + sj

)
2

 (5)

τ ∼ 0

(
K∏
k=1

αvk
qk +
|Uv|2

2
, β0

+

∑
ui∈Uv

(
zvi−si−bv

)2
+
∑

ui,uj∈Uv
1
2

(
dvij−si+sj

)
2


(6)

b ∼ N
(∑

ui∈Uv τv
(
zvi − si

)
η0 + |Uv| τv

,
1

η0 + |Uv| τv

)
(7)

Following are the approximated posterior distributions for
the latent variables in the CD-PG2 model. Because, for latent
variable τv in CD-PG2, there is no closed-form distribution
for the Gibbs samplings, a discrete approximation is per-
formed to obtain the approximate posterior distribution of the
variable.

s ∼ N
(
Y
R
,
1
R

)
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where

R = γ0 +
∑
v∈Vui

τv

λ
+

∑
v∈Vui

τv ∗ (Uv | −1)
2λ

, and

Y = γ0µ0 +

τv

λ

∑
v∈Vui

(
zvi − bv

)
+

∑
v∈Vui

∑
uj∈Uv

(
dvij + sj

)
2

 (8)

τ ∝ τ
|Uv|2
2

v × exp

(
−
β0

2

[
τv −

(
K∏
k=1

αvk
qk

+

∑
ui∈Uv

(
zvi−si−bv

)2
λβ0

+

∑
ui,uj∈Uv

(
dvij−si+sj

)2
2λβ0



2

(9)

b ∼ N
(∑

ui∈Uv
τv
λ

(
zvi − si

)
η0 + |Uv|

τv
λ

,
1

η0 + |Uv|
τv
λ

)
(10)

The details of the inference process for the posterior distri-
bution of every latent variable in the CD-PG1 model and the
CD-PG2 model are provided in Appendix A.

D. MODEL INFERENCE ALGORITHM
In this section, the model inference algorithm for the two
proposed probabilistic graph models is presented at first
(Section IV-D1). Then, the complexity of the algorithm is
analyzed (Section IV-D2).

1) ALGORITHM DESCRIPTION
Algorithm 1 presents the pseudocode of the model inference
algorithm for models CD-PG1 and CD-PG2. As shown in
Algorithm 1, the R-matrix that records the responses of every
grader to each question in the historical tests and assignments
and theQ-matrix that records the examined knowledge points
of each question in the historical tests and assignments are
two important inputs to the algorithm. Based on the R-matrix
and the Q-matrix, the DINA model is applied to compute the
skill vector of each grader and finally derive the A-matrix,
which consists of the skill vectors of all graders (Line 1).
Then, based on one of the probabilistic graph models pro-
posed in this paper, the prior probability distributions of
latent variables si, τv, and bv are assigned separately based
on the setting of the model (Line 2). Next, Gibbs sampling is
executed for IG iterations to generate a sample set for every
latent variable (Lines 3-17). For each iteration of the Gibbs
sampling, Equations 5-7 are used to get samples for the latent
variables if theCD-PG1 model is applied, and Equations 8-10
are used to get samples for the latent variables if the CD-PG2
model is applied. Let ξ (t) denote the set of sample sets of all
latent variables for the t-th iteration. Then, each ξ (t) generated
in the burn-in iteration of Gibbs sampling (i.e., ξ (t) with
t ≤ θ ) is discarded. Here, θ is the threshold of determining
the burn-in iterations. Finally, the empirical mean of the
remaining sample sets with respect to each latent variable is

used as the final estimation for the latent variable (Line 18)
and return the estimated values for the latent variables ŝi, τ̂v,
and b̂v (Line 19).

Algorithm 1Model Inference Algorithm
Input: the set of students U , set of graders V , set of
knowledge points KP, Q-matrix, R-matrix, set of all
observed peer grades Z , set of all relative peer grades D,
number of iterations of Gibbs sampling IG, threshold for
determining the burn-in iterations θ , and probabilistic graph
model for peer assessment CD-PGx .
Output: (ŝi, τ̂v, b̂v) for all ui ∈ U and v ∈ V

1: A = DINA(s0,g0,Q,R);
2: si, τv, bv = setDistribution(CD-PGx);
3: for each t = 1→ IG do
4: for each si with ui ∈ U do
5: s′=gradeSampling(Z ,D,A);
6: sui ← s′;
7: end for
8: for each τv with v ∈ V do
9: τ ′=reliabilitySampling(Z ,D,A);
10: τvi ← τ ′;
11: end for
12: for each bv with v ∈ V do
13: b′=biasSampling(Z );
14: bvi ← b′;
15: end for
16: ξ (t)← ({si | ui ∈ U}, {τv | v ∈ V }, {bv | v ∈ V });
17: end for
18: ({ŝi | ui ∈ U}, {τ̂v | v ∈ V }, {b̂v | v ∈ V }) ←

1
IG−θ

∑IG
t=θ+1 ξ

(t);
19: return ({ŝi | ui ∈ U}, {τ̂v | v ∈ V }, {b̂v | v ∈ V });

2) COMPLEXITY ANALYSIS
The model inference algorithm described in Section IV-D1
has two functional modules: (1) themodule that calculates the
A-matrix, which is composed of skill vectors of all graders
derived from the cognitive diagnosis model – DINA (see
Algorithm 1: Line 1); (2) the module that runs IG iterations of
Gibbs sampling to get IG sample sets for every latent variable
in the proposed probabilistic graph model (see Algorithm 1:
Lines 3-17). Because the EM algorithm is used in the DINA
model to compute the skill vectors of all graders, the time
complexity of the first functional module in Algorithm 1 is
equal to O(|V | × 2|KP| × IEM ), where |V | denotes the cardi-
nality of graders, |KP| denotes the cardinality of knowledge
points, and IEM represents the number of iterations in the
EM algorithm. The time complexity of the second functional
module of Algorithm 1 isO(|U |×|Vui |×IG+|V |×|Uv|×IG),
where |U | is the cardinality of students who have submitted
their open-ended assignments; |Vui | denotes the cardinality
of graders who assign grades to the submission of student ui;
|Uv| denotes the cardinality of students whose submissions
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are evaluated by grader v, and IG is the number of iterations
for Gibbs sampling. In real-world teaching practice, we have:
(1) the students whomake submissions to open-ended assign-
ments are generally asked to participate in the peer assess-
ment of the open-ended assignment, i.e., |U | = |V |;
(2) the number of graders who give grades to the submission
of a student generally equals the number of students whose
submissions are evaluated by a grader, i.e., |Vui | = |Uv|.
Therefore, the time complexity of the second functional mod-
ule of Algorithm 1 can be simplified to O(|U | × |Vui | × IG).
Integrating the time complexity of the two modules, the time
complexity of Algorithm 1 is thus O((|V | × 2|KP| × IEM +
|U | × |Vui | × IG).

Assuming that the cardinality of students who have sub-
mitted their open-ended assignments is far greater than both
the number of knowledge points (i.e., |U | � |KP|) and
the number of questions in historical tests and assignments
(i.e., |U | � |E|), the memory consumption of Algorithm 1
mainly comes from storing every set of sample sets for latent
variables generated in each iteration of Gibbs sampling (i.e.,
{ξ (t)|1 ≤ t ≤ IG}). Because the size of every ξ (t) is IG ×
(|U | + 2|V |) and |U | = |V |, the storage space complexity of
Algorithm 1 is O(IG × |U |).

V. EXPERIMENTS
In this section, the experiments conducted to compare the
performances of our proposals with other state-of-the-art
methods for peer assessment are expatiated.

A. REAL DATASET
1) PEER GRADING DATASET
The real peer grading dataset was collected from a
MOOC called ‘‘Database Principles’’ on the MOOC plat-
form of Guangxi University by conducting a group of
peer-assessment activities. This dataset contains the peer
grades given by students and the grades given by two experi-
enced teachers. The peer grades in the dataset are the results
from 284 undergraduates majoring in computer science grad-
ing their peers’ submissions corresponding to three assign-
ments. Each assignment includes one open-ended question
investigating the normalization theory of relational databases.
Specifically, there are a total of 11 knowledge points about the
normalization theory being investigated by the three assign-
ments, and the ids and names of these knowledge points are as
follows: (1) 1NF (the first normal form); (2) 2NF (the second
normal form); (3) 3NF (the third normal form); (4) BCNF (the
Boyce-Codd normal form); (5) primary attribute; (6) transi-
tive functional dependency; (7) determinant; (8) functional
dependency; (9) key; (10) partial functional dependency;
(11) non-primary attribute. These 11 knowledge points are the
more difficult knowledge points of the course because they
are theoretical in nature. Compared with objective questions
(e.g., single-choice questions), open-ended questions have
proved to be more effective in helping students master these
knowledge points. Fig. 3 shows the Q-matrix that records the

FIGURE 3. Q-matrix for the three open-ended assignments.

ids of the required knowledge points for correctly answer-
ing each assignment, as determined by the two experienced
teachers.

For the setting of each peer-assessment activity, every
student who has submitted an open-ended assignment is
required to act as a grader and give grades to three peers’
submissions, according to rubrics specified by the teacher.
The MOOC platform assigns submissions among graders
randomly and ensures that each submission is graded by three
graders. The identities of students who have submitted an
open-ended assignment are concealed from the graders, and
vice versa, throughout the entire process. At the end of the
peer assessment, the MOOC platform uses the median of the
peer grades given by the graders as the estimated final score
of a submission.

Besides the peer grades given by the students, this
dataset also contains grades given by two experienced teach-
ers who have at least six years of teaching experience for the
course. The average grade given by the two teachers for a
student’s submission to an assignment is considered as the
ground-truth score for the submission. The summary statistics
of the peer grading dataset are listed in Table 3.

TABLE 3. Summary of peer grading dataset for open-ended assignments.

2) HISTORICAL ONLINE TEST DATASET
The two proposed probabilistic graph models (i.e., CD-PG1
and CD-PG2) make use of the competency information of
a grader in an assignment to model that grader’s reliability
in grading the assignment. To calculate the competency val-
ues of graders in the three open-ended assignments in peer
assessment, students were asked to complete an online test
that contains 40 objective questions about the 11 knowledge
points that are investigated by the three open-ended assign-
ments mentioned above. The objective questions include sin-
gle choice questions, multiple-choice questions, and judg-
ment questions. The historical online test dataset contains the
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FIGURE 4. Q-matrix of the 40 objective questions in the online test.

R-matrix, which stores the collected responses of students
to the 40 objective questions, and the Q-matrix, which is
provided by the two teachers and records the ids of the
knowledge points required to answer each question correctly.
The Q-matrix of the 40 objective questions in the online test
is shown in Fig. 4. Then, the R-matrix and Q-matrix are used
by the DINA model to compute the competency values of
graders in the three open-ended assignments to be graded by
them.

B. COMPARISON METHODS
To evaluate the effectiveness of our proposed probabilistic
graph models, CD-PG1 and CD-PG2, our models are com-
pred with the following state-of-the-art methods for peer
assessment.
• Median: This method takes the median of peer grades
given to a submission as the final score of the submis-
sion. This is the method used by most MOOC platforms
to aggregate peer grades.

• Mean: This method simply assigns the mean of peer
grades given to a submission as the final score of the
submission.

• PG6 and PG7 [14]: PG6 and PG7 are state-of-the-art
methods which solve the peer-assessment problem of
open-ended assignments. These two models are prob-
abilistic graph models that model the reliability and
bias of each grader. Compared with previous research,
the innovation of these two models stems from the
introduction of relative peer grades into the model to
obtain a more precise estimate of the true score of each
submission. The difference between PG6 and PG7 is
that PG6 assumes that the prior distribution of grader
reliability satisfies a Gamma distribution, while PG7
assumes that it satisfies a Gaussian distribution.

Similar to PG6 and PG7, the proposed CD-PG1 and
CD-PG2 models are also probabilistic graph models consid-
ering both the reliability and bias of each grader. Unlike PG6
and PG7, CD-PG1 and CD-PG2 apply graders’ performance

data in historical tests and assignments and use a CDM to
derive graders’ competencies in the open-ended assignments
they grade, which are then used to improve the modeling of
graders’ reliabilities. CD-PG1 corresponds to PG6, both of
which assume that the prior distribution of grader reliability
follows a Gamma distribution. CD-PG2 corresponds to PG7,
both of which assume that the prior distribution of grader
reliability follows a Gaussian distribution.

C. EXPERIMENTAL SETUP
Hyper-parameters are used in the proposed probabilistic
graph models (i.e., CD-PG1 and CD-PG2) and the related
probabilistic graph models (i.e., PG6 and PG7), and it is
important to set reasonable values for them. si, which rep-
resents the true score of student ui’s submission to an assign-
ment, is the most important latent variable, and its prior
distribution is assumed to be a Gaussian distribution by all
models. The hyper-parameters of the Gaussian distribution,
namely the mean (µ0) and the variance (1/γ0) of the dis-
tribution, are set as the mean and the variance, respectively,
of the peer grades of all students’ submissions to an assign-
ment. Meanwhile, as claimed in the literature [14], β0 in
CD-PG1 and PG6, which decides the rate of the Gamma
distribution for grader reliability, and λ in CD-PG2 and PG7,
which determines the variance of the Gaussian distribution
for peer grades, are the most critical hyper-parameters for
these respective models. This is because the settings of these
two hyper-parameters have a significant influence on the esti-
mation accuracy of the true scores, while the impact of other
hyper-parameters on the estimation accuracy is very small
if they are set within a reasonable range. Therefore, β0 in
CD-PG1 and PG6 and λ in CD-PG2 and PG7 were the main
tuned hyper-parameters in our experiments. Specifically, for
CD-PG1 and PG6, with other variables being set to fixed
values, the hyper-parameter β0 is searched in the range of
[450, 700] with an interval of 50 to get the best performance,
by following the tuning idea proposed in [12], [14]. As to
CD-PG2 and PG7, the hyper-parameter λ is searched in the
range of [0.01, 0.25] with a step of 0.05, while the other
variables were set to fixed values, and finally used the value
of λ that obtained the best accuracy in estimating the true
scores. Besides, the hyper-parameter η0 is fine-tuned in every
model in the range of [0.04, 0.2] by following the tuning
strategy proposed in [12]. The hyper-parameter β0 involved
in CD-PG2 and PG7 was set to 0.1, as proposed in [14]. For
each model, the model inference algorithm that infers the
values of latent variables in the model was executed 10 times,
and the average estimated value of the 10 executions for
latent variables was used in the experimental evaluation. Dur-
ing each execution of the model inference algorithm, every
latent variable was sampled based on the Gibbs sampling
method for 600 iterations, and the remaining samples after
discarding the samples generated in the first 60 iterations
(i.e., the burn-in iterations) were used to estimate the value
of the latent variable.
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All the peer-assessment methods involved in the compar-
ison were implemented using Python (version 3.7) and were
tested on a server running a 64-bit Windows 10 operating sys-
tem equipped with an i5-8500 3 GHz CPU, 8 GB of memory,
and a 1-TB hard disk drive. The RMSE is used to measure
the deviations of the estimated scores from the ground-truth
scores given by teachers. RMSE is a widely used metric
for evaluating the effectiveness of cardinal peer-assessment
methods [2], [13]. The formal definition of RMSE is given
by Equation 11, where si represents the ground-truth score
of student ui’s submission to an open-ended assignment; ŝi
denotes the estimated true score for the submission given by a
peer-assessmentmethod, and |U | is the cardinality of students
who have submitted the assignment.

RMSE =

√√√√ 1
|U |

∑
ui∈U

(
si − ŝi

)2 (11)

D. PERFORMANCE ON A REAL DATASET
1) ACCURACY OF ESTIMATION
Table 4 compares the accuracy of the estimated true
scores given by different peer-assessment methods. For the
probabilistic-graph-model-based methods (i.e., PG6, PG7,
CD-PG1, and CD-PG2), RMSE and STD refer to the average
and the standard deviation of the 10 RMSE values over
10 executions of the model inference algorithm for each
method, respectively. Table 4 shows that the Median method
and the Mean method are the least accurate methods. This
is because they fail to consider the reliability and the bias of
graders, which are proven to be very important for enhancing
the estimation accuracy. The proposed CD-PG1 and CD-PG2
methods based on cognitive diagnosis, are the most accurate
methods compared with the other state-of-the-art solutions.
In particular, the RMSE values of the CD-PG2 method are
on average 69% lower than those of the Median method,
which is the mainstream peer-assessment method adopted
by most popular MOOC platforms. It can also be seen from
the table that in most cases (i.e., Assignment 1 and Assign-
ment 2), the RMSE values of CD-PG2 are lower than those
of CD-PG1. This shows that when the prior distribution of
grader reliability is set to a Gaussian distribution, a prob-
abilistic graph model better fits the peer grading dataset in
most cases.

Because both CD-PG1 and PG6 assume that the prior dis-
tribution of grader reliability follows a Gamma distribution,
and both CD-PG2 and PG7 assume that it follows a Gaus-
sian distribution, these two pairs of models are compared as
follows:

• CD-PG1 vs.PG6: FromTable 4 we can see thatCD-PG1
and PG6 have similar STDs of RMSE for all three
assignments, and all their STD values are small. This
indicates that both models act quite stably in predicting
the true scores. It can also be observed from the table that
the RMSE of CD-PG1 is significantly lower than that of

TABLE 4. Experimental results.

PG6 under each assignment. In particular, the average
RMSE of the true scores estimated by CD-PG1 is on
average 40% lower than that of PG6 for all three assign-
ments.

• CD-PG2 vs. PG7: It can be seen from Table 4 that the
STDs of RMSE are the same for PG7 and CD-PG2 in
all three assignments. The maximum STD of RMSE
for these two models is only 0.01, which indicates that
these two models also perform very stably in estimating
the true scores. Moreover, the RMSE of CD-PG2 is
apparently lower than that of PG7 for all settings, and
the RMSE ofCD-PG2 is on average 41% lower than that
of PG7 for all three assignments.

In summary, by leveraging the diagnosed competency
information of graders in the open-ended assignments and
making use of such information to optimize the modeling
of graders’ reliabilities, the CD-PG1 and CD-PG2 methods
successfully improved the accuracy of peer assessment, com-
pared to the state-of-the-art methods.

2) MAXIMUM GRADING DEVIATION
Table 5 compares the maximum grading deviations of dif-
ferent peer assessment methods by comparing them to the
ground-truth scores of students’ submissions. It shows that
the maximum grading deviations of the Mean method and
the Median method are both greater than that of the peer
assessment method based on the probabilistic graph model.
This is because the Mean method and the Median method
estimate the true scores of students’ submissions only by the
peer grades; if the grading quality of graders with respect
to a submission happens to be very low, these two methods
will give very poor estimates for the score of the submis-
sion. In contrast, the probabilistic-graph-model-based peer
assessment methods not only consider the peer grades, but
also model the graders’ reliabilities and biases to enhance

TABLE 5. Maximum deviation between an estimated grade and the
ground truth for all students.
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the accuracy of estimation, and therefore they obtain more
precise estimates for the scores of students’ submissions.
Meanwhile, it can also be observed from the table that the
two proposed models have smaller maximum grading devi-
ations than PG6 and PG7, which are also designed based
on the probabilistic graph model. This observation shows
that, by optimizing the model of grader reliability based on
the grader’s competency in the grading assignment, which is
quantified by cognitive diagnosis, the proposed CD-PG1 and
CD-PG2 models outperform the state-of-the-art peer assess-
ment methods in terms of guaranteeing the accuracy of the
estimated score for each submission.

3) SENSITIVITY OF HYPER-PARAMETERS
To show how hyper-parameter β0 in the CD-PG1 model and
hyper-parameter λ in the CD-PG2 model will influence the
performance of the two models, experiments are conducted
using different values for these two hyper-parameters, with
all other parameters being fixed. Specifically, the value of β0
in the CD-PG1 model was set in the range of [450, 700] with
an interval of 50, and the value of λ in the CD-PG2 model
was set in the range of [0.01, 0.25] with an interval of 0.05.
The results shown in Fig. 5 and Fig. 6 indicate that, within a
reasonable range, these two models are robust to the settings
of the hyper-parameters, and the RMSEs of their estimated
scores for students’ assignments are acceptable.

4) RUNNING TIME
Because the Mean and Median methods for peer assessment
simply use the mean and the median of peer grades to predict
the scores of students’ assignments, their running time is very
short, and these two methods are not compared in terms of
their running time. Fig. 7 compares the running time of the
model inference algorithm with respect to the probabilistic
graph models compared in this paper. Specifically, the value
of each running time in the figure is the average time con-
sumption by executing the model inference algorithm of a
probabilistic graph model 10 times with the same parameters.

FIGURE 5. Sensitivity analysis of hyper-parameter β0 for CD-PG1.

FIGURE 6. Sensitivity analysis of hyper-parameter λ for CD-PG2.

FIGURE 7. Running time comparison of probabilistic graph models.

As shown in Fig. 7, for different open-ended assignments,
the running time of the model inference algorithm for each
probabilistic graph model is greater than one minute. This is
because Gibbs sampling is executed iteratively 600 times in
each algorithm, which is the primary contributor to time con-
sumption. It can also be observed from the figure that the time
consumption in Assignment 2 is apparently greater than those
in Assignment 1 and Assignment 3. This is because more
peer grades were collected for Assignment 2 (see Table 3 for
details), which increases the execution time. Another conclu-
sion drawn from the figure is that the CD-PG1 model costs
less time in inferring the scores compared with other models
because the posterior distribution of each latent variable in
it has a closed form, which shortens the running time of its
model inference algorithm. As for the other three models,
a closed form of the posterior distribution for some of the
latent variables in them cannot be found, so they consume
more time than the CD-PG1 model.

5) SUMMARY
Experimental results show that the proposed two cardi-
nal estimation models for MOOCs gain on average 70%
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reduction for the RMSE value compared with the simple
aggregation strategies, i.e., computing themean or themedian
of peer grades, which are widely used by mainstreamMOOC
platforms. Moreover, CD-PG1 and CD-PG2 beat the state-
of-the-art probabilistic graph models, i.e., PG6 and PG7, for
averagely reducing the RMSE value of compared models by
50%. Note that CD-PG1 and CD-PG2 differ from PG6 and
PG7 due to the consideration of the diagnosed competency
information of graders in modeling their grading reliability.
Thus, applying cognitive diagnosis into the procedure of peer
assessment is an effective way to get better estimates of the
true scores of assignments. We are delighted to observe that
some additional educational benefits can also be gained by
employing the probabilistic graph models in peer assessment.
For one, feedback collected from teachers who engaged in our
peer assessment activities shows that the derived reliabilities
and biases of graders computed by the models are important
indicators to students’ future performance in MOOCs, which
once again explains the advantages of the proposed models
from another point of view.

VI. CONCLUSION AND FUTURE WORK
With the proliferation of MOOCs, peer assessment has
become the mainstream paradigm for large-scale grading of
open-ended assignments. Because the biases and reliabili-
ties of graders are unknown, it is a challenging problem to
estimate the true score of a student’s assignment based on
peer grades given by multiple peer graders. Existing works
contribute to the development of effective score-estimation
methods by modeling grader bias and reliability. However,
they ignore an important aspect in the modeling of grader
reliability, which is the competency of the grader in the
specific assignment to be graded. Real peer-assessment prac-
tices for open-ended assignments show that modeling the
reliability of graders in terms of their competencies in the
graded assignments can help improve the robustness of score
estimation in peer assessment. In this paper, two probabilis-
tic graph models are proposed that leverage graders’ com-
petency information in graded assignments to optimize the
modeling of graders’ reliabilities and achieve more accurate
estimation of true scores. Such information about graders
is determined using the cognitive diagnosis model, DINA,
based on the performances of graders gained from historical
tests or assignments. Moreover, an effective model infer-
ence algorithm is proposed to infer both model parameters
and the true scores of students’ assignments. Experimental
results based on a real peer-grading dataset show that the
two proposed models improve the accuracy of cardinal peer
assessment.

Apart from the field of MOOCs, the proposed models
can also be applied to crowdsourcing, if a crowdsourced
task needs to predict a certain metric based on skill diagno-
sis information about crowdworkers. In the future, we will
attempt to introduce other influencing factors with respect to
the reliabilities and biases of graders, to further improve the
models for peer assessment.

APPENDIX A
INFERENCE PROCESS
A. INFERENCE PROCESS FOR THE CD-PG1 MODEL
The joint posterior distribution is

P
(
Z ,D | {si}ui∈U , {bv}v∈V , {τv}v∈V

)
=

∏
i

P (si | µ0, γ0) ·
∏
v

P (bv | η0)

·P

(
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αvk
qk , β0

)
·

∏
zvi

P
(
zvi | si, bv, τv

)
·

∏
dvij

P
(
dvij | si, sj, τv

)
. (A.1)

Markov blanket (i.e., MB) denotes that a given feature
is independent of all other feature conditions in the feature
domain under its MB condition. For example, MB(si) indi-
cates that true score si is independent of other characteristic
variables, namely, grader bias bv and grader reliability τv.
Therefore, when inferring si, variable si is fixed, while other
variables are randomly initialized.

Consider now a fixed student ui, who has submitted an
assignment. The sampling step for si (i.e., the true score of
student ui’s submission) is derived as follows:

s ∼ P (si | MB (si)) ,

∝ P (si | µ0, γ0) ·
∏
v∈Vui

P
(
zvi | si, bv, τv

)
·

∏
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(
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(
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))2) . (A.2)
The expression inside the exponent is quadratic; we thus

complete the square, obtaining

γ0 (si − µ0)
2
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(
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Therefore, the sampling distribution is Gaussian:

s ∼ N
(
Y
R
,
1
R

)
. (A.4)

Now, consider a fixed grader v. The sampling step for
grader reliability τv is derived as follows:

τ ∼ P (τv | MB (τv)) ,
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From this, the sampling distribution can be recognized to
be Gamma with

τ ∼ 0

(
K∏
k=1

αvk
qk +
|Uv|2

2
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Finally, the sampling set for grader bias bv is derived as
follows:

b ∼ P (bv | MB (bv)) ,

∝ P (bv | η0) ·
∏
ui∈Uv
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)
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) . (A.7)

The expression inside the exponent is quadratic; we thus
complete the square as follows:
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)
. (A.8)

The sampling distribution for b is thus Gaussian, with

b ∼ N
(∑

ui∈Uv τv
(
zvi − si

)
η0 + |Uv| τv

,
1

η0 + |Uv| τv

)
. (A.9)

B. INFERENCE PROCESS FOR THE CD-PG2 MODEL
Consider now a fixed student ui who has submitted an assign-
ment. The sampling step for si (i.e., the true score of student
ui’s submission to the assignment) is derived as follows:

s ∼ P (si | MB (si)) ,

∝ P (si | µ0, γ0) ·
∏
v∈Vui

P
(
zvi | si, bv, τv

)
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∏
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The expression inside the exponent is quadratic; we thus
complete the square, obtaining
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Therefore, the sampling distribution is Gaussian:

s ∼ N
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R
,
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)
. (B.3)

Now, consider a fixed grader v. The sampling step for
grader reliability τv is derived as follows:

τ ∼ P (τv | MB (τv)) ,
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Note that, unlike its analog fromModel CD-PG1, the sam-
pling step for v in Model CD-PG2 cannot be performed in
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closed form. In our experiments, we instead sampled from a
discretized approximation of the posterior distribution.

Finally, the sampling set for grader bias bv is derived as
follows:

b ∼ P (bv | MB (bv))

∝ P (bv | η0) ·
∏
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The expression inside the exponent is quadratic; we thus
complete the square as follows:
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The sampling distribution for b is thus Gaussian, with
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