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ABSTRACT In this work, a capacitorless one-transistor dynamic random access memory (1T-DRAM) based
on a polycrystalline silicon (poly-Si) metal–oxide–semiconductor field-effect transistor was designed and
analyzed through a technology computer-aided design (TCAD) simulation. A poly-Si thin film was utilized
within the device because of several advantages, including its low fabrication cost and the feasibility of its
use in high-density three-dimensional (3D) memory arrays. An asymmetric dual-gate structure is proposed
to perform the write ‘‘1’’ operation and achieve high retention characteristics. The proposed 1T-DRAM cell
demonstrates a high sensing margin of 8.73 µA/µm and a high retention time of 704.4 ms compared to
previously reported 1T-DRAMs, even at a high temperature. In addition, the effect of grain boundaries on
the memory performance of the proposed device was investigated, and the results validated the excellent
reliability of its retention characteristics even in the presence of grain boundaries (>64 ms at T = 358 K).

INDEX TERMS Polycrystalline silicon, one-transistor dynamic random access memory, grain boundaries,
metal–oxide–semiconductor field-effect transistor, one transistor dynamic random access memory, dual-
gate.

I. INTRODUCTION
Capacitorless one-transistor dynamic random access memory
(1T-DRAM) has attracted a great deal of attention as a sub-
stitute for conventional one-transistor one-capacitor (1T-1C)
DRAM. Given the difficulty of capacitor fabrication, the
researchers have proposed the 1T-DRAM, which eliminate
the need for capacitor altogether as a substitute for the con-
ventional DRAM. The 1T-DRAM does not use an external
capacitor, and instead relies on the principle of floating body
effect. 1T-DRAMs have the advantage of simple fabrication
and excellent compatibility with logic devices [1]–[11]. How-
ever, the smaller dimensions of these devices tend to limit
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their retention characteristics because of the stronger electric
field between the body and the source/drain junctions. The
stronger electric field increases the recombination/generation
rate of excess holes and the down-scaled 1T-DRAMs have the
short retention time [12]. Therefore, 3D memory arrays can
be a solution to increase the retention time of 1T-DRAMs.
1T-DRAMs based on polycrystalline silicon (poly-Si) have
attracted attention due to the feasibility of obtaining high-
density 3D memory arrays. Poly-Si-based transistors have
previously been employed in 3Dmemory technology because
of their significant advantages related to integrated fabrica-
tion technology [13]–[15].

In this work, a poly-Si metal–oxide–semiconductor field-
effect transistor (MOSFET) based 1T-DRAM cell with
an asymmetric dual-gate structure, to realize superior
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FIGURE 1. Schematic view of the proposed poly-Si MOSFET-based
1T-DRAM cell with asymmetric dual-gate structure.

memory performance, was investigated through a technol-
ogy computer-aided design (TCAD) simulation. Thememory
performance characteristics of the proposed 1T-DRAM cell,
namely, its sensing margin and retention time, were obtained
and analyzed based on parameters calibrated against the
experimental data in [13] to ensure high accuracy. Moreover,
the effect of grain boundaries (GBs) within the poly-Si layers
on the reliability of the device was investigated.

II. DEVICE STRUCTURE AND SIMULATION METHOD
Fig. 1 shows a schematic view of the poly-Si- MOSFET-
based 1T-DRAM cell with an asymmetric dual-gate structure
to realize high memory performance. The main gate is used
to perform both the conventional MOSFET operation and the
program operation, while the control gate is employed to per-
form the program, erase, and hold operations. Furthermore,
an underlap structure is proposed to reduce the electric field
in the depletion region between the body and the source/drain
region, resulting in an increase in the retention time. The
work-functions of the main gate (WFMG) and the control
gate (WFCG) are 4.85 and 5.3 eV, respectively. Poly-Si can
be used as a material of the main gate. Additionally, Ni and
Ir can be used as materials of the control gate [16], [17].
Due to the high work-function of the control gate, the energy
band diagram near the control gate is raised, thus creating a
sufficient potential well for hole storage in the body.

The main gate length (Lg1) is 70 nm, the control gate
length (Lg2) is 50 nm and the gate dielectric (HfO2) thick-
nesses (Tox) are 3 nm each. The doping concentrations of
the source, body, and drain regions are 1 × 1020 cm−3 (n-
type), 1 × 1018 cm−3 (p-type), and 1 × 1020 cm−3 (n-type),
respectively. The device parameters for the proposed devices
are summarized in Table 1. The geometric parameters of
the cell, including its underlap length (Lunderlap) and body
thickness (Tbody), are regarded as the main design variables,
given that they have a critical influence on the cell’s memory
characteristics. The device design and analysis were per-
formed using the Sentaurus TCAD simulation tool. In the
simulation, the Fermi–Dirac statistical model, the nonlocal
band-to-band tunneling (BTBT) model, the Shockley-Read-
Hall (SRH) recombination model, the Auger recombination
model, the trap-assisted-tunneling (TAT) model, the doping-

TABLE 1. Device parameters of the proposed 1t-dram used for
simulation.

TABLE 2. Operating bias scheme for memory performance.

dependent and field-dependent mobility models, the bandgap
narrowing model, and the quantum confinement effect were
all considered to maximize the simulation accuracy [18].
Furthermore, the trap distribution in the GBs of the poly-Si
was calibrated using the experimental data in [13], which is
shown in Fig. 2(b). In Fig. 2(b), the GB had four trap states,
depending on the energy level: acceptor-like shallow trap,
acceptor-like deep trap, donor-like shallow trap, and donor-
like deep trap. As shown in Fig. 2(a), the simulation results
show a good agreement with the measured data using the
calibrated parameters and the experimental data in [13].

III. RESULTS AND DISCUSSIONS
Fig. 3 shows the transient characteristics of the proposed
1T-DRAM cell. The operating bias of the 1T-DRAM per-
formance is summarized in Table 2. Program operation was
performed using the BTBT mechanism. During the erase
operation, the holes that accumulated at the control gate side
of the body region drifted toward the drain region because
of the absence of a potential barrier. As shown in the figure,
the proposed 1T-DRAM cell obtained a high sensing margin
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FIGURE 2. (a) Transfer characteristics of the simulation result with the
calibrated parameters and the experimental data in [13]. (b) GB trap
distribution calibrated using the experimental data in [13].

of 8.73 µA/µm at T = 358 K. In the proposed device, the
electrical characteristics of the body region critically affect
the memory performance. Therefore, various geometric and
electrical parameters, including Lunderlap, Tbody, and the hold
bias of the control gate (VGS2_H), were modulated to optimize
the device performance.

Fig. 4(a) shows the program operation carried via the
BTBT mechanism in the vertical direction between the main
gate and the control gate. The tunneling-based program
operation is used considering that the tunneling mechanism
requires less power consumption compared to that used by
the impact ionization mechanism. Furthermore, during the
program operation, static-power dissipation can be avoided
because there is no bias at the drain region. As shown
in Fig. 4(b), by applying a positive bias of 2.0 V at the main
gate and a negative bias of −1.7 V at the control gate, BTBT
occurs and holes tunnel from the main gate side to the control

FIGURE 3. Transient characteristics of the proposed 1T-DRAM cell.

FIGURE 4. (a) Contour map of the BTBT rate and (b) energy band diagram
of the proposed poly-Si MOSFET-based 1T-DRAM cell in the program
operation. The energy band is extracted at the center of the body region.

gate side in the same direction as the electric field, which
enhances the tunneling rate. The excess holes accumulate at
the control gate side of the body region due to the potential
well, which facilitates hole storage, formed by the high work-
function of the control gate.

Fig. 5(a) and (b) depict both the contour map of the
hole density and the energy band diagram of the proposed
1T-DRAM cell in states ‘‘1’’ and ‘‘0’’, respectively. Since
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FIGURE 5. (a) Contour map of the BTBT rate and (b) energy band diagram
of the proposed poly-Si MOSFET-based 1T-DRAM cell in the program
operation. The energy band is extracted at the 3 nm above the control
gate oxide.

BTBT tunneling occurs in the body region, a large number
of excess holes gather in the body region. When excess holes
exist in the body region, the 1T-DRAM is in the ‘‘1’’ state.
During the erase operation, the stored holes are removed
by the negative bias on the drain region. The state of the
1T-DRAM cell without excess holes is defined as the ‘‘0’’
state. As shown in Fig. 5(a), there is a significant difference
in hole density between states ‘‘1’’ and ‘‘0’’, particularly in
the area close to the control gate. As shown in Fig. 5(b), this
difference entails a different energy band diagram for states
‘‘1’’ and ‘‘0’’ during the hold operation; a larger hole density
can be seen in state ‘‘1’’. It also seems that positive voltage
is applied by the excess holes in the body region and this has
the same effect as energy barrier lowering.

Fig. 6(a) shows the contour maps of the electron current
density in the proposed 1T-DRAM cell during the read ‘‘1’’
and read ‘‘0’’ operations, respectively. Fig. 6(a) shows that the
current density of read ‘‘1’’ is larger than that of read ‘‘0’’. The
read operations are conducted via conventional MOSFET
operation by settingVGS1 to 1.0 V andVDS to 0.5 V. As shown
in Fig. 6(b), the existence of excess holes in the storage region
affects the electric potential of the body region. Excess holes

FIGURE 6. (a) Contour map of the BTBT rate and (b) energy band diagram
of the proposed poly-Si MOSFET-based 1T-DRAM cell in the program
operation. The energy band is extracted at a distance of 3 nm below the
gate oxide.

appear as if positive voltage is applied by the holes in the
body region during the read ‘‘1’’ operation, and this has the
same effect as lowering Vth, resulting in a higher read current.
This difference in hole density corresponds to the difference
between the read ‘‘1’’ current and the read ‘‘0’’ current, and
is the value of the sensing margin of the 1T-DRAM

A. EFFECT OF Lunderlap VARIATIONS
The 1T-DRAM attempts to return to an equilibrium state
during the hold time after program or erase operations. It is
very important to analyze the time required for the device to
return to the steady state because this is closely related to the
retention time which is an indicator of memory performance.
In order to accurately analyze the factors affecting retention
time, it is important to know which factors have a significant
impact on recombination/generation rates in the hold ‘‘1’’ and
hold ‘‘0’’ states. Looking first at the hold ‘‘1’’ state which
occurs after the program operation, the excess holes are grad-
ually released through the body-to-source and body-to-drain
junctions during the hold time. The rate of evacuation holes
from the body is represented by the SRH recombination rate

50284 VOLUME 9, 2021



S. H. Lee et al.: Polycrystalline-Silicon-MOSFET-Based Capacitorless DRAM With Grain Boundaries and Its Performances

of the proposed poly-Si MOSFET-based 1T-DRAM cell with
different Lunderlap during the hold ‘‘1’’ operation. In Fig. 7(a),
the recombination rate reduces as the Lunderlap increases. The
recombination rate is related to the electric field. Fig. 7(b)
shows the electric field of the proposed device with different
Lunderlap along the lateral direction. As shown in the figure,
the electric field at the depletion region decreases as Lunderlap
increases because of the wider depletion region under the
underlap structure. Therefore, the weakening of the electric
field surrounding the storage region leads to a decrease in hole
recombination [19]. When the cell is in the hold ‘‘0’’ state,
its return to equilibrium depends on hole charging mainly
via BTBT generation. In this state, the most critical factor
for generation is BTBT tunneling. BTBT tunneling affects
the return of the device to equilibrium because it generates
excess carriers in the body region during the hold ‘‘0’’ state.
As shown in Fig. 7(c), the BTBT generation rate decreases
with increasing Lunderlap because of the widening depletion
region under the underlap structure as shown in Fig. 7(c).
Consequently, the increase of Lunderlap plays a role in reducing
both SRH recombination in the hold ‘‘1’’ state and BTBT
generation in the hold ‘‘0’’ state, which help to improve the
retention time of the proposed 1T-DRAM.

Fig. 8 shows the sensing margin and retention time of
the proposed device as a function of Lunderlap. As Lunderlap
increases, the influence of the control gate with high work-
function decreases. This causes the depletion area of the
channel to be reduced, and this results in an improvement
in the transfer characteristics related to the sensing margin.
Consequently, the sensing margin is enhanced by increasing
Lunderlap. However, the retention time increases up to Lunderlap
of 10 nm but then subsequently decreases. Retention time is
affected not only by the generation/recombination rate but
also by the number of holes. As Lunderlap increases, the phys-
ical size of the quantum well that can store holes in the body
region decreases. Additionally, the generation/recombination
rate decreases as Lunderlap increases. Below an Lunderlap
of 10 nm, the generation/recombination rate decreases and
hole density decreases, but retention time increases because
the number of holes is sufficient. When Lunderlap is more
than 10 nm, the generation/recombination rate also decreases,
however, hole density in the body region is not sufficient
to cope with the decreasing number of holes by genera-
tion/recombination. As a result, when Lunderlap is greater than
10 nm, the retention time decreases. As shown in the figure,
the proposed 1T-DRAM cell had the highest performance
when Lunderlap = 10 nm, with a high retention time of 424 ms.

B. EFFECT OF Tbody VARIATIONS
Fig. 9(a) shows a contour map of the recombination rate of
the proposed 1T-DRAM cell with varying Tbody. As indicated
in the figure, the recombination rate decreases when Tbody
increases. As shown in Fig. 9(b), a body thickness of 10 nm
has a sufficiently high sensing margin, but its retention time

FIGURE 7. (a) Contour map of the SRH recombination rate and (b) electric
field of the proposed poly-Si MOSFET-based 1T-DRAM cell with different
Lunderlap under hold ‘‘1’’ operation. (c) Band-to-band tunneling
generation rate of the proposed poly-Si MOSFET-based 1T-DRAM cell
under hold ‘‘0’’ operation with different Lunderlap. The electric field and
BTBT generation rate are extracted at a distance of 3 nm above the
control gate oxide.
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FIGURE 8. Sensing margin and retention time of the proposed 1T-DRAM
cell as a function of Lunderlap.

FIGURE 9. (a) Contour of the SRH recombination rate of the proposed
poly-Si-MOSFET-based 1T-DRAM cell during hold operation with varying
Tbody. (b) Sensing margin and retention time of the proposed 1T-DRAM
cell as a function of Tbody.

is not sufficient to satisfy the International Roadmap for
Devices and Systems (IRDS) (<64ms) [20]. The retention
time degrades because of the decrease in the number of excess

FIGURE 10. (a) Energy band diagram of the proposed poly-Si
MOSFET-based 1T-DRAM cell under hold operation with different VGS2_H.
(b) Retention time of the proposed 1T-DRAM cell as a function of VGS2_H.
The energy band is extracted at a distance of 3 nm above the control gate
oxide.

holes in the storage region. The BTBT rates during program
operation are also reduced because of the decrease in the
vertical electric field. In addition, it has a high retention time
at a body thickness of 15 nm, but a poor sensing margin
that is less than 3 µA/um [21]. Consequently, the proposed
1T-DRAM cell has the highest retention time of 424 ms when
Tbody = 12 nm.

C. EFFECT OF VGS2_H VARIATIONS
Fig. 10(a) shows the variation in the energy band diagram
of the proposed 1T-DRAM cell with different VGS2_H. When
a bias is applied at the control gate, the potential energy of
the body region increases, forming a larger storage region.
Fig. 10(b) shows the retention time of the proposed device
with different VGS2_H as a function of hold time. The reten-
tion time is enhanced because of the larger storage layer
with lower VGS2_H. However, when VGS2_H is less than
−0.2 V, the retention time decreases because of the hole
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FIGURE 11. Read currents of the proposed 1T-DRAM cells with and
without GB as a function of a hold time.

TABLE 3. Memory performance of various 1t-dram related papers.

generation caused by tunneling through the thin barriers at
the source/drain junctions. Therefore, it can be concluded that
the proposed 1T-DRAM cell has superior performance with
a high sensing margin of 8.73 µA/µm and a high retention
time of 704.4 ms when VGS2_H = − 0.2 V. It obtains a
long retention time of 704.4 ms at 358 K, and this is almost
11 times longer than that required of DRAM cells by the
IRDS [20].

D. EFFECT OF GBs IN 1T-DRAM
In poly-Si thin-film-based devices, randomly generated grain
boundaries (GBs) exist in the poly-Si region [22]–[24]. Con-
sidering that traps in the GBs adversely affect device perfor-
mance, the effect of GBs on the proposed device should be

FIGURE 12. (a) EC of the proposed devices with and without a GB under
read operation. (b) Recombination rate of the proposed 1T-DRAM cells
with and without a GB under hold operation. The energy band is
extracted at the center of the body region and at a distance of 3 nm
below the main gate oxide, respectively.

analyzed to ensure its reliability. To definitively determine
the effects of the GBs, the proposed 1T-DRAM cell was
simulated including a single GB. In the simulation, Lg1 was
set to 70 nm. Therefore, a single GB was assumed to be
located at the center of the body region, given that the grain
size of poly-Si is several hundred nanometers [22]–[24]. The
trap distribution of the GB, which was applied within the
simulation, was calibrated using experimental data [13] as
shown in Fig. 2(b).

Fig. 11 illustrates the read currents of the proposed
1T-DRAM cells as a function of a hold time both with and
without the GB. As indicated, the read ‘‘1’’ and read ‘‘0’’ cur-
rents are degraded with the GB present. The sensing margin
decreased accordingly from 8.73 to 6.58 µA/µm.

As shown in Fig. 12(a), the energy barrier formed by
electrons that are captured in the GB trap prevents current
flow from the source to the drain. In addition, the hole
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FIGURE 13. Sensing margin of the proposed poly-Si MOSFET-based
1T-DRAM cells with (a) different GB locations and (b) different GB
number as a function of hold time.

recombination and generation rates increase as a result of the
TATmechanism through the GB traps, as shown in Fig. 12(b).
However, the proposed device still exhibited a high retention
time of 340.1 ms at T = 358 K even with the GB, proving its
high reliability.

When GBs exist in the poly-Si body region, the location
and the number of GBs is uncertain because of the random
generation of grains. Therefore, the effect of the GB location
on the proposed 1T-DRAM cells was determined as a func-
tion of hold time. When the GB is located at positions b, c,
and d (Fig. 13(a), inset), there is little effect on the memory
performance. However, when the GB is located at positions
a or e, the read ‘‘1’’ and read ‘‘0’’ currents are increased. Since
the GB-induced energy barrier is located in the depletion
region, the effect on the electron flow decreases. In partic-
ular, when the GB is located at e, the read currents become
larger because the energy barrier decreases due to drain bias,
similar to the drain induced barrier lowering phenomenon

[25]. Therefore, the sensing margin has the highest value of
7.46µA/µmwhen the GB is at e. However, the retention time
such a device is at the lowest value of 207.94 ms, although
this is still demonstration of excellent retention characteristics
(>64 ms when T = 358 K). Fig. 13(b) shows the sensing
margin of the proposed 1T-DRAM cells with different GB
number as a function of hold time. The GB number is limited
to 4 because the body region is not large enough to have
accommodate a larger number of GBs. The sensing margin
decreased from 6.58 to 3.38 µA/µm when the number of
GBs increased from 1 to 4. This is because the increasing
GB-induced energy barrier disturbs the current flow and thus
decreases the read currents and the sensing margin. The
retention time also decreases when the number of GBs in the
proposed 1T-DRAM cell increases. This increases because of
the enlarged region in which TAT occurs. However, in cases
like that, the number of GBs is 4, which means that the
grain size is approximately 14 nm, and the high retention
time of 82.45 ms is obtained when T = 358 K, indicating
high retention performance (>64 ms when T = 358 K).
Moreover, considering grain size, the proposed 1T-DRAM
cell exhibits superior reliability in terms of memory charac-
teristics even at a high temperature. Additionally, as can be
clearly seen in Table 3, the 1T-DRAM proposed in this study
exhibits excellent memory performance when compared to
other devices reported previously.

IV. CONCLUSION
In this work, a novel 1T-DRAM based on a poly-Si MOS-
FET with an asymmetric dual-gate structure was designed
and investigated with TCAD simulations. Various geometric
and electrical parameters were varied to optimize the mem-
ory performance. The simulated 1T-DRAM cell achieved
a high sensing margin of 8.73 µA/µm and a high reten-
tion time of 704.4 ms with the optimized parameters of
Lunderlap = 10 nm, Lg1 = 70 nm, Lg2 = 50 nm, Tbody =
12 nm, Tox = 3 nm, and VGS2_H = − 0.2 V. Furthermore, the
proposed 1T-DRAM cell demonstrated excellent reliability
in terms of its retention characteristics (>64 ms when T =
358 K) with various GB locations and numbers. Therefore,
our proposed 1T-DRAM has significant potential to replace
the conventional 1T-1CDRAMvia implementation of a high-
density 3D memory array.
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