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ABSTRACT Although achieving significant improvement on pose estimation, the major drawback is that
most top-performing methods tend to adopt complex architecture and spend large computational cost to
achieve higher performance. Due to the edge device’s limited resources, its top-performing methods are hard
to maintain fast inference speed in practice. To address this issue, we proposed the fast and lightweight human
pose estimation method to maintain high performance and bear the less computational cost. Especially,
the proposed method consists of two parts, i.e., the fast and lightweight pose network (FLPN) for pose
estimation and a novel lightweight bottleneck block for reducing computational cost, which can integrate the
simple network and lightweight bottleneck into an efficient method for accurate pose estimation. In terms
of lightweight bottleneck block, we introduce the structural similarity measurement (SSIM) to refine the
appropriate ratio of intrinsic feature maps and reduce the model size. Furthermore, an attention mechanism
is also adopted in our lightweight bottleneck block for modeling the contextual information. We demonstrate
the performance of the proposed method with extensive experiments on the two standard benchmark datasets
by comparing our method with state-of-the-art methods. On the COCO keypoint detection dataset, our
proposed method attains a similar accuracy with these state-of-the-art methods, but the computational cost

of these top-performing methods is more than 7 times that of ours.

INDEX TERMS Human pose estimation, structural similarity, cheap operation, lightweight block.

I. INTRODUCTION

The goal of estimating human pose based on input images
can be simplified to precisely localize human anatomical key-
points (elbows, wrists, knees, etc. ). Human pose estimation
which is a fundamental task in computer vision is extensively
adopted for action recognition [24], [25], pose tracking [26],
and human-computer interaction [27].

Recently, multiple tasks related to human pose esti-
mation have been extensively studied in various fields
[28]-[30], [33]. We pay attention to single-person pose esti-
mation, which is the basis of relevant vision tasks, such as
multi-person pose estimation, video-based pose estimation,
and pose tracking.

Similar as plenty of vision tasks, great advances on
human pose estimation have been achieved by deep con-
volutional neural networks (DCNNs) [10], [12], [13], [15],
[18], [19], [24], [25], [29]-[33]. Through the pioneering
work in [20], [31], the performance on the two baseline
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benchmarks has reached saturation in the past two years.
Particularly, the accuracy on the MPII benchmark [14] has
been promoted from roughly 80% PCKH@0.5 to higher
than 90% [10], [12], [13]. For the challenging COCO
human pose benchmark [11], the mAP score is significantly
increased from 60.5 (Openpose [19]) to 77.0 (HRNet-w48 +
extra data [12]) in recent three years. Accompanied by the
quick development of human pose estimation, the desire
for lightweight and quick inference speed pose estimation
method has been proposed.

We contend that applying a lightweight model for real-
time human pose estimation is one of the major unad-
dressed issues. To the best of our knowledge, there have
been a quite few works on the lightweight of human pose
estimation methods. However, the lightweight human pose
estimation networks, with small model size, light computa-
tion consuming, and high accuracy are suitable to directly
deploy on resource-limited devices such as mobile phones
and smart laptops. Majority of state-of-the-art methods which
reach higher performing level are always related to complex
networks, with mass parameters and numerous float-point
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operations (FLOPs). Despite their top performance, the delay
based on inference time is one of the major drawbacks
for these complex models with large computation. Besides,
the demand for high memory is indeed for complex models
with huge amounts of parameters.

Intuitively, if we aim at designing lightweight pose
estimation networks, it is reasonable to focus on simple
pose estimation networks and efficient bottleneck blocks.
Among top-performing networks, SimpleBaseline [13] has
provided prior knowledge on designing a simple yet effi-
cient network for pose estimation and exploring how simple
could an efficient model be. Inspired by their graceful
design, the lightweight bottleneck of Lightweight Pose
Network (LPN) [10] is proposed to exploit the best of
choice depth-wise convolution for the low memory demand-
ing network architecture. At the same time, many lightweight
bottleneck blocks adopted for image classification are put
forward to replace these standard bottleneck blocks such
as mobilenet-v3 bottleneck [6] and ghostnet bottleneck [9].
Practically, these methods can significantly reduce the model
size and computational complexity without too much perfor-
mance degradation. To design an efficient lightweight net-
work for human pose estimation, we need to explore the best
balance between accuracy and computational cost.
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FIGURE 1. The problem of massive redundancy feature maps. In the
process of convolutional operations, intermediate feature maps often
contain comprehensive redundancy and result in extensive
computational cost. It is important to develop an efficient method to
estimate human pose with low computational cost and less redundancy.

The major difficulty lies in how to trade off the perfor-
mance and lightweight size of the network. We address this
problem by using a simple network with a novel lightweight
bottleneck. As is shown in figure 1, the method of SSIM
is introduced to compare similarity among feature maps
and determine the ratio of intrinsic feature maps. A novel
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bottleneck block is proposed to reduce computational cost
and maintain efficient performance. (The method is described
in greater detail in the following Section III)

To demonstrate the effectiveness and efficiency of the pro-
posed fast and lightweight human pose estimation method,
extensive experiments were conducted to prove the supe-
rior performance over two benchmark datasets: the COCO
keypoint detection dataset [11] and the MPII Human Pose
dataset [14]. The experimental results confirm that our pro-
posed method has an extremely small model size and com-
putational complexity than these existing state-of-the-art
methods [12], [13].

The contributions of this paper are as follows.

e After observing most of these state-of-the-art meth-
ods adopt standard bottlenecks in their network with heavy
computational cost, we design a novel bottleneck for dras-
tically reducing the parameters and floating-point opera-
tions (FLOPs). This allows us to deploy complex architecture
network on limited resources computational platform.

e We propose a lightweight human pose estimation method
by redesigning a quite simple network with surprising effec-
tiveness. Further, the series of bottlenecks with lightweight
designing are complementarily trained following a beginning
block with two convolutional layers to study the high-to-low
resolution representation for predicting accurate heatmaps.

The remainder of this paper is organized as follows:
Section II describes the related works on top-performing
and lightweight human pose estimation networks, lightweight
block for various vision tasks and attention mechanism.
Section Il illustrates the proposed lightweight bottleneck and
simple network. The detailed implementations and experi-
ment results are presented in Sections IV and V, respectively.
Ultimately, Section VI summarizes the paper.

Il. RELATED WORKS
A. TOP-PERFORMING HUMAN POSE ESTIMATION
With the introduction of DeepPose by Toshev and
Szegedy [20], the problem of human pose estimation has
transformed from a pictorial stricture to a DNN-based key-
points regression. Since then, a mass of studies in the human
pose estimation field have achieved significant improve-
ments by adopting DCNNs [10], [12], [13], [15], [18]-[20],
[24]-[27]. There are two mainstream approaches, keypoints
regression [20] and keypoints heatmap [10], [12], [13],
which have become dominant in this field. Compared with
the method of keypoints regression, keypoints heatmap is
extensively adopted in human pose estimation tasks with an
overwhelming superiority in the quality of performance.
Newell et al. [32] proposed a dominant approach called
Stacked Hourglass Network on the MPII benchmark [14],
which is widely adopted by superior methods. Its features are
processed in a multi-stage architecture with repeated Bottom-
up, Top-down processing and skip layer connection are
critical to capture the various spatial relationships between
body parts. Chen et al. [34] proposed a method called
the Cascaded Pyramid Network (CPN) which integrates
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all levels of feature representations to relieve the problem
of these invisible keypoints. To obtain rich high-resolution
representations for accurate and precise human pose esti-
mation, Sun et al. [12] proposed a high-resolution repre-
sentation (HRNet) that achieved state-of-the-art performance
by connecting the multi-resolution subnetworks in parallel.
HRNet starts with a high-resolution subnetwork as the first
stage and gradually adds high-to-low resolution subnetworks
one by one to form more stages, and connects the multi-
resolution subnetworks in parallel. Repeatedly performing
multi-scale fusions among these parallel multi-resolutions
subnetworks, HRNet can obtain rich high-to-low resolution
representations from other parallel representations over and
over and finally get the rich high-resolution representations.
Through its superior pose estimation results over two bench-
mark datasets, Sun et al. empirically demonstrated the effec-
tiveness of the multi-resolution subnetworks and the repeated
multi-scale fusions.

Most of these prior works mainly focus on how to design a
top-performing pose estimation method by adopting complex
architecture or expensive computation cost model, ignoring
these limitations on edge devices such as time-consuming and
high memory demanding.

B. LIGHTWEIGHT POSE ESTIMATION

Lightweight design for pose estimation has attracted lit-
tle attention from outstanding researchers. Recently, there
rarely exists research on lightweight design to improve the
efficiency of pose estimation. For model compression and
execution speedup, Bulat and Tzimiropoulos [35] binarized
the network architecture to adapt for edge devices. How-
ever, it suffers from a performance drop by a large margin.
After observing these complex top-performing pose esti-
mation algorithms, Xiao et al. [13] proposed the Simple
Baseline method that is based on a residual backbone net-
work followed by several deconvolutional layers. It provides
us a new idea that simple network architecture can also
achieve excellent performance on the COCO2017 bench-
mark [11]. Inspired by the design principles of Simple Base-
line [13], Zhang et al. [10] provided a lightweight pose
network (LPN) that has obvious superiority in terms of model
size, computational complexity, and inference speed. Further,
Zhang et al. empirically demonstrated the efficiency and
effectiveness of their lightweight network on the challenging
COCO2017 benchmark [11].

C. LIGHTWEIGHT BLOCK

The depth of representations is of crucial significance for the
human pose estimation task. Based on comprehensive empir-
ical evidence, He et al. [23] experimentally demonstrated that
these residual networks are easier to optimize, and can gain
accuracy from considerably increased depth. Therefore, most
of these aforementioned methods adopt the ResNet series as
their backbone network that is substantially deeper than those
used previously. However, top-performing methods based on
ResNet are not suitable to directly deploy on resource-limited
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devices because of the heavy computation. In recent years,
a series of compact networks [4]-[9] are proposed with
the increasing demand for a lightweight model. Based on a
streamlined architecture, MobileNets [4] adopts depth-wise
separable convolutions to establish lightweight deep neu-
ral networks and efficiently trades off between latency and
accuracy. MobileNetV2 [5] has introduced a new mobile
architecture that consists of inverted residuals and linear bot-
tlenecks. Through a combination of hardware-aware network
architecture search (NAS) complemented by the NetAdpt
algorithm, MobileNetV3 [6] takes advantage of the novel
architecture to subsequently improve the accuracy. Besides,
it further explores the issue of how automated searching algo-
rithms and network design can work together to improve the
overall state of the art on mobile classification, detection and
segmentation. ShuffleNet [7] primarily introduces pointwise
group convolution operations and channel shuffle operations
to extensively decrease computational cost. Ma et al. [8]
presented a new architecture called ShuffleNet V2 and their
work derives several practical guidelines for efficient net-
work design. Accordingly, comprehensive experiments have
demonstrated that their work achieves state-of-the-art perfor-
mance in terms of speed and accuracy tradeoff. Han et al. [9]
proposed a novel Ghost module to generate more feature
maps from cheap operations. They applied a series of linear
transformations on these intrinsic feature maps to generate
many relevant feature maps for getting primary information
with a less computational cost.

D. ATTENTION MECHANISM

Recently, related works based on attention mechanism
have achieved great success in various computer vision
tasks such as image classification [9], [37], object recogni-
tion [38], lightweight human pose estimation [10], and so on.
Chu et al. [36] firstly introduced attention mechanism into
pose estimation models. They proposed a method that incor-
porates convolutional neural networks with a multi-context
attention mechanism into an end-to-end framework. Non-
local network proposed by Wang et al. [3] employs self-
attention mechanisms to model pixel-level pairwise relations
for capturing long-range dependencies. Although gaining
some performance in human pose estimation, the non-local
operation computes the response at each query position with
extensive computation cost. Hu et al. [2] proposed a novel
architectural unit, termed as Squeeze-and-Excitation (SE)
block, that adaptively recalibrates channel-wise feature
responses by explicitly modeling interdependencies between
channels. These blocks can be stacked together to form
SENet that significantly improves the performance for top-
performing models at a slight additional computational cost.
Based on rigorous empirical analysis, Cao et al. [1] found
that the global contexts modeled by the non-local network
are almost the same for different query positions within
an image. They designed a better instantiation, called the
global context block (GCB) and constructed a global context
network (GCNet), which maintains the performance of
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NLNet but takes significantly less computational cost. There-
fore, it is applied in each bottleneck block of our model that
can increase the performance of our network without too
much computational cost.

E. STRUCTURAL SIMILARITY

Generally, feature maps are highly structured in that their
pixels exhibit strong relationships, especially when they are
spatially and temporally proximate. Their relationships in
spatial and temporal sequence usually carry extremely sig-
nificant information about the structure of the object in
visual scenarios. Wang et al. [39] constructed a formulation
SSIM for measuring the structural similarity quality from the
perspective of image formation. Their method composes of
three parts: the average luminance, contract, and structural
information.

Unlike [39], we just take two channels of the feature maps
as the input of the method. Then, SSIM is adopted to evaluate
the structural similarity among these feature maps which
come from one original image. Finally, a value computed by
SSIM indicates the similarity between two input feature maps
and the larger value which ranges from O to 1 means a strong
relationship. These output values determine the compress
ratio of intrinsic feature maps in our module.

Despite their top performance, we will analyze the perfor-
mance in Section V by comparing the size of parameters,
GFLOPs, and inference time among these state-of-the-art
methods. The aforementioned lightweight blocks aim to
reduce the computational cost without too much accuracy
decrease. However, their methods (LPN) have not been exten-
sively used for human pose estimation and their performance
has not been demonstrated by extensive experiments. There-
fore, we propose a simple but powerful human pose estima-
tion model with a lightweight bottleneck block which can
significantly reduce the computational cost.

lll. APPROACH

Owing to complex architecture and vast computational cost,
a lightweight but powerful pose estimator is extremely hard to
design which is described in Section I. To conquer this limita-
tion, we propose a novel lightweight human pose estimation
method by redesigning a simple network (FLPN) with several
groups of lightweight bottleneck (Smart bottleneck) blocks.
The smart bottleneck is mainly composed of two stacked
smart modules and a global context (GC) [1] block. Then,
the smart module is introduced to utilize cheap operations to
generate more feature maps from these intrinsic feature maps.
The structural similarity (SSIM) [39] measurement method is
adopted in the smart module and determines the appropriate
proportion of intrinsic feature maps in the total feature maps.
At the same time, we also append the GC block which is
effectively able to model the global context by capturing
long-range dependencies with the less computational cost
increase. To achieve extremely efficient architecture and high
performance, we proposed the FLPN network with a simple
architecture.
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Firstly, we explain the architecture of the novel lightweight
module, bottleneck and efficient network and then compare
the computational cost of the proposed method.

A. SMART MODULE FOR MORE FEATURES

The success of GhostNet [9] proposed by Han et. al has
provided prior knowledge that intermediate feature maps cal-
culated by mainstream CNNs often contain mass redundancy
and some of them are similar in many aspects. Inspired by
their creative idea, we point out that it is necessary to com-
pare feature maps between different channels for one input
image and determine the ratio of intrinsic feature maps in the
module.

Top-performing human pose estimation models
[10], [13], [34] often adopt ResNet as their backbone with a
large number of convolution layers that result in extremely
massive computational cost. Given the comprehensively
existing redundancy in the process of feature maps calculated
by these high performance models as shown in Figure 1,
Han et al. [9] proposed the ghost module to reduce the
demanded resources. The ghost module adopts a handful of
intrinsic feature maps to generate more feature maps with
some cheap transformations. However, there is a question
that why these intrinsic feature maps occupy half of the input
maps. In this section, we will further explore the reason for
the compression ratio.

In practice, X € R s the input data, where c is
the number of input channels. At the same time, # and w
represent the height and width of the input data, respectively.
Y € RWWXH) g the output map with n channels. The
operation of the convolutional layer, which transforms the
input data X into output map Y, can be formulated as:

Y=Xxf+Db (1)
where * is the transformation operation, b is the bias term
and f € R(*kxkxn) i the convolution filters in convolutional
layer. Besides, i’ and w’ are the weight and width of the output
feature maps, and k X k is the kernel size of the convolution
filters f, respectively.

During the convolutional process, a standard convolutional
layer can be parameterized by convolution kernel k of the size
Dy x Dy x ¢ x n, where Dy is the spatial dimension of the
kernel assumed to be square. Correspondingly, the calculated
number of FLOPs can be formulized asn x b’ xw' x ¢ x k x k,
which often results in massive computation cost because of
the large number of filters n and abundant channel numbers c.

Based on Eq. 1, the large number of parameters in f and b
to be optimized can be simplified to reduce the dimensions
of input feature maps and output feature maps. We point out
that the ratio of intrinsic feature maps dynamically change
with the number of redundant feature maps in total feature
maps. Therefore, we introduce SSIM to estimate the sim-
ilarity among these feature maps and find the appropriate
ratio of intrinsic feature maps. Specifically, m¢ intrinsic fea-
ture maps Y € R xm) are produced by some primary
convolution filters:

vd =X xr¢ 2
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FIGURE 2. lllustrating the architecture of the FLPN network. Similar to SimpleBaseline [13], our method contains a
stem, a backbone network and several up-sampling layers. Differently, we introduce the method of SSIM to evaluate
the similarity among feature maps, redesign the bottleneck block (green blocks in the above figure.), and choose a

novel lightweight fashion for up-sampling.

dy . . . .
where f € R(¢*k>xkxm®) s the convolution filters, m¢ is much

lower than n and the bias b is omitted for simplicity. To keep
the consistent spatial size of the output feature maps, a series
of cheap linear operations are adopted on each intrinsic fea-
ture maps in Y< to generate 7 relevant feature maps in the
following equation:

yij = ¢ijO0) 3)

where y; is the i-th intrinsic feature maps in ¥ d @i is the
Jj-th linear operation for generating the j-th ghost feature
map y; ;. Obviously, each y" can have ¢ ghost feature maps.
The final ¢; is an identity mapping for maintaining the
intrinsic feature maps. Finally, we integrate these intrinsic
feature maps and relevant feature maps into the output feature
maps with a consistent spatial size. In terms of computational
cost, these linear operations ¢ are much less than the standard
convolution.

As shown in Figure 3, the blue block represents the method
of SSIM which determines the ratio of intrinsical feature
maps. Under the guidance of SSIM, we increase the number
of linear operations which can reduce the computational cost
in our proposed method. The identity represents the intrinsi-
cal feature maps and others generated by cheap operations (¢)
represent relevant features. The above standard convolution is
used to compare with ours.

As the module can be easily integrated into top-performing
human pose estimation networks to reduce the computational
cost, we further analyze the income on theoretical speed-up
ratio and the total number of parameters. There exits one iden-
tity mapping and m¢ x (t — 1) = 7 % (¢t —1) linear operations,
and the averaged kernel size of each linear operation is equal
to d x d. For simplification, we take the same kernel size for
linear operation and ordinary convolution layer in one module
for efficient performance. The total number of parameters for
an ordinary convolutional layer is n-k -k -c. Comparatively, the
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FIGURE 3. An illustration of the process of the proposed smart module
for generating the same number of maps. The method of SSIM can
determine the ratio of intrinsic feature maps. ¢ represents the cheap
operation. Output feature maps consist of intrinsic feature maps and
relevant feature maps calculated by a cheap operation.

parameters of our module compose of primary convolution
m-k-k-c and linear operations m-k -k -(t —1). The compression
ratio of parameters can be calculated as:

_ n-c-k-k
Tk kctmok k-(—1)
_ n-c-k-k
S tkkec+Zokk-(t=1)
t-c
%—t—}—c—l%t 4
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FIGURE 4. Left to right:(1) Standard bottleneck; (2) Lightweight Bottleneck; (3)(4) Ghost Bottleneck; (5) Smart Bottleneck.

Similarly, the theoretical speed-up ratio can be for-
mulized as
n-h-w-.c-k-k
m-h-w-k-k-c+m-k-k-¢—1)-H-w
N
- % k-k-c t
t-c
- At
t+c—1
where s < c. In our paper, ¢ > 2 leads to much decrease in
computational cost.

re =

2

&)

B. BUILDING LIGHTWEIGHT BOTTLENECK BLOCK

The bottleneck is first introduced in ResNet [23]. As shown
in Figure 4, the bottleneck block composes of several convo-
lutional layers and a shortcut connection. Correspondingly,
the total number of the parameters for a standard bottleneck
block can be represented as

IXIXNXMA4+3x3xMxM+1x1xMxN (6)

For a bottleneck, the number of input channels N is con-
sistent with that of output channels and N = M X expansion.
Correspondingly, M represents the hidden dimensions and
expansion is a hyperparameter with a default value of 4.
Therefore, the above Eq.11 can be simplified as

17xM x M 7)

Based on three modifications of the standard bottleneck
block, we introduce the novel bottleneck (Smart bottle-
neck) specially designed for lightweight networks. Taking
the advantage of the lightweight module, we firstly replace
the standard bottleneck with our smart module, which can
significantly reduce the computation cost. And then, the stan-
dard 3 x 3 convolution is replaced by a 3 x 3 depth-wise
convolution, which can generate more features with fewer
parameters. Finally, it is illustrated in Figure 5, we also
adopt the global context (GC) block in the lightweight bot-
tleneck, which can capture long-range dependencies without
too much computational cost. As shown in Figure 4, the struc-
ture of the bottleneck seems to be similar to the bottleneck
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Cx1x1

FIGURE 5. Global context block.

in ResNet. The most obvious difference with Ghost Bottle-
neck [9] is the application of the two stacked modules. Except
for downsampling between stages, our bottleneck maintains
the same number of channels in the stage. To a certain extent,
for designing a lightweight bottleneck, we aim to reduce
these operations between channels rather than increasing the
number of channels. The number of parameters of the smart
bottleneck is

2 8
;xlxlxNxM+3x3xM%?xMxM (8)

where ¢ is the compression ratio for a module. Thus, the final
reduction in the parameter is
%xlxlxNxM—l—3x3xM 8
17xM xM T
where ¢ determined by SSIM in the range [2], [16].

(C))

C. FAST AND LIGHTWEIGHT NETWORK
The simple and widely adopted pipeline [10], [13] to esti-
mate human pose consists of a stem decreasing the size of
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input images, the main body learning the features of these
maps by reducing the resolution continuously, and a regressor
estimating the heatmaps by transforming these low resolution
heatmaps into the full resolution heatmaps and choosing
the accurate positions of key points. Following the simple
design principle, SimpleBaseline [13], which achieves top-
performing in human pose estimation, adopts a series of
standard bottlenecks as the main body and employs several
deconvolutional layers as the regressor. Inspired by their sim-
ple design architecture, we basically follow the architecture
of SimpleBaseline [13] for its superiority and replace these
standard bottleneck blocks used in the backbone with our
smart bottleneck blocks. In the stem, we use two successive
convolutional layers with a small kernel size (3 x 3) to reduce
the resolution of input images rather than a convolution layer
with a large kernel size (7 x 7) followed by a max-pooling
layer. The main body consists of a series of bottlenecks with
gradually increasing channel numbers and decreasing feature
map resolution. These bottleneck blocks are grouped into
four stages according to the input size of their feature maps.
Under the guidance of the SSIM method, the appropriate
ratio of these intrinsic feature maps in the module varies
with the depth of the network. During the downsampling
process, we experimentally demonstrate that the correlation
among feature maps fades away gradually. It means that there
exist a large number of redundant features in large size of
feature maps and using a low ratio can drastically reduce the
scale of parameters and FLOPs. Through the whole process,
we replace these convolution layers with group convolution
layers as many as possible to reduce the abundant parameters
while keeping the quality of feature maps. Finally, the group
size of the group convolutions can be simplified to the great
common divisor of input channels and output channels. The
architecture of our network is illustrated in Figure 2.

IV. IMPLEMENTATION

In this section, we mainly describe the training setup, two
datasets which are publicly available benchmarks used for
human pose estimation, and an evaluation protocol. More-
over, we also introduce evaluation metrics for every dataset.

A. TRAINING SETUP
The same set of parameters and settings as SimpleBase-
line [13] and LPN [10] were adopted to guarantee a fair
comparison between the two methods [10], [13] and our
method. Our network and the above mentioned two net-
works were all initialized by pre-training on the ImageNet
classification task [21]. The Adam Optimizer [22] was also
adopted. Similar to the two methods, the base learning rate
was initiated at le-3 and dropped to le-4 at 90 epochs and
le-5 at 120 epochs respectively. These networks were trained
for 140 epochs in total. Except for a similar network as
SimpleBaseline, we also use the novel lightweight module
and SSIM to fine tune the proposed network.

Following [10], [12], [13], the input image is cropped into
a fixed ratio bounding box with the human. Then, we resize
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the bounding box to 256 x 192 to train our model. Moreover,
data augmentation, composed of scale, rotation and filp, was
applied to train the baseline methods [10], [13] and our pro-
posed method. For the COCO2017 dataset [11], random rota-
tion through [—40, 40] degrees, random scalings in [0.7, 1.3],
and horizontal flips were adopted. For the MPII dataset [14],
random rotation through [—30, 30] degrees, random scalings
in [0.75, 1.25], and horizontal flips were also adopted. In the
testing phase, we use human body detection bounding boxes
based on COCO2017 to crop these images and put them into
our model to evaluate the performance of our method. During
the actual inference stage, a human body detector finds the
human body box and puts it into our model to generate human
poses.

B. DATASETS

1) COCO KEYPOINT DETECTION DATASET

The COCO dataset [11], widely used for human pose key-
point detection, contains over 200, 000 images and 250,
000 person instances labeled with 17 keypoints. Three
datasets train2017/val2017/test-dev2017, cover 57K, 5K and
20K images individually, are used for training our model,
evaluating our approach locally and evaluating our approach
on an online platform respectively. Most of the existing meth-
ods [12], [13] evaluate the performance on 256 x 192 input
images by cropping the heights and widths in a 4: 3 ratio,
therefore, we trained our network to utilize 256 x 192 input
images to ensure a fair comparison.

The mean average precision(AP) and average recall(AR)
were adopted as evaluation metrics based on object keypoint
similarity(OKS) to evaluate the result. The standard evalua-
tion metric is based on Object Keypoint Similarity (OKS):
> exp(—d? /252%k2)o (v; > 0)

> o> 0)

OKS is a measure that converts the Euclidean distance d;
between the ground truth keypoint and the estimated keypoint
to a value between 0 and 1. Here v; indicates the visibility of
the ground truth, s indicates the object scale, and k; indicates
a per-keypoint constant that controls falloff. AP (the aver-
age precision as OKS = 0.50), AP”>(the average precision
as OKS = 0.75), AP(the mean of AP scores at OKS =
0.5, 0.55, 0.6, ..., 0.95), AR(the mean of average recall
scores at OKS = 0.5, 0.55, 0.6, ..., 0.95). Further, APM
for medium objects (object area between 32% and 96%) and
APL for large objects (object area larger than 962) were
reported.

OKS = (10)

2) MPIl HUMANPOSE ESTIMATION DATASET

The MPII Human Pose Dataset [14] composes of real-
world images taken from various human daily activities with
full-body pose annotations. This dataset contains over 25K
images and 40K subjects, where 12K subjects are used for
testing and the remaining subjects are used for training. The
data augmentation and the training setup are the same as
COCO2017, except that the size of the input image was
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TABLE 1. Quantitative comparisons on the C0C02017 validation dataset.

Method Backbone  Pretrain  Inputsize  #Params FLOPs AP AP0 AP® APM APl AR
8-stage Hourglass Hourglass N 256 x 192 25.6M 262G 66.9 — — — — —
HigherHRNet HRNet-W32 — 512 x 512 28.6M 479G  67.1 86.2 73.0 61.5 76.1 —
HigherHRNet HRNet-W32 — 640 x 640 28.6M 748G 68.5 87.1 74.7 64.3 75.3 —
CPN ResNet-50 Y 256 x 192 27.0M 6.2G 68.6 — — — — —
HigherHRNet HRNet-W48 — 640 x 640 63.8M 1543G 699 87.2 76.1 65.4 76.4 —
SimpleBaseline ResNet-50 Y 256 x 192 34.0M 8.9G 70.4 88.6 78.3 67.1 772 763
SimpleBaseline ResNet-101 Y 256 x 192 53.0M 124G 714 89.3 79.3 68.1 78.1 77.1
SimpleBaseline ResNet-152 Y 256 x 192 68.6M 157G 720 89.3 79.8 68.7 789 718
HRNet-W32 HRNet-W32 N 256 x 192 28.5M 7.1G 734 89.5 80.7 70.2 80.1 789
HRNet-W32 HRNet-W32 Y 256 x 192 28.5M 7.1G 74.4 90.5 81.9 70.8 81.0 798
HRNet-W48 HRNet-W48 Y 256 x 192 63.6M 146G 75.1 90.6 82.2 71.5 81.8 804
LPN* ResNet-50 N 256 x 192 2.9M 1.0G 69.1 88.1 76.6 65.9 7577 749
LPN* ResNet-101 N 256 x 192 5.3M 1.4G 70.4 88.6 78.1 67.2 772 76.2
LPN* ResNet-152 N 256 x 192 7.4M 1.8G 71.0 89.2 78.6 67.8 7777 76.8
FLPN(Ours) SResNet-50 Y 256 x 192 10.04M 1.1G 71.3 91.6 79.0 68.8 753 745
FLPN(Ours) SResNet-101 Y 256 x 192 17.0M 2.0G 72.6 92.5 80.4 70.1 76.6 758
FLPN(Ours) SResNet-152 Y 256 x 192 22.5M 2.8G 73.1 92.6 80.4 70.8 767 763

The entries with the performance and the computational cost are clearly illustrated in Table 1. The method with "*" denotes that it adopts
an iterative strategy on its own model rather than pretrains its backbone on the ImageNet classification task. Our model saves a great lot of
computational cost and maintains top-performing overall compared approaches.

cropped to 256 x 256 for providing a fair comparison with
other methods.

The PCKh (head-normalized probability of correct key-
point) score is adopted as the standard evaluation metric in
MPII human pose estimation. A joint is correct if it falls
within o/ pixels of the ground-truth position, where « is a
constant and [/ is the head size that corresponds to 60% of
the diagonal length of the ground-truth head bounding box.
PCKh@0.5 is used for evaluating the accuracy of joint local-
ization, which indicates that the distance between the estima-
tion joint point and the ground-truth is less than 0.5 times the
length of the head segment.

C. EVALUATION PROTOCOL

The general accuracy evaluation metrics were applied in the
proposed method for a fair comparison with other methods.
Apart from that, we redesigned experiments to measure the
performance of our proposed lightweight method with state-
of-the-art human pose estimation methods. These experi-
ments were divided into the following three parts for detailed
analysis.

o Experiment 1: To be more general and fair, we compare
our method with state-of-the-art methods on the two
publicly available benchmarks: COC0O2017 and MPIIL.
Besides, another major task was to explore efficient
network which occupying low resource and achieving
high accuracy. The selected simple method will take part
in the next experiment.

o Experiment 2: Lots of lightweight models applied for
image classification make the human pose estimation
network available for mobile devices. In terms of infer-
ence time, not all top-performance methods suit mobile
edge devices. Considering low calculation cost and high
performance, we use a lightweight bottleneck block to
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replace the bottleneck of the selected model and com-
pare their performance with ours.

o Experiment 3: Intuitionally, the size of the model is an
extremely significant factor for evaluating the perfor-
mance of the model. Therefore, we adopted SSIM to
fine tune the proposed network and find the appropriate
ratio which could balance the accuracy and lightweight
size.

Under the guidance of the evaluation protocol, we can
fairly compare our proposed method with others on the
performance, calculational cost, and the size of parameters.
In the next section, we will use quantitative results and quali-
tative results to demonstrate the performance of our method.

V. EXPERIMENTS

A. EVALUATING PERFORMANCE

We compare our method with various top-performing meth-
ods on the COCO2017 dataset and the MPII dataset. For
the fair comparison, we adopt the same person detector pro-
vided by HRNet [12] that can evaluate the inference time of
these methods based on a uniform criterion. It is reasonable
to compare our method with these top-performing methods
under the above evaluation protocols in Section IV. For these
lightweight models whose official codes are not available,
we directly adopt their published data for comparisons.

1) COMPARISONS WITH SOTA METHODS

The results which present the performance comparisons
under the above mentioned protocoll are summarized
in Table 1 and Table 2. Notably, we point out that iterative
training on his own pre-training model can increase their
accuracy with a lot of time consuming. The lightweight pose
method LPN has not released their codes online. Therefore,
we adopt the reproducible version of LPN for comparison
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TABLE 2. Quantitative comparisons on the C0C02017 test-dev dataset.

Method Backbone Inputsize  #Params FLOPs AP  AP°0 AP APM APl AR
Bottom-up: keypoint detection and grouping
Openpose — — — — 61.8 84.9 67.5 57.1 682 665
Associative — — — — 65.5 86.8 72.3 60.6 726 702
HigherHRNet HRNet-W32 512 x 512 28.6M 479G 664 87.5 72.8 61.2 74.2 —
HigherHRNet ResNet-50 640 x 640 63.8M 1543G 684 88.2 75.1 64.4 74.2 —
PersonLab — — — — 68.7 89.0 75.4 64.1 755 754
MultiPoseNet — — — — 69.6 86.3 76.6 65.0 763 735
Top-down: Human detection and single-person keypoint detection
Mask-RCNN ResNet-50-FPN — — — 63.1 87.3 68.7 57.8 71.4 —
G-RMI ResNet-101 353 x 257 42.6M 57.0G 649 85.5 71.3 62.3 70.0  69.7
Integral Regression ResNet-101 256 x 256 45.0M 11.0G  67.8 88.2 74.8 63.9 74.0 —
G-RMlI+extra data ResNet-101 353 x 257 42.6M 57.0G  68.5 87.1 75.5 65.8 733 733
SimpleBaseline ResNet-50 256 x 192 34.0M 8.9G 70.0 90.9 77.9 66.8 758  75.6
SimpleBaseline ResNet-101 256 x 192 68.6M 157G 71.6 91.2 80.1 68.7 7712 713
CPN ResNet-Inception 384 x 288 — — 72.1 91.4 80.0 68.7 772 785
RMPE PyraNet 320 x 256 28.1M 261G 72.3 89.2 79.1 68.0 78.6 —
CFN — — — — 72.6 86.1 69.7 78.3 64.1 —
CPN(ensemble) ResNet-Inception 384 x 288 — — 73.0 91.7 80.9 69.5 78.1 79.0
SimpleBaseline ResNet-152 384 x 288 68.6M 356G 737 91.9 81.1 70.3 80.0 79.0
HRNet-W32 HRNet-W32 384 x 288 28.5M 16.0G 749 92.5 82.8 71.3 80.9  80.1
HRNet-W48 HRNet-W48 384 x 288 63.6M 329G 755 92.5 83.3 71.9 815 805
HRNet-W48 HRNet-W48 384 x 288 63.6M 329G 77.0 92.7 84.5 73.4 83.1 82.0
LPN* ResNet-50 256 x 192 2.9M 1.0G 68.7 90.2 76.9 65.9 743 745
LPN* ResNet-101 256 x 192 5.3M 1.4G 70.0 90.8 78.4 67.2 754 757
LPN* ResNet-152 256 x 192 7.4M 1.8G 70.4 91.0 78.9 67.7 76.0  76.2
FLPN(Ours) SResNet-50 256 x 192 10.04 1.1G 68.7 90.6 77.2 65.9 740 745
FLPN(Ours) SResNet-101 256 x 192 17.0M 2.0G 69.9 90.9 78.4 67.2 753 757
FLPN(Ours) SResNet-152 256 x 192 225 2.8G 70.3 91.0 78.9 67.6 75.6  76.1

Human pose estimation methods are split into two types (Bottom-up and Top-down). Our method belongs to Top-down method which
depends on the human body detector to capture the box around the human.

without iterative training and the results are much lower than
these top-performing methods.

From the results of Table 1, our methods have been
achieved comparable performance with the SimpleBaseline
series and HRNet series. On the COCO2017 validation
dataset, our methods surpass SimpleBaseline on various
backbones (e.g. Resnet50, Resnet101, and Resnet152). Espe-
cially, the size of parameters and flops of our proposed
method whose backbone is Resnet50 are less than one-third
and one-eighth of Simplebaseline (Resnet50) respectively.
Though achieving lower accuracy compared with the HRNet
series, the size of parameters and flops of our methods
much lower than theirs. Obviously, the parameter size
of HRNet-W32 is more than three times of our method
(Resnet50). At the same time, the size of the flops is six
times that of ours. On the COCO2017 test-dev set, our method
achieves comparable results with these top-performing meth-
ods with the same input image size of 256 x 192. Even
LPN adopts an iterative training strategy, our lightweight
method also achieves the same performance as the
LPN series.

In summary, our proposed method significantly outper-
forms all state-of-the-art methods in the size of parameters
and computational cost. At the same time, our model main-
tains a similar accuracy with these top-performing meth-
ods. In comparison with the LPN, we have a large size of
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parameters and similar computational cost, but the accuracy
of our method is greater than their method.

To further compare our method with these top-performing
methods, we trained our model on the MPII dataset and evalu-
ated the performance. The results are described in Table 3 and
Table 4. Different from the above mentioned experiments,
the size of the input image is 256 x 256. On the MPII val
dataset, our method achieves similar performance with much
less computational cost. The small size of params and flops
and high accuracy demonstrate the efficiency of our method.

2) COMPARISONS ON VARIOUS BOTTLENECK BLOCKS
Considering the computational cost and inference time
of these top-performing methods presented in the above
Table 1 and Table 3, we finally chose the SimpleBaseline
(Resnet50) as the optimal model which can balance the
accuracy and real-time performance. To further analyze the
performance of various bottleneck blocks, we conduct some
experiments on the COCO2017 dataset. For example, Sim-
pleBaseline with ghost bottleneck block, SimpleBaseline
with mobilenet-v3 bottleneck block are trained and compared
with our method in Table 5 under the same experiments
setting.

Ideally, the integration of SimpleBaseline and lightweight
bottleneck is the best way for human pose estimation.
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TABLE 3. Quantitative comparisons on the MPII val dataset (PCKh@0.5).

Method Hea Sho Elb Wri Hip Kne Ank Total
SimpleBaseline-50 964 953 89.0 832 884 84.0 79.6 885
SimpleBaseline-101 969 959 895 844 884 845 807 89.1
SimpleBaseline-152  97.0 959 90.0 850 892 853 813 89.6
HRNet-W32 97.1 959 903 864 89.1 87.1 833 903
FLPN-50(Ours) 963 949 88.0 81.7 8.1 8.0 781 878
FLPN-101(Ours) 96.6 952 887 831 8.0 835 792 883
FLPN-152(Ours) 962 952 88.6 8277 884 836 800 884

In the training phase, flip test is used in all above experiments. The input size of images

is 256 X 256.

TABLE 4. Quantitative comparisons on the #Params and FLOPs of some
excellent methods.

Method Backbone #Params FLOPs PCKh@0.5
SimpleBaseline ResNet-50 34.0M 9.7G 88.5
SimpleBaseline ~ ResNet-101 53.0M 13.3G 89.1
SimpleBaseline ~ ResNet-152 68.6M 17.0G 89.6

HRNet-W32 HRNet-W32 28.5M 9.5G 923
FLPN SResNet-50 10.0M 1.1G 87.8
FLPN SResNet-101 16.9M 2.0G 88.3
FLPN SResNet-152 22.5M 2.8G 88.4

The #Params and FLOPs are computed with the input size 256 X 256.
Consider the actually inference time and FPS, we chose the lightweight
human pose estimation network to compare their accuracy and their
computational cost consists of the size of parameters and float-point
operations.

However, we adopted ResNet50 as backbone and
mobilenetv3-bottleneck in the same experimental setting.
Finally, the SimpleBaseline with ghostnet-bottleneck per-
forms better than SimpleBaseline with mobilenetv3-
bottleneck and original SimpleBaseline. Notably, our method
outperforms all these methods with an accuracy of 71.3. Our
method has a similar size to SimpleBaseline with ghostnet
bottleneck and the size of flops is rather less than these
methods with various bottlenecks.

3) COMPARISONS ON INFERENCE SPEED

To compare the inference performance of our method and
these compared methods, we have conducted all the exper-
iments on the same platform that composes of an Intel
2.8GHz CPU and one NVIDIA GeForce GTX 1080Ti GPU.
In this section, we mainly compare the inference time for
these top-performing methods. The inference time consists
of detecting human body boxes and estimating human key-
points. In our experiments, we adopt the same human detec-
tor to detect human body boxes and the inference time is
about 2.5 seconds. The inference time of estimating human
keypoints changes with different methods. As described
in Figure 6, our method achieves the fastest speed among
these methods. According to the appropriate reference
[40]-[42], we also concect all the predicted key points
in Figure 7. The results confirm the efficiency of the proposed
method.

B. ABLATION STUDY

Ablation study is conducted to analyze the effect of each com-
ponent in our methods, including the lightweight bottleneck
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FIGURE 6. Comparisons of AP score, speed and FLOPs of ours and these
top-performing methods referred in Table 1 on a non-GPU platform.
Notably, we adopt the same input size 256 x 192 for all experiments.
Several different colors denote the same backbone with various
bottleneck blocks. The area of a circle represents the size of the FLOPs.

block, the redesigned Network, and the method of SSIM.
Under the above mentioned protocol in Section IV, our
method was trained on variant conditions and we conducted
extensive experiments on the COCO2017 dataset to pursue a
detailed component analysis.

1) LIGHTWEIGHT BOTTLENECK BLOCK
To demonstrate the superiority of the lightweight bottleneck
block, we build our model by utilizing the lightweight bot-
tleneck block without and with GC block respectively and
compare them with the original experiment on the same
platform. The following experiments were conducted on the
COCO02017 validation dataset: utilizing the Smart bottleneck
block and the Smart bottleneck block without a GC block in
both training and inference process for estimating the final
heatmaps (denoted as “Ours” and “Ours w / o GC block”
respectively).

The result in Table 8 demonstrates that our method outper-
forms ours w / o GC block (71.3 percent versus 69.1 percent).
In terms of the size of parameters and float-point
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TABLE 5. Quantitative comparisons on the C0C02017 validation dataset.

Method Bottleneck block Pretrain  Inputsize  #Params FLOPs AP AP0 AP APM APl AR
SimpleBaseline standard Y 256 x 192 34.0M 8.9G 70.4 88.6 78.3 67.1 712 763
Simplebaseline ~ Mobilenetv3-bottleneck Y 256 x 192 45.7M 126G 612 86.3 67.4 59.5 64.1 64.7
SimpleBaseline Ghostnet bottleneck Y 256 x 192 7.4M 206G 71.1 91.5 79.2 68.3 754 743

Ours Smart bottleneck Y 256 x 192 10.2M 126G 713 91.6 79.0 68.8 753 745

In the comparison of lightweight bottleneck block, we adopt SimpleBaseline with ResNet-50 as our network for its top performance and high inference
speed. The input size of the image is fixed to 256 x 256. All these methods are pretrained on the ImageNet classification task.

FIGURE 7. The prediction results of the proposed method on the C0C02017 dataset.

TABLE 6. Comparing the contribution of each element on C0C02017 validation dataset.

Method Backbone  Pretrain  Input size #Params FLOPs AP AP0 AP  APM APY AR

Ours w / 0 beginning block ResNet-50 Y 256 x 192 8.7980M 1.2521G 693 90.6 77.1 67.1 73.1 72.7
Ours w /0 SSIM ResNet-50 Y 256 x 192 8.9508M  1.3137G  69.3 90.5 77.0 67.0 73.0 725

Ours w / o group deconvolution ~ ResNet-50 Y 256 x 192 17.7887M  3.5253G  69.6 90.6 78.1 67.2 733 728
Ours ResNet-50 Y 256 x 192 10.1922M  1.2638G  71.3 91.6 79.0 68.8 753 745

In the ablation study, we compare the contribution of each element to the accuracy of the network. All these experiments adopt the same size of input size
and use pretrained model on the ImageNet dataset. "w /" represents adopt this method. "w / 0" represents without this method.

operations (FLOPs), our method have a small increase than
ours w / 0 GC block (about 2.6818M and 0.1277G). These
results justify the contribution of the GC block without
too much computational cost. Compared with the standard
convolution bottleneck block (ours w / standard bottleneck),
our method lower than ours w / standard bottleneck around
0.7 percent. However, the size of parameters and float-point
operations are 2.3 times and 3.1 times that of our method.
These results confirm that our method has a better ability to
balance the accuracy and computational cost.

To further compare the performance of the Lightweight
bottleneck block, we directly employ two kinds of state-of-
the-art lightweight bottleneck blocks to replace our proposed
bottleneck block. We denote the version of our model as
“ours w / ghost bottleneck” and “ours w / mobilenet-v3”
respectively. Table 8 demonstrates that our method performs
better than ours w / ghost bottleneck (71.3 percent versus
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69.7 percent) with similar or less computational cost (in
terms of the size of parameters, 10.1922M versus 10.1594M),
(in terms of the size of float-point operations, 1.2638G versus
1.7198G). As depicted in Table 6, our method significantly
outperforms ours w / mobilenet-v3 bottleneck (69.6 percent
versus 68.1 percent), and our module requires quite less com-
putational cost. Considering the accuracy and computational
cost, our method achieves the best balance between them as
illustrated in Table 8.

2) PROPOSED NETWORK

The proposed network with different versions in the train-
ing and testing phase is illustrated in Table 6. Note that
the max-pool layer may reduce some useful information for
human pose estimation. Hence, we use a beginning block
that contains two sequential convolutional layers to replace
the original max-pool layer and denotes this version as
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TABLE 7. Results for different intrinsical feature map ratio, depending on the method of SSIM.

ratio

- 50
stage 3 7 3 6 #Params FLOPs AP AP AR
stage0 v 8.59M 131G 693 905 725
stagel 4
stage0 v 8.94M 129G 707 915  74.0
stagel 4
stage0 v 8.84M 120G 708 915  74.0
stagel v
stage0 v 1020M 126G 713 916 745
stagel Vv
stage0 v 883M  1.17G 69.0 90.5 723
stagel Vv
stage0 v 8.79M 115G 69.0 905 724
stagel vV
stage0 V'ooj0aoM 1256 708 916 741
stagel 4
stage0 v 1009M  1.18G 709 916  74.1
stagel Vv

stageO(Ours) v
tagel(Oursy y 10.19M 126G 713 916 745
stage0 V.og7M 1126 695 915 728
stagel v

TABLE 8. Results for C0C02017 validation dataset in a simple and lightweight network, depending on the type of bottleneck block.

Method Backbone  Pretrain  Input size #Params FLOPs AP AP AP  APM APF AR

Ours w / ghost bottleneck ResNet-50 Y 256 x 192 10.1594M  1.7198G  69.7 90.5 78.0 67.4 73.5  73.0
Ours w / mobilenet-v3 bottleneck ~ ResNet-50 Y 256 x 192 14.7798M  2.5543G  68.1 90.5 75.2 65.6 72.4 71.4
Ours w / standard bottleneck ResNet-50 Y 256 x 192 23.5465M  3.9537G  72.0 91.6 79.3 69.5 76.1 75.1
Ours w / 0 GC block ResNet-50 Y 256 x 192 7.5104M 1.1361G  69.1 90.5 772 66.9 72.8 725

Ours ResNet-50 Y 256 x 192 10.1922M  1.2638G  71.3 91.6 79.0 68.8 753 745

“ours w / o beginning block”. Compared with our model,
the max-pool layer reduces the performance by around
0.3 percent. Then, to evaluate the effect of SSIM, we discard
the SSIM method in our network which denoted as “Ours w /
o SSIM”. As illustrated in Table 6, our network with SSIM
can have high performance than “Ours w / o SSIM”. Most
importantly, the size of float-point operations is reduced by
SSIM. From the result of Table 6, we infer that expanding
the ratio of cheap operation in the basic module can reduce
the computational cost and increase performance. To further
reduce the computational cost and maintain the high per-
formance, group deconvolution is applied in the regression
phase.

3) STRUCTURAL SIMILARITY MEASUREMENT
In our former experiments, we have found that the similarity
of different channel feature maps comes from one image
changes with the stage of our network. The structural similar-
ity substantially decreases in the down-sampling stageO and
stagel. Meanwhile, the other two stages still maintain a lower
level. Therefore, we adopt the first two stages and fixed ratios
to explore the ideal model. Under the guidance of SSIM,
we have employ ten group data to evaluate the performance
of our model.

As illustrated in Table 7, to simplify the compression pro-
cess and make the compression rate suit for our network,
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we use a group number (i.e 2, 4, 8, 16) to denote the pro-
portion of the intrinsic feature maps. Thanks to the proposed
structural similarity measurement mechanism, our model can
effectively leverage the power of lightweight bottleneck block
to decline the computational cost and maintain high perfor-
mance. In Table 7, we compare ten versions of our model to
determine the best one as our model.

VI. CONCLUSION

This paper presents a fast and lightweight method consists of
FLPN network for more accurate pose estimation, a Smart
bottleneck block for reducing the computational cost, and the
method of SSIM to refine the appropriate ratio of intrinsic
feature maps for reducing the module block size and main-
taining the high accuracy. Extensive experiments on these
above mentioned datasets demonstrate that our method has
achieved similar accuracy with these top-performing methods
and our computational cost is extremely lower than theirs.
Considering the inference time and computational cost, our
method is more suitable to employ edge devices. Finally,
we hope our method could take some inspired ideas on real-
time and lightweight pose estimation field.
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