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ABSTRACT Vehicle trajectory data are critical to urban active traffic management and simulation appli-
cations. Automatic license plate recognition (ALPR) data can provide partial vehicle trajectory information
by matching the detected vehicle license plates through time series. However, the trajectory extracted from
ALPR data tend to be sparse and incomplete due to technical and financial constraints. This paper deals with
the problem of sparse trajectory reconstruction based on ALPR data. Firstly, the multiple travel activities of
the vehicle are divided based on the reasonable travel time threshold, and the incomplete vehicle trajectory is
identified. Then, candidate trajectories are generated by an improved K-shortest-path (KSP) algorithm based
on space-time prism theory. Finally, the auto-encoder model is utilized to select the candidate trajectory with
optimal decision indicators, which realizes the vehicle trajectory reconstruction. The proposed method was
implemented on a realistic urban traffic network in Ningbo, China. The verification results show that the
proposed method has a comprehensive accuracy of 85% and good robustness. From the comparison with the
baseline algorithm, it can be seen that the proposed method still has high accuracy in low ALPR coverage
rate, and there exists a minimum required ALPR coverage rate (50% in the test network) for reconstructing
trajectories accurately.

INDEX TERMS Automatic license plate recognition, space-time prism, auto-encoder, trajectory

reconstruction.

I. INTRODUCTION

Accurate and reliable vehicle trajectory data is of great
importance in the intelligent transportation system and urban
traffic management [1]. Trajectory data can provide effec-
tive information for many application areas, such as travel
time estimation, calibration of traffic flow models, crash
prediction, vehicle emissions estimation and OD pattern esti-
mation [2]-[7]. Extracted trajectories can not only reflect
the characteristics of traffic flow operation in a microscopic
level for a particular road segment, but also illustrate traffic
demand and spatial-temporal distribution characteristics in a
macroscopic level for the whole traffic network [8].
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Vehicle trajectory can be collected by mobile sensors and
fixed sensors. Mobile sensor data mainly includes probe car
GPS data, FRID data and cellular signaling data. And fixed
sensor data includes loop detector data and video detection
data, etc. According to different data types, the extraction
methods of travel trajectory are different. The representative
researches on the extraction of travel trajectory by mobile
sensor data include: Daganzo [9] and Mehran et al. [10]
combined the probe car GPS data and signal timing param-
eters to study a data fusion framework to reproduce vehicle
trajectories on urban arterial roads based on the variational
theory and kinematic wave theory. The proposed framework
was verified on an arterial road in Tokyo. Bachir et al. [11]
extracted the moving trajectory of travelers from cellular
signaling data by semi-supervised learning algorithm and
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Bayesian inference. On the other hand, representative studies
on the extraction of travel trajectory by fixed sensors are as
follows: Lint [12] obtained average vehicle trajectories based
on travel time and link flow counts using multiple loop detec-
tors. Ni and Wang [13] proposed a trajectory reconstruction
model accounting for consecutive speed variation based on
simulated fixed sensors.

However, the penetration rate of GPS devices is relatively
low, the continuity of cellular signaling data is poor, and the
non-aggregated loop detector data cannot directly reflect the
trajectory of individual vehicles. Consequently, the applica-
tion of these data to extracting vehicle trajectories of the entire
traffic network is limited.

Benefiting from the development of automatic license plate
recognition technology and the extensive coverage of ALPR
facilities on the urban road network, data collected by ALPR
devices has provided new possibilities for high-precision
vehicle trajectory reconstruction, which is addressed in this
paper. In addition, the recognition accuracy of ALPR devices
in China can reach 95% in the daytime and 90% at night
for the vehicles detected, which means ALPR data can be
regarded as an approximation of actual flows on the traffic
network [8]. Although ALPR data have high recognition
accuracy, the vehicle trajectories extracted from it may still
be incomplete due to the limitation on device coverage and
data packet dropout.

Therefore, this study aims to reconstruct all the incomplete
trajectories extracted from ALPR data on the urban traffic
network. Although there are considerable researches about
vehicle trajectory reconstruction based on ALPR data, several
limitations still need to be tackled: (1) The computational
efficiency of path searching on large urban traffic network
is low; (2) The existing studies only take static road network
characteristics into account and neglect traveler’s individual
preference when designing decision criteria; (3) To the best
of our knowledge, the process of determining weights of the
decision criteria is subjective in previous studies. The weight
of each decision criterion may be directly determined by
researchers or the weight is updated according to a series of
formulas put forward by researchers.

In response to the above research goals and challenges,
the main contributions of this study are summarized as
follows:

(1) We design a P-KSP algorithm which can increase the
efficiency of candidate trajectory searching. Compared
with the traditional path searching algorithm used in
previous researches such as shortest-path (SP) and
depth first search (DFS), this method can avoid travers-
ing though all nodes on the traffic network when deriv-
ing candidate trajectories which is time-consuming in
large-scale network.

(2) We propose six indicators for path decision, i.e., path
length, road hierarchy, number of intersections, number
of turns, travel time consistency and path preference,
which assist in distinguishing the optimal reconstructed
trajectory effectively. Previous studies tend to ignore
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the dynamic state of traffic network and traveler’s sub-
jective preference. For instance, travelers may choose
the path according to their own inherent habits even if
the path is not the optimal. The two dynamic indicators
proposed in this paper can correct the bias to some
extent.

(3) We apply auto-encoder model to distinguishing the
reconstructed trajectory, which can decrease infor-
mation loss, derive decision weights objectively and
capture the nonlinear relationships between different
attributes. Some classical multiple attribute decision
making methods, such as TOPSIS, GRA and PCA were
exploited to accomplish path decision in the existing
studies. However, they have the following two limita-
tions: first, the weight determination is relatively sub-
jective; second, some data information may be missing
during the decision-making process. Comparatively,
the auto-encoder-based method has little information
loss and can represent both linear and nonlinear rela-
tionships between different indicators.

The remainder of the paper proceeds as follows.
Section 2 reviews the literature on vehicle trajectory recon-
struction method. Section 3 explains the details of the pro-
cedure to reconstruct the vehicle trajectory on urban traffic
network. Section 4 illustrates the application of the proposed
method in realistic traffic network through a case study. While
in Section 5, it presents the performance of the proposed
method set under different scenarios. Section 6 concludes this
paper and suggests a few future research directions.

Il. LITERATURE REVIEW

Vehicle trajectory reconstruction method can be classi-
fied into two categories: approach based on traffic flow
theory (TFT) and statistical modeling approach. Classical
TFT-based methods are mostly focused on trajectory recon-
struction on freeways. Coifman [14] proposed a TFT-based
method for travel time estimation and trajectory estimation
exploiting data from a dual loop detector. On this basis, Lint
and Hoogendoorn [15] put forward a data fusion algorithm
to reconstruct vehicle trajectory. This method allowed data
fusion from local sensors, moving vehicles and automatic
vehicle identification (AVI) systems, and had been proved to
be robust through a micro-simulation tool. Sharma et al. [16]
reconstructed vehicle trajectories from NGSIM data by
obtaining the relationship between trajectory and speed pro-
files. However, the TFT-based method is applicable to the
uninterrupted flow on freeways and is not suitable for the
interrupted flow on the urban traffic network with numerous
intersections.

In recent years, in order to realize the trajectory recon-
struction on urban traffic network, researchers have pro-
posed several statistical modeling approaches such as particle
filter (PF), maximum likelihood estimate (MLE) and prob-
ability distribution model. For instance, Castillo et al. [17]
extracted part trajectories from the ALPR data and recon-
structed the path flow based on the least quadratic function.
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The model was applied on the ND road network, showing its
practical value in path flow estimation.

However, with the increase of urban road network scale,
the prior data required by MLE model is difficult to col-
lect, thus, Feng et al. [18] employed particle filter theory
to estimate vehicle trajectories. The particle filter updated
the weights of candidate trajectories according to five cor-
rection factors in the importance sampling process and the
partial trajectory was reconstructed by the particle with max-
imum weight. This method was validated in the VISSIM
model, results showing a reliability of 90% when AVI cov-
erage exceeded 50%. To enhance the estimation precision,
Yang and Sun [19] designed an integrated framework with
a particle filter at the microscopic level and the stochastic
user equilibrium principle at the macroscopic level. The test
results on the realistic network showed that this framework
improved the accuracy of trajectory reconstruction under
low detector coverage. Rao er al. [20] studied the trajec-
tory reconstruction accuracy based on particle filter under
different sampling rates of ALPR devices and the minimum
sampling rate was suggested as 60%. Further, Xie et al. [6]
utilized a particle filter to assimilate noise of multi-source
data, which solved the observation error in trajectory recon-
struction. Wei et al. [21] proposed a novel initial particle
procedure without relying on simulation, which improved
Xie’s method.

Another way to reconstruct trajectory is treating vehicle
travel as a consequence of the choice of different routes [22].
Different decision indicators are used to select the optimal
travel path. Yu first used DFS algorithm to find all candi-
date paths for incomplete trajectories extracted from ALPR
data, then proposed four decision attributes (section num-
ber, speed match degree, path pattern number, and vehicle
turning number), and finally selected the optimal trajectory
based on TOPSIS algorithm. The verification results on
the realistic network showed that the reconstruction accu-
racy reaches 85% when missing 30% information. Similarly,
Ruan et al. [23] exploited KSP algorithm to search candidate
trajectories and grey relational analysis (GRA) to select the
optimal trajectory. While Zhang et al. [24] proposed a data-
driven method where the turning probability of a vehicle was
calculated from historical trajectory data.

In general, the classical TFT-based method performs well
in the case of the uninterrupted flow rather than interrupted
flow on the urban traffic network. The PF-based method
reconstructs the trajectory by updating the state-space equa-
tion. However, it requires a large number of samples to well
approximate the posterior probability density. This means
that the higher the target accuracy rate of trajectory recon-
struction, the higher the complexity of the algorithm. The
route-choice-based method is easy to understand and con-
venient to calculate, but existing researches are limited in
computational efficiency and accuracy.

Motivated by the above issues, in this study, we propose
a vehicle trajectory reconstruction method based on ALPR
data. In this model, the idea of space-time prism is applied
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to enhance the computational efficiency of path searching.
In addition, by combining static and dynamic indicators,
the model is expected to reconstruct trajectories accurately
for different ALPR device coverage rate.

lll. METHODOLOGY

Figure 1 shows the flowchart of the proposed method with
four main steps. In Step 1, the trip chain is split according to
the travel time threshold and the complete trajectory set and
incomplete trajectory set are separated. In Step 2, candidate
trajectory set is generated by the path searching algorithm
which combines the space-time prism theory with K shortest
path algorithm. In Step 3, decision indicators of candidate
trajectory are calculated and normalized. In Step4, an auto-
encoder model is applied to selecting the optimal candidate
trajectory, then the incomplete trajectory is reconstructed.

Raw ALPR data

1

Split trip chain

I
| }

CPanial trajectory sct) <(‘omplclc trajectory sct)

Consider current trip

}

Generate potential
trajectory set

Update to next trip

Calculate each index

}

Select the optimal
trajectory

[s current trip
the last one

FIGURE 1. Flowchart of the proposed method.

A. TRIP CHAIN DIVISION

The trip chain of most vehicles in a day consists of multiple
travel behaviors with different purposes, so it is necessary
to divide the trip chain of each vehicle. We split the trip
chain based on reasonable travel time between any two travel
nodes. If the travel time between two points is not within
the reasonable time range, then the two points belong to
two different travel activities. It should be noted that we did
not take into account the traveler’s activity stay time when
splitting the trip chain. For example, if a traveler driving a
car from home first arrives at a restaurant for dinner and
then leaves the restaurant for the supermarket, his trip chain
will be divided into two trips: (1) Traveling from home to a
restaurant; (2) Traveling from a restaurant to a supermarket.
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The dining time in the restaurant will not be counted as travel
time.

We set the reasonable travel time interval between any two
nodes on the traffic network as [Ti;.”i", k % T7°]. Where Ti’."i"
refers to the shortest travel time between node i and node j;
T{¥ refers to the historical average travel time between
node i and node j; k is an elasticity coefficient taking a value
of 1.5 according to existing research [25]. Timi” and T;"e can
be accessed via the online map API interface. The steps to
split the trip chain is described in Table 1.

TABLE 1. Algorithm of trip chain division.

Algorithm 1: Trip Chain Division

Stepl: The passing records derived from ALPR devices are clustered
according to the license plate ID, and the record of each car is arranged
in chronological order.
Step2: For the mth vehicle (a total of M vehicles), set the location of the
first record as the starting point of its first trip.
Step3: Calculate the time interval At between the jth and (j + 1)th
passing records of the ith car.

(@) if At € [T, k* T%¢,], then the jth and (j+ 1) th
crossing records belong to the same trip;

(b) if At < T/™", then mark the (j + 1)th record as an error and
delete it;

(c) if At > k * T{%¢;, then mark the location in the jth record as
the end point of the current trip and the starting point of the next trip.
Step4: if m = M, stop; if m < M, m = m + 1, return to Step2.

B. CANDIDATE TRAJECTORY GENERATION BASED ON
P-KSP ALGORITHM

The K shortest path algorithm is often used to generate a set of
candidate paths between two points on urban traffic network,
but it is computationally inefficient in large or complex net-
works. Therefore, we designed a K shortest path algorithm
combined with space-time prism theory (P-KSP) to generate
the candidate trajectory set.

Space-time prism is a geographic information science
method that uses spatial-temporal paths to analyze an indi-
vidual’s activity capabilities. By calculating the spatial pro-
jection of space-time prism on the network, the search area for
candidate paths can be reduced and computational efficiency
can be effectively increased.

Assuming that the traveler’s origin point is point A and
the destination point is point B, his travel start time is 7,
and his destination time is 75. Cone 1 with point (A, T1)
as the apex and cone 2 with point (B, T>) as the apex will
produce an intersection, which is a space-time prism. The
area projected on the plane by the intersection of the two
cones is the potential path area (PPA). It can be seen that this
potential path area is an ellipse with focal points A and B.
When the traveler’s moving speed is v and the origin and
destination points are points A and B, his range of activity is
within this ellipse (PPA) [26]. Figure 2 shows the space-time
prism corresponding to a trip.

The steps for solving the potential path region (PPA) are as
follows. The urban road network is simplified as a directed
graph G = {V, E}, where V = {1, 2, ..., n} represents the
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FIGURE 2. Space-time prism.

set of all nodes in the network; E = {(i,))|i,j € V,i # j}
represents the set of all sections in the road network. Let the
starting point in the two-dimensional plane be (x,, y,) and
the ending point be (x4, y4). Set the coordinates of any point
on the PPA to be (x, y), then the expression of the PPA is as
follows:

PPA = {(xsy) |T(Xo,)’o,x,)7) + T(Ly,xd,)’d) S T2 - Tl}
ey

where function T (x, y1, X2, y2) represents the shortest travel
time from point (x1, y1) to (x2, y2).

Then, we search the candidate path based on KSP algo-
rithm in the possible path area. Path generation in traffic net-
work is a limited K shortest path problem with no closed loop.
YEN’s algorithm proposed in 1971 is a relatively extensive
and effective method currently used to solve the problem of
limited K shortest path problem [27]. It first finds the shortest
path O; from start point A to end point B using Dijkstra
algorithm. The kth (k > 1) shortest path (Qy) is found using
the idea of the deviating path algorithm in recursion: all nodes
on Qk_1 except the end point are considered deviating nodes
and the shortest path from each deviating node to the end
point is calculated. Then it is appended to the path from the
start point to the deviating node on Qy_1, which forms the
final candidate path.

The specific procedure of P-KSP algorithm is presented
in Table 2.

C. PATH DECISION INDICATORS

Trajectory reconstruction can be regarded as a process of
simulating travelers’ path decision. We reproduce the path
decision process of travelers by constructing corresponding
decision indicators. Main factors considered in previous stud-
ies include static information such as path length, road hierar-
chy, number of intersections and number of turns [28]-[30].
However, the static information may not accurately describe
the dynamic decision response of the travelers because the
travelers’ access to status of the traffic network is lagging and
they sometimes choose the path according to their own inher-
ent habits. To solve this problem, we designed two dynamic
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TABLE 2. Algorithm of candidate path set generation.

Algorithm 2: Candidate Path Set Generation

Input: The maximum speed limit of the traffic network:
Vinaxs; the topology of the traffic network:
Graphi,isiar; the position of point A and point B:
ori and des; travel time between point A and
point B: T
Output: Candidate path set Q = {Q4, Q,, -, Q} from
point A to point B
Process:
1:  #obtain the potential path area based on equation(1)
2:  Graph = PPA(Graphi,itia, 071, des, Vi, T)
3:  #calculate the shortest path
4. Q[1] = Dijkstra(Graph,ori, des)
50 R=[]
6:  #calculate the remaining K-1 shortest path
7:  for k from 2 to K do
8: for i from 0 to size(Q[k — 1])—2 do
9: SpNode = Q[k — 1].node(i)
10: RtPath = Q[k — 1].nodes(0,1)
11: for each path g in Q do
12: if RtPath == q.nodes(0,i) then
13: remove q.edge(i,i + 1) from Graph
14: end
15: end
16: for each node RtPathNode in RtPath except SpNode do
17: remove RtPathNode from Graph
18: end
19: SpPath = Dijkstra(Graph, SpNode, des)
20: TotalPath = RtPath + SpPath
21: if TotalPath not in R then
22: R.append(TotalPath)
23: end
24: restore edges to Graph
25: restore nodes in RtPath to Graph
26: end
27: if R is empty then
28: break
29: end

30: R.sort()
31: Q[k] = R[O]

32: R.pop()
33:  end
34:  return Q

indicators, namely travel time consistency and path prefer-
ence, for correction. The travel time consistency describes
the similarity between the travel time of candidate paths and
the real travel time recorded by ALPR detection equipment,
while the path preference describes the proportion of candi-
date paths selected in historical data.

Among the above six indicators, path length, road hier-
archy, number of intersections, number of turns and travel
time consistency belong to the cost-based indicator, while
the path preference is a benefit-oriented indicator. Moreover,
the driver’s sensitivity to the growth of these indicators grad-
ually decreases, so the index-based Max-Min method is used
to normalize the indicators.

1) Path length

L;—min(L)
e max(L)—min(L)
>

max(L) # min(L)
1, max (L) = min(L)

x1 (@) = @

where
L; is the length of path Q;,
L is the set of path length.
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2) Number of intersections

INE ;—min(INE)

e max(NE)-min(NE) | max(INE) # min(INE) 3)
1, max (INE) = min(INE)

x2 (Qi) =

where
INE; is the intersection numbers of path Q;,
INE is the set of intersection numbers.

3) Number of turns

_ T[—min(f) .
x3 (g = ¢ T max(D) FminT)
1, max (T) = min(T)
where
T; is the turning times of path Q;,
T is the set of turning times.
4) Road hierarchy
"Hji x Lj
= 2l ®)
Zj Ly
_ H;—min(H)
max(H)—min(H |
x4 (0) = e E-min®) - max(H) ;észL(H) 6)
1, max (H) = min(H)
where
H; is the road hierarchy of path Q;,
n is the number of sections contained in path Q;,
Hj; is the road grade of the jth section in path Q;,
Lj; is the road length of the jth section in path Q;,
H is the set of road hierarchy.
5) Travel time consistency
C' _ |Ttl;’ue - Telsml (7)
= —
Ttlrue
_ C;—min(C)
max(C)—min(C ]
X5 (0)) = e ©-min(©) = max(C) # mlll’l(C) 8)
1, max (C) = min(C)
where

C; is the travel time consistency of path Q;,

T} . is the true travel time of path Q;,

T!,, is the estimated travel time of path Q;,

C is the set of travel time consistency.

The estimated travel time is obtained by the following
steps: (a) The estimation of path travel time is simplified as
a regression problem where the path length and the number
of intersections are taken as independent variables, and the
true travel time is taken as dependent variables; (b) The true
travel time, path length and intersection number of each path
are extracted from the complete trajectory data set; (c) The
data are input into the regression model for fitting so as to
get the calculation formula of path travel time; (d) For each
candidate trajectory, the estimated travel time is calculated by
using the formula.

6) Path preference

l
P = Nrs x 100% )

rs
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P;—min(P)
1 — e_ max(P)—min(P) ,

max(P) # min(P)
1, max (P) = min(P)

X6 (Qi) = (10)
where

P; is the path preference of path Q;,

N, is the total travel times between OD pair rs in the
historical travel data,

N is the total travel times of path Q; between OD pair rs
in the historical travel data,

P is the set of path preference.

D. PATH DECISION BASED ON AUTO-ENCODER

We regard the vehicle trajectory reconstruction as the
problem of selecting an optimal path from the candidate
path set according to the indicator values. Its essence is
a multi-attribute decision-making problem. The classical
multi-attribute decision-making methods mainly include ana-
lytic hierarchy process, principal component analysis, grey
relational analysis, TOPSIS method and so on. Their basic
idea is to determine the weight of each indicator to get a
comprehensive evaluation indicator, then the optimal scheme
is selected. Its essence can be understood as the process of
mapping multi-dimensional space composed of multiple indi-
cators to low-dimensional space through a certain distance
calculation criterion. However, the weight determination of
these methods is subjective to some extent, and there are
many calculation steps. Therefore, we did not implement path
decision based on these classical multiple attribute decision
methods. Considering the efficiency and convenience of the
auto-encoder model in the field of data dimension reduction
and information extraction, we choose it to realize trajectory
reconstruction.

Auto-encoder is an unsupervised learning neural network
whose target output is the original input. Its purpose is to
reconstruct its input to obtain a low-dimensional represen-
tation of high-dimensional input. The difference between
auto-encoder and PCA is that auto-encoder can represent
not only linear transformation but also nonlinear transfor-
mation, and it has little information loss in the process of
reconstructing input. An auto-encoder consists of two parts,
the encoder and the decoder, which is shown in Figure 3.
The input variables pass through a small number of neurons
in the hidden layer(s), forging a compressed representation of
the input (encoding), which is then unpacked and mapped to
the output layer (decoding) [31], [32].

The path decision method based on the auto-encoder takes
the multi-dimensional vector composed of the indicators
of the candidate trajectory as the input, and k-dimensional
mapping is carried out through the model. The candidate
trajectory with the optimal comprehensive indicator is con-
sidered as the reconstructed trajectory. Suppose X, denotes
the n-dimensional decision indicator vector and mapping it
to a k-dimensional space includes encoding and decoding
processes.

The encoding process can be expressed by (11):

Zi =f(W.Xi +b.) (11)
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Decoder

Encoder

FIGURE 3. Auto-encoder structure.

The decoding process can be expressed by (12):
Xi = gWaZi + ba) (12)

where W, and W; are encoding weight matrix and decod-
ing weight matrix respectively, b, and b; are encoding
deviation vector and decoding deviation vector respectively,
both f(-) and g(-) are nonlinear activation functions, which
are sigmoid function generally.

The loss function of the model is as follows:

LG.g(f ) = 1% - X’ 13)

IV. CASE STUDY

A. DATA DESCRIPTION

We selected an urban network in Ningbo, China as a testbed.
The road network includes 33 intersections and 108 road
sections. A total of 154 ALPR detectors are installed at the
intersection of this region. When the vehicle passes through
the intersection, these detection devices will record the pass-
ing information. Figure 4 shows the study area and the loca-
tion of ALPR detector. The passing information collected by
ALPR equipment includes ALPR device number, detection
time, lane number and license plate number. Detailed data

121'35"E
|

Network

boundary
ALPR
device

2" N

9'S:
EYSEESUN

29

FIGURE 4. Study area and detector location.
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description is shown in Table 3. The license plate number has
been encrypted to protect the driver’s privacy.

TABLE 3. ALPR data tags.

Device ID Snapshot Time Lane No. License Plate
2018-06-05
11422 08:33:28 1 025600163
2018-06-05
11570 14:00:05 2 130000130
2018-06-05
11676 22:15:33 3 015100145

B. IMPLEMENTATION

The following shows the specific process of vehicle trajectory
reconstruction. Figure 5 shows the initial trajectory of the
vehicle in this example. The vehicle was captured in six
locations. We marked these six points in chronological order.
Firstly, we compared the interval time between all adjacent
recording points and their reasonable travel time intervals to
determine whether the trip chain needs to be divided. The
results show that the travel time between position 2 and posi-
tion 3 is two hours, which exceeds the maximum reasonable
travel time between position 2 and position 3. According to
the trip chain division criterion proposed in Section 2, this
trajectory was divided into two travel activities. Position 2 is
the end of trip 1 and the starting point of trip 2. Figure 5 shows
that the trajectory between intersection 18 and intersection
27 in trip 1 is incomplete and needs reconstruction.

FIGURE 5. Initial trip trajectory.

Considering the actual traffic network scale, we used the
P-KSP algorithm proposed above to generate five candidate
trajectories for trip 1, as shown in Table 4. Compared with SP
algorithm, the proposed P-KSP algorithm saved an average
of 19% searching time in this traffic network. After that,
we calculated the six indicators of these five paths and nor-
malize the indicator values. The results are shown in Table 5.

Then we established an auto-encoder model with six
dimensions in both the input and the output layers. The mid-
dle layers of the model are all hidden layers, and the number
of neurons is 4, 3, 2, 3 and 4, respectively. The first four layers
constitute the encoder, and the last four layers constitute
the decoder. Considering the independence between static
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TABLE 4. Candidate trajectory set.

No. Path
1 18-17-16-15-21-27
2 18-17-16-22-28-27
3 18-17-23-22-21-27
4 18-24-30-29-28-27
5 18-24-23-22-21-27

TABLE 5. Normalized indicator value.

No. L; INE; T, H c, P,
1 03678  0.6065 1 03678  0.4493 0
2 1 1 07165 0.5991  0.6703  0.4865
3 0.6907 1 0.3678 1 1 0.6321
4 0.6658 1 07165 0.5991  0.6703  0.3934
5 0.5965 03678 0.5134 0.6768 0.3678 0

FIGURE 6. Structure of auto-encoder model.

and dynamic indicators, we map six-dimensional inputs to
two-dimensional vectors, namely z; and zp. The activation
function of this model is sigmoid function, and the model
structure is shown in Figure 6.

Figure 7 shows the indicator mapping values of five can-
didate trajectories. According to the proposed indicator value
normalization method, the larger the decision indicator value
is, the more likely the candidate path is to be the path truly
chosen by the traveler. It can be seen that point 3 is farthest
from the origin in the two-dimensional coordinate system,
which means its indicator value is optimal, so candidate path
3 is selected as the reconstructed trajectory. The complete
vehicle trajectory is shown in Figure 8.

V. VERIFICATION

In order to verify the effectiveness of the proposed method,
we test the vehicle trajectory reconstruction accuracy for
different number of missing nodes and different ALPR
device coverage rate, respectively. We randomly select
500 complete paths with the number of nodes greater than
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FIGURE 8. Reconstructed trajectory.

seven from the historical data set with the verification
ratio of 15%, which constitute the real complete path set
QT ={QT.QT5, -~ . QT;. --- QT sp0).

And for the verification of reconstruction accuracy
for different number of missing nodes, we randomly
deleted jGj = 1,2,3,4,5) continuous nodes of each
path OT; in set QT to obtain the incomplete path set
QU = {QU;,QU,,---,QU;,---QUsq}. We reconstruct
the trajectories in the set QU using principal component
analysis (PCA), the shortest path (SP) algorithm, and the
auto-encoder method proposed in this study, and the accuracy
results are shown in Figure 9.

It can be seen from Figure 9 that the accuracy of the three
methods decreases with the increase of the number of missing
nodes. The accuracy of the SP algorithm is still acceptable
when only one and two nodes are missing, and declines
rapidly since missing three nodes. And the accuracy is less
than 40 % when there are five nodes. The possible reason is
that when there are few missing nodes, the real path is close
to the shortest path. And when the number of missing nodes
increases, the SP algorithm only considers the path length as
an influencing factor, which does not correspond to the actual
choice of the traveler.

Comparing the performance of the proposed method in
this study and the PCA algorithm, it can be seen that when
the number of missing nodes is 1 and 2, the accuracy
of the two methods is very close, which is maintained at
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FIGURE 9. Reconstruction accuracy for different number of missing
nodes.

more than 90%. However, when the number of missing nodes
reaches 3 or more, the accuracy of the auto-encoder is higher,
maintaining above 80%, and the comprehensive accuracy
reaches 85%. While the accuracy of principal component
analysis decreased to 70%. The possible reason is that as
the number of missing nodes increases, there are several
candidate paths with close path length, and the traveler will
consider several influencing factors when choosing the path.
There is a non-linear correlation between these influencing
factors. Principal component analysis can only represent lin-
ear transformation in data mapping, while auto-encoder can
also represent nonlinear transformation, and its information
loss is much smaller than that of PCA. Therefore, when the
number of missing nodes increases, the proposed method in
this study has higher accuracy.

On the other hand, since the research area selected in this
study is an open road network, it will cause some fixed errors.
We found that the origin and destination points of most trajec-
tories are located at the boundary of the road network, which
means that these paths may be truncated by the boundaries
of the study area in reality, and the state of the peripheral
road network is not considered in the trajectory reconstruction
process, so the accuracy of trajectory reconstruction will be
affected.

Further, we tested the accuracy of vehicle trajectory recon-
struction at different ALPR coverage rates. We randomly
deleted 10 %, 20 %, 30 %, 40 %, 50 % and 60 % of the
vehicle passing information recorded by ALPR device in the
complete path set QT to simulate the cases where the ALPR
coverage rates are 90 %, 80 %, 70 %, 60 %, 50 % and 40 %,
respectively. Figure 10 shows the reconstruction accuracy of
each path at different ALPR coverage rates. Figure 11 shows
the average trajectory reconstruction accuracy at different
coverage rates.

It can be seen from Figure 10 that the accuracy of trajectory
reconstruction decreases with the decrease of ALPR coverage
rate. When the coverage rate is between 60% and 90%,
the fluctuation of accuracy is small, indicating that the
algorithm is stable and reliable. When the coverage rate is
between 40% and 50%, the accuracy fluctuates greatly, indi-
cating that the algorithm performs poorly at a low detector
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FIGURE 11. Average accuracy at different ALPR coverage rate.

coverage rate. Figure 11 illustrates that when the detector
coverage is equal to or greater than 50%, the average accuracy
exceeds 85%, and when the coverage is 40%, the accu-
racy decreases to 75%. Moreover, when the coverage rate is
reduced to 50 %, the attenuation accelerates. Overall, the ver-
ification results show that the proposed trajectory reconstruc-
tion method has high accuracy and good stability.
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VI. CONCLUSION

This study proposed a new method of vehicle trajectory
reconstruction on urban traffic network based on license plate
recognition data. Firstly, we split the trip chain extracted
from ALPR data based on travel time threshold. Then we
designed an improved KSP algorithm to generate candidate
paths for incomplete vehicle trajectory, which improved the
searching efficiency. Finally, on the basis of six decision indi-
cators, we utilized auto-encoder model to select the optimal
trajectory.

This method was tested on a realistic traffic network
for different number of missing nodes and different ALPR
coverage rates. The verification results show that the com-
prehensive accuracy of the method exceeds 85% and the
algorithm is robust and reliable when the ALPR coverage
rate exceeds 60%. Thus, the proposed method can realize
high-precision trajectory reconstruction and perform well in
realistic traffic scenarios.

Although the verification method can effectively evaluate
the accuracy and robustness of the trajectory reconstruction
algorithm, the limitation of it is that the complete trajectory as
ground-true data cannot include the intersections on the road
network that are not equipped with ALPR device. Therefore,
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if the probe car GPS data collected during the same period
with ALPR can be used as ground-true data, it can serve
as a better and more reasonable verification. Because probe
car GPS data records the trajectories of constantly moving
vehicles, it can cover almost all intersections on the road
network.

In future work, more explorations can be made from as
follows: (1) This study will use multi-source data as a sup-
plement to the limited observations of ALPR devices. For
instance, taxi GPS trajectory data and mobile phone signaling
data can be exploited to provide more consecutive initial
vehicle trajectory and more precise travel time [33], [34].
(2) We will improve the algorithm to enhance the accu-
racy of vehicle trajectory reconstruction especially for low
ALPR coverage rate: a) More activation function will be tried
to improve the model performance such as tanh function;
b) The actual meaning of the hidden layer of the auto-encoder
model still needs further study. Meanwhile, we will try more
auto-encoder model structures, such as introducing regular-
ization. (3) Since ALPR equipment does not fully cover
all intersections of the road network, we cannot obtain the
average travel time of all paths to estimate the travel time of
candidate trajectories. In this paper, we exploited a regression
model to simplify the problem. And we will adopt GAN
and LSTM model based on the combination of vehicle GPS
data and ALPR data to improve the accuracy of travel time
estimation. (4) It is noted that the time-saving rate of the pro-
posed P-KSP algorithm is 19% compared with SP algorithm,
which seems not a great improvement. The reason is that
the scale of the selected traffic network is not large enough
and the network conditions are not complex enough. We will
apply the algorithm to a more large-scale and complex net-
work to validate its performance. (5) The ALPR device can
identify which approach the vehicle is going through. This
characteristic will be used to reduce the candidate trajec-
tory set and then improve the calculation efficiency. (6) The
reconstructed vehicle trajectory will be used to estimate
the path flow and OD demand to realize real-time traffic
management.
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