
Received January 30, 2021, accepted March 21, 2021, date of publication March 26, 2021, date of current version April 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069142

Communication Scheduling for Control
Performance in TSN-Based Fog
Computing Platforms
MOHAMMADREZA BARZEGARAN , (Graduate Student Member, IEEE),
AND PAUL POP , (Member, IEEE)
Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Corresponding author: Mohammadreza Barzegaran (mohba@dtu.dk)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme through the Marie
Skłodowska-Curie, FORA—Fog Computing for Robotics and Industrial Automation, under Grant 764785.

ABSTRACT In this paper we are interested in real-time control applications that are implemented using
Fog Computing Platforms consisting of interconnected heterogeneous Fog Nodes (FNs). Similar to previous
research and ongoing standardization efforts, we assume that the communication between FNs is achieved
via the IEEE 802.1 Time Sensitive Networking (TSN) standard. We model the control applications as a
set of real-time flows, and we assume that the messages are transmitted using scheduled traffic that is
using the Gate Control Lists (GCLs) in TSN. Given a network topology and a set of control applications,
we are interested to synthesize the GCLs for messages such that the Quality-of-Control (QoC) of control
applications is maximized and the deadlines of real-time messages are satisfied. We have proposed a
Constraint Programming (CP)-based solution to this problem, and developed an accurate analytical model
for QoC, which, together with a metaheuristic search employed in the CP solver can drive the search quickly
towards good quality solutions. We have evaluated the proposed strategy on several test cases including
realistic test cases and also validate the resulted GCLs on a TSN hardware platform and via simulations in
OMNET++.

INDEX TERMS Fog computing, optimization, quality-of-control, TSN.

I. INTRODUCTION
We are at the beginning of a new industrial revolution (Indus-
try 4.0), which will bring increased productivity and flexibil-
ity, mass customization, reduced time-to-market, improved
product quality, innovations and new business models. How-
ever, Industry 4.0 will only become a reality through
the convergence of Operational and Information Technolo-
gies (OT & IT), which are currently separated in a hier-
archical pyramid (Purdue Reference Model [1]) and use
different computation and communication technologies.
OT consists of cyber-physical systems that monitor and con-
trol physical processes that manage, e.g., automated manu-
facturing, critical infrastructures, smart buildings and smart
cities. These application areas are typically safety-critical and
real-time, requiring guaranteed non-functional properties,

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei .

such as, real-time behavior, reliability, availability, safety, and
security and often required to show compliance to industry
specific standards. OT uses proprietary solutions, imposing
severe restrictions on the information flow.

Instead, a new paradigm, called Fog Computing, is envi-
sioned as an architectural means to realize the IT/OT conver-
gence in Industrial IoT [2], which cannot be realized using
Cloud Computing. According to NIST, ‘‘Cloud computing
is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources [. . .] that can be rapidly provisioned and released
with minimal management effort or service provider interac-
tion’’ [3]. The OpenFog IEEE standard defines Fog Comput-
ing as a ‘‘system-level architecture that distributes resources
and services of computing, storage, control and networking
anywhere along the continuum from Cloud to Things’’ [4].
We defineEdge Computing is as a new architectural paradigm
in which the resources of an edge server are placed at the edge

50782 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0640-6653
https://orcid.org/0000-0001-9981-1775
https://orcid.org/0000-0003-0810-1458

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

of the Internet, in close proximity to cyber-physical systems,
mobile devices, sensors and IoT endpoints.

With Fog Computing, communication devices, such as
switches and routers are extended with computational and
storage resources to enable a variety of communication and
computation options. Fog Computing will enable a powerful
convergence, unification and standardization at the network-
ing, security, data, computing, and control levels. It will
lead to improved interoperability, security, more efficient
and rich control, and higher manufacturing efficiency and
flexibility [5]. The vision is to virtualize the control (imple-
mented as software tasks exchanging messages) and achieve
the same level dependability, i.e., non-functional properties
such as reliability, timeliness and security as the one taken for
granted in OT, achieved via dedicated hardware and software
solutions.

The convergence of IT and OT will be supported by:
the increased usage of IP-protocols, e.g., standardized
Deterministic Ethernet solutions from IEEE Time Sensitive
Networking (TSN) Task Group [6], upcoming 5G wireless
standards [7], and interoperability standards such as OPC
Unified Architecture (OPC UA) [8], all integrated into a Fog
Computing Platform (FCP), see Fig. 1, which brings com-
putation, communication and storage closer to the edge of
the network. Several initiatives are currently working towards
realizing this vision [9], [10].

The integration of computational and storage resources
into the communication devices is realized in the Fog Node
(FN), see Fig. 1. In many applications, including indus-
trial automation and robotics, several layers of FNs with
differing computation, communication and storage capabil-
ities will evolve, from powerful high-end FNs to low-end
FNs with limited resources. Researchers have started to
propose solutions for the implementation of FNs [5], [9],
[11] and FN solutions have started to be developed by
companies [9], [10], [12].

Regarding the communication infrastructure, today,
industry uses mostly proprietary protocols [13] that lock cus-
tomers into the product portfolio of individual product ven-
dors, impairing interoperability. However, industry is moving
towards using standardized solutions to connect the FNs to
each other and to themachines [14], i.e., IEEE 802.1 TSN [6],
see Fig. 1. Such an FCP allows to increase the spatial distance
between the physical process and the FN that controls it,
allowing the control functions to be executed remotely on the
FN. However, the way the FCP and, in particular, the TSN
communication infrastructure is configured has an impact on
the control performance of the control applications. In our
case, we consider high-end FogNodes connected to industrial
systems and placed at the edge of the network, similar to edge
servers, interconnected via TSN.

TSN consists of a set of amendments to the IEEE 802.1 Eth-
ernet standard to provide features useful for real-time and
safety critical applications.1 An FCP hosts applications

1The references for all sub-standards can be easily found via IEEE Xplore

FIGURE 1. Fog Computing Platform: Boxes represent fog nodes, placed at
the edge of network where OT and IT converge, connected to each other
and to the Cloud in IT and to the industrial ‘‘thing’’ in OT, and running
applications (Apps). Thick lines are physical TSN links.

of mixed-criticalties, which have different requirements,
in terms of safety, timeliness and control performance. TSN
supports multiple traffic types, and hence, is suitable for
mixed-criticality applications running on an FCP. Applica-
tions with tight timing constraints typically use Scheduled
Traffic (ST) implemented via IEEE 802.1Qbv, which defines
a Time-Aware Shaper (TAS) mechanism that enables the
scheduling of messages based on a global schedule table.
The scheduling relies on a clock synchronization mecha-
nism 802.1ASrev [15], which defines a global notion of
time. Thus the devices are synchronized, and the global
schedule is formed. Applications that need bounded latency
but do not have stringent latency and jitter requirements
can use the IEEE 802.1BA Audio Video Bridging Sys-
tems (AVB) traffic type. Best-Effort (BE) traffic compliant
with IEEE 802.3 Ethernet can be used for non-critical appli-
cations that do not need timing guarantees. ST traffic has
the highest priority, followed by AVB and BE. AVB mecha-
nisms are intended to prevent the starvation of lower priority
BE flows.

In this paper we address control applications virtualized
on a distributed FCP, which are implemented as tasks run-
ning on FNs that exchange messages over TSN. We assume,
similar to the related work, that the messages use the ST
traffic type. In this context, the scheduling of ST mes-
sages has a strong impact on the Quality-of-Control (QoC),
i.e., the control performance [16]. Given the network topol-
ogy of the FCP, the set of mixed-criticality applications,
for which we know their communication flows and their
routing, we are interested to synthesize the TSN ST com-
munication schedules such that the QoC is maximized and
the mixed-criticality application requirements, e.g., dead-
lines, are satisfied. We have proposed a Constraint Program-
ming (CP)-based solution for deriving the ST communication
schedules. We have addressed the problem of scheduling
of tasks on an FCP for QoC [17], which is orthogonal to
the message scheduling problem. However, to facilitate the

VOLUME 9, 2021 50783

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

integration of tasks and message schedules, our CP imple-
mentation also aims at supporting the integration of tasks and
messages by creating space in the communication schedule
timelines, where tasks need to execute.

A. CONTRIBUTIONS
The related work, discussed in Sect. VII, has shown that
the communication synthesis has a strong impact on control
performance. TSN has become a de-facto standard in several
areas, including industrial applications. Although there has
been much work in scheduling ST traffic in TSN, very few
researchers have addressed scheduling in TSN for control
performance [16], [18]. Compared to these works, the main
contributions of this paper are as follows. We formulate the
ST scheduling for QoC as an optimization problem, and
propose a scalable CP-based solution to solve it. Our CP
formulation considers all the relevant constraints of TSN,
e.g., frame isolation, forwarding delay, resulting in realis-
tic schedules that have been validated via simulations in
OMNET++ and on a TSN hardware platform. We consider a
more realistic model of control applications and providemore
accurate measure of QoC compared to previous work, based
on JitterTime. JitterTime uses time consuming simulations of
the control application behavior, and hence they cannot be
integrated into a CP solver since the search will not scale.
Thus, we proposed a novel analytical model for the QoC eval-
uation within the CP formulation. In addition, we have used
a metaheuristic search strategy in the CP-solver to quickly
obtain good quality solutions, enabling us to handle large test
cases.

B. OUTLINE OF THE PAPER
The system model is presented in Sect. II where architecture,
application and the internals of a TSN switch are described.
We formulate our problem in Sect. III. An introduction to
control theory is presented in Sect. IV. In Sect. V, the details
of our proposed method are given. We evaluate our proposed
method in Sect. VI on several test cases. The related work in
presented in Sect. VII and Sect. VIII concludes the paper.

II. SYSTEM MODEL
This section presents the architecture and application models.
Table 1 summarizes the notation used. The application model
consists of a set of periodic messages that are sent via flows
over a distributed Fog-based architecture that consists of end
systems interconnected via links and switches that use TSN.

A. ARCHITECTURE MODEL
The architecture is modeled as a directed graph G = {V, E},
where V = ES

⋃
SW is the set of vertices and E ⊆ V × V

is the set of edges. A vertex νi ∈ V represents a node in
the architecture which is either an end system (ES) or a
network switch (SW). An ES is either the source (talker) or
the destination (listener) of an application flow, whereas an
SW forwards the frames of flows. Nodes have input (ingress)
and output (egress) ports. We denote the set of egress ports

TABLE 1. Summary of the notation.

of a node with νi.P. A port pj ∈ νi.P is linked to at most
one other node. The set of edges E represents bi-directional
full-duplex physical links. Thus, a full-duplex link between
the nodes νi and νj is denoted with both εi,j ∈ E and εj,i ∈ E ;
a link is attached to one port of the node νi and one port of
the node νj.

Each link εi,j is characterized by the tuple 〈s, d,mt〉 denot-
ing the speed of the link in Mbit/s, the transmission delay
function of the link and the macrotick, i.e., time granularity
of an event for the link, inµs. The transmission delay function
of a frame on a link εi,j.d(size) is calculated based the frame’s
size and the link speed. For example, transmitting amaximum
transmission unit (MTU)-sized IEEE 802.1Q Ethernet frame
of 1,542 bytes on a 1 Gbit/s link would take 12.33 µs. The
function d is a notation used in the constraints in Sect. V
and it is attached to the link concept, i.e., ε.d(size) means
d(ε.s, size).

A route ri ∈ R, where R is a set of routes, is an ordered
list of links, starting with a link originating from a talker ES,
and ending with a link to a listener ES. The number of links
in the route ri is denoted with |ri|, and it starts from 2 since
we assume there is at least one SW in the route. We define
the function u : R × N0 → E to capture the jth link of the
route ri.
An architecture model with three ESes two SWs is pre-

sented in Fig. 2, where the thick lines are physical links.
We also show in the figure examples on how the notation is
used, e.g., for a link tuple, ports, and routes.

B. TSN SWITCH MODEL
In the introduction we have motivated the use of TSN and the
choice of traffic type for applicationmessages, i.e., Scheduled
Traffic (ST) that is being sent based on schedule tables in

50784 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

FIGURE 2. Architecture model example: the blue boxes are end systems,
the green boxes are switches and the thick arrows are full-duplex
physical links.

the switches using the IEEE 802.1Qbv ‘‘Enhancements for
Scheduled Traffic’’ amendment. Here wemodel the details of
a TSN switch needed to formulate our problem. For further
details on how TSN works, the reader is directed to the
respective standards.

A TSN switch consists of ingress ports, a switching fabric,
priority queues, gates, a Gate Control List (GCL) and egress
ports, see Fig. 3. The switching fabric receives flows from
the ingress ports and forwards each flow to the egress port pi,
according to the frame’s route. The egress port which has a set
of eight priority queues pi.Q (according to the IEEE 802.1Q
standard [19]), stores the flow in a relevant priority queue qj ∈
pi.Q in First-In-First-Out (FIFO) order. A subset of the prior-
ity queues are used for the ST traffic and the remaining queues
are used for the less critical traffic, similar to [20]. Each frame
has a Priority Code Point (PCP) field in the frame header that
specifies the priority.

According to the 802.1Qbv standard, transmission of traf-
fic from each queue is regulated by an associated gate which
opens and closes based on a predefined GCL which contains
the opening and closing time of the switch gates. Queued
flows in a queue can be transmitted when a gate is open and
cannot be transmitted when gate is closed. In this paper we
assume that the GCLs are deterministic, i.e., the flows are
isolated from each other: Only the frames of one of the flows
are present in a queue at a time, see [20] for details.

Related work has ignored the forwarding delay that a frame
experiences in a switch, which is the time it takes a frame
to get from the input (ingress) port to the queue of the out-
put (egress) port. This transmission delay is not related to the
time the frame spends in the queue.. However, since delays
have an impact on QoC [21], we have decided to capture the
forwarding delay in our model, and depends on the particular
TSN switch implementation. Hence, we denote the forward-
ing delay with νi.d(c) which takes c (frame size in bytes) as
the input and returns the time delay in µs. In the experiments
we measured this delay for the TSN implementation reported
in [22].

C. APPLICATION MODEL
An FCP hosts multiple applications of mixed-criticalities,
e.g., critical control applications, real-time applications, and

FIGURE 3. TSN switch internals.

best effort applications. Applications are typicallymodeled as
interacting periodic real-time tasks that exchange messages,
see [17] for how application tasks can be modeled. In this
paper we address the configuration of the TSN communi-
cation infrastructure, hence we focus on messages. Sect. III
discusses how tasks and messages can be put together in a
system-level configuration.

Our model consists of a set of applications, which can
either be control applications, for which their QoC is impor-
tant, or they can be real-time applications. Note that control
applications are also real-time, but not all real-time appli-
cations are control applications. The set of control appli-
cations is denoted with 0. The tasks of both control and
real-time applications exchange messages, which, if they are
on different ESes, are transmitted using flows. The set of all
flows (also called streams) in the system—both control and
real-time flows—are denoted with S.
Each flow si ∈ S is responsible for sending the frames

that encapsulate the data from an application message and it
is characterized by the tuple 〈p, c, t, d〉 denoting the priority,
the size in bytes, the period in milliseconds and the flow
deadline, i.e., the maximum allowed end-to-end delay in
milliseconds. The priority of a flow is in the range from 0 to 7,
where 0 is the highest priority concerning the eight priority
queues of a switch egress port).

As mentioned, flows are periodic and may have different
periods. We define the hyperperiod as the least common
multiple of the periods of all flows. Depending on its period,
the frames of a flowwill have to be transmitted multiple times
within a hyperperiod, and we refer to each such transmission
as an instance of a flow. The number of instances for a flow si
is denoted with |si|, and is derived from the period of the
flow t and the hyperperiod. For example, for three flows with
the periods of 4, 5 and 3 ms, the hyperperiod would be 60 ms
and the flows will have 15, 12 and 20 instances respectively.

Each flow si is transmitted via a route rj which is captured
by the function z : S → R that maps the flows to the
routes. We assume that each flow is associated to only one
route but several flows may share the same route. We also
assume that the flows are unicast, i.e., there is only one
listener for a flow. Our model can be easily be extended

VOLUME 9, 2021 50785

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

FIGURE 4. Example solution: ν1 is a fog node and runs the control function during the execution slice denoted with E. The flow s1 is the input flow and
the flow s2 is the output flow. The control application’s period denoted with P, is 10 ms (s1 and s2 have the same period).

TABLE 2. Application example with six flows and two control
applications.

to handle multicast flows, i.e., that have multiple listeners,
by adding each talker-listener pair as a stand-alone flow with
additional constraints. We assume that the routes are fixed
and given. Determining routing in TSN is an orthogonal
problem with scheduling. Researchers have shown how to
integrate routing with scheduling [23] and have concluded
that most shortest-path routing is appropriate in most network
topologies, with the exception of mesh networks that have a
lot of redundant links. Our system model, including the Con-
straint Programming model from Sect. V-B can be extended
to include routing optimization, if needed.

We define a frame for each instance 1 ≤ m ≤ |si| of the
flow si and on each link 1 ≤ k ≤ |rj| of the route rj, and
denote it with f ki,m. A frame f ki,m is associated with the tuple
〈φ, l〉 denoting the start time of the frame (offset φ) and its
duration (length l).

A control application γi ∈ 0 is characterized by the
tuple 〈K , I,O〉 denoting the control transfer function, the set
of input flows, and the set of output flows. The control trans-
fer function γi.K captures the control law of the application,
see Sect. IV for more details. The set of input flows γi.I is
a subset of S which represents the control I/O flows that are
generated by sensors (i.e, ESes in the network) and deliver
data to the control application running on an ES. The set of
output flows γi.O is a subset ofS which represents the control
I/O flows that are generated by control function running on
an ES and deliver data to actuators (i.e, ES on the network).

III. PROBLEM FORMULATION
We formulate the problem as follows: Given (1) the set
of all flows S in the system, for both the control and

the real-time applications, (2) the details of the control
applications 0, (3) the network graph G, and (4) a set
of routes R, we are interested in synthesizing the GCLs
in the network such that (a) all the flows in the system
are schedulable (their deadlines are satisfied) and (b) the
QoC of control applications, as defined in Sect. IV-C,
is maximized. Synthesizing the GCLs is equivalent to deter-
mining (i) the frames’ offsets f ki,m.φ, and (ii) the frames’
length f ki,m.l. An example solution, considering the net-
work from Fig. 2 and the flows from Table 2 is pre-
sented in Fig. 4. The solution is depicted as a Gantt chart
where the rows are the resources (links) and the rectangles
labeled with the flow names si depict the frames’ offsets and
lengths.

As discussed, the network configuration problem we
address in this paper is orthogonal to the problem of con-
figuring the tasks, e.g., deciding their mapping to the cores
of an ES and their scheduling. Researchers have proposed
several ways of putting together the schedules for tasks and
messages in a global system configuration, e.g., by combin-
ing the formulation of their scheduling problems [24] or by
iteratively integrating the task and message scheduling. The
solution presented in this paper for flows can be combined
with the formulation for tasks from [17]. In addition, to sup-
port the integration of the GCLs that we determine with tasks
schedules derived separately, we maximize the time duration
where tasks have to execute, denoted with E in Fig. 4, see see
Sect. V-C for its definition.

IV. CONTROL THEORY
This section gives the essentials of the theory needed for
the calculation of the QoC. We start with the definition of
an Feedback Control Systems (FCS) in Sect. IV-A where
the mathematical representation of a plant and the asso-
ciated controller, and also the control design principle are
described. Afterwards, we continue with the model we used
for implementing a control application and a brief definition
of the control performance and the effect of timing on it,
in Sect. IV-B. Finally, we define in Sect. IV-C the QoC and
present the approach we use in this work for calculating
it.

50786 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

FIGURE 5. A simple FCS.

A. FEEDBACK CONTROL SYSTEMS AND CONTROL DESIGN
A dynamical system around an equilibrium point is modeled
as a mathematical relation between its inputs and outputs, and
described with a transfer function [25]. The transfer function,
commonly called Plant, is defined in the form of

Y (s) = G(s)× X (s), (1)

where Y (s) is the outputs, X (s) is the inputs, and G(s) is
the transfer function, all defined in the frequency domain.
An FCS, or alternatively a control application, uses sensors
to sample the plant’s outputs Y (s), calculates the devia-
tion E(s) from the desired output R(s) and uses the control
function K (s) to generate the control signal U (s) which is
applied by actuators. In this paper, we assume that the desired
output R(s) is zero which results in E(s) = Y (s).
The control function K (s) defines the mathematical rela-

tion between the deviation E(s) of the plant feedback from
desired output, and the control signal U (s). A simple FCS is
depicted in Fig. 5, whereW (s) are the disturbances applied to
plant inputs.

An FCS is implemented as a periodic real-time applica-
tion running on a FCP whose period depends on the system
plant G(s). The shorter the period, the faster the controller is
able to respond to the disturbances and the more computa-
tional power is required (which is a bottleneck on real-times
systems where the resources are constrained). To this end,
while designing an FCS choosing the right application period
is an optimization problem. It is common to choose the
period based on a rule of thumb which determines the period
based on the bandwidth of the closed-loop system [26]. On
the other hand, choosing an appropriate control law to be
implemented in the control function K (s) has an impact on
the resources needed for the calculation and the its response
to the disturbances. Several control laws are proposed in the
literature for control functions [25].

B. MODELING AND TIMING OF FEEDBACK CONTROL
SYSTEMS
The implementation of an FCS consists of three periodic
events: (i) receiving the inputs data from sensors, (ii) cal-
culating the control signal with control function K (s), and
(iii) sending the control signal data to actuators that apply the

signal to the plant. Without the loss of generality, we assume
that each FCS receives the input from exactly one sensor and
sends signal data to exactly one actuator. We also assume that
the three periodic events have the same period.

We map our FCS model to the control application model
described in Sect. II-C as follows: A control application γi is
an FCS that has the control function γi.K , equivalent to K (s),
running on the node νj (which is an ES) in the network G. The
associated sensor is also an ES node that transmit a period
network flow sm ∈ γi.I to the node νj as the destination
via TSN. The generated control signal U (s) is also a period
network flow sn ∈ γi.O transmitted from the node νj to the
associated actuator which is also an ES. To this end, the set
of input flows γi.I and the set of output flows γi.O both have
only one unique member which are sm and sn respectively.
Concerning our FCS model, the control function γi.K is

ready for execution when its input is arrived, i.e. the node νj
receives the input flow sm; and produces the control signal sn
when it terminates. Thus the control signal sn needs to be
transmitted after the reception of the input signal sm and
execution of the control function γi.K . We formulate this
constraint in Sect. V-B.
While designing an FCS, for finding the suitable control

law and tuning it, several parameters such as the damping
ratio, the phase margin and the gain margin (see [25] for
more details) have to be determined. These parameters affect
the accuracy and rapidity of the FCS which is called control
performance, in opposite directions. The performance of an
FCS is associated with its rise-time Trise, peak-time Tpeak,
settling-time Tsettling and steady state error.
The rise-time Trise is defined as the time takes for the output

response to reach 90% of the input value. The rise-time shows
how fast the controller can react to the disturbances exerted to
the dynamical system. The peak response is defined as high-
est output response the controller reached before the desired
value. The peak plays an important role in the robustness of
the controller against disturbances. The settling-time Tsettling
is defined as the time takes for the output response to reach
98% of the input value. The settling-time shows how fast
the controller can reach to the desired state. The steady-state
error shows the minimum deviation of the controller output
response from the desired state. It shows the accuracy of the
controller. Fig. 6 shows the step-response of a sample control
loop where these associated parameters are depicted.

Furthermore, for a given FCS whose design parameters are
determined, the control performance changes in runtime due
to the discrete time nature of the real-time systems. Ideally,
all three events of an FCS should execute with the shortest
delay between the events andwithout timing variations (jitter)
as well. A time delay decreases the phase margin of the FCS
leading to worse control performance. Jitter, i.e. the deviation
from the periodic timing of an event, also negatively impacts
the control performance.

We assume that the time delay and jitter apply only to the
event of network message transmission, while the execution
of the control application is ignored in this paper, and only

VOLUME 9, 2021 50787

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

FIGURE 6. Step response of a sample control loop [17].

addressed as the required time interval needed between the
reception and transmission of the input and output flows.
We also consider the input-output jitter of the control applica-
tion which is the maximum deviation of the worst-case delay
between the sensors’ sampling and the actuators actuation
covering the timing of communication links from and to
sensors and actuators.

C. QUALITY OF CONTROL
In real-time systems where control applications are running,
preserving QoC (which is used interchangeably to mean
‘‘control performance’’) is a necessity. The QoC can be cap-
tured in a cost function which can also be used to evaluate the
performance of the controller. A common choice is to use a
quadratic cost function of the form

J =
∫
∞

0

(
xT (t)Q1x(t)+ uT (t)Q2u(t)

)
dt, (2)

where the weighting matrices Q1 and Q2 tell how much
deviations in the different states and the control input should
be penalized. A larger value of such as control performance
cost function means worse QoC and typically increasing the
settling time, the steady state error and closer peak time to
rise time of the system.

The value of cost J depends on several criteria such as
Input-Output jitter of a control application as well as the
end-to-end response of the control application (the delay
between sampling and actuation). Generally, the control per-
formance is degraded when the end-to-end response is more
than what the control application is designed for or when the
control application experiences Input-Output jitter in each
iteration, see [27] for more details. The amount of each
criterion’s impact depends on the control function. To this
end, the calculation of the QoC is possible via a simulation
of the control function behavior. Tools such as Jitterbug [28],
JitterTime [27] and TrueTime [29] are proposed to simulate
the control function behavior. Jitterbug can calculate the QoC
based on the fixed or random jitter applied to inputs and
outputs of a control function. It can also be used to design
controllers concerning the stability margin of the control
function. JitterTime can calculate the QoC based on the inputs
and outputs schedules as well as the control task schedules.
Also, it can be employed to analyze the sensitivity of a

control function to delays and jitter. TrueTime can simulate
the execution of a control application based on a given sched-
ule tables making the analysis of the control output possible.
Thus, we employed JitterTime to calculate the QoC with the
same cost function as Eq. (2) in this paper.

JitterTime takes the sending and receiving time of sensor
and actuator flows which can be captured from GCLs, and
simulates the behaviour of a control application with the
given timing of control application’s inputs and outputs.More
information about the inner workings of JitterTime and its use
cases can be found in [27].

V. CONSTRAINT PROGRAMMING
The communication scheduling problem as a decision prob-
lem has been proved to be NP-complete in the strong
sense [30]. To this end, we propose an optimization strategy
called Control-Aware Communication Scheduling Strategy
(CACSS), based on a CP formulation that uses search heuris-
tics inside the CP solver.

As shown in Fig. 7, CACSS takes as the inputs the archi-
tecture and application models and outputs a set of the best
solutions found during search. Asmentioned,CACSS is based
on a CP formulation (the ‘‘CP Solver’’ box) in the figure.
CP is a declarative programming paradigm that has been
widely used to solve a variety of optimization problems such
as scheduling, routing, and resource allocations. With CP,
a problem is modeled through a set of variables and a set
of constraints, see the ‘‘CP model’’ box. Each variable has
a finite set of values, called domain, that can be assigned to
it (see Sect. V-A). Constraints restrict the variables’ domains
by bounding them to a range of values and defining relations
between the domains of different variables.
CACSS visits solutions that satisfy the constraints defined

in Sect. V-B and evaluates them using the objective function
defined in Sect. V-C to check if the solution is an improv-
ing solution, i.e., better than the best solutions found so
far. Ideally, for the QoC calculation, the objective function
should use JitterTime. However, tools such as JitterTime
and Jitterbug use time consuming simulations of the control
application behavior, and hence they cannot be integrated into
a CP solver since the search will not scale. Thus, we propose
a novel analytical model for the QoC evaluation within the
CP formulation, see Sect. V-C. Every time the CP solver
finds an improving visited solution (the ‘‘New Solution’’
box), we call JitterTime (the ‘‘Jitter Time’’ box) calculat-
ing the simulation-based accurate QoC value. By default,
the CP solver systematically performs an exhaustive search
by exploring all the possibilities of assigning different val-
ues to the variables. However, such a search is intractable
for NP-complete problems, therefore we instead employ a
metaheuristic search, see Sect. V-D.

A. CP MODEL
We define two sets of decision variables for the CP model,
which are associated with the frame offsets and the frame
lengths respectively. Each decision variable is associated with

50788 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

FIGURE 7. Overview of CACSS.

a domain from which the CP solver decides the variable’s
value. The decision variables and their domain are defined
by

∀si ∈ S,∀m ∈ [1, .., |si|],∀k ∈ [1, .., |rj|],

rj = z(si), εv,w = u(rj, k) :

f ki,m.l =
si.c

εv,w.s× εv,w.mt

0 ≤ f ki,m.φ ≤ (
si.t

εv,w.mt
− f ki,m.l) (3)

where the domain of the frame lengths contains exactly one
element, i.e. the CP solver initially decides the values of frame
length variables.

B. CONSTRAINTS
We define five constraints that regulate the network traf-
fic and relates the domain of the CP variables. CP only
finds the feasible solutions, i.e. all the constraints are
met.

The Link Overlap constraint imposes the restriction on the
solution to not allow a physical link to transmit more than
one frame at a time, which is equivalent to avoid sharing a
physical link with two frames at any time. The constraint is
defined in Eq. (4).

∀si, sj ∈ S, i 6= j,∀m ∈ [1, .., |si|],∀n ∈ [1, .., |sj|],

ro = z(si),∀k ∈ [1, .., |ro|], rp = z(sj),∀l ∈ [1, .., |rp|],

εv,w = u(ro, k) = u(rp, l) :

(f ki,m.φ + m×
si.t

εv,w.mt
≥ f lj,n.φ + n×

sj.t
εv,w.mt

+ f lj,n.l) ∨

(f lj,n.φ+n×
sj.t

εv,w.mt
≥ f ki,m.φ+m×

si.t
εv,w.mt

+f ki,m.l). (4)

The Route constraint enforces the ordered propagation
of a frame concerning its associated route from its talker
all the way to its listener. The constraint also enforces that
forwarding a frame from a node starts after it has completely
arrived at the reception of the node concerning the propaga-
tion delay. We define the constraint in Eq. (5) where δ is the
network precision that is the worst-case difference between
the nodes clock in the network according to the 802.1AS

clock synchronization mechanism [15].

∀si ∈ S,∀m ∈ [1, .., |si|],∀k ∈ [1, .., |rj|),

rj = z(si), εv,w = u(rj, k), εw,x = u(rj, (k + 1)),

1 = εv,w.d(si.c)+ νw.d(si.c)+ δ :

f k+1i,m .φ × εw,x .mt ≥ (f ki,m.φ + f
k
i,m.l)× εv,w.mt +1. (5)

We define the Isolation constraint in Eq. (6) to avoid
displacement of frames in different switch queues. The con-
straint imposes the restriction on any two same-priority
frames on the same link not to arrive at the ingress port
of a switch simultaneously. In another word, either a frame
is received after or before any other frame on the same
link, or the different priority frames on the same link are
received at the same time. This constraint enforces the order
of frame transmission in the switch schedules, see [20] for
more details. In Eq. (6), δ represents the network precision.

∀si, sj ∈ S, i 6= j,∀m ∈ [1, .., |si|],∀n ∈ [1, .., |sj|],

ro = z(si),∀k ∈ (1, .., |ro|], rp = z(sj),∀l ∈ (1, .., |rp|],

εv,w = u(ro, k), εa,b = u(rp, l),

εx,v = u(ro, k − 1), εy,a = u(rp, l − 1) :

((f ki,m.φ × εv,w.mt + m× si.t + δ

≤ f l−1j,n .φ × εy,a.mt + n× sj.t + εy,a.d(sj.c))

∨(f lj,n.φ × εv,w.mt + n× sj.t + δ ≤

f k−1i,m .φ × εx,v.mt + m× si.t + εx,v.d(si.c)))

∨(si.p 6= sj.p). (6)

The Deadline constraint defined in Eq. (7) imposes the
restriction that a flow is received by its listener within its
deadline. This constraint is equivalent to that the time interval
between the scheduled transmission of a stream from its talker
and the reception of it by the listener is smaller than its
deadline.

∀si ∈ S,∀m ∈ [1, .., |si|], rj = z(si),

εa,b = u(rj, 1), εy,z = u(rj, |rj|) :

f 1i,m.φ × εa,b.mt + si.d ≥ εy,z.mt × (f
|rj|
i,m .φ + f

|rj|
i,m .l). (7)

The Control Precedence constraint enforces every
instance of a control application’s output flows to be sched-
uled for transmission after the complete reception of the
same-instance input flows at the listener. Thus, the control
application’s output flows are transmitted from the talker
node after the execution of the control function is terminated
which needs the complete reception of the input flows. The
constraint is defined in Eq. (8).

∀γi ∈ 0,∀sj ∈ γi.I,∀sk ∈ γi.O,
∀m ∈ [1, .., |sj|],∀n ∈ [1, .., |sk |],

ro = z(sj), rp = z(sk),

εa,b = u(ro, |ro|), εb,z = u(rp, 1),

1 = εa,b.d(sj.c)+ νb.d(sj.c)+ δ :

(f |ro|j,m .φ + f
|ro|
j,m .l)× εa,b.mt +1 ≥ εb,z.mt × f

1
k,m.φ (8)

VOLUME 9, 2021 50789

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

C. ANALYTICAL QoC CP MODEL AND OBJECTIVE
FUNCTION
The CP solver propagates the constraints all over the search
spaces and removes the unfeasible solutions (which do not
satisfy the constraints) from the search space that results in
the creation of the solution space. Afterwards, the CP solver
picks the first solution from the solution space and determines
the value of the objective function for the solution. The CP
solver searches for better solutions in terms of the objective
function until no such solutions can be been found.

In this work, we are interested in finding the solutions
which have better QoC. Since calculating the QoC needs a
simulation of the control application’s behavior, the integra-
tion of QoC calculation tools such as JitterTime in the CP
model is impossible due to their runtime. Thus, we propose
using an analytical model for QoC as the objective function
in the CP model, which aims to drive the search to solutions
that are as close as possible (in terms of the QoC value
obtained with JitterTime simulations) to solutions obtained
if JitterTime would be used as an objective function for the
search.

Our proposed analytical model captures within the CP
formulation: (i) minimum jitter for end-to-end input-output
flows, (ii) maximum delay between reception of the input
flow and transmission of the output flow (which is equivalent
to minimum input flow delay and minimum output flow
delay), denoted with E and called task execution interval,
and (iii) minimum jitter for the task execution interval.

Let us illustrate these aspects using the example in Fig. 4
where we have a Gantt chart for the execution of an example
control loop depicting components of our analytical model.
In this toy example, we have a control application γ1 which
has s1 as the input flow and s2 as the output flow. The
application’s control function γ1.K is running on the node ν1.
The flow s1 is transmitted from the sensor node ν4 and routed
via the switch ν3 to the node ν1 and has the same period as the
control application, denoted with P in the figure. The flow s2
is transmitted from the node ν1 and routed via the switch ν2
to the actuator node ν5 and also has the same period as the
control application.

The node ν1 runs the control function once its input flow s1
arrives and transmits the flow s2 on the terminal of the con-
trol function. Thus, the larger the task execution intervalE ,
the more probable that the control function implemented as
tasks are scheduled for execution on the node ν1. Since we
need to define the CP objective function to be minimized, and
the control application has the known period P, the objective
would be to minimize the ω1 and ω2 which are, respectively,
the input flow and the output flow end-to-end delay. Further-
more, we are interested in minimizing the variation of the task
execution interval E which results in more possibility of the
control function’s schedulability. This is also formulated as
minimizing the input and output flows jitter.

Additionally, minimizing ω1 and ω2 and their variation
positively impacts on the QoC, since the control function
receives the plant’s sampling faster and without variation and

the control signal is applied to the plant faster and without
variation as well. However, the control function implemented
as tasks could be scheduled for execution anywhere in the
execution slice, but because of the jitter-free and short-delay
input output the negative side of the task scheduling is
compensable.

We define the QoC analytical function� in Eq. (9), where
the terms ω1 captures input flow delay, ω2 captures output
flow delay, ω3 captures input flow jitter, ω4 captures output
flow jitter and ω5 captures E jitter. The range of all the ω
terms is from 0 for no delay/jitter to 1 for a delay/jitter equal to
the control application’s period. The delay and jitter trade-off
is controlled by the weight β which can direct the search
towards either optimized delay or optimized jitter, concern-
ing the type of the control applications. A larger β value
drives the search towards smaller jitter. The β value can be
determined by analyzing using JitterTime the behavior of the
control function regarding the sensitivity to jitter and delay.
JitterTime simulates the behavior of a control function with
a given delay and jitter values. Hence, given different delay
and jitter, JitterTime is capable of determine the sensitivity
ratio. Thus, we use JitterTime for analyzing the sensitivity
and determining the β value for a control function.

∀γi ∈ 0,∀sj ∈ γi.I,∀sk ∈ γi.O,
∀m, q ∈ [1, .., |sj|],∀n, u ∈ [1, .., |sk |],

ro = z(sj), rp = z(sk),

εa,b = u(ro, |ro|), εe,f = u(ro, 1),

εc,g = u(rp, |rp|), εb,z = u(rp, 1) :

ω1 =
∑ f |ro|j,m .φ × εa,b.mt

sj.t

ω2 =
∑ sk .t − f 1k,n.φ × εb,z.mt

sk .t

ω3 =
∑ |(f |ro|j,m .φ − f

|ro|
j,q .φ)× εa,b.mt + (m− q)× sj.t|

sj.t

ω4 =
∑ |(f 1k,n.φ − f

1
k,u.φ)× εb,z.mt + (n− u)× sk .t|

sk .t

ω5 =
∑ |(f

|rp|
k,m .φ − f

|rp|
k,q .φ)× εc,g.mt+

(f 1j,q.φ − f
1
j,m.φ)× εe,f .mt + (m− q)× sj.t|

sj.t
� = ω1 + ω2 + β × (ω3 + ω4 + ω5) (9)

D. SEARCH STRATEGY
In this work we used the Google OR-Tools [31] CP
solver. We configured this solver to use a metaheuristic as
the search strategy. A search strategy specifies the order of
selecting the CPmodel variables for assignment and the order
of selecting the values from the domain of a variable. The
metaheuristic strategy does not guarantee optimality but it is
effective in finding a good quality solutions in a reasonable
time.

50790 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

We used the same metaheuristic strategy as [16] based
on a Tabu Search metaheuristic algorithm [32], which aims
to avoid the search process being trapped in a local opti-
mum by increasing diversification and intensification of the
search. We apply the metaheuristic strategy to the set of
offset variables f ki,m.φ that represents control-I/O flows. In this
strategy, once a control application is scheduled with the
respective minimum objective value, it is treated as keep
variables whose values should not be changed. We also used
SolveOnce strategy for the set of length variables f ki,m.l.

VI. EVALUATION
The structure of this section is as follows: we first describe
our test setup and the test cases we used for evaluation in
Sect. VI-A followed by comparing our proposed Control-
Aware Communication Scheduling Strategy (CACSS) with
the related work in Sect. VI-B. Afterwards, we evaluate our
proposed method on the synthetic test cases in Sect. VI-C.
In Sect. VI-D we evaluate CACSS on a realistic test case.
We also validate the generated GCLs using the OMNET++
simulator in Sect. VI-E. Finally, we used the generated
GCLs and validated them on a TSN hardware platform in
Sect. VI-F.

A. TEST CASES AND SETUP
We implementedCACSS in Java using Google OR-Tools [31]
as the CP solver and run it on a computer with an i9 CPU at
3.6 Ghz and 32 GB of RAM.We have considered a time limit
for the CP solver of 10 to 100 minutes depending on the test
case size. For the evaluationwe set themacrotick, the network
precision and the link speed to 1 µs, 0 µs and 100 Mbit/s,
respectively.

We have generated thirteen synthesis test cases which
all include control applications inspired from the industrial
domain. The control applications have different control func-
tions for controlling plants in the form of Eq. (10) where a
and b are randomly chosen respectively from [50, 100, 150]
and [100, 200, 300, 400]. We have used Jitterbug for design-
ing the control function K with the LQG control law [28] as
discussed in Sect. IV-C. The test case sizes are progressively
increasing in number of ESes, SWs, and flows (and respec-
tively control applications). The flows are generated ran-
domly with various sizes to fit in single MTU-sized frames,
various periods all in the form of 2n ms, n = {0, 1, 2, 3, 4},
and various priorities. The details of the synthetic test cases
are depicted in Table 3 where the sixth column shows the total
number of flow frames.

G =
a

s2 + b
(10)

We have also considered a realistic test case, an autonomous
mobile robot, called AMR. The AMR case consists
of 27 flows varying in size between 100 and 1,500 bytes,
with periods between 1 ms and 40 ms and deadlines smaller
or equal to the respective periods. We used Jitterbug for
designing the control functions from the plant in Eq. (10).
The details of the realistic test case are shown in Table 6.

FIGURE 8. Schematics of the hardware platform.

Additionally, we generated three test cases for evaluating
on a hardware platform. The generated GCLs are imple-
mented on the platform and the end-to-end (E2E) delay—the
time between sending a frame from it source to the time it
arrives at its destination—and jitter of flows are measured.
The details of the test cases are shown in Table 5. The hard-
ware platform is presented in [22] and consists of three TSN
switches that are connected in a daisy chain manner. The first
and the last switches consist internal ESes. The links are full
duplex with the speed of 1 Gbps and flows can be sent from
both ESes. A schematic of the hardware platform is shown
in Fig. 8 where the points for the measurement are marked.

B. COMPARISON WITH THE RELATED WORK
Let us first compare qualitatively the features of our CACSS
with the approaches of the related work, i.e., (i) Zero-Jitter
GCL (ZJGCL) proposed in [20] and (ii) Frame-to-Window
GCL (FWGCL) proposed in [33]. Table 4 summarizes the
model features, where the first column lists the feature com-
pared. CACSS and ZJGCL consider scheduling of each indi-
vidual flow frame and leads to zero jitter solutions under
the jitter-optimized condition, whereas FWGCL schedules
‘‘windows’’ which may contain several frames, reducing thus
the size of GCLs at the expense of introducing jitter. Consid-
ering flow frames for scheduling, CACSS and ZJGCL both
enforce ‘‘frame isolation’’ that results in frames with zero jit-
ter, see [20] for a discussion of the need for frame isolation to
create deterministic GCLs. All the three approaches consider
network precision.

The main advantage of CACSS over the related work is
the modeling of control applications, i.e., the precedence
constraints of input and output flows and the task execution
interval. None of the related work considers the control appli-
cation modeling, which makes the assessment of QoC impos-
sible. To integrate the evaluation of control performance into
the optimization, we have formulated the QoC analytically
capturing the minimization of the input-output and execution
jitter of control applications and also leaving enough time
space for the control functions to be executed. In addition,
the CACSS also considers a model for forwarding delay of
SWs, which makes the schedules more accurate considering
a TSN hardware implementation.

We have also performed a quantitative comparison our
proposed method CACSS with the ZJGCL approach from the
related work. Note that a comparison between ZJGCL and
FWGCL is provided in [33], and since FWGCL introduces

VOLUME 9, 2021 50791

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

TABLE 3. Evaluation on the synthetic test cases.

TABLE 4. Comparison of different communication scheduling
mechanisms.

scheduling flexibility at the expense of jitter, it will lead to
worse control performance. Hence, due to this, and for space
reasons, we have not compared againstFWGCL. ZJGCL does
not consider control performance, hence, in order to facilitate
a comparison, we have reimplemented ZJGCL using a CP
formulation and added constraints that enforce the construc-
tion of valid solutions, i.e., to schedule the output flows to
be transmitted after the reception of the input flows and to
be received close to their deadline (leaving enough space
for execution of the control functions). The GCLs obtained
with both CACSS and ZJGCL were then evaluated using
JitterTime, which accurately measures the control perfor-
mance of each solution. The evaluation results are depicted
in columns 8 and 9 in Table 3. The results show that CACSS
has generated schedules with significantly better QoC than
ZJGCL. The average QoC for ZJGCL is 64% larger. ZJGCL
schedules flows such that jitter becomes zero; this is useful
but not sufficient for a good QoC value, which also depends
on input-output jitter and input/output delay. In addition, our
method also maximizes the task execution intervals, which
support the integration of the resulted schedules with the
schedules for tasks. In contrast, the ZJGCL GCLs will have
to be drastically modified before they can be integrated with
task schedules.

C. EVALUATION ON SYNTHETIC TEST CASES
We evaluated the performance ofCACSS on the synthetic test
cases from Table 3. Our solution has successfully scheduled
all the test cases and the schedules have zero jitter. We first
evaluate the runtime of our proposed solution. The solution

FIGURE 9. Comparison of analytical function � with QoC obtained by
JitterTime for test case 5 from Table 3.

runtime in milliseconds for each test case is given in column
10 in Table 3. As depicted in the table, the runtime increases
with the increase of the total number of frames, i.e., larger
test cases. As mentioned, we have given a time limit to the
solver, between 10 and 100 min., depending on the test case
size. All runs have finished well before the time limits, which
means that the CACSS was able to determine the optimal
results in terms of the objective function value from Eq. (9).
This shows that, using our analytical QoC model inside the
CP formulation, we are able to solve large test cases in a
reasonable time.

The columns 7 and 8 in Table 3 show the objective function
value � Eq. (9) and QoC measured with JitterTime (which
corresponds to the J value captured by Eq. (2)). The question
is if driving the search with �, which is a ‘‘proxy’’ for QoC,
as we do in CACSS is as good as driving the search with J ,
which is the actual QoC value. Hence, we were interested
to determine if our analytical QoC model � is able to drive
the search to solutions with good QoC. Thus, for a test case
5 from Table 3, we have replaced the fast analytical QoC
model in the CP formulation with the simulation-based slow-
but-accurate JitterTime QoC value. We have run CACSS for
test case 5 with both setups, using � from Eq. (9) vs. the

50792 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

TABLE 5. Details of the implemented-on-hardware test cases: Sizes are in bytes, Periods and deadlines are in µs.

TABLE 6. Evaluation on realistic test case: AMR consists 27 flows,
20 ESes, 20 SWs.

QoC value J obtained with a call to JitterTime. The results
are shown in Fig. 9, where we compare the two values
(y-axis) during the search, i.e., during the iterations listed on
the x-axis. On the y-axis we have the percentage deviation
of � and J for their best respective values obtained at the
end of the search; in the last iteration, the deviation is zero,
because we have the best value for both of them. As we
can see in the figure, our analytic model of QoC closely
tracks the simulation-based model of QoC, which supports
our hypothesis that the analytical QoC model � is a good
proxy objective function for guiding the search.

D. EVALUATION ON A REALISTIC TEST CASE
We also evaluated CACSS on the autonomous mobile
robot (AMR) realistic test case. The results of the evaluation
are presented in Table 6, where column 2 shows the number
of control applications. In the realistic test case, we assumed
that the link speed is 1 Gbps. The CACSS has successfully
scheduled all the flows in the test case and achieved a good
QoC, which is captured by the objective function � (column
4 of the table).

E. OMNET++ VALIDATION
We have used the OMNET++ simulator with the TSN
NeSTiNg extension [34] to validate the generated GCLs,
and also measured the average delay and jitter of the solu-
tions. Our goal was to evaluate the correctness and the accu-
racy of our proposed solution within a realistic simulation
environment.

The NeSTiNg extension of OMNET++ ignores the for-
warding delay, so to facilitate a fair comparison we updated
our CACSS approach creating a variant that considers a
zero forwarding delay (ZFD), and named it CACSS-ZFD.

FIGURE 10. Implementation of TC1 in OMNET++.

TABLE 7. Simulation results of the synthetic test case 1 from Table 3.

We took the synthetic test case 1 from Table 3, synthesized
the GCLs with both CACSS and CACSS-ZFD. We simulated
the schedules of all the synthetic and realistic test cases from
Tables 3 and 6 using OMNET++. The schedules behave as
expected and the delays we extract from the OMNET++
simulations are identical with the values obtained by our
CACSS. Let us provide more details for one of the test
cases. Fig. 10 shows the architecture of the synthetic test
case 1 implemented in OMNET++. The simulation is run
for a hyperperiod which is 16 ms and the results are depicted
in Table 7, where the observed and reported end-to-end
(E2E) delays are shown in µs for OMNET++ and CACSS,
respectively.

Our validation experiment shows that the generated GCLs
are correct and all the flows meet their requirements. The

VOLUME 9, 2021 50793

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

values of the observed E2E delay from OMNET++ (column
2) are equal to the values reported by CACSS-ZFD (col-
umn 3), which is expected, since they both use the same
assumptions, e.g., ignoring the forwarding delay. Moreover,
the maximum jitter is the same for all the solutions and equals
to zero.

F. EVALUATION ON A HARDWARE PLATFORM
We have also evaluated the performance of CACSS on the
hardware platform from [22] and in this context we removed
the assumption that the forwarding delay is ignored. For this
evaluation, we assumed that all the SWs are the same type
as presented in [22]. The authors proposed the following
equation for capturing the forwarding delay d in µs:

d = d4+
21× c
400

e, (11)

where c is the size of the flows in bytes. Although we are
using this TSN switch hardware implementation in a different
application scenario compared to [22], since the forwarding
delaymodel depends on the hardware implementation and not
the application scenario, their delay model is also applicable
to our case.

To be closer to implementation, CACSS can also con-
sider the scheduling of PPTP flows for time synchronization.
These PPTPflows have precedence constraint which has been
already addressed in CACSS. We have considered that PPTP
flows are implemented as high priority time sensitive traffic
that are also scheduled along with network flows.

The generated GCLs are implemented on the SWs and
the maximum delay and jitter of flows are measured from
the measurements points shown in Fig. 8. We have used
the three small ‘‘hardware test cases’’ from Table 5, where
4 flows are sent between ES1 and ES2 via SW1, 2 and 3. The
three test cases differ in their flows’ periods and deadlines,
which are in the range of thousands ofµs. The measurements
were over several minuets using an oscilloscope resulting in
hundreds of thousands of samples. The results are depicted
in Table 5 where the columns 7 and 9 show the maximum
delay and jitter values reported by CACSS and the columns
8 and 10 show the maximum delay and jitter values measured
on the hardware platform. The deviation of the measured
and reported maximum E2E delay values is small and is less
than 1 µs for all the flows in all the test cases. Although,
the measured maximum E2E jitter is non-zero for all the
flows in all the test cases, the values are very small, in the
nanoseconds range, without any effect on the deadlines or
the control performance.

Let us illustrate the small variations measured in E2E delay
for the hardware test case 2 from Table 5. Fig. 11 shows the
measured E2E latencies in all samples for each flow, s1 to s4.
The x-axis has the measured value of the E2E delay and the
y-axis has the number of samples in which this value was
measured. Although, as mentioned, the deviations are very
small compared to the values reported by our CACSS, this
shows the importance of considering realistic assumptions

in the problem formulation. Note that the worst-case values
of these variations can be added to the network precision δ
introduced in Sect. V-B in order to guarantee that deadlines
are satisfied.

VII. RELATED WORK
There is already a lot of research on Fog Computing,
focused mostly on aspects related to quality-of-service (QoS)
[35]–[37], with limited attention to safety-critical and
real-time applications such as those used in the industrial
areas. Real-time and safety-critical systems require guaran-
tees for non-functional properties such as timing, e.g., that the
deadlines are satisfied. Also, control applications have to ful-
fill non-functional properties related to control performance,
e.g., QoC. Addressing the QoC for control applications in
the Fog is still an open issue, researchers investigating the
issue of degradation of control applications [38]–[40]. For
example, [18] focuses on the routing and scheduling of mes-
sages of control applications to protect them from instability.
The authors propose the control of the queue gates status via
GCLs with careful consideration of the non-determinism of
messages.

However, the area of co-design of control and real-time is a
well studied area [41]–[46] which have tackled the design of
controllers and scheduling of the control tasks and messages
with respect to the control performance. The co-design proce-
dure involves designing of control applications such that the
controller is robust against degradation due to scheduling of
the tasks and messages.

The control performance is not only affected by the
scheduling of tasks but also affected by the scheduling
of messages in networks. On one hand, researchers have
addressed the configuration of communication aiming at
increased control performance [41], [47], [48], but very few
works address TSN. On the other hand, there is a lot of work
on routing and scheduling for TSN, see the discussion below,
but none of these works consider QoC. The work in [18] has
considered routing and scheduling in Deterministic Ethernet,
but lacks TSN-specific features which makes it difficult to
implement the results, and uses an SMT formulation that
cannot optimize the solutions and does not scale for large
problem sizes. Our initial investigation in [16], [18] addresses
QoC and considers the particularities of TSN, but uses a
simplified model for control applications.

Researchers have addressed the routing and scheduling
problems in TSN and have employed different approaches for
the optimization, such as heuristics, metaheuristics and math-
ematical programming, e.g., ILP and Satisfiability Modulo
Theories (SMT).

An example heuristic approach is [49], where the packets
do not wait in switch queues, called no-wait scheduling.
The authors propose a Tabu Search metaheuristic to opti-
mize the flowspan which may become larger because of the
no-wait scheduling, and also let lower-priority traffic to use
the residual bandwidth. Wisniewski et. al in [50] increase the
flexibility of the scheduling by employing a greedy-based

50794 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

FIGURE 11. The details of the measured E2E delay of flows in the test case 2 form the Table 5 implemented on the hardware platform.
Thick lines are kernel density estimates.

heuristic approach which is less resource demanding, and
possible to be implemented on industrial equipment on the
field floor. The greedy-based heuristic approach is also pro-
posed in [51], where authors aim to generate joint network
routing and communication scheduling that are fault-tolerant,
within a reasonably short time. Arestova et al. in [52] propose
a hybrid genetic algorithm for the communication scheduling
and network routing to find a near-optimal solution in a
reasonable time, and also optimizing the bandwidth to let
more less-critical traffic transmitted. A heuristic list sched-
uler for joint communication scheduling and network routing
is proposed in [53], where multi-cast traffic and application
distribution are allowed, and bandwidth is optimized. The
same problem is addressed in [54] where a genetic algorithm
is employed and in [23], where multiple traffic types are
considered.

The use of SMT solvers for the communication schedul-
ing is first proposed in [55]. The author proposes a general
method for off-line scheduling of communication and uses
the SMT solver as the back-end solver. The SMT-based
model for TT-schedules shows promising results and scales
well with the problem size. Craciunas et al. in [20] propose an
SMT model for the traffic scheduling which generates solu-
tions that are jitter-free and the number of used port queues in
the network switches is minimized. The authors also propose
frame and flow isolation constraints and evaluate them on
several tests concerning the run-time and number of used
queues. Craciunas et al. derive general traffic regulating con-
straints for SMT solvers in [56], which introduces windows

in GCLs and maps the frames to them. Another SMT model
based on ‘‘array theory encoding’’ is proposed in [33], where
the authors see the GCL windows as array elements, letting
more relaxed schedulingwith allowing jitter and having fewer
GCL entries. However, the implementation of the proposed
method shows resource demanding. The trade-of between the
GCL length and run-time is well studied in [57].

The SMT-based schedulers are extended for the benefit
of other applications. For example, in [58], authors combine
traffic scheduling and network routing problem to achieve
the minimum delay for AVB traffic. The traffic scheduling
combined with task scheduling is studied in [24], where an
SMT solver is employed to schedule network messages and
tasks on a networked computation platformwhich is equipped
with time-triggered network. Park et al. in [59] proposes a
generic algorithm approach to schedule the communication in
TSN where preemption is allowed. The proposed algorithm
shows increased reliability in the generated solutions. The
communication scheduling concerning the security of control
applications is addressed in [60] where the authors aim to
increase the resilience of the control applications to malicious
interference.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the problem of scheduling
real-time traffic via TSN on an FCP, aiming at improving the
performance of industrial control applications and addressing
the timing requirements of real-time applications. The sched-
uled traffic in TSN is regulated through the Gate Control

VOLUME 9, 2021 50795

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

Lists (GCLs), which allow the transmission of flows by open-
ing and closing the switch gates.

We have proposed a Constraint Programming-based solu-
tion for determining the GCLs such that the control perfor-
mance (in terms of QoC) is maximized and the deadlines
are satisfied. The solution models the problem through a
set of constraints and uses an QoC analytical model inside
the objective function for optimizing the solution. We also
employ a metaheuristic search strategy to drive the search
faster towards good quality solutions in a short time. Our CP
solution for messages is extensible and can be integrated with
CP task scheduling models from the literature. In addition,
we aimed at introducing space in the timeline of message
schedules, increasing thus the probability of successfully
integrating our GCLs with the tasks running on the end
systems.

As the results show, the solution has successfully sched-
uled the flows in all test cases and also achieved a good QoC
for control applications. We have used OMNET++ and Jit-
terTime for validating the results and the performance of the
QoC analytical model proposed. We have also implemented
the resulted GCLs on a TSN hardware platform.

REFERENCES
[1] T. J. Williams, ‘‘The Purdue enterprise reference architecture,’’ Comput.

Ind., vol. 24, nos. 2–3, pp. 141–158, Sep. 1994.
[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its

role in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[3] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. SP 800-145,
2011.

[4] IEEE Standard for Adoption of Openfog Reference Architecture for Fog
Computing, IEEE Standard 1934-2018, 2018, pp. 1–176.

[5] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A plat-
form for Internet of Things and analytics,’’ in Big Data and Internet of
Things: A Roadmap for Smart Environments. Cham, Switzerland: Springer,
2014, pp. 169–186.

[6] IEEE. (2016). Official Website of the 802.1 Time-Sensitive Networking
Task Group. Accessed: Dec. 26, 2020. [Online]. Available: http://www.
ieee802.org/1/pages/tsn.html

[7] E. Dahlman, G.Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and J. Sköld,
‘‘5G wireless access: Requirements and realization,’’ IEEE Commun.
Mag., vol. 52, no. 12, pp. 42–47, Dec. 2014.

[8] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture.
Berlin, Germany: Springer, 2009.

[9] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, ‘‘Fog
computing for the Internet of Things: A survey,’’ ACM Trans. Internet
Technol., vol. 19, no. 2, pp. 1–41, Apr. 2019.

[10] P. Hu, S. Dhelim, H. Ning, and T. Qiu, ‘‘Survey on fog computing:
Architecture, key technologies, applications and open issues,’’ J. Netw.
Comput. Appl., vol. 98, pp. 27–42, Nov. 2017.

[11] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and
W. Steiner, ‘‘The FORA fog computing platform for industrial IoT,’’ Inf.
Syst., vol. 98, May 2021, Art. no. 101727.

[12] TTTech Computertechnik AG. (2019). Nerve. Accessed: Dec. 26, 2020.
[Online]. Available: https://www.tttech-industrial.com/products/nerve

[13] P. Gaj, J. Jasperneite, and M. Felser, ‘‘Computer communication within
industrial distributed environment—A survey,’’ IEEE Trans. Ind. Infor-
mat., vol. 9, no. 1, pp. 182–189, Feb. 2013.

[14] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, ‘‘Enabling fog
computing for industrial automation through time-sensitive networking
(TSN),’’ IEEE Commun. Standards Mag., vol. 2, no. 2, pp. 55–61,
Jun. 2018.

[15] Timing and Synchronization for Time-Sensitive Applications,
IEEE Standard 802.1ASRev, 2017. [Online]. Available:
http://www.ieee802.org/1/pages/802.1AS-rev.html

[16] M. Barzegaran, B. Zarrin, and P. Pop, ‘‘Quality-of-control-aware schedul-
ing of communication in TSN-based fog computing platforms using con-
straint programming,’’ in Proc. 2nd Workshop Fog Comput. IoT, vol. 80,
2020, pp. 3:1–3:9.

[17] M. Barzegaran, A. Cervin, and P. Pop, ‘‘Performance optimization of
control applications on fog computing platforms using scheduling and
isolation,’’ IEEE Access, vol. 8, pp. 104085–104098, 2020.

[18] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,
‘‘Stability-aware integrated routing and scheduling for control applications
in Ethernet networks,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Mar. 2018, pp. 682–687.

[19] Bridges and Bridged Networks, Standard 802.1Q-2014, Institute
of Electrical and Electronics Engineers, 2014. [Online]. Available:
http://www.ieee802.org/1/pages/802.1Q.html

[20] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, ‘‘Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,’’ in
Proc. 24th Int. Conf. Real-Time Netw. Syst., 2016, pp. 183–192.

[21] A. Cervin, ‘‘Integrated control and real-time scheduling,’’
Ph.D. dissertation, Dept. Autom. Control, Lund Univ., Lund, Sweden,
2003.

[22] J. Sanchez-Garrido, A. Jurado, L. Medina, R. Rodriguez, E. Ros, and
J. Diaz, ‘‘Digital electrical substation communications based on deter-
ministic time-sensitive networking over Ethernet,’’ IEEE Access, vol. 8,
pp. 93621–93634, 2020.

[23] V. Gavrilut, L. Zhao, M. L. Raagaard, and P. Pop, ‘‘AVB-aware routing
and scheduling of time-triggered traffic for TSN,’’ IEEE Access, vol. 6,
pp. 75229–75243, 2018.

[24] S. S. Craciunas and R. S. Oliver, ‘‘Combined task- and network-
level scheduling for distributed time-triggered systems,’’ Real-Time Syst.,
vol. 52, no. 2, pp. 161–200, Mar. 2016.

[25] K. Ogata and Y. Yang, Modern Control Engineering, vol. 4. Delhi, India:
Prentice-Hall, 2002.

[26] K. Astrom and B. Wittenmark, Computer Controlled System.
Upper Saddle River, NJ, USA: Prentice-Hall, 1997.

[27] A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, ‘‘Using Jit-
terTime to analyze transient performance in adaptive and reconfigurable
control systems,’’ in Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory
Automat. (ETFA), Sep. 2019, pp. 1025–1032.

[28] B. Lincoln and A. Cervin, ‘‘JITTERBUG: A tool for analysis of real-time
control performance,’’ in Proc. 41st IEEE Conf. Decis. Control, vol. 2,
Dec. 2002, pp. 1319–1324.

[29] D. Henriksson, A. Cervin, and K.-E. Årzén, ‘‘TrueTime: Simulation of
control loops under shared computer resources,’’ IFAC Proc. Volumes,
vol. 35, no. 1, pp. 417–422, 2002.

[30] O. Sinnen, Task Scheduling for Parallel Systems, vol. 60. Hoboken, NJ,
USA: Wiley, 2007.

[31] Google. Google OR-Tools. Accessed: Dec. 26, 2020. [Online]. Available:
https://developers.google.com/optimization

[32] E. K. Burke and G. Kendall, Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, 2nd ed. New York, NY,
USA: Springer, 2013.

[33] R. S. Oliver, S. S. Craciunas, andW. Steiner, ‘‘IEEE 802.1Qbv gate control
list synthesis using array theory encoding,’’ in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp., Apr. 2018, pp. 13–24.

[34] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, ‘‘NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++,’’ in Proc. Int. Conf. Netw. Syst. (NetSys), Mar. 2019,
pp. 1–8.

[35] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[36] R.Mahmud, R. Kotagiri, and R. Buyya, ‘‘Fog computing: A taxonomy, sur-
vey and future directions,’’ in Internet of Everything. Singapore: Springer,
2018, pp. 103–130.

[37] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[38] X.-M. Zhang, Q.-L. Han, and X. Yu, ‘‘Survey on recent advances in
networked control systems,’’ IEEE Trans. Ind. Informat., vol. 12, no. 5,
pp. 1740–1752, Oct. 2016.

50796 VOLUME 9, 2021

M. Barzegaran, P. Pop: Communication Scheduling for Control Performance in TSN

[39] D. Zhang, P. Shi, Q.-G. Wang, and L. Yu, ‘‘Analysis and synthesis of
networked control systems: A survey of recent advances and challenges,’’
ISA Trans., vol. 66, pp. 376–392, Jan. 2017.

[40] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, ‘‘A survey of recent results
in networked control systems,’’ Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[41] Z. Huo and Z. Zhang, ‘‘Scheduling and control co-design for networked
wind energy conversion systems,’’ Global Energy Interconnection, vol. 2,
no. 4, pp. 328–335, Aug. 2019.

[42] F. Smarra, A. D’Innocenzo, and M. D. Di Benedetto, ‘‘Optimal co-design
of control, scheduling and routing in multi-hop control networks,’’ in Proc.
IEEE 51st IEEE Conf. Decis. Control (CDC), Dec. 2012, pp. 1960–1965.

[43] P. Martí, J. Yépez, M. Velasco, R. Villà, and J. M. Fuertes, ‘‘Managing
quality-of-control in network-based control systems by controller and
message scheduling co-design,’’ IEEE Trans. Ind. Electron., vol. 51, no. 6,
pp. 1159–1167, Dec. 2004.

[44] K.-J. Park, M.-K. Yoon, K. Kang, and C.-G. Lee, ‘‘Scheduling and control
co-design under end-to-end response time constraints in cyber-physical
systems,’’ in Proc. IEEE Conf. Comput. Commun. Workshops, Apr. 2011,
pp. 762–767.

[45] M. S. Branicky, S. M. Phillips, and W. Zhang, ‘‘Scheduling and feedback
co-design for networked control systems,’’ in Proc. 41st IEEE Conf. Decis.
Control, vol. 2, Dec. 2002, pp. 1211–1217.

[46] D. Simon, A. Seuret, and O. Sename, ‘‘Real-time control systems: Feed-
back, scheduling and robustness,’’ Int. J. Syst. Sci., vol. 48, no. 11,
pp. 2368–2378, Aug. 2017.

[47] Z.-W. Wang and H.-T. Sun, ‘‘Control and scheduling co-design of net-
worked control system: Overview and directions,’’ in Proc. Int. Conf.
Mach. Learn. Cybern., vol. 3, Jul. 2012, pp. 816–824.

[48] Y.-Q. Song, ‘‘Networked control systems: From independent designs of
the network QoS and the control to the co-design,’’ IFAC Proc. Volumes,
vol. 42, no. 3, pp. 155–162, 2009.

[49] F. Dürr and N. G. Nayak, ‘‘No-wait packet scheduling for IEEE time-
sensitive networks (TSN),’’ in Proc. 24th Int. Conf. Real-Time Netw. Syst.,
2016, pp. 203–212.

[50] L. Wisniewski, M. Schumacher, J. Jasperneite, and C. Diedrich, ‘‘Increas-
ing flexibility of time triggered Ethernet based systems by optimal greedy
scheduling approach,’’ in Proc. IEEE 20th Conf. Emerg. Technol. Factory
Automat. (ETFA), Sep. 2015, pp. 1–6.

[51] A. A. Atallah, G. B. Hamad, andO.A.Mohamed, ‘‘Fault-resilient topology
planning and traffic configuration for IEEE 802.1Qbv TSN networks,’’ in
Proc. IEEE 24th Int. Symp. On-Line Test. Robust Syst. Design (IOLTS),
Jul. 2018, pp. 151–156.

[52] A. Arestova, K.-S. J. Hielscher, and R. German, ‘‘Design of a hybrid
genetic algorithm for time-sensitive networking,’’ in Measurement, Mod-
elling and Evaluation of Computing Systems. Cham, Switzerland: Springer,
2020.

[53] M. Pahlevan, N. Tabassam, and R. Obermaisser, ‘‘Heuristic list scheduler
for time triggered traffic in time sensitive networks,’’ SIGBEDRev., vol. 16,
no. 1, pp. 15–20, Feb. 2019.

[54] M. Pahlevan and R. Obermaisser, ‘‘Genetic algorithm for scheduling time-
triggered traffic in time-sensitive networks,’’ in Proc. IEEE 23rd Int. Conf.
Emerg. Technol. Factory Automat. (ETFA), vol. 1, Sep. 2018, pp. 337–344.

[55] W. Steiner, ‘‘An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,’’ in Proc. IEEE Real-Time Syst. Symp.,
Nov. 2010, pp. 375–384.

[56] S. S. Craciunas, R. S. Oliver, and W. Steiner, ‘‘Formal scheduling con-
straints for time-sensitive networks,’’ 2017, arXiv:1712.02246. [Online].
Available: http://arxiv.org/abs/1712.02246

[57] W. Steiner, S. S. Craciunas, and R. S. Oliver, ‘‘Traffic planning for time-
sensitive communication,’’ IEEE Commun. Standards Mag., vol. 2, no. 2,
pp. 42–47, Jun. 2018.

[58] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, ‘‘Design opti-
misation of cyber-physical distributed systems using IEEE time-sensitive
networks,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1, pp. 86–94,
Dec. 2016.

[59] T. Park, S. Samii, and K. G. Shin, ‘‘Design optimization of frame preemp-
tion in real-time switched Ethernet,’’ in Proc. Design, Automat. Test Eur.
Conf. Exhib. (DATE), Mar. 2019, pp. 420–425.

[60] R. Mahfouzi, A. Aminifar, S. Samii, P. Eles, and Z. Peng, ‘‘Security-
aware routing and scheduling for control applications on Ethernet TSN
networks,’’ ACM Trans. Design Automat. Electron. Syst., vol. 25, no. 1,
pp. 1–26, Jan. 2020.

MOHAMMADREZA BARZEGARAN (Gradu-
ate Student Member, IEEE) has been a Marie
Curie Ph.D. Fellow in computer science with the
Technical University of Denmark, since 2018.
His research is focused on the configuration
of Fog computing platform for critical con-
trol applications. His main research interests
include optimization, configuration of real-time
and safety-critical systems, and co-design of con-
trol applications for real-time and safety-critical
systems.

PAUL POP (Member, IEEE) received the Ph.D.
degree in computer systems from Linköping Uni-
versity, in 2003. He has been an Associate Profes-
sor with DTU Compute, Technical University of
Denmark, and since 2016, he has been a Professor
of Cyber-Physical Systems. His research interest
includes developing methods and tools for the
analysis and optimization of dependable embed-
ded systems. In this area, he has published over
130 peer-reviewed articles, three books, and seven

book chapters. His research has been highlighted as ‘‘The Most Influential
Papers of 10Years DATE’’. He has served as a Technical ProgramCommittee
Member for several conferences, such as DATE and ESWEEK. He has
received the Best Paper Award from DATE 2005, RTIS 2007, CASES 2009,
MECO 2013, and DSD 2016. He has also received the EDAA Outstand-
ing Dissertations Award (Co-Supervisor) in 2011. He is the Chairman of
the IEEE Danish Chapter on Embedded Systems and the Director of the
DTU’s IoT Research Center. He has coordinated the Danish National InfinIT
Safety-Critical Systems Interest Group.

VOLUME 9, 2021 50797

