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ABSTRACT A conventional systematic satisfiability logic suffers from a nonflexible logical structure that
leads to a lack of interpretation. To resolve this problem, the advantage of introducing nonsystematic
satisfiability logic is important to improve the flexibility of the logical structure. This paper proposes
Random 3 Satisfiability (RAN3SAT) with three types of logical combinations (k = 1, 3, k = 2, 3, and k = 1,
2, 3) to report the behaviors of multiple logical structures. The different types of RAN3SAT enforced with
Discrete Hopfield Neural Network (DHNN) are included with benchmark searching techniques, such as
Exhaustive Search algorithm. Additionally, to strengthen and certify the behavior of the proposed model,
we extensively conducted several performance evaluation metrics with a specific number of neurons.
In particular, the experimental results revealed that RAN3SAT was able to be implemented in DHNN, and
each logical combination has its characteristics. Nonetheless, RAN3SAT provides more neuron variations in
the whole solution space. The proposed model can also be applied in real-world applications such as the
logic mining approach since RAN3SAT consists of various logic combinations that behave as input language
to transform raw data into informative output.

INDEX TERMS Discrete hopfield neural network, random k satisfiability, random 3 satisfiability.

I. INTRODUCTION
In the first two decades of the 21st century, artificial
intelligence (AI) has provided the impetus in building the
algorithmic structure for the development of constraint sat-
isfaction and Boolean satisfiability. For the computational
complexity, logic, and AI, the satisfiability problem (SAT)
has become a problem of major interest. The concept of
imposing an artificial neural network (ANN) in AI is one
step ahead in understanding our human actual brain’s learning
and memory task. ANN is a computational model that tries
to simulate the structure and functional aspects of biological
neural networks. An essential objective of ANN is to store
practical knowledge and make it available for all. The uses of
ANN have been exploited in many areas, such as diagnosing
autism spectrum disorder [1], predicting animals category [2],
and forecasting the stock market index [3]. A variant of ANN
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was introduced by Hopfield and Tank [4] in 1985, named
Hopfield Neural Network (HNN). A feature of HNN is that
it has single and multiple associative memory systems with
no hidden layers [5]. HNN comprises two distinct structures:
continuous and discrete [6]. Discrete Hopfield Neural Net-
work (DHNN) is depicted as a suitable ANN platform of
linearized interconnected neuron states to analyze discrete
entries. It is worth mentioning that DHNN has a variety
of applications such as resources management [7], loca-
tion detector [8], and students’ performance evaluation [9].
Despite the recent and fast improvement in DHNN, there has
been no recent development of demonstrating the output of
DHNN in the form of the symbolic rules.

SAT is the decision problem of whether there exists a satis-
fying assignment for a given formula [10]. Based on the lan-
guage of logic programming, Wan Abdullah [11] introduced
the fundamental concept of logical rules in ANN. Likewise,
Sathasivam [12] extended the work by [11] and presented a
new concept of SAT named Horn Satisfiability (Horn SAT).
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In [12], the Sathasivam relaxation method for optimizing the
final state of the neuron was introduced. Utilizing previously
published works, ANN researchers conducted research on
SAT integrated with ANN.

Interestingly, Mansor et al. [13] extended a system-
atic SAT logical function expressed in Conjunctive Normal
Form (CNF) which is known as 3 Satisfiability (3SAT) with
DHNN. Note that the 3SAT logical rule contains strictly three
literals in each independent clause. The important concept of
pattern satisfiability, 3SAT, and DHNN was discussed here.
Subsequently, Mansor et al. extended the work by initiat-
ing a study of [14] that creates another variant of 3SAT
imposed in DHNN, known as Maximum 3 Satisfiability
(MAX3SAT). Here, the result of the proposed logical rulewas
negative due to nonredundant literals existing in MAX3SAT.
The proposed work was capable of optimally exhibiting
the behavior of MAX3SAT during the testing phase of
DHNN. Research moved in a new direction when Kasih-
muddin et al. [15] suggested another systematic, logical rule
named 2SAT.

In their study, a hybrid approach that employs DHNN
in optimizing the 2SAT logical rule was initiated. Note
that DHNN was used to minimize logical inconsistency
in interpreting the logic clauses. The emergence of 2SAT
work motivated a new concept in systematic, logical rule
whose outcome is negative, which is Maximum 2 Satisfia-
bility (MAX2SAT). Also, DHNN can exhibit the behavior
of MAX2SAT in all utilized performance metrics. Another
meaningful work in utilizing systematic SAT was done by
Zamri et al. [16], whereby the 3SAT logical rule was imple-
mented in DHNN with a modified Imperialistic Competitive
Algorithm (ICA). The proposed model was further incorpo-
rated with the reverse analysis method and able to analyze
real data sets with 3SAT as a neuron representation in DHNN.
This study is significant as it highlighted the potential of sys-
tematic SAT to represent real data sets. Another fascinating
direction of 2SAT was proposed by Kasihmuddin et al. [17].
This work inaugurated a mutation operator in the retrieval
phase of DHNN. Therefore, the suggested study shows an
optimizer in the testing phase can help systematically find
other solutions in other search spaces. Thus, by observing
previous studies, a systematic approach was the main focus
of many ANN researchers. One may pose the question,
what happens if DHNN integrates nonsystematic logical
rules?

The Random k Satisfiability (RANkSAT) is a variant of
SAT where RANkSAT plays an essential role for studying the
typical case complexity of NP-complete combinatorial satis-
faction; it is also a representative model of finite-connectivity
spin-glasses [18]. As for the RANkSAT structure, each clause
depends on the same number of literals k, and a clause is
uniformly and randomly selected with a given number of
literals per clause [19]. Thus, RANkSAT has a significant
impact on both theoretical computer science and as well
as statistical studies. Meanwhile, RANkSAT was rigorously
studied in statistical physics. Lemoy et al. [20] introduced

variable-focused local search algorithms for SAT problems.
This work focused on random literals in unsatisfied clauses.
Variants are considered where literals are selected uniformly
and randomly. The result of Sathasivam et al. [21] introduced
a new phenomenon of 2SAT, which is expressed as Ran-
dom 2 Satisfiability (RAN2SAT) that consists of the first and
second-order of SAT logical structure. [21] states the key goal
is to ensure the cost function ofRAN2SAT tends to zero, which
indicates the logical rule is satisfied. Those mentioned above
discussed the use of RANkSAT to represent their cases. The
study of choosing RANkSAT is not only to consider k literals
per clause but also to integrate as a logical rule in ANN.
The work by [21] explains how RANkSAT is extended for
nonsystematic logical rule by emphasizing random structure
with higher orders of k and reporting the behavior of more
logical combination.

Recently, the authors proposed the study of RAN2SATwith
DHNN [21]. However, the proposed logic was restricted up
k ≤ 2. In our study, the investigation of RANkSAT with
DHNN for various orders of k is reported. Higher-order k
with different logical combinations provides more variabil-
ity and holds more literals in representing neuron states in
DHNN. The behavior of RANkSAT with higher-order k has
never been reported in terms of performance evaluation met-
rics and similarity index. Thus, the dynamics of SAT logic for
Random 3 Satisfiability (RAN3SAT) in providing symbolic
instruction to DHNN was reported in our new study.

The main contributions of this paper are as follows:

• To formulate various Random 3 Satisfiability logical
structures such as Random 3,1 Satisfiability,
Random 3,2 Satisfiability, and Random 3,2,1 Satisfiabil-
ity as a symbolic instruction in Discrete Hopfield Neural
Network.

• To investigate the quality of solution of Random 3 Sat-
isfiability in Discrete Hopfield Neural Network in terms
of minimization of the cost function, synaptic weight
management, energy profile, and final neuron variations.

• To assess numerically the impact of various Random 3
Satisfiability in Discrete Hopfield Neural Network by
using different performance measures, it is shown that in
the specific number of neurons, 100% accurate synaptic
weight can be achieved to fulfil global minimum solu-
tion and also for a particular number of neurons the
simulation achieved 100% local minimum ratio. That is
the logical rule of RAN3SAT that can be embedded in
DHNN for getting a higher global minimum ratio.

The paper is arranged as follows: the overall structure of
RAN3SAT and the implementation of RAN3SAT in DHNN
resulting in the proposed model. Introduction and the pro-
posed random 3 satisfiability are discussed in Section 1 and
Section 2, respectively. Random 3 Satisfiability in Dis-
crete Hopfield Neural Network (DHNN-RAN3SAT) and the
experimental settings involved in our study are described
in Sections 3 and 4. The results and discussion of the proposed
method are depicted in Section 5. The conclusion and future
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work of our study are presented in the last section of this
paper.

II. THE PROPOSED RANDOM 3 SATISFIABILITY
RAN3SAT is a new type of nonsystematic SAT logical struc-
ture. It can be expressed in an arbitrary number of literals
and clauses [21]. The main three components of RAN3SAT
consist of a set of x variables where A 1,A 2,A 3, . . . ,A x

with a set of y clauses where Z (k)
1 ,Z (k)

2 ,Z (k)
3 , . . . ,Z (k)

y . The
values for each literal are in the form of {1,−1} which
represents either true or false [7]. In our study, each clause
contains x distinct literals chosen in random bases where
the ratio of the probability in the positive form to nega-
tive form is 1:1 or 1:2 or 2:1 for k ≤ 3. According to
the theory of propositional calculus, SAT can be expressed
in CNF. The general formulation RAN3SAT (δ kRAN3SAT ) for

k = 1, 2, 3 is shown in (1) - (4). Note that, δ 1,3RAN3SAT

comprises of the first and third order of logic, δ 2,3RAN3SAT
forms by second, and third-order of logic, and δ 1,2,3RAN3SAT
composed of the first, second, and third-order of logic
respectively.

δ
1,3
RAN3SAT = ∧

u
i=1Z

(1)
i ∧

w
i=1 Z

(3)
i (1)

δ
2,3
RAN3SAT = ∧

v
i=1Z

(2)
i ∧

w
i=1 Z

(3)
i (2)

δ
1,2,3
RAN3SAT = ∧

u
i=1Z

(1)
i ∧

v
i=1 Z

(2)
i ∧

w
i=1 Z

(3)
i (3)

Z (k)
i =


(A i) , k = 1

(Bi ∨ Ci) , k = 2

(Di ∨ Ei ∨ Fi) , k = 3

(4)

whereby u, v, and w is the total number of first, second, and
third-order of logic in each clause in δ kRAN3SAT respectively.

Note that, u > 0, v > 0, w > 0, and Z (k)
i consists of clauses

with various orders of δ kRAN3SAT . Conjointly, the selection
Z (k)
i is set at random as we want to investigate the behavior

of δ kRAN3SAT . Following (4), the literals (positive or negative)
is set at random where A i ∈ {A i,¬A i}, B i ∈ {B i,¬B i},
C i ∈ {C i,¬C i}, D i ∈ {D i,¬D i}, E i ∈ {E i,¬E i} and F i ∈

{F i,¬F i}. Examples of δ kRAN3SAT for δ 1,3RAN3SAT , δ
2,3
RAN3SAT

and δ 1,2,3RAN3SAT with a different order of logical structure is
formulated in (5) - (7) as follows:

δ
1,3
RAN3SAT = (D1 ∨ ¬E1 ∨ F1) ∧ (D2 ∨ E2 ∨ F 2)

∧A 1 ∧ A 2 (5)

δ
2,3
RAN3SAT = (D1 ∨ ¬E1 ∨ F1) ∧ (¬D2 ∨ E2 ∨ F 2)

∧ (B1 ∨ C1) ∧ (¬B2 ∨ C2) (6)

δ
1,2,3
RAN3SAT = (D1 ∨ ¬E1 ∨ F1) ∧ (¬D2 ∨ E2 ∨ F 2)

∧ (B1 ∨ C1) ∧ (¬B2 ∨ C2) ∧ A1 ∧ A2 (7)

Following the above equations, if any of the δ kRAN3SAT is
satisfiable, an example δ 1,3RAN3SAT is said to be satisfiablewhen

δ
1,3
RAN3SAT = 1 that provides truth values. On the contrary,

if δ 1,3RAN3SAT = −1, δ
1,3
RAN3SAT is unsatisfiable, which gives

TABLE 1. Comparison of existing logical structure with δk
RAN3SAT .

false values. The key reason why δ kRAN3SAT is proposed is
because the logic can provide more variability of structure,
avoid repetitive neuron states, and retrieve solution in other
solution space. Furthermore, the basic structure δ kRAN3SAT is
not limited compared to conventional kSAT. Table 1 shows
a comparison of existing logical structure, 2 Satisfiability
(δ 2SAT ), 3 Satisfiability (δ 3SAT ), and Random 2 Satisfiability
(δRAN2SAT ) with δ kRAN3SAT .

The previous work by [21] only considers up to two-
dimensional decision systems which consider k = 1, 2.
In contrast, we utilize k = 1, 3, k = 2, 3 and k =
1, 2, 3 where we create a more logical combination of high
dimensional decision system. The novelty δ kRAN3SAT is vital
to guarantee satisfiable logic with a different type of SAT
since the study of δRAN2SAT [21] proved their logic function is
satisfied. There are no recent works that investigate the higher
order of RANkSAT k > 2 in an ANN. Therefore, this study
focuses on δ kRAN3SAT a symbolic form representation which
will be integrated with the network as Discrete Hopfield
Neural Network (DHNN).

III. RAN3SAT IN DISCRETE HOPFIELD NEURAL NETWORK
Discrete Hopfield Neural Network (DHNN) is a recurrent
neural network with no hidden layer and was initiated by
John Hopfield [4]. The recurrent feature is when the input
is fed back as the output. DHNN is an extended structure
of Elman Neural Network [24]. Researchers utilized DHNN
as it is equipped with associative memory to solve con-
straint problems [25]. For example, the study by [26] utilized
DHNN integrated with 2SAT as a platform in solving the
optimization Bezier Curves model. In this study, the mem-
ory storage or Content Addressable Memory (CAM) stores
synaptic weights up to 2 n (matrix form) binary vectors [27].
Generally, the calculation in DHNN is executed by assort-
ments of interconnected activated neurons [28]. According
to [29], DHNN contains essential properties, including paral-
lel execution for intensive optimization problems. The units
of DHNN are represented in bipolar values {1,−1}, and we
utilized the asynchronous neuron adaptation by Theorem 1.
Theorem 1 defined DHNN worked in asynchronous mode
with its condition.
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TABLE 2. Results of P
(

Q
δ k

RAN3SAT
= 0

)
.

Theorem 1: All networks described by (8) in randomly
asynchronous mode will fall into a network gap with a prob-
ability of one when it starts at any initial state in search
space [30].

S i =

1, if
n∑
j
W ijkS jS k ≥ ρ i

−1, otherwise
(8)

From (8), W ij is the synaptic weight from unit i to j. S j
Depicts the state of the unit j and ρ i is the threshold of the
unit i. The weight between neurons i and j represent the
strength of connections between two neurons. Also, the neu-

ron connections are approached W ij as W
(3)
ijk =

[
W (3)

ijk

]
n×n

with [ρ i] n×1 = [ρ 1, ρ 2, ρ 3, . . . , ρ n]T matrix. It is worth
mentioning that W ij comprises two characteristics which are
W (2)

ii = W (2)
jj (no self-connection) and W (2)

ij = W (2)
ji

(d ij = 0), where d is the diagonal of the matrix. The calcula-
tion of the cost function Qδ kRAN3SAT

in DHNN is significant to

reduce the logical inconsistency δ kRAN3SAT

(
Qδ kRAN3SAT

= 0
)
.

The formulation Qδ kRAN3SAT
(9) – (10) that accommodates all

types of logic combinations δ kRAN3SAT is as follows.

Qδ kRAN3SAT
=

1
8

w∑
i=1

 3∏
j=1

O i

+ 1
4

v∑
i=1

 2∏
j=1

O i


+
1
2

u∑
i=1

 1∏
j=1

O i

 (9)

O i =


1
2
(1− SA 1 ), if¬A 1

1
2
(1+ SA 1 ), otherwise

(10)

Here SA 1 is the neuron state where A 1 ∈ {1,−1}. Note that
the formulation of probability for consistent interpretation is
presented in (11). Referring to Table 2, the probability (11) of
consistent interpretation for δ kRAN3SAT independent clauses is
listed. Note that β

(
Z k
i

)
is the number of Z k

i clauses. We can
ensure that the minimum value of Qδ kRAN3SAT

which indicates

δ kRAN3SAT is successfully minimized and obtain optimal val-
ues ofW ij.

P
(
Qδ kRAN3SAT

= 0
)
=

3∏
i=1

(
1−

1
2i

)β (Z k
i

)
(11)

The local field of DHNN is given by (12). S i (t) is denoted
as the final state of neurons whereby W (3)

ijk , W
(2)
ij , W

(1)
i is

the W ij for third, second, and first-order, respectively. The
dynamics of the testing phase in DHNN utilized an activation
function of Hyperbolic Tangent Activation Function (HTAF)
to enable the convergence of final neuron states by avoiding
neuron oscillation [31]. The local field of our proposedmodel
is formulated in (12) and (13) as follows:

h p (t) =
n∑

k=1,k 6=j

n∑
j=1,j6=k

W (3)
ijk S kS j

+

n∑
j=1,j6=i

W (2)
ij S j +W

(1)
i (12)

S i (t) =



1,
n∑

k=1,k 6=j

n∑
j=1,j6=k

W (3)
ijk S kS j

+

n∑
j=1,j6= i

W (2)
ij S j +W

(1)
i ≥ 0

−1,
n∑

k=1,k 6=j

n∑
j=1,j6=k

W (3)
ijk S kS j

+

n∑
j=1,j6= i

W (2)
ij S j +W

(1)
i < 0

(13)

whereby (12) is the general formulation of the local field for
δ kRAN3SAT and (13) is a piecewise function of the generated
final neuron states according to the value of (12). A study
by [17] claimed that Wan Abdullah (WA) method is compati-
ble with DHNN in finding optimalW ij by comparing directly
the coefficients of (9) and Lyapunov energy function (14).
The Lyapunov energy function of DHNN is formulated
as (14).

H δ kRAN3SAT
= −

1
3

n∑
i=1,i6=j6=k

n∑
j=1,i6=j6=k

n∑
k=1,i6=j6=k

W (3)
ijk S iS jS k −

1
2

n∑
i=1,i6=j

n∑
j=1,i6=j

W (2)
ij S iS j −

n∑
i=1

W (1)
i S i (14)

Then the value of H δ kRAN3SAT
achieves the supreme final

energy, and the minimum energy H min
δ kRAN3SAT

is attained

from δ kRAN3SAT that diminishes monotonically [21]. Hence,
H min
δ kRAN3SAT

is calculated by (15).

H min
δ kRAN3SAT

= −
n
(
ψ 3
i

)
+ 2

(
n
(
ψ 2
i

))
+ 4

(
n
(
ψ 2
i

))
8

(15)

Note that, ψ 3
i , ψ

2
i , ψ

1
i ∈ Z (k)i represents the number of 3

literals, 2 literals, and 1 literal existing in δ kRAN3SAT . Alterna-
tively,H min

δ kRAN3SAT
it can be predetermined in the training phase

from the Lyapunov energy function of each independent Z (k)i
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FIGURE 1. Schematic diagram of DHNN-RAN3SAT.

in δ kRAN3SAT , which is guaranteed constant [7]. However, new
data will be incorporated during the retrieval phase of HNN.

Finally, the quality of final neuron states can be examined
through (16) that differentiates the global and local minima
solution. Note that, when (16) is satisfied, the final neuron
states will achieve global minima solution; otherwise, it is
trapped into local minima solution. τ Does the user prede-
termine the tolerance value?∣∣∣H δ kRAN3SAT

− H min
δ kRAN3SAT

∣∣∣ ≤ τ (16)

In this paper, the implementation of δ kRAN3SAT DHNN will
be abbreviated as DHNN-RAN3SAT. [21] utilized RANkSAT
only for k = 1, 2 whereas in this paper, we will discuss
the higher order of k and make the variation of logic by
introducing multiple logical combinations. Fig. 1 shows the
generalized architecture of DHNN-RAN3SAT. In Fig. 1, each

main block represents different orders of k (first, second, and
third), respectively. Within each main block, pink, orange,
and blue colored lines illustrate the connection of each neuron
W (2)

ij = W (2)
ji = W (2)

ii = W (2)
jj . However, for brown

and black colored lines exhibit W (3)
ijk and W (1)

i = W (1)
j =

W (1)
k respectively. The red-colored normal line represents the

combination of the first and third order, the dashed green line
represents the second and third-order, and the dotted purple
line depicts all the combinations of orders k .

IV. EXPERIMENTAL SETTING OF DHNN-RAN3SAT
We will present the methodology of DHNN-RAN3SAT,
algorithm outlines, and performance evaluation metrics in
this section. All involved parameters are defined in Table 3
with values chosen based on the standard settings listed.
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TABLE 3. List of parameters for dhnn-ran3sat.

We report the simulation of DHNN-RAN3SAT δ kRAN3SAT

for different orders of k . For all combinations δ kRAN3SAT ,
a restricted training environment of DHNN-RAN3SAT is
applied to avoid overfitting of maximum fitness achieved
for all neuron states. From Table 3, note that ψ =

(Ai,Bi,Ci,Di,Ei,Fi) where ψ ∈ Z (k)i . A standard set up
by [17] emphasizes that the value ρ is set at zero to guarantee
the energy of DHNN decreases uniformly. Aligned with the
work by [32], HTAF is considered as one of the most stable
activation functions to be implemented in DHNN. In our
study, the Sathasivam relaxation rate was utilized to ‘‘pause’’
the simulation to avoid the neurons oscillating. A suitable
rate was chosen 2 ≤ R ≤ 4 [12]. To verify the effective-
ness of the proposed approach, the experiment is conducted
based on three subsections: the training and testing phase,
energy analysis, and similarity index. Table 4 presents the
list of parameters involved in all performance evaluation met-
rics. Each subsection signifies a different purpose, as listed
below:

• Training phase – To achieve optimal weight manage-
ment via an effective training phase.

• Testing phase – To evaluate the quality of the solution
produced by DHNN-RAN3SAT.

• Energy analysis – To analyze the difference of energy
retrieved by DHNN-RAN3SAT.

• Similarity index – To investigate the quality of final neu-
ron states retrieved by DHNN-RAN3SAT with bench-
mark neuron states.

TABLE 4. List of parameters involved in performance evaluation metrics
(training phase, testing phase, and energy analysis).

TABLE 5. Range value of errors for metrics in the training and testing
phase.

A. TRAINING PHASE AND TESTING PHASE SETTING
The proposed performance metrics in this subsection are the
root mean square error (RMSE), mean absolute error (MAE),
the sum of squared error (SSE), andmean absolute percentage
error, % (MAPE). By referring to the study by [6] and [16],
all chosen performance evaluation metrics are relevant to be
implemented in this study. Note that (17) - (24) are perfor-
mance metrics formulated based on the training and testing
phase. Zero value of errors indicates optimal training and
testing phase. We are using 100 neurons string for training
iterations as well as the same number for training samples.
The training iterations and the number of training samples
of neural networks with the different numbers of neurons are
not always the same. Since the different number of neurons
will create a different number of iterations. Table 5 shows
the range of optimal value of errors for each performance
metric.

RMSE train =

ϕ∑
i=1

√
1
ϕ
(ηmax − η i)

2 (17)
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TABLE 6. Range value of errors for metrics in energy analysis.

MAE train =

ϕ∑
i=1

√
1
ϕ
|ηmax − η i| (18)

SSE train =

ϕ∑
i=1

(ηmax − η i)
2 (19)

MAPE train =
100
ϕ

ϕ∑
i=1

√
|ηmax − η i|

|η i|
(20)

RMSE test =

ϕ∑
i=1

√√√√(
G δ kRAN3SAT

− L δ kRAN3SAT

) 2

ε λ
(21)

MAE test =

ϕ∑
i=1

√
1
ε λ

∣∣∣G δ kRAN3SAT
− L δ kRAN3SAT

∣∣∣ (22)

SSE test =

ϕ∑
i=1

(
G δ kRAN3SAT

− L δ kRAN3SAT

) 2
(23)

MAPE test =
100
ϕ

ϕ∑
i=1

√√√√ ∣∣∣G δ kRAN3SAT
− L δ kRAN3SAT

∣∣∣
|ε λ|

(24)

B. ENERGY ANALYSIS SETTING
Similar to previous performance metrics, this subsection is
essential to evaluate the minimization of energy achieved by
DHNN-RAN3SAT. The energy profile can be determined by
using (25) - (28). Note that Table 6 displayed the range of
optimal value of errors for each performance metric in the
energy analysis.

NGlobal =
ϕ∑
i=1

G δ kRAN3SAT
(25)

NLocal =
ϕ∑
i=1

L δ kRAN3SAT
(26)

RMSEH =
ϕ∑
i=1

√√√√√√√
(
H min
δ kRAN3SAT

− H δ kRAN3SAT

) 2

H min
δ kRAN3SAT

(27)

SSEH =
(
H δ kRAN3SAT

− H min
δ kRAN3SAT

) 2
(28)

TABLE 7. Benchmark neuron states in similarity index analysis.

C. SIMILARITY INDEX SETTING
According to [31], linear initial neuron states of DHNN may
result in biasedness of the testing phase due to DHNN nature
of directly memorizes the final neuron states without gener-
ating a new state. Thus, possible positive (PP) and possible
negative (PN) can be reduced by producing all the neuron
states non systematically by (29).

Si (t) =

{
1, where rand [0, 1] < 0.5
−1, otherwise

(29)

whereby S i was defined earlier in (8). Also, note that in
this experiment, the false positive and the false negative can
be traced in the local minimum ratio. Therefore, analyzing
the similarity index (SI) (29) will be initiated to generate
random clauses and literals for each δ kRAN3SAT combination.
Note that (30) and (31) are the total variation (TV) of DHNN-
RAN3SAT. As mentioned earlier, the similarity analysis will
be conducted by comparing the retrieved final neuron states
with benchmark neuron states listed in Table 7.

TV =
ϕ∑
i=1

ε λ∑
n=1

(Ji)n (30)

(Ji)n =

{
0, if

(
δ kRAN3SAT

)n
=
(
δ kRAN3SAT

)n+1
1, if

(
δ kRAN3SAT

)n
6=
(
δ kRAN3SAT

)n+1 (31)

Note that, −1 represents negative literal of ¬A 1 and 1
depicted positive literal of A 1. According to an example
δ kRAN3SAT in (6), the final neuron states can be generalized
as S maxi = (1,−1, 1,−1, 1, 1, 1, 1,−1, 1). The final energy
S maxi obtained by the proposedmodel guarantees reaching the
global minima solution by (16). The comparison will be ana-
lyzed by implementing the Jaccard Index (JAC) [33], Ochiai
Coefficient (OHI ) [34], and Kulczynski Measure (KZI ) [35].
The occurrence interval of each SI metrics is between [0, 1].
The optimal values of JAC,OHI , and KZI produced by the
proposed model is. Therefore, (32) - (34) summarized the
similarity index used in DHNN-RAN3SAT.

JAC =
a

a+ b+ c
(32)

OHI =
a

√
(a+ b) (a+ c)

(33)

KZI =
1
2

(
a

a+ b
+

a
a+ c

)
(34)

The algorithm of DHNN-RAN3SAT for all orders of k
is implemented in Dev C++ Version 5.11 and executed on
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FIGURE 2. Flowchart of DHNN-RAN3SAT.

an Intel Core i5 8th Gen machine, 4GB RAM. The same
medium specification was utilized to avoid any biasedness.
Fig. 2 explains each configuration of DHNN-RAN3SAT.
Here, the blue blocks represent the process in the training
phase. However, the red blocks represent the testing phase.

V. RESULTS AND DISCUSSION
The purpose of this paper is to analyze the behavior of dif-
ferent combinations δ kRAN3SAT by evaluating several perfor-
mance evaluation metrics. The simulations were conducted
with a specific number of neurons α. We specifically exper-
imented up until α = 120 for training error, testing error,
and energy analysis. Meanwhile, for SI, we stopped α = 110
since the simulation achieved a 100% local minima ratio.

A. TRAINING ERROR
In this section, four performance metrics are presented to
analyze the change in fitness of neuron states. ES facilitates
the training phase to check clause satisfaction. Throughout
this section, we can observe the synaptic weight manage-
ment by the proposed model for all logical combinations
δ kRAN3SAT . According to Figs. 3-6, for all logical combina-

tions δ kRAN3SAT , it is noticeable that the trend δ 2,3RAN3SAT is
more consistent than the others. It needs to be mentioned
from Fig. 3 and Fig. 4 that the value of errors is linearly

FIGURE 3. RMSE train for δ k
RAN3SAT .

increasing as α increase. Note that SSE train the formulation
of SSE was expressed in log y to capture the sensitivity of
accumulated errors in the training phase. Other than that, as α
increases, the value of MAPE is close to 100% in the range of
70 ≤ α ≤ 120. 100% MAPE told us the difference between
maximum fitness and achieved neuron fitness is relatively
large.

Moreover, having a lower percentage of MAPE indicates
a high degree of accuracy, for which it can be said that
the smaller the value MAPE, the better the forecast [36].
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FIGURE 4. MAE train for δ k
RAN3SAT .

FIGURE 5. SSE train for δ k
RAN3SAT .

FIGURE 6. MAPE train for δ k
RAN3SAT .

Consequently, the errors δ
1,3
RAN3SAT and δ

1,2,3
RAN3SAT are

relatively close due to the nature of a similar logical structure

Z (1)i . Nonetheless, δ 2,3RAN3SAT achieved more minor errors due

to the existence of Z (3)i and Z (2)i which has a higher prob-

ability of getting satisfied interpretations compared to Z (1)i .
Here, we can conclude that as α it increases, the probability of
getting Qδ kRAN3SAT

= 0 decreases which indicates the subop-

timal training phase of DHNN-RAN3SAT. This is due to the
nature of ES, which employs ’trial and error’ that cannot keep
the larger size of constraints, or it will accumulate more error

indefinitely [37]. Apart from the technicality of ES, all com-
binations can achieve low errors at α = 10 which leads to an
optimal training phase that emphasized good synaptic weight
management by the proposed model. Meanwhile, the work
by [38] emphasized that a restricted number of learning will
not assure the training phase to achieve higher fitness of
neuron states. Thus, it will be beneficial to study the behavior
of a novel SAT. Therefore, in our simulation, we restricted the
number of learning all possible combinations of δ kRAN3SAT
in DHNN. Also, when the number of neurons increases at
the same time, training errors increase. This has happened
as the number of neurons increases, the probability of get-
ting satisfied interpretation will become lower, and at that
time, it is difficult for neuron string to achieve zero cost
function. The proposed model can be further improved by
implementing a higher number of learning as an effort to
achieve maximum fitness of neuron states by using ES. The
consistent error attained δ 2,3RAN3SAT indicates that this structure
is best in achieving the maximum fitness of neurons in the
training phase.

B. TESTING PHASE
Graphical results of four testing error analyses are shown
in Figs 7-10. The significance of testing error analysis is
investigating the behavior δ kRAN3SAT based on synaptic weight

FIGURE 7. RMSE test for δ k
RAN3SAT .

FIGURE 8. MAE test for δ k
RAN3SAT .
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FIGURE 9. SSE test for δ k
RAN3SAT .

FIGURE 10. MAPE test for δ k
RAN3SAT .

management related to global or local minima solution. After
DHNN-RAN3SAT completed checking clause satisfaction
(minimization of the cost function), the synaptic weight
will be generated through the WA method [11]. The zero
value of cost function will retrieve optimal synaptic weight
(optimal testing phase), resulting in a global minima solu-
tion. Referring to the figures above, DHNN-RAN3SAT
mostly achieved zero errors 10 ≤ α ≤ 30. During this
interval, DHNN-RAN3SAT is in the optimal testing phase
and performs well by producing global minima solutions.
From Figs 7-10, the testing error is zero at α = 10 in the
basis of synaptic weight management, which brief that α =
10 with correct synaptic weight, the model is 100% right.
It is well known that the critical challenge in training a neural
network is how to train them. Introducing the small number
of neurons training/testing will mean that the model will
under-fit the train and test sets. So that why we have to add
more neurons. The testing errors for 10 neurons are even
smaller than the corresponding training errors, which is quite
normal since training error focuses on the neurons’ fitness
while testing error focuses on energy analysis.

On the other hand, DHNN-RAN3SAT is in the suboptimal
testing phase for 90 ≤ α ≤ 120 that achieved the highest
errors. We can always validate the optimal and suboptimal
testing phase with the number of global and local minima
solutions produced by the proposed model. In short, all logic

combinations δ kRAN3SAT show a similar energy profile which
is decreasing monotonically towards equilibrium states [4].
This indicates at α = 100 the number of global minima
solution produced by the proposed model is similar. Linking
to previous information, a study by [39] highlighted the
advantages of adding a bias or noise in an ANN development
that provides a small impact in retrieving more global minima
solution that helps in designing new associative memory of
impulsive DHNN.

Furthermore, the choice of the searching algorithm used
in investigating the quality of the solution of synaptic weight
management is crucial. Our study utilized ES as a searching
algorithm. The ‘‘trial and error’’ nature of ES could affect the
minimization of the cost function [15]. If ES failed to retrieve
optimal synaptic weight, the testing phase would be affected,
thus resulting in local minima solution. Alternatively,
the number of learning can be increased to aid the proposed
model in the resulting optimal testing phase. This is because
more number of iterations can lead to a global minimal solu-
tion. One may ponder why the local minima solution is con-
sidered ‘‘bad’’ in our approach? The local minima solution
is insignificant in our simulation because the higher number
of local solutions will disrupt the similarity measurement
of the final states of the neurons. Therefore, our mentioned
experimental setup helps the network to avoid several local
minima solutions.

Another interesting point is different combinations
δ kRAN3SAT generate different results. δ 1,3RAN3SAT Has reached
the highest errors compared with others. Meanwhile,
δ
2,3
RAN3SAT is themost stable and produces less error in terms of

synaptic weight management. This is due to the logical struc-
ture of various orders of the SAT. The inclusion of third-order
logic is the best combination δ kRAN3SAT because the probabil-
ity of getting a satisfying interpretation for third-order logic is
higher than first-order logic. Besides, the logical structure of
first-order logic can perturb the process of retrieving correct
synaptic weight, thus leading to high testing errors.

C. ENERGY ANALYSIS
In this section, the energy profile and types of solution (global
or local) produced by DHNN-RAN3SAT will be further dis-
cussed. The number of global and local minima solutions
attained by the proposed model is illustrated in Figs. 11-12.
In terms of energy profile, the difference in energy was
analyzed by observing the value of RMSE and SSE between
the minimum energy and final energy, which can be seen
in Figs. 13-14. As α (the number of neurons) increases for all
δ kRAN3SAT logical structures, the number of global minimum
solutions decreases. Note that the logical structure contains
more literals as more clauses exist; thus, more iterations
are needed to produce feasible solutions. Through Fig. 11,
we can observe that δ 2,3RAN3SAT achieved more consistent
global minima solutions due to the nonexistence structure
of k = 1 clauses which has the lowest probability of get-
ting satisfied interpretations compared to δ 2SAT and δ 3SAT .
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FIGURE 11. N Global for δ k
RAN3SAT .

FIGURE 12. N Local for δ k
RAN3SAT .

FIGURE 13. RMSE H for δ k
RAN3SAT .

This signifies that δ kRAN3SAT of δ 1,3RAN3SAT and δ 1,2,3RAN3SAT is
prone to more neuron oscillations. Another fruitful finding
is α = 10 for both Figs. 11-12; we can observe that DHNN-
RAN3SAT was able to retrieve the highest number of global
minimum solutions with no difference in energy. This may
occur due to optimal synaptic weight management that leads
to the optimal testing phase in retrieving the consistent final
neuron states. One may ponder, what does the energy pro-
file signify? The work by Veerasamy et al. [40] incorpo-
rates the numerical method Runge-Kutta 4 to form a mod-
ified Hopfield neural network for a power flow analysis of

FIGURE 14. SSE H for δ k
RAN3SAT .

power system. Their findings indicated that the Lyapunov
energy function is bounded and determines the dynamics gov-
erning the behavior of the Hopfield neural network. In other
words, the energy function in DHNN acts as an indicator
of whether the solutions produced by DHNN-RAN3SAT are
optimal or not. This finding can be supported by the work
of Kasihmuddin et al. [41] which investigates the quality of
solution for other types of Hopfield networks, such as Kernel
Machine (KHNN) and Mean Field Theory (MFTHNN). The
paper stated that the Lyapunov energy function is a key factor
to observe the convergence of DHNN. From Figs. 13-14,
the energy penalties of RMSEH and SSEH is increasing
with α. This phenomenon takes place due to the lower proba-
bility of getting Qδ kRAN3SAT

= 0, which leads to higher energy.

The minimum energy of various δ kRAN3SAT logic is dependent
on the existence of different SAT clauses.

From the findings, it can be seen that δ 1,3RAN3SAT attained
the lowest difference in energy which may explain the logic
being able to achieve the minimum energy compared to other
δ kRAN3SAT logics. In this study, bipolar neuron representation
was utilized instead of the binary that consists of {1, 0}.
The existence of the value zero will eliminate a certain
coefficient that will lead to zero energy. However, in this
study, the Lyapunov energy function is significant to indicate
the process of energy minimization by the proposed model.
In this study, our focus is υ ≤ ϕ (restricted training). In line
with the previous study by [17], many DHNN models were
reported in the nonrestricted training environment achieved
a lower energy profile. Thus, the conclusion is a higher
number of training iteration can lead to global minima energy.
Modifications can be done to improve the quality of the
solutions of DHNN-RAN3SAT. One of the efforts that can
be executed in the testing phase is implementing Boltzmann
Machine to improve the effectiveness of the updating rule
in DHNN, which can reduce neuron oscillation and generate
more global minima solutions.

D. SIMILARITY INDEX
The SI can be expressed as a metric to check the similar-
ity/dissimilarity of various data items. The work by [21]
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FIGURE 15. TV for δ k
RAN3SAT .

suggested that the performance of the SAT with DHNN can
be assessed by using SI. Here we introduce three standard
indexing parameters, which are the Jaccard Index, Kulczyn-
ski Measure, Ochiai Coefficient, and also consider the useful
parameter known as the total variation of neurons (TV ).
In Fig. 15, it can be observed that the highest oscillation is
traced for δ 2,3RAN3SAT in 40 ≤ α ≤ 45. At the same time,

δ
1,3
RAN3SAT and δ1, 2,3RAN3SAT the ups and downs are quite similar.

The total oscillation for δ 1,3RAN3SAT , δ
2,3
RAN3SAT , and δ

1, 2,3
RAN3SAT

is zero at α = 110. Even though δ kRAN3SAT is satisfactory,
ES will interrupt the proposed model to achieve the optimal
training phase (learn inconsistent interpretation). Note that,
from Fig. 12, local solutions attained by the proposed model
increase as α an increase. Thus, the simulation stops α =
110. Linking to the previous findings δ kRAN3SAT is believed to
undergo higher training complexity compared to 2SAT [6],
3SAT [18], and HornSAT [12]. As discussed, this is due
to the fact that the stated studies only utilized systematic,
logical rules where each clause is feasibly easier to achieve
Q δRAN3SAT = 0. It is noticeable that α = 50 the trend

δ
1,3
RAN3SAT is zero and at α = 60 the trend of δ1, 2,3RAN3SAT

reach to the null stage. Overall we can say that, except for

δ
2,3
RAN3SAT , the neuron variation for δ 1,3RAN3SAT , and δ

1, 2,3
RAN3SAT

may not be countable in the interval 50 ≤ α ≤ 120 since,
in the mentioned interval, there are no significant variations.
This happens due to the logical structure of δ 1,3RAN3SAT , and

δ
1, 2,3
RAN3SAT . The influence of the global minimum solution
TV correlates with the number of neurons. As α increases,
the probability of the number of global solutions is going
to decrease. This study casts a new light on reporting three
logical combinations δ kRAN3SAT . The study by [42] and [43]
indicated that a nonsystematic structure of satisfiability capa-
ble of generating diversified solutions. Higher-order of k and
random nonredundant literals δ kRAN3SAT helps in promoting
the high value of TV . Above all, TV relates to the existence
of other neuron states that leads to global minima solution in
other solution spaces.

Fig. 16 JAC is presented. Significantly the total trend in
between 0.46 ≤ JAC ≤ 0.70. Here the highest-lowest

FIGURE 16. JAC for δ k
RAN3SAT .

FIGURE 17. OHI for δ k
RAN3SAT .

FIGURE 18. KZI for δ k
RAN3SAT .

oscillation is noticed in the combination of δ1, 2,3RAN3SAT whereas

δ
2,3
RAN3SAT the trend is more constant where the indexing range

in between 0.55 ≤ JAC ≤ 0.57. Besides, from Fig. 17,
we depict OHI where the indexing range is 0.43 ≤ OHI ≤
0.90. In the SI, the highest-ranking metrics are shown OHI .
In this trend, a more consistent fluctuation is also shown
δ
2,3
RAN3SAT . Finally, in Fig. 18, we have drawn KZIδ kRAN3SAT

different structures k . The range for KZI is 0.64 ≤ KZI ≤
0.84 which is slightly higher than JAC . It needs to mention
that the highest-lowest oscillation occurs in OHI and KZI is
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for δ 1,2,3RAN3SAT . As the purpose of SI metrics is to investigate
neuron variation produced by DHNN-RAN3SAT, a more
dynamic SImetrics formulation should be utilized. Promising
formulation of [44] and [45] can analyze true negatives of
benchmark neuron states and explore a more diversified solu-
tion. At this stage of understanding, we presume (−1,−1)
the solution will create solutions that are linearly independent
of each other. It needs to be mentioned that the SI part
TV shows the highest number of fluctuations. From Fig. 15
to Fig. 18, we see that fluctuation δ 2,3RAN3SAT is more constant

than δ 1,3RAN3SAT and δ 1,2,3RAN3SAT .
Meanwhile the logical rule that achieves the highest global

minimal solutions is very effective for logicminingwhich can
be imposed on numerous fields. The final state of the neuron
can be converted into maximum induced logic. The benefits
from the results of this research can provide benefits to human
resources [7], financial sectors [6], to medical sciences [1].

From the above discussion, we provided a clear concept of
cost minimization, synaptic weight, energy profile, and neu-
ron variation that is the overall behavior of δ kRAN3SAT DHNN.

It can be concluded that all combinations of δ kRAN3SAT were
successfully implemented in DHNN by achieving higher
global minima solutions and diversified final neuron states.
Through our findings gives better insights into a nonsystem-
atic logical rule than the work of Sathasivam et al. [21] in
terms of energy analysis and similarity of final neuron states.
From our results, δ 2,3RAN3SAT is the best logical combination
of δ kRAN3SAT producing lower errors, more consistency in
achieving global minima solutions, and more neuron varia-
tions. However, aligned with the no free lunch theorem [46],
there is no best combination or model we can conclude since
each δ kRAN3SAT provides individually promising findings.
On the other hand, this study limits less than 120 neurons,
unlike [21] that takes up to 300 neurons. This is because of the
learning search of ES. Therefore, the limitations of this work
are that we can improve the proposed model by adding robust
metaheuristics such as a Genetic algorithm or an Election
algorithm. Despite the flexibility of DHNN-RAN3SAT, more
modifications can be made to improve the quality of solu-
tions produced. We can increase the number of learning that
also affected the number of iterations needed in our simula-
tions. With more iterations, the proposed model can generate
more neuron variations, fewer errors, and a global minimum
solution.

E. COMPARISON WITH EXISTING METHODS
Table 8 illustrates a comparisonwith existingmethods such as
2 Satisfiability (δ 2SAT )[22], 3 Satisfiability (δ 3SAT )[23], and
Random 2 Satisfiability (δRAN2SAT )[21] with Random 3 Sat-

isfiability
(
δ
2,3
RAN3SAT

)
. The reason for choosing δ 2,3RAN3SAT

compared to others δ 1,3RAN3SAT or δ 1,2,3RAN3SAT is that δ 2,3RAN3SAT
is the most optimal logical rule in terms of all performance
metric. We compared our proposed logical rule to different

existing established rules. In this section, we consider the
Number of Global Solutions (NGlobal) to verify the effective-
ness of the proposed logical rule with standard methods. The
aim of comparison is to achieve for 100% NGlobal .

TABLE 8. Comparison WITH existing methods.

Based on Table 8, we observe that for α = 30, δ 3SAT
and δ 2,3RAN3SAT generated the highest NGlobal compared to the
logical rule for δ 2SAT and δRAN2SAT . It means that these logi-

cal rules (δ 3SAT and δ 2,3RAN3SAT ) attained 100% global minima

solutions. At α = 30, the NGlobal for δ 2SAT and δRAN2SAT is

lower than δ 3SAT and δ 2,3RAN3SAT . This is due to the lower-order
logical combinations that will decrease NGlobal . It is impor-
tant to notice that δ 2,3RAN3SAT constructs a three-dimensional
decision system improves retrieval phase at DHNN. By intro-
ducing the element of three-dimensional decision system,
δ
2,3
RAN3SAT is able to utilize the optimal synaptic weight dur-

ing the training phase. Furthermore, δ 2,3RAN3SAT logic offers
more structure variability, avoids repeated neuron states, and
retrieve optimal final state of neuron compared to the exist-
ing methods. As a consequence, we can establish a good
agreement that this specific number of neurons δ 2,3RAN3SAT is
consistent with δ 3SAT and also these logical rules outperform
δ 2SAT and δRAN2SAT . Meanwhile, if the number of neurons
increases that is α > 100, the result will be different because
increasing the number of neurons in the logical rule decreases
the probability of P(EP2,3RAN3SAT

) = 0. This weakness can

be remedied by employing metaheuristics algorithm such as
reported in [14] and [15].

VI. CONCLUSION
This paper has proposed a novel RAN3SAT with a differ-
ent logical structure as a symbolic instruction in DHNN.
The proposed DHNN-RAN3SAT reported different logical
combinations, which gave new insights on the behavior
of nonsystematic logical rules for higher-order dimensional
decision systems in achieving the objective functions in each
phase. Since RAN2SAT [21] has a lower probability of min-
imizing the cost function as well as comparatively higher
Lyapunov energy function. So, by utilizing several structures
of RANkSAT, we can get a higher probability of achieving
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the minimum cost function. Consequently, zero-cost func-
tion resulting in optimal synaptic weight management that
also leads to lower energy. In terms of energy profile, it is
clear that the combination for k = 2, 3 in RANkSAT has
shown more consistent interpretation phenomena, which is
one of the other important directions for the next research.
Besides, the high dimensional values imparted a low variation
value in the final neuron variation in any DHNNmodel. Here,
having the almost exact amount of global minimum energy
δ
2,3
RAN3SAT generated more different neuron variations rather

than others.
In the future expansion of this study, based on the obtained

result, the manuscript will benefit the following papers [6],
[7], [16] for further research extension. Meanwhile, the new
metaheuristic approach such as the Grey-Wolf optimiza-
tion [47] and the Billiard Game algorithm [48] will be signif-
icant to optimize the training phase DHNN-RAN3SAT. The
application of DHNN-RAN3SAT can be investigated in real
life by utilizing various data sets from health to the financial
sector.
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