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ABSTRACT Motor imagery (MI) is one of the most common paradigms used in brain-computer interfaces
(BCIs). This mental process is defined as the imagination of movement without any motion. In some
lower-limb exoskeletons controlled by BCIs, users have to perform MI continuously in order to move the
exoskeleton. This makes it difficult to design a closed-loop control BCI, as it cannot be assured that the
analyzed activity is not related to motion instead of imagery. A possible solution would be the employment
of virtual reality (VR). During VR training phase, subjects could focus on MI avoiding any distraction. This
could help the subject to create a robust model of the BCI classifier that would be used later to control
the exoskeleton. This paper analyzes if gait MI can be improved when VR feedback is provided to subjects
instead of visual feedback by a screen. Additionally, both types of visual feedback are analyzedwhile subjects
are seated or standing up. From the analysis, visual feedback by VR was related to higher performances in
the majority of cases, not being relevant the differences between standing and being seated. The paper also
presents a case of study for the closed-loop control of the BCI in a virtual reality environment. Subjects had
to perform gait MI or to be in a relaxation state and based on the output of the BCI, the immersive first
person view remained static or started to move. Experiments showed an accuracy of issued commands of
91.0± 6.7, being a very satisfactory result.

INDEX TERMS Brain–computer interface, EEG, motor imagery, common spatial patterns, virtual reality.

I. INTRODUCTION
Motor Imagery (MI) is defined as the mental process of
imaging a motion act without actually executing any move-
ment [1]. It is one of the most commonly used control
paradigms in brain-computer interfaces (BCIs), as motion
imagery produces similar brain patterns to the ones associated
with the execution of the movement [2]–[4].

The cognitive involvement of a patient can improve reha-
bilitation processes thanks to neuroplasticity [5]. This has
been demonstrated in clinical studies [6]. Therefore, the use
of this paradigm can be used not only for the control of
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mechatronic devices, but as an actively part in rehabilitation
therapies.

However the MI performance is affected by several condi-
tions. First, it requires a high focus of the subject during the
training of the BCI to adjust the classifier. Any distraction by
the subject can easily spoil the data affecting the quality of
the classifier model. Therefore, a high control of the exper-
imental conditions are needed, avoiding any external noise
or motions. On the other hand, when MI is applied to event
related de-synchronization (ERD/ERS) [7], it is important
to assure that the MI epochs considered do not contain any
data after the actual start of motion. If this is not accom-
plished, it is difficult to state that the ERD/ERS detection
is caused by imagery instead of actual motion activity or
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artifacts. Indeed, accuracy drops when only epochs before
the motion are considered for the classifier creation as it is
shown in literature [8], [9]. However, in a restorative therapy
it is important to use MI as a continuous mental act instead
of an event related act (motion intention) to favor the neuro-
plasticity mechanisms [5]. If MI is used in a brain-machine
interface in combination with a mechanic device, such as
an exoskeleton or orthosis, the patient receives the feedback
of the BCI classification as the motion of the device in a
closed-loop control. This means that the MI act is actually
performed during motion, which could not be considered as
a proper MI act by its definition. This makes really hard to
develop a closed-loop control BCI based on maintained MI.
A way to avoid motion artifacts could be to focus on gamma
band (>30Hz) [10] instead of sensory motor bands (alpha
and low beta band 8-19Hz) or applying state of the art real-
time motion artifact techniques [11]. However, this cannot
assure that the analyzed activity is not related to motion
instead of imagery. Specifically, in the case of BCIs for lower-
limb closed-loop control of exoskeletons there are not many
investigations in literature, and they usually do not apply
a maintained MI paradigm, but ERD/ERS as in [12], [13],
Motion Related Cortical Potentials [14] as in [15], Steady
State Visual Potentials such as in [16]–[18] and combinations
of them [19], [20].

An effective way to adjust the model of a BCI based on MI
for its application in closed-loop control could be virtual real-
ity (VR). In this case, the environment can easily isolate the
subject from any external perturbation. In addition, motion
feedback can be provided through the VR environment in
an immersive way without executing any movement. Some
works have explored the combination of BCI with VR or
virtual screen feedback. For instance, in [21] a virtual avatar
was applied in combination with a treadmill for closed-loop
control of a BCI. However, the feedback included motion
and the avatar was shown to the subject by a screen inter-
face, which could not be considered as a proper immersive
VR environment. In addition, the majority of studies that
have employed VR are focused on hand MI [22]–[24] or a
combination of hand with foot MI [25]. Reference [26] shows
an study with VR to promote foot motor imagery but in an
open-loop approach.

Filter Bank Common Spatial Patterns (FBCSP) is a decod-
ing algorithm which is based on spectral and spatial fea-
tures [27]. Whereas there are many studies that has tested
this algorithmwith offline competition datasets to distinguish
among different motor imagery tasks [28], [29], there are
only a few that have applied this methodology for the closed-
loop control of an external device [30]. Additionally, in the
literature there are different variants of FBCSP that have
reported higher accuracies in offline competition datasets
[31], [32]. However, they have not been tested in an online
approach applied to the whole EEG signal trial, but only to
selected fragments to be processed. In addition, these FBCSP
variants need to estimate hyperparameters for the selection
of optimal features, which is time consuming and would

affect the experimental length of online trials. Consequently,
it difficults its application for a real experiment with patients
in which the duration of the session is crucial, as otherwise
subjects could suffer from fatigue.

The current research explores the use of VR as a mean to
improve the MI task execution. This could help the subjects
during the training phase of the classifier. This is performed
in open-loop control in order to create a classifier model able
to separate the classes. Usually, the classes to consider are rest
vs. MI walk, and it is critical for the subject to be focused on
the mental tasks avoiding any external distraction in order to
create a robust model to be used during the closed-loop test
trials.

The paper is organized in two experiments. In both,
FBCSP was employed for pattern decoding. First experiment
explored the use of an immersive VR environment in com-
parison to a screen interface. In order to take into account
balance issues during MI, both experiments were repeated
while the subject was seated and standing up. This first step of
the research assessed the accuracy of the proposed BCI as the
index to compare the performance of the different interfaces.
The second part of the research presented a case of study for
the closed-loop control of the VR environment by means of
the BCI.

II. MATERIAL AND METHODS
A. PARTICIPANTS
Five subjects participated in the study (mean age
29.8± 6.46). They were informed about the experiments and
signed an informed consent in accordance with the Decla-
ration of Helsinki They did not report any known disease
and had no movement impairment. All subjects had some
experience with BCI, but not with the same experimental
setup or VR. All procedures were approved by the Respon-
sible Research Office of Miguel Hernández University of
Elche.

B. EQUIPMENT
EEG signals were recorded with a 32 electrode system acti-
Cap (Brain Products GmbH, Germany). The electrodes (FZ,
FC5, FC1, FCZ, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2,
CP6, P3, Pz, P4, PO7, PO3, PO4, PO8, FC3, FC4, C5, C1,
C2, C6, CP3, CPz, CP4, P1, P2) were placed following the
10-10 international system, on an actiCAP (Brain Products
GmbH, Germany). The signals of each channel were ampli-
fied using a BrainVision BrainAmp amplifier (Brain Products
GmbH, Germany), and then transmitted to the BrainVision
recorder software (Brain Products GmbH, Germany). Ground
and reference electrodes were located in the right and left ear
lobe respectively.

The VR hardware and software used consisted of a VIVE
HTC headset (HTC, Taiwan) (2160 × 1200 resolution,
1080× 1200 per eye, 90 Hz refresh rate) that participants
wore, two base stations that tracked the exact location of the
headset and Steam software (Valve, United States).
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FIGURE 1. Experimental design. In experiment 1 (a), 4 approaches of BCI with visual feedback were tested offline and results were compared.
In experiment (b), subjects first performed trials in which the visual feedback was predefined and these trials were employed to train the BCI classifier.
Afterwards, subjects performed closed-loop trials in which the visual feedback changed based on the output of the BCI classifier previously trained. First,
data was recorded. Then, it was pre-processed with different frequency filters and common spatial patterns were extracted from each frequency band.
Finally, the algorithm performed a classification in two events: MI or relax.

C. EXPERIMENTAL DESIGN
Two different experiments were conducted in which users
had to perform MI of gait. The objective was to investigate
if it is possible to differentiate between periods of MI and
resting state while subjects get only visual feedback. In the
first experiment, different approaches for the visual feedback
were compared and the performances were calculated offline.
In the second experiment, the approach that showed the high-
est performance in experiment 1 was employed for closed-
loop online sessions. The schema of the experimental setup
can be seen in Fig. 1.

1) EXPERIMENT 1
In this experiment the BCI performance was compared when
users got visual feedback using a screen or a VR environment.
Visual environment consisted of an star-ship corridor. The
corridor followed a repetitive pattern to avoid any visual
distraction, but allowing an easy perception of speed and
motion. During the MI periods, the first person view moved
recreating the gait action through the VR corridor, creating
a realistic motion sensation thanks to some minor balancing
motion animations of the camera. Otherwise, first person
view was static during periods of resting. An example of
the screen view of the corridor can be seen in Fig. 2. Two
other conditions were compared: when subjects were phys-
ically standing still and when they were seated in a chair.

FIGURE 2. Visual feedback. During the experiment, users get visual
feedback that is a corridor that can move as if the user is walking through
it or it can be static.

The objective of this comparison was to study if the feeling
of stability, especially when using VR, has an effect on the
performance. The sequence of experiments with these four
conditions was randomized for each subject. Fig. 3 shows an
example of a participant with VR and standing.

Subjects had to perform trials with a series of mental tasks
as can be seen in Fig. 4(a). They had to alternate periods of
motor imagery of walking with resting. There was a visual
cue that indicated the beginning of each task. In order to avoid
visual evoked potentials, the period of 2 seconds after the cue
was labelled as preparation task and was not considered for
further analysis. The protocol had an extra class called ‘Free’
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FIGURE 3. Participant doing a trial with visual feedback provided by
virtual reality equipment. One laptop runs the BCI algorithm and the
other one controls the virtual reality environment.

FIGURE 4. Protocol of trials for experiment 1 (a) and experiment 2 (b).

in which subjects could rest and do free tasks as swallowing
or blinking. The protocol of Fig. 4(a). was repeated 6-8 times
for each one of the 4 approaches: VR+ standing, VR+ sitting,
screen + standing, screen + sitting. Two subjects performed
a session with 8 trials of each procedure and the other one
participated in two sessions, but with 6 trials. The reduction
to 6 trials in the third subject was done in order to limit the
protocol times based on the feedback of the first two subjects
to avoid fatigue.

2) EXPERIMENT 2
The approach in which subjects were standing still and using
VR was employed for closed-loop online sessions. The first
part of the session consisted of the open-loop trials used for
the classifier training and the second part of the closed-loop
trials used to test the performance of the BCI in real time.

The protocol of each kind of trial can be seen in Fig. 4(b).
In the first part of the session, each subject performed the
10 open-loop training trials. In addition, the performance of
these training trials was calculated offline following a leave-
one-out cross-validation. Afterwards, each subject performed
5 closed-loop trials. While in open-loop trials, first person
view feedback was previously defined based on the protocol
as in experiment 1, in closed-loop trials, first person view
motion was based on the output of the BCI.

D. BRAIN COMPUTER INTERFACE
The BCI consisted of four phases of pre-processing, feature
extraction, classification and issuing commands.

For both experiments, EEG signals were recorded at a sam-
pling frequency of 500Hz. In experiment 1, data were anal-
ysed offline following a pseudo-online approach, whereas all
the analysis was done online in experiment 2. From each
trial, epochs of 1s with 0.5s of shifting were extracted and
processed.

1) PRE-PROCESSING
The first pre-processing step was a notch filter at 50Hz to
remove the contribution of the power line. It was followed
by a high-pass filter at 0.5Hz. For feature extraction, FBCSP
algorithm [27] was employed to get spatial features asso-
ciated with different frequency bands. As the first stage of
FBCSP algorithm, a filter bank of band-pass filters was
applied to study different frequency bands. Focusing on the
MI, 4 band-pass filters were applied to get alpha and beta
waves: 5-10Hz, 10-15Hz, 15-20Hz, 20-25Hz. In order to
mitigate artifacts caused by the movement of electrodes or
wires, they were fixed with clamps and a medical mesh.
Additionally, subjects were asked to not blink, swallow or
chew during periods of MI and resting state.

2) FEATURE EXTRACTION
Discriminant characteristics associated with each brain task
were extracted from each pre-processed windows of data for
classifier training and testing. The second stage of FBCSP
algorithm was applied to signals from each filtered frequency
band. It designs spatial filters that enhance the differences
between two types of EEG patterns in terms of their variances
[33]. Thus, given an EEG signal,X , that hasN∗T dimensions,
in which N is the number of channels and T is the number of
samples, the algorithm estimates a matrix of spatial filtersW .
In this case, the two classes to discriminate are MI (X1) and
rest (X2). The normalized covariance matrix for each class is

C1 =
X1XT1

trace(X1XT1 )
, C2 =

X2XT2
trace(X2XT2 )

. (1)

X1 y X2 are calculated by averaging over all the signals
from each class. The composite spatial covariance matrix is
obtained with the sum of these averaged normalized covari-
ance matrices and can be factorized as

C = C1 + C2 = U06UT
0 . (2)
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U0 and 6 are the eigenvectors and the diagonal matrix of
eigenvalues respectively. The transformation (3). converts the
averaged normalized covariance matrices as (4).

P = 61/2UT
0 (3)

S1 = PC1PT , S2 = PC2PT (4)

The factorization of S1 and S2 are computed as (5). They
have common eigenvectors, and the sum of both matrices of
eigenvalues is the identify matrix. Therefore, for an eigenvec-
tor, if S1 has the eigenvalue s1, S2 will have s2 = 1− s1.

S1 = U61UT , S1 = U62UT and 61 +62 = I (5)

The projection matrix is obtained as

W = UTP. (6)

The original signal S can be projected into another space
of uncorrelated components. Columns ofW−1 are the spatial
patterns.

Z = WX (7)

The resulting signal Z has the same dimensions as
S (N ∗ T ), but first and last rows are the components whose
variances are more suitable for discrimination between the
two classes. These components are associated with the largest
eigenvalues of 61 and 62. Consequently, only the variances
of the m first and last components of Z are considered for
feature extraction, which is defined as Zp.
The variances of Zp are computed and normalized with the

logarithm as

fp = log
var(Zp)∑2m
i=1 Zp

. (8)

Finally, fp is the vector of features and has
(fbands ∗ 2 ∗ m) ∗ T dimension. In this case, since there are
4 frequency bands filtered out and m was set to 4, the dimen-
sion is 32 ∗ T .

3) CLASSIFICATION
The classifier employed for both experiments was the Linear
Discriminant Analysis (LDA). In experiment 1, trials were
evaluated performing cross-validation leave-one-out for each
approach separately: VR + standing, VR + sitting, screen
+ standing, screen + sitting. Once the vector of features, fp,
was obtained for each epoch of data for all the trials of each
approach, the classifier was trained with all the trials but one,
and tested with the unused one. This process was repeated
using every trial once as test.

In experiment 2, the classifier was trained with open-loop
trials. Afterwards, during closed-loop trials, each epoch of
data was classified as MI or resting state in real time.

4) OUTPUT COMMANDS
In closed-loop trials of experiment 2, VR environment was
controlled by commands issued by the BCI. The commands

were chosen based on the prediction of the classifier and the
following rules:

• During the periods of free and preparation tasks, com-
mands cannot be issued. The first two seconds of prepa-
ration are not considered to avoid any evoked potential
due to the user interface message shown to the subject at
the beginning of the prepare rest or MI tasks.

• The prediction of the classifier was 1 for MI and 0 for
resting state. This prediction was averaged every 3s.
If the resulting index was higher or equal than 0.7,
the command issued was to move the environment and if
it was lower than 0.7, the command issued was to stop.

• During 3s new commands cannot be sent.

E. EVALUATION
Asmentioned previously in II-D3, trials of experiment 1 were
evaluated using cross-validation leave-one-out. The same
method was employed for the open-loop trials of experi-
ment 2. The performance was assessed with the percentage
of correctly classified epochs of data during MI and resting
state tasks. On the other hand, the performance of closed-
loop trials of experiment 2 was evaluated with the following
indices:

• Accuracy: percentage of epochs of data correctly
classified.

• %Commands: percentage of epochs of data with correct
commands.

• Accuracy commands: percentage of correct commands
issued.

• True Positive Ratio (TPR): percentage of MI periods
(each trial has 3) in which the VR environment is
moving.

• False Positives (FP) and False Positives per minute
(FP/min): moving commands issued during rest periods.

III. RESULTS
In this section, the results of the experiments described are
presented.

A. EXPERIMENT 1
In experiment 1, subjects performed trials with periods of MI
and resting while they were receiving visual feedback with
VR or a screen. Additionally, they were standing up or seated.
Results are shown in Table 1.

An statistical analysis was performed in Rstudio to test if
the differences among the procedures were significant. The
chosen test was the repeated-measures ANOVA to study the
differences between VR/screen and standing/seated. Firstly,
the assumptions made by the ANOVA were verified:

• No significant outliers were identified.
• Shapiro-Wilk test was employed to assess if the per-
formance indices obtained with each protocol followed
a normal distribution. Results showed that all groups
followed a normal distribution with a pvalue < 0.05.
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TABLE 1. Results obatained in experiment 1.

• The variances of the differences between protocols must
be equal, which is defined as sphericity. This assumption
was tested with the Mauchly’s Test and the results con-
firmed it (pvalue < 0.05).

The repeated-measures ANOVA was used to study the
differences of subject performances based on the visual feed-
back and the position of the user. The accuracy was defined
as the percentage of correctly classified epochs per trial.
From the results of these tests, no significant differences were
identified between VR and screen, standing and seated and
the combination of both (pvalue > 0.05).

Since subjects showed different behaviour to the protocols,
it was tested if there were statistical significant differences
among them with one-way ANOVA. Firstly, it was tested
the normality assumption for the data of each group with
the Shapiro-Wilk test. Results revealed that data of S11 and
S13 followed a normal distribution but data of S12 did
not. Therefore, the non-parametrical test Kruskal-Wallis was
employed with a pairwise Mann-Whitney test. Performance
of S12 differs significantly from S11 and S13. The average
accuracy for subject S12 was 76.89 ± 10.14, 67.94 ± 10.20
for subject S11 and 64.14± 7.13 for subject S13.
Finally, the data from each subject was analyzed inde-

pendently. Two-way ANOVA was applied for S11 and
S13 because normality and homoscedasticity assumptions
were verified. However, in case of S12 the normality
assumption was not fulfilled so the Kruskal-Wallis test was
employed. Results from S11 and S13 showed significant
differences in terms of the visual feedback.

Although some subjects indicated they experienced
fatigue, the average performance of the last procedure was
similar. It is difficult to say which procedure was the best in
terms of performance due to significant differences among
users. However, VR and standing had the highest accuracy in
the majority of subjects.

B. EXPERIMENT 2
Experiment 2 was divided in two parts. First, subjects per-
formed open-loop trials in order to train the BCI classifier.

TABLE 2. Results obtained in open-loop trials in experiment 2.

Afterwards, they performed closed-loop trials in which the
visual feedback of the VR environment could change based
on the output of the BCI.

Results of open-loop trials are reported in terms of accu-
racy of correctly classified epochs as experiment 1. They can
be seen in Table 2. The total average classification accuracy
of subject S21 is 82.3± 6.0 and the accuracies inMI and relax
events are 88.1 ± 13.4 and 76.5 ± 13.4 respectively. Regard-
ing S22, the average classification accuracies are 84.6 ± 6.4
in total, 82.3 ± 8.8 in MI events and 86.9 ± 8.8 in relax
events.

Table 3 summarizes the performance of closed-loop trials.
The average value of Accuracy is 71.7 ± 8.9 for S21 and
77.3 ± 8.6 for S22. This metric is equivalent to %total of
open-loop trials. %Commands also provides a measure that
is evaluated per epoch, but it is focused on the commands
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TABLE 3. Results obtained in closed-loop trials in experiment 2.

issued. From the results, it can be pointed out that %Com-
mands is always higher than Accuracy. On the other hand,
TPR is 100% for all trials, which means that there is an
activation in all MI events. Regarding FP/min, S22 had a
lower rate of False Positives than S12. A similar pattern of
results was obtained in open-loop trials in which S22 had
higher Accuracy in relax events.

The spatial patterns of motor imagery and relax of S21
and S22 can be seen in Fig. 5 and Fig. 6 respectively.
Results from S21 show that electrodes CP1 and CP2 seem
to have a relevant role in MI of gait in frequencies from 5 to
20Hz. In relax events, electrode Pz is the one highlighted at
15-25Hz. Regarding S22, the patterns are different. In relax
events, the most significant electrode is FCz followed by
FC1 and FC2 at 15-25Hz. In MI of gait, the distribution of
relevant areas is scattered for all frequency bands considered.

IV. DISCUSSION
Results from experiment 1 showed that visual feedback pro-
vided by VRwas related to higher performances in the major-
ity of cases. However, no statistically significant differences
were found. With regard to the position of the user, there
were not notable differences between standing and being
seated. Intrinsic within-subject differences may affect perfor-
mances more than other factors, such as procedure. A similar
conclusion was reached by [24], although their work was
focused on handMI. They compared the performance of users
and their embodiment when they were using VR or watch-
ing a screen. Whereas they found a trend for better perfor-
mance and embodiment in VR, they could not find significant
differences.

In experiment 2, the percentage of correctly issued com-
mands (%Commands) is slightly superior than the percentage
of correct outputs (Accuracy) and in some cases, the differ-
ence is considerable. This might be due to the fact that main-
taining MI or a state of relaxation during long periods can
be challenging. It is easy that subjects can get distracted and
eventually center their attention in another task. Therefore,
by averaging the output of the classifier, short deviations can
be mitigated. These findings are in line with the research
shown in [10].

FIGURE 5. Spatial patterns for subject S21 that best discriminate between
rest and MI classes.

The spatial patterns from subjects S21 and S22 show inter-
subject variability with respect to the MI pattern. A similar
conclusion was reached by [34]. They found different opti-
mal spectro-spatial characteristics across subjects and ses-
sions which could be explained by the non-stationary nature
of EEG but also unknown factors. In addition, the FBCSP
methodology was employed with a motor imagery compe-
tition dataset and the spatial patterns showed dissimilarities
across subjects [27].
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FIGURE 6. Spatial patterns for subject S22 that best discriminate between
rest and MI classes.

Inter-subject differences with regards to MI BCI perfor-
mance as well as underlying neural mechanisms remain
unclear. Reference [35] studied which characteristics of the
fronto-parietal attention network (FPAN) could play a rele-
vant role in the prediction of the performance of the BCI.
They observed that certain FPAN structural and functional
features could be associated with higher or lower perfor-
mance. Furthermore, the presence of certain cognitive states
during resting state also appears to be associated with the
performance [34].

In line with previous studies, the current work addressed
inter-subject variability with subject specific modeling BCI
[35]. CSP are adapted to every subject and session.

Since it was demonstrated that some users find it more
difficult to modulate brain rhythms in a volitional way, future
research could focus on adaptive training approaches. So for
example, some subjects could need more training sessions
or more trials in opened-loop control before starting with
closed-loop control. There are some methodologies in the
literature that have demonstrated to predict the BCI perfor-
mance of a user [36]–[38]. Therefore, these neurological
predictors could be employed to identify which individu-
als would need more training and more assistance by the
researchers before starting the experiment.

On the other hand, it is important to highlight that the
percentage of correctly classified epochs is lower in closed-
loop trials (Accuracy) than in open-loop trials (%total). This
does seem to depend on the fact that during closed-loop trials,
subjects know how good they are performing, so they have an
additional element that could affect their focus on the mental
task. Similar results were reported by [25] in which it was
performed hand and foot MI; and [39], where hand MI is
studied using an exoskeleton located next to the subjects as
feedback.

When comparing the results to [25], the average Accuracy
of online closed-loop sessions is slightly superior in our
proposed algorithm. However, their experiment is based on
the classification between hand and foot MI and our approach
is based on the distinction between MI of gait and rest.

Reference [26] shows an study with VR and functional
electrical stimulation to enhance foot MI in an open-loop
approach. The average accuracy was 78.1 ± 7.6 for VR and
84.8.1 ± 7.0 for the combination of VR with stimulation.
These metrics can be confronted with %total in open-loop
trials from experiment 2. While the performance is slightly
superior for the appliance of functional electrical stimulation,
the results achieved with our algorithm are higher in terms of
non-stimulated VR.

Even though the study of [21] had a different experimental
setup including a treadmill, it was based on footMI, providing
visual feedback through a screen. They reported an accuracy
of 71% correctly classified epochs in open-loop trials and
70% in closed-loop trials. By comparing these metrics to
%total in open-loop trials and %Commands in closed-loop
trials, our approach showed a greater performance.

In [40], it is presented a BCI based on three brain tasks
(left hand MI, right hand MI and foot MI) in which users
did not get any feedback during training. Although it is not
a direct comparison between foot MI and rest, the accuracy
obtained during foot MI in training phase can be confronted
to %MI from our open-loop trials. It is shown an average
accuracy of 80.5±5.9which is lower than the results from our
approach. Consequently, results suggest that the employment
of visual feedback can enhance the realization of MI.

The performance of maintained MI or rest state can be
challenging for subjects as they can be suddenly distracted
from their task. As a consequence, the feedback from the
VR environment can be negative, i.e. different from what was
expected, and false movements or false stops can happen.
Previous studies have assessed the level of attention of the
subject during the experiment and based on it, the output
commands were adapted so the number of false positives can
be reduced [10]. Future research could combine our MI BCI
with another one that measures the concentration/attention of
subjects.

V. CONCLUSION
In this paper, it is proposed the employment of VR to provide
real-time feedback when subjects are performing MI of gait.
Since subjects are static, it can be assured that the BCI
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algorithm is detecting MI and not the actual brain activity
associated with motion. Firstly, it was compared if the immer-
sion of the subject in the visual feedback paid a relevant role.
It was checked that the visual feedback provided by VR was
related to higher performances in most of the cases. On the
other hand, the stability of the subject was also studied, but
not differences were found between being seated or standing
during the trials. Secondly, two subjects took part in online
closed-loop sessions. They first performed some trials to train
the classifier and then, they performed trials in which they
received feedback in the VR environment based on the output
of the BCI. The average accuracy in open-loop trials was
83.5±6.2. Regarding closed-loop trials, the average accuracy
of predictions was 74.5 ± 8.8. and the average accuracy of
commands, 91.0 ± 6.7. These real-time closed-loop results
improve the outputs of other methodologies presented in
literature.

Future work could design experiments that start with ini-
tial VR sessions. Therefore, subjects could learn to modu-
late their brain rhythms in an immersive environment that
mitigates external distractions. Additionally, as the feedback
provided by the VR environment is only visual, it is safer than
any motion-related feedback, especially for users with motor
disabilities with limited experience in the use of orthosis.
Therefore, subjects could start with a BCI that controls a
VR environment and when a certain level of performance
is achieved, they could try other controlled devices, such as
robotic exoskeletons.

Future research will study the introduction of a BCI with
preliminary VR sessions before the subject employs a lower-
limb exoskeleton in closed-loop control. It will assess the pos-
sibility to improve the BCI control success rate, but also the
reduction of the training time needed to control successfully
the exoskeleton.
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