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ABSTRACT A wide range of applications of the unmanned aerial vehicle (UAV) have been observed in
the past few years, and path planning is one of the most critical issues that require to be resolved. UAVs are
still prone to meteorological impediments such as thunderstorms, ice accumulation, and severe convective
weather for the safety of flights. This paper proposes ameteorology-aware path planningmethod based on the
improved intelligent water drops (IIWD) algorithm. The algorithm consists of both static and dynamic path
planning. In the static path planning phase, ice accumulation and the Richardson number are consideredwhen
determining the trajectory with low risk. In the dynamic path planning phase, the latest forecast products are
adopted to modify the planned path, and the virtual potential force is applied to adjust the flight direction of
the UAV when encountered with severe convective weather. The validation and efficiency of the proposed
algorithm are verified via simulations in comparison with the ant colony optimization, genetic algorithm,
and Q-learning algorithm, where the quality of our algorithm’s performance in terms of flight time and risk
degree is determined. Meanwhile, the risk degree of the UAV flight path at different altitudes is analyzed.
The simulation results show that the average flight speed decreases, and the risk degree increases along
with the descending of the flight altitude, respectively, which is found to be in consensus with the theory of
meteorology.

INDEX TERMS Meteorology-aware path planning, UAV, dynamic environment, improved intelligent water
drops algorithm.

I. INTRODUCTION
With the development of satellite communication, micro-
electronics, and composite materials, we have observed the
widespread applications of unmanned aerial vehicles (UAVs)
in various fields in the past few years [1]. As human operators
are not required to operate on board, UAVs are more suitable
for hazardous or mechanized tasks. For example, in military
terms, UAVs are often used to perform reconnaissance, fire
strikes, decoys, and other tasks [2]. In the field of agriculture,
UAVs can significantly improve the efficiency of farmland
irrigation [3]. In the scenario of environmental detection,
UAVs are capable of obtaining high-resolution data with a
low flight altitude. Moreover, UAVs have great potential to
become the carrier of the logistics distribution in the future,
thus reducing the cost of manual distribution.

The associate editor coordinating the review of this manuscript and
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According to the definition given by the Department of
Defense (DoD) of the United States in the roadmap of the
unmanned system [4], the UAV system is composed of neces-
sary equipment, network, and UAV operators. In some cases,
the UAV system also includes launch devices. It can be seen
that the UAV plays the role of mission executor in the entire
unmanned system [5]. Before carrying out the mission, it is
necessary to plan the UAV path according to the mission
requirements, which is considered one of the most important
parts of UAV mission execution. UAV path planning aims
to find the optimal path between the starting point and the
destination point. The path is required to achieve the shortest
length, fastest time and solve the problems of collision-free
and obstacle avoidance.

Generally, there are four steps in UAV path planning.
Firstly, the target flight area is divided into dispersed grid
points, i.e., the search graph. After designing the search
graph, the information related to the grid points can be
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determined to transform the path planning problem into a
graph search problem. Secondly, the grid points’ character-
istics are updated in the search graph corresponding to the
decision conditions of the path search at the beginning of
each time slot. Thirdly, the optimal or the near-optimal path is
calculated according to the path planning algorithm. Finally,
the trajectory smoothing algorithm is applied for smoothen-
ing the obtained path.

Meteorological factors play a vital role in the navigation
of the UAV. An accident survey of 2062 aviation accidents
from 1999 to 2010 showed that weather-related accidents
occupy 7% among all cases [6], which means that mete-
orological factors have a significant impact on the safe
flight of aircraft. Moreover, reasonable use of wind can
significantly reduce flight time and achieve the economic
benefits of reducing fuel consumption. With the enrichment
of various forecast products such as satellite cloud images,
radar echoes, and ground/high-altitude observation data,
the relationship between flight activities and meteorological
conditions is changing from the meteorological conditions
determine whether the flight mission is able to carry out
to how to fly under complex meteorological conditions [7].
Although there are a few reports on the impact of meteorolog-
ical conditions on the UAV flight, UAV, like manned aircraft,
can be affected by severe convective weather, thus causing
safety risks. However, in previous studies, most researchers
have not considered the impact of meteorological factors on
UAV path planning.

In this paper, the UAV path planning model based on
meteorological factors is constructed, and an improved intel-
ligent water drops (IIWD) algorithm is proposed to solve
this NP-hard problem. The intelligent water drops (IWD)
algorithm is inspired by the behavior of rivers and the
interaction of water drops and soils in the river bed. This
algorithm has been applied to many fields of natural science
and engineering science, demonstrating great advantages and
potential [8], [9].

To the best of the authors’ knowledge, the basic IWD
algorithm has not been adopted for meteorology-aware path
planning. This fact motivated us to develop this algorithm
to find a near-optimal solution to the problem. To solve this
problem, an improved intelligent water drops algorithm for
UAV path planning is proposed. This algorithm consists of
both static and dynamic path planning. In the static path plan-
ning phase, ice accumulation and the Richardson number are
taken into consideration when constructing the cost function.
In the dynamic path planning phase, the latest forecast prod-
ucts are adopted to modify the planned path, and the virtual
potential force is applied to adjust the flight direction of the
UAV when encountered with severe convective weather. The
main contributions of this paper are as follows:

1) Presenting improved intelligent water drops (IIWD)
algorithm as a new swarm-based nature-inspired opti-
mization method, which has not been adopted in the
literature so far to tackle the meteorology-aware path
planning.

2) Taking into account of meteorological factors such
as wind speed, temperature, and relative humidity,
the two indices, namely, ice accumulation and Richard-
son number, are selected to define the risk degree of the
UAV path planning. The cost function is formulated by
considering the path risk factors, wind direction, and
wind speed jointly.

3) The path planning framework of the UAV in the
dynamic environment is constructed. Firstly, when the
UAV receives new forecast products, it replans the path.
Secondly, when encountered with sudden dangerous
weather, the virtual potential force algorithm is adopted
to dynamically adjust the flight direction of the UAV,
thus ensuring flight safety.

The rest of the paper is organized as follows. The litera-
ture review of the state-of-the-art is presented in Section II.
The problem description and modeling are presented in
Section III. The improved intelligent water drops algorithm
is described in Section IV. The effectiveness of the proposed
algorithm is verified via simulation in Section V. Finally,
the conclusion of this paper is drawn in Section VI.

II. LITERATURE REVIEW
The research on UAV path planning has achieved fruitful
results. Scholars have studied this problem from different
perspectives using various methods. This section reviews the
literature from the following two aspects: the path planning
algorithms and the UAV path planning under meteorological
conditions.

A. PATH PLANNING ALGORITHMS
Path planning algorithms search for a feasible trajectory
between the starting point and the destination point after
determining the environmental conditions. The existing path
planning algorithms are primarily divided into the following
four categories: the search algorithm based on (1) geomet-
ric models, (2) probability sampling, (3) artificial poten-
tial field, and (4) intelligent algorithm [10]. The search
algorithms based on geometric models are classical path
search algorithms, which belong to discrete optimal plan-
ning. Chen et al. [11] compared the A* algorithm with the
genetic algorithm (GA) and ant colony optimization (ACO)
algorithm and considered reducing the fuel consumption of
the UAV in path planning. Song and Hu [12] proposed an
improved A* algorithm, where they constructed a weighted
graph according to the cost incurred in the path. Simula-
tions show that the planned path distance can be effectively
reduced. Koenig and Likhachev [13] investigated the D*
algorithm, which is a combination of the dynamic A* algo-
rithm and the incomplete replanning and combines global
planning with local information to avoid dynamic obstacles.
The search algorithms based on the probability sampling
show certain theoretical advantages according to the prob-
ability integrity or the asymptotic optimality. However, this
method requires to know the global environment information
and considers the environment as a set sampling, and finally
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randomly searches to find the path [14]. Huang et al. [15]
presented the probabilistic route map method for the auto-
matic path search, and this method has been applied to the
deployment of submarine optical cables. When constructing
the route map, since the randomness is included in the route
search, the planned route is found to be near-optimal. The
method based on the artificial potential field shows good
performance in online path planning since the algorithm only
accepts the local information of the UAV, and the calculation
cost is low. However, it may be difficult to generate a fea-
sible trajectory in a complex environment. Guang et al. [16]
combined the artificial potential field with the virtual force
and applied it to the two-dimensional unknown environ-
ment for path planning. The simulation results show that the
algorithm can avoid local optimum. Intelligent algorithms
can effectively plan a suitable track in a complex dynamic
environment. Nevertheless, they are still encountered with
the same challenging issues, such as calculation time and
stability. Additionally, intelligent algorithms are prone to be
trapped into local optimum. Zhang et al. [17] proposed the
particle swarm optimization algorithm to plan the UAV path
in the dynamic environment and verified the effectiveness
of the algorithm in Monte Carlo tests. Zhang et al. [18]
introduced the artificial neural network to plan the flight
route of the UAV so that the UAV can handle emergen-
cies in advance, and they can also use the path planning
algorithm to find a near-optimal path. Challita et al. [19]
proposed a deep learning reinforcement learning approach for
interference management for cellular-connected UAVs. The
proposed algorithm could achieve a balance between energy
efficiency and interference caused on the ground network
along the UAV’s path.

B. UAV PATH PLANNING UNDER THE INFLUENCE OF
METEOROLOGICAL FACTORS
The influence of meteorological factors on UAV flight is
considered in some studies. Rubio et al. [20] proposed the
basic framework of the oceanic search mission by UAVs,
considering the impact of the aircraft ice accumulation and
the wind on the UAV flight, and solved the problem by
using the evolutionary algorithm (EA). Wirth et al. [21]
applied the dynamic programming (DP) method to solve
the problem of the long endurance solar-powered UAV path
planning and comprehensively considered the influence of
nine weather factors, such as temperature and relative humid-
ity. However, when considering various meteorological fac-
tors, the impact of dangerous weather phenomena on UAV
flight safety is not considered. Lee et al. [22] also consid-
ered the path planning problem of a solar-powered long-
endurance unmanned aerial vehicle. They obtained the max-
imum energy by adjusting the flight altitude of the UAV.
Oettershagen et al. [23] modeled the multi-objective long-
endurance UAV path planning problem with the influence
of terrain and adopted the improved A* algorithm to solve
the problem. The results demonstrate that a reasonable flight
takeoff time could effectively reduce the whole flight time

from 106 hours to 52 hours. Hu et al. [24] studied the influ-
ence of the flight altitude on the aircraft fuel efficiency and
achieved the purpose of fuel-saving by controlling the flight
altitude. Coombes et al. [25] and Kim et al. [26] considered
the influence of the wind on the flight of rotorcraft and solved
the path planning of the UAV by using a geometric method.
Sun et al. [27] investigated the resource allocation algorithm
designed for multicarrier solar-poweredUAV communication
systems. The results show that the UAV first climbs up to a
high altitude to harvest solar energy and then descents to a
lower altitude to reduce the path loss of communication links
could achieve a good performance.

In previous studies, few specific dangerous weather phe-
nomena have been considered for the UAV flight’s safety.
This paper designs a UAV flight model and comprehensively
considers variousmeteorological factors. Focusing on aircraft
ice accumulation, Richardson number, and UAV performance
constraints, the improved intelligent water drops algorithm is
proposed to solve the UAV path planning problem.

III. PROBLEM DESCRIPTION AND MODELING
A. PROBLEM DESCRIPTION
The general description of the UAV path planning problem
is as follows. A feasible trajectory is calculated for the UAV
moving from the starting point to the destination point in a
given situation restricted by environmental factors and risk
areas. In order to guarantee the safety of the UAV flight,
the trajectory is not only limited to obstacle avoidance, but it
also requires to fulfill the performance constraints of theUAV.
In addition, the trajectory is optimized under certain evalua-
tion indexes in order to ensure the minimum cost. The static
path planning is performed based on the task demands and
meteorological forecast products of the target area before
taking off. However, with the changes in atmospheric circula-
tion, which result in the flight area’s changes in meteorologi-
cal conditions, dangerousweather phenomenamay be formed
along the flight path. Hence, it is necessary to plan the flight
path according to the dynamically changing environmental
conditions. The overall framework is illustrated in Fig. 1.

For the UAV flight’s safety, the flight altitude remains
consistent after taking off, which means the UAV maintains
the flight height after ascending to the operating altitude.
The UAV path planning can be mapped to a two-dimensional
space, except for the taking off and landing. In this study,
a certain altitude of the UAV flight is mapped to a two-
dimensional grid space z,m×n grid points are available in the
space, and the planned path is a collection of the grid points,
which is expressed by formula (1).

Track = {p1, p2, p3, . . . , pk}, pi ∈ Z , i = 1, 2, 3, . . . , k

(1)

where p1 = source and pk = destination, respectively
represent the starting point and the destination point, and the
coordinate of each grid pi is (xi, yi).
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FIGURE 1. Framework of the UAV path planning in the dynamic
environment.

The flight time ti of the UAV moving from position
pi to pi+1 can be calculated by the flight speed vi, i.e.,

ti = d(pi, pi+1)/vi. Thus, the total flight duration T =
k−1∑
i=1

ti

is determined by the length of the flight path and the flight
speed. However, the UAV flight speed can be affected by
factors such as the wind speed. Therefore, the shortest path
does not necessarily guarantee the shortest flight time. The
path planning problem can be expressed by formula (2).

Trackopt = argmin
Track

(
k−1∑
i=1

d(pi, pi+1)/vi) (2)

In this study, the objective of the UAV path planning is to
find a path with the minimum flight time.

B. UAV PERFORMANCE CONSTRAINTS
UAVs’ mechanical properties determine that performance
constraints need to be satisfied in path planning. The UAV
performance constraints primarily include the minimum step
size constraint, maximum steering angle constraint, and max-
imum flight distance constraint.

1) MINIMUM STEP SIZE CONSTRAINT
The maneuvering ability of the aircraft determines that the
UAVmust fly a short straight line before changing to the next
flight state, which means the distance between pi and pi+1
should be greater than a specific value, which is expressed by
formula (3).

d(pi, pi+1) ≥ pmin, i = 1, 2, . . . , k − 1 (3)

where d(pi, pi+1) represents the distance between pi and pi+1,
and pmin represents the minimum step size.

2) MAXIMUM STEERING ANGLE CONSTRAINT
Due to the effect of inertia, the heading of the UAV is con-
strained by the time and the steering angle. That is, the UAV
has the maximum steering angle. The steering angle of the

UAV moving from pi to pi+1 is expressed by formula (4).

ϕ(pi, pi+1) = arccos(
EaiEai+1
|Eai||Eai+1|

), i = 2, 3, . . . , k − 1 (4)

where ϕ(pi, pi+1) represents the steering angle of UAV mov-
ing from pi to pi+1, pi = (xi, yi) is the position of pi, and the
direction vector is Eai = (Exi − Exi−1, Eyi − Eyi−1). The steering
angle constraint of the UAV is expressed in formula (5),
where ϕ(max) represents the maximum steering angle.

ϕ(pi, pi+1) ≤ ϕmax (5)

3) MAXIMUM FLIGHT DISTANCE CONSTRAINT
The fuel that the UAV carries is limited to the size of the
UAV. In order to return safely, the UAVmust fly with the fuel
allowed, which is expressed by formula (6).

Ltotal =
k−1∑
i=1

d(pi, pi+1) ≤ Lmax (6)

where Lmax represents the limitation of the flight distance.

C. COMPLEX ENVIRONMENTAL IMPACT
The meteorological environment is complex and change-
able, and many factors affect the flight safety of the UAV.
The meteorological factors that affect the UAV are ice accu-
mulation, vertical wind shear, thunderstorms, intense rainfall,
and other severe convective weather.

1) AIRCRAFT ICE ACCUMULATION
Aircraft ice accumulation is primarily caused by supercooled
water droplets hitting the aircraft, and it can also be formed by
the condensation of water vapor on the surface of the aircraft.
It has been proved that when the temperature is −14 ∼ 0◦C ,
and the relative humidity is above 50%, the aircraft is found
most susceptible to ice accumulation when the fuselage hits
large supercooled water droplets. The World Meteorological
Organization developed the Ic index to predict the ice accu-
mulation conditions based on the relative humidity, and the
relative temperature [28], which is expressed by formula (7).

Ic = [(RH − 50)× 2]× [T × (T + 14)/(−49)] (7)

where RH is the relative humidity and T is the relative tem-
perature. The first half of the formula represents the growth
process of the content and the size of the supercooled water
droplets in the cloud. The second half represents the growth
rate of the water droplets. When RH increases from 50 to
100, the Ic index also increases from 0 to 100. The value of
the second half goes up to 1 when T is −7◦C , which means
the ice accumulation mostly occurs at this temperature.When
either part of the two parts is negative, it is considered that ice
accumulation does not occur.

2) RICHARDSON NUMBER
In the atmosphere’s static equilibrium state, some air masses
are disturbed by dynamic factors or thermal factors and
produce upward or downward vertical movement. Whether

VOLUME 9, 2021 49847



C. Duan et al.: Meteorology-Aware Path Planning for the UAV Based on the IIWD Algorithm

the vertical movement deviates from its equilibrium position
can continue to develop depends on the vertical distribution
of atmospheric temperature and humidity. The Richardson
number represents the atmospheric static stability ratio to the
vertical wind shear [29].

Suppose an air cluster rises from the height of z− l to the
height of z, the energy of the average unit volume of air in
the unit time resists the gravitational field is expressed by
formula (8).

W1 =
gρ̄kT
T̄

(γd − γ ) (8)

In the turbulent motion, the turbulent friction consumption
is converted from the Reynolds stress to the pulsating kinetic
energy. The magnitude of this part of the energy is expressed
by formula (9).

W2 = ρ̄k[(
∂ ū
∂z

)2 + (
∂ v̄
∂z

)2] (9)

When W1 < W2, the pulsating kinetic energy converted
from the Reynolds stress is found to be greater than the
pulsating kinetic energy consumed by the energy of resisting
the gravitational field when the air cluster moves and the
turbulent pulsation continues to grow. On the other hand,
when W1 > W2, the turbulent pulsation weakens.

Richardson number is defined as a dimensionless parame-
ter that judges whether the turbulence can be enhanced or not,
which is defined in formula (10).

R(pi) =
W1

W2
=

g
θ̄

∂θ̄
∂z

( ∂ ū
∂z )

2
+ ( ∂ v̄

∂z )
2 (10)

The Richardson number represents the relative magnitude
between the pulsating kinetic energy consumed by overcom-
ing the gravitational field and the pulsating kinetic energy
converted from the Reynolds stress. It has been observed that
when R(pi) < 0.5, it indicates that the turbulence increases.
In particular, when R(pi) < −2, the rain accumulation is
prone to occur. Meanwhile, when R(pi) < −1, clouds are
prone to thunderstorms, and the systemic convection is prone
to occur when −1 ≤ R(pi) ≤ −1/4 [7].

Based on the above description, we define the degree of the
Richardson number DoR in formula (11).

DoR(pi) =


0, 0.5 < R(pi)
1, − 0.25 < R(pi) ≤ 0.5
2, − 1 ≤ R(pi) < −0.25
3, − 2 ≤ R(pi) < −1
4, R(pi) < −2

(11)

3) WIND SPEED
In the case of a fixed flight speed, the only way to minimize
the flight time between two points is to fully use the influence
of the wind to increase the ground speed.

Assume that the flight speed of the UAV is V , the flight
altitude of the UAV is gpm, the angle between the UAV
flight direction and the due east direction is θ , the radial
wind velocity component at pi is u(pi), and the zonal velocity

FIGURE 2. Wind speed under the zonal and meridional conditions.

component is v(pi). Then, the influence of the wind on the
UAV ground speed can be expressed in formula (12).

vg(pi) = V + u(pi) cos θ + v(pi) sin θ (12)

The time required for the UAV to fly from pi to pi+1 is:

ti = d(pi, pi+1)/vg(pi) (13)

Compared with manned aircraft, UAV is prone to stall
due to vertical wind shear when adjusting flight altitude. For
the UAV flight’s safety, once the level of flight altitude is
selected, the flight altitude cannot be changed unless excep-
tional circumstances occur. Therefore, the difference between
different altitudes should be considered when planning the
path. The meteorological data we applied in this paper is the
high-resolution numerical prediction product supported by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). This data will be received twice a day, containing
the meteorological data every three hours in the next seven
days. When the missing data area is large, these points will
not be chosen. Otherwise, an interpolation algorithm can be
used to fill the data of the area. Meteorological factors and
symbols used in this study are shown in Table 1.

TABLE 1. Units for magnetic properties.

Therefore, once the level flight height is determined,
the entire UAV path planning problem can be transformed
into an optimization problem expressed in formula (14).

minimize
k−1∑
i=1

d(pi, pi+1)/vi, i = 1, 2, . . . , k (14)

subject to the following constraints:

C1 : d(pi, pi+1) ≥ pmin, i = 1, 2, . . . , k − 1

C2 : ϕ(pi, pi+1) ≤ ϕmax, i = 2, 3, . . . , k − 1
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C3 : Ltotal =
k−1∑
i=1

d(pi, pi+1) ≤ Lmax

C4 : Ic(pi)/100 ≤ 0.5

C5 : DoR(pi)) ≤ 2

where C1 represents that the distance between pi and pi+1
should be greater than the minimum step size pmin; C2 rep-
resents that the steering angle should be smaller than the
maximum value; C3 represents that the flight distance should
be smaller than the flight distance limitation; C4 and C5 rep-
resent are the constraints of meteorological factor, which
guarantee the safety of UAV flight.

The above expression is the mathematical description of
themeteorology-aware path planning problem. The improved
intelligent water drops algorithm is applied to solve the prob-
lem in the next section.

IV. IMPROVED INTELLIGENT WATER DROPS ALGORITHM
A. STATIC UAV PATH PLANNING BASED ON THE
IMPROVED INTELLIGENT WATER DROPS ALGORITHM
The design idea of the intelligent water drops (IWD) algo-
rithm originates from the flow of water drops in nature. It is
a swarm-based intelligent computing method that imitates
the process of water drops interacting with the surrounding
environment to form a river channel, which is proposed by
Hamed Shah–Hosseini in 2007 [30].

In nature, due to the influence of the environment, the flow
path of water drops encounters different types of obstacles.
If there are no other resistance forces, water drops reach
the destination in a straight line, which is considered the
ideal path from the starting point to the destination point.
The motion of water drops follows the below-listed rules:
1. The water drops with higher velocity carry more soil than
slower ones. 2. The water drops gain more velocity in the path
with less soil. 3. The water drops tend to choose the path with
less soil.

The intelligent water drops algorithm is primarily divided
into the following four steps: initial phase, path selection
phase, soil update phase, and the optimal path selection phase.

1) INITIAL PHASE
The number of IWD NIWD, the initial speed of the IWD vini,
the initial soil of the water drop soilIWD, path soil soil(pi, pj)
from grid point pi to pj, and the maximum number of itera-
tions Imax are determined for the follow-up process.

2) PATH SELECTION PHASE
We imitate each of the water drops as the UAV to solve
the UAV path planning problem. Every water drop selected
on the grid point from the starting point to the destination
point forms different tracks and gets optimized in continuous
iterations. When the water drop is located at pi, due to the
constraints such as the minimum step size and the maximum
steering angle, the next selectable set of grid point is δ(i).
The IWD algorithm selects the next grid point pj with a

certain probability. The probability has an impact on the
path’s soil between pi and all elements in δ(i), which is
expressed in formula (15).

pi(j) =
f (soil(pi, pj)) · h(pi, pj)∑

pk∈δ(i)
f (soil(pi, pk )) · h(pi, pk )

(15)

where f (soil(pi, pj)) = 1
ε+g(soil(pi,pj))

.

g(soil(pi, pj)) =

soil(pi, pj), min
∀pk∈δ(i)

soil(pi, pk ) ≥ 0

soil(pi, pj)− min
∀pk∈δ(i)

soil(pi, pk ), else

(16)

where ε is a small non-negative constant, which prevents the
function value from being less than 0.
h(pi, pj) represents the difficulty to move from pi to pj,

in the conventional IWD algorithm, h(pi, pj) = d(pi, pj),
which represents the distance between pi to pj. We consider
the meteorological impact in path choosing, and if the proba-
bility of ice accumulation or the Richardson number is high,
the water drop will have a low probability of choosing this
path. We define h(pi, pj) in formula (17) and (18).

h(pi, pj) = [1+ exp(−
1

D(pj)
)] · d(pi, pj) (17)

D(pj) =


0, Ic(pj) = 0,DoR(pj) = 0
Ic(pj), Ic(pj) 6= 0,DoR(pj) = 0
DoR(pj), Ic(pj) = 0,DoR(pj) 6= 0
(1+ Ic(pj)/100) · (1+ DoR(pj)),

else

(18)

The influence of meteorological factors is considered in
formula (17), and D(pj) is defined as the risk degree of the
grid point, which is expressed in formula (18). If the risk
degree of the next point pj is high, h(pi, pj) gets a smaller
value compared to other optional points, which indicates that
the probability of this path being selected is significantly low.

3) SOIL UPDATE PHASE
Assume that at moment t the water drop is located at pi,
thereafter it moves to pj at t+1 as shown in Fig. 3. The change
in the water drop velocity is determined by the amount of soil
in the path, which is expressed in formula (19).

vIWD(t + 1) = vIWD(t)+
av

bv + cvsoil2(pi, pj)
(19)

where, av, bv, and cv are all non-negative constants.
The velocity of the water drop is affected by the amount

of soil in the path. Meanwhile, the amount of soil in the path
changes due to the flow of water drops. When the water drop
moves from pi to pj, the amount of soil in the path is updated
by formula (20).

soil(pi, pj) = (1− ρn)soil(pi, pj)− ρn1soil(pi, pj) (20)

where ρn is a local soil updated parameter, which is a constant
between 0 and 1, and 1soil(pi, pj) represents the amount of
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FIGURE 3. The UAV flight motion at the moment t and t + 1.

soil change, which is determined by the time that the water
drop moves from pi to pj and it is expressed in formula (21).

1soil(pi, pj) =
as

bs + cstime2(pi, pj, vg(pi))
(21)

where, as, bs, and cs are all non-negative constants.

time(pi, pj, vg(pi)) =
h(pi, pj)
vg(pi)

(22)

time(pi, pj, vg(pi)) is calculated by h(pi, pj) and vg(pi),
where h(pi, pj) i.e., expressed in formula (17) and vg(pi) rep-
resents the ground speed, which is expressed in formula (12).

Simultaneously, the amount of soil carried by water drop
is updated by formula (23).

soilIWD = soilIWD +1soil(pi, pj) (23)

4) OPTIMAL PATH SELECTION PHASE
For all water drops in one iteration, when they have completed
the path from the starting point to the destination point,
according to our optimization objective, we select the optimal
path and update it to the global path soil, which is expressed
in formula (24).

soil(pi, pj) = (1− ρ)soil(pi, pj)+ ρ
2soilIWD

NIWD(NIWD − 1)
(24)

The optimal path is generated in each iteration. Suppose
the optimal path generated in the next iteration is better than
before. In that case, it is saved until the maximum number of
iterations so that the near-optimal solution of the trajectory
planning can be obtained.

The computational complexity of the IIWD is determined
by the iterations of the algorithm, the number of the water
drops, and the maximum step size of the water drop. There-
fore, the computational complexity is O(NiterNIWDStepmax),
since there is a linear relationship among them, the compu-
tational complexity is rewritten as O(n3). The pseudocode of
the IIWD algorithm is expressed in Algorithm 1.

B. DYNAMIC PATH PLANNING OF THE UAV UNDER
SUDDEN DANGEROUS WEATHER CONDITIONS
The UAV can receive instructions from the ground station by
the satellite link during the flight. Due to the timeliness of
forecast products, dangerous and severe convective weather

Algorithm 1 Improved Intelligent Water Drops Algorithm
Input: Starting position, Destination position, Environmen-
tal parameters, UAV performance parameters.
Output: Trajectory.

————————–Initialization————————–
1: p1← Starting position, pk ← Destination position
2: Initialize environmental parameters of each grid, includ-

ing T , RH , u and v.
3: Initialize IIWD parameters, includingNIWD, vini, soilIWD,
soil(pi, pj) and Imax .

4: while k ≤ Imax do
5: while i ≤ Stepmax do

————————Path Selection————————-
6: for each IWD do
7: current_position← pi
8: calculate pi(j)
9: select next_position by pi(j)

—————–Local parameters update——————-
10: update vIWD
11: update soil(pi, pj)
12: update soilIWD
13: current_position← next_position
14: TrackIWD← TrackIWD + next_position
15: find the best Trackbest ← TrackIWD

—————-Global parameters update——————
16: update global path of soil
17: update the best solution Trackglobal
18: return Trackglobal

phenomena may occur on the initial statically planned path
after the UAV takes off and sails for a period of time. The
ground station can receive forecast products including tem-
perature, humidity, pressure wind, and other meteorological
factors at different altitudes of the target area every 3 hours.
According to the UAV’s current location and flight direc-
tion, the improved intelligent water drops algorithm is used
to adjust the trajectory dynamically. As shown in Fig. 4,
the solid black line indicates the UAV’s initial planned path.
The ground station receives new forecast products at time ti,
replans the path, and sends control commands to the UAV by
the satellite link at ti+1t , and the dotted line shows the UAV
path after the first replanning. Similarly, the UAV receives the
adjustment instruction again at ti+1+1t , and the segment line
shows the UAV path after the second replanning.

However, some severe convective weather phenomena
develop rapidly and often disappear before the relevant
weather factors, such as thunderstorms and downbursts, are
captured. These weather phenomena are difficult to predict,
but they pose a major threat to aircraft flight safety since
the UAV’s wings carry sensors that can detect changes in
temperature, humidity, etc. However, due to the limited com-
puting power of the UAV, when the temperature and the wind
speed change significantly, it can only roughly determine
the location of dangerous weather phenomena. Due to the
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FIGURE 4. Replanning process of UAV flight.

tremendous destructive power of dangerous weather phenom-
ena, an accident can be easily caused by the crash of the
aircraft once it enters the dangerous zone, so it is necessary
to use a simple dynamic path adjustment method with low
computational cost to adjust the flight direction of the UAV.
We use the virtual potential force method to quickly avoid
dangerous weather phenomena and achieve online UAV path
planning.

When sudden dangerous weather phenomenon occurs,
assuming that the UAV is located at the grid point pi and the
dangerous weather is located at τj, and its influence radius is
rj. The repulsive force of the UAV by the dangerous weather
is defined in formula (25).

Frep(pi, τj) =


krep

d2(pi, τj)
Epiτj, d(pi, τj) < rj

0, d(pi, τj) > rj
(25)

The impact of dangerous weather on the UAV is only
when the distance between the two is less than the radius of
influence of the dangerous weather. The relative position of
the two determines the direction of the repulsion. Formultiple
dangerous weather phenomena, the combined force of the
impact on the UAV is :

Frep(pi) =
∑
j∈τ

Frep(pi, τj) (26)

Meanwhile, in order to reach the destination, the attractive
force is determined by formula (27).

Fatt (pi, pdest ) = kattd(pi, pdest ) Epipdest (27)

This resultant force determines the direction of the UAV’s
flight. After moving out of the range of the dangerous
weather, the ground station replans the flight trajectory.
Figure 5 shows an example of a UAV that encounters sudden
dangerous weather phenomena, and the red line represents
the attractive force between the UAV and the destination, and
the blue line represents the virtual repulsive force between
the UAV and the risk area, and the black line represents the
resultant force that indicates the moving direction of the UAV.
When the UAV moves to position A, a dangerous weather

FIGURE 5. Force analysis of UAV encountered with severe convective
weather phenomenon.

phenomenon is detected. Under the joint action of repul-
sive force and attractive force, the UAV changes its moving
direction to avoid the obstacle. When the UAV moves to
position B, since the angle between the virtual repulsion force
and gravity is less than 90, the UAV will report the current
position and request to replan the path. When the UAVmoves
to position C, it detects two dangerous weather phenomena.
Similarly, the UAV determines the flight direction according
to the resultant direction of the resultant force, and finally
reaches the destination.

The entire dynamic path planning process is expressed as
follows:

STEP 1: Determine the starting point and the destination
point, and initialize the meteorological parameters and IIWD
algorithm parameters.

STEP 2: Estimate whether the UAV has reached the des-
tination point; if not, proceed with the static path planning,
otherwise end the process.

STEP 3: Determine whether there is a new forecast prod-
uct or replanning request; if so, return to STEP 1; otherwise,
go to STEP 4.

STEP 4: Estimate whether there is a sudden dangerous
weather phenomenon; if so, perform the dynamic path plan-
ning; otherwise, return to STEP 1.

The moving direction of the UAV is determined by the
repulsive force of the dangerous phenomena and the attractive
force of the destination position. Therefore, the computa-
tional complexity is O(Nτ + 1), that is O(n).
Once the path planning is completed, the resultant path

requires to be smoothed, and the third B-spline curve is used
to smooth the obtained path. B-spline is a curve generated
by approximating a set of control points. The corresponding
calculation is expressed in formula (28).

P(t) =
n∑
i=0

PiFi,k (t) (28)
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FIGURE 6. Sample of the B-spline.

where, Pi is the characteristic point of the curve, and Fi,k (t)
is the order B-spline basis function. For cubic B-spline curve,
the basis function in the equation is:

Fi,k (t) =
1
k!

k−i∑
m=0

(−1)m
(

m
k + 1

)
(t + k − m− j)k (29)

A sample of the B-spline is shown in Fig. 6, where the blue
dot is the original point, and the green line is the polygonal
line, and the red line is the smoothed curve.

V. SIMULATION AND RESULTS
In order to verify the effectiveness of the proposed algorithm,
we conduct simulation on the static path planning and the
dynamic path planning. The performance constraints of the
UAV are pmin = 10km, ϕmin = 45◦, and Lmax = 4000km. The
parameters of the improved intelligent water drops algorithm
are expressed as follows: NIWD = 50, vini = 120km/h,
soil(pi, pj) = 1000, Imax = 500, av = 1, bv = 0.01, cv = 1,
ρn = 0.8, as = 1, bs = 0.01, and cs = 1.

A. STATIC PATH PLANNING
Two groups of simulations are carried out in static
path planning. In the first simulation, Kunming Chang-
shui International Airport (IATA: KMG), coordinates
(102.50◦E, 25.00◦N ) is selected as the takeoff position and
Dalian Zhoushuizi International Airport (IATA: DLC), coor-
dinates (121.54◦E, 38.96◦N ) is selected as the destination
position, while in the second simulation, Jiayuguan Airport
(IATA: JGN), coordinates (98.25◦E, 39.75◦N ) is selected
as the takeoff position and Fuzhou Changle International
Airport (IATA: FOC), coordinates (119.75◦E, 25.75◦N ) is
selected as the destination position. The takeoff time is
selected at 0:00 on May 26, 2020, and assume that the
flight altitude of the UAV level flight is 6000 m. The ant
colony optimization(ACO) [31], genetic algorithm(GA) [32]
and Q-learning algorithm [33] are applied for comparative
simulation.

Figures 7 and 8 illustrate the resultant path obtained by
using the four algorithms. After calculation, the Richardson

FIGURE 7. Static path planning for simulation 1.

FIGURE 8. Static path planning for simulation 2.

number of the grid points at the altitude of 6000 m in the
target area is much greater than 0, whichmeans the possibility
of the convective weather phenomenon is close to 0. Under
this circumstance, the main threat to the UAV flight is ice
accumulation. The color bar at the bottom of the figure indi-
cates the possibility of ice accumulation, which is consistent
with Ic/100. The blue arrows represent the direction of the
wind, and their lengths represent the wind speed. A number
of performance metrics have been investigated to evaluate the
optimality of the proposed algorithm. These metrics involve
the flight distance, flight time, average flight speed, and
risk degree. The improved intelligent water drops algorithm
shows a better performance than the other three algorithms
in simulation 1 and simulation 2. The simulation results are
presented in Table. 2.

From the simulation results in Table. 2, it can be seen that
the flight time and risk degree obtained by IIWD are smaller
than the other algorithms. The mechanism of the IIWD shares
a similar characteristic with ACO, and the latter chooses
the path according to the pheromone in the path. However,
the reason that IIWD shows a better performance than ACO
in this scenario is that the velocity of water drop will have
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TABLE 2. Performance comparison of four algorithms.

feedback to the soil in the path, which means the water
drop with higher velocity will take more soil from the path.
This path is likely to be chosen by another water drop, and
this positive feedback mechanism can make the algorithm
find a better solution. The genetic algorithm does not get a
good solution probably because, in the process of crossover
and mutation, GA needs to consider the constraints of path
continuity and steering angle, which leads to the need to
generate feasible solutions repeatedly randomly. When we
use the Q-learning algorithm to solve the problem, if the
wind speed, wind direction, and meteorological factors are
brought into the cost function, the difference in the value
of the grid points will lead to the failure of generating a
feasible solution. Therefore, like the traditional path planning
problem, we assign a positive value to all available points
and a negative value to the infeasible nodes (the probability
of ice accumulation is greater than 50%). The results show
that the obtained path is basically a straight line between the
starting point and the destination point. Although the total
path length is short, the effect of risk degree, flight time, and
other evaluation indicators are not acceptable.

B. PATH PLANNING AT DIFFERENT ALTITUDES
In the previous section, we only mentioned ice accumulation,
the wind direction, and the wind speed on the path planning.
This is because the atmosphere is found to be very stable at
the altitude of 6000 m, and the obtained Richardson number
is found to be much greater than 0. However, UAVs may
operate at different altitudes according to the requirements
of exploration missions. The UAV path planning at different
altitudes (5000m, 4000m, 3000m, and 2000m) is considered
in this section.

Figures 9, 10, 11, and 12 show the flight distance, flight
time, flight speed, and risk degree of the UAV path by using
the improved intelligent water drops algorithm at different
altitudes. In terms of time scale, the path planned every day is
not constant, and the choice of theUAV takeoff time exhibits a
greater impact on the path. Simultaneously, the flight time and
the flight speed of the planned path show certain similarities.
For example, on June 2, the flight time at four altitudes is
found less than that at other times, and the corresponding
average flight speed is found larger. Similarly, on June 3,
the average flight speed decrease also led to a longer flight
time.

As shown in Fig. 9, the total length of the trajectory planned
at each altitude ranges from 2400 km to 2900 km. The path

FIGURE 9. UAV flight distance of different altitudes using the IIWD
algorithm.

FIGURE 10. UAV flight time of different altitudes using the IIWD
algorithm.

planned at the altitude of 2000 m shows the lowest total
path length. The flight time of each altitude ranges from
16 hours to 22 hours in Fig. 10. In Fig. 11, the average flight
speed at the altitude of 5000 m is higher than that of other
altitudes, while the flight speed at 2000 m is the lowest.
The total risk degree experienced by the aircraft at 3000 m
and 5000 m are smaller than that at the other two altitudes,
and the total risk degree at 2000 m is found to be larger,
expressed in Fig. 12. The horizontal wind speed increases
with the ascending of flight altitude, which is the reason
that the average flight speed at a high altitude is generally
greater than that at a low altitude. IIWD algorithm selects
the grid point with a higher velocity in order to increase
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FIGURE 11. UAV flight speed of different altitudes using the IIWD
algorithm.

FIGURE 12. UAV total risk degree of different altitudes using the IIWD
algorithm.

the ground speed when planning the path. In a low-altitude
environment, the wind speed at each grid point is generally
low, so the average wind speed remains at a low level. From
the aspect of meteorological factors in IIWD, we define the
risk degree DoR, which is determined by the two factors,
namely, ice accumulation and Richardson number. At the
altitude of 2000 m, due to the influence of a lower cushion
surface, convective weather phenomenon occurs frequently.
Therefore, we have to select the path with a high-risk level.
Besides, due to the proximity to the ground, except at high
latitudes, the temperature is much greater than 0, so the
possibility of ice accumulation is close to 0. In the middle
troposphere above 5000 m, severe convective weather phe-
nomenon still occurs at this altitude. However, compared
to 2000 m, the occurrence of the convective weather phe-
nomenon significantly reduces, and the probability of aircraft
ice accumulation increases. The height affected by convective
weather phenomenon is generally 8000 m, above which the
temperature is about −20◦C , and ice accumulation does not
occur easily. Therefore, ordinary civil aircraft generally fly
at an altitude of 10000 m. However, for the environment
mapping or the reconnaissance UAV, the lower flight altitude

can obtain higher-resolution data, so it is necessary to select
the appropriate flight altitude taking into consideration the
mission objectives and specific requirements.

C. DYNAMIC PATH PLANNING
As the weather changes with time, we carry out the static
path planning for the UAV according to the weather forecast
products before takeoff in the process of a mission. When the
new forecast products are received, the path gets dynamically
adjusted. Fig. 13 shows the path adjustment process during a
voyage.

As shown in Fig. 13, the green points are the replanning
points which means that the ground station sends the new
path to the UAV by the satellite link via the calculation of
IIWD after it receives the new forecast products. The blue
line shows the original planned path, and the red line shows
the adjusted path. As can be seen from the figure, five path
adjustments are made after the UAV takes off. The new path
is basically found consistent with the original path since the
whole environment does not change much.

Figure 14 shows the schematic diagram of the path plan-
ning when the UAV encounters sudden dangerous weather
phenomena, which are detected at the position of green
points. The blue line shows the original planned path. If the

FIGURE 13. Dynamic path planning by using the IIWD algorithm.

FIGURE 14. Path planning when sudden dangerous weather phenomena
occur.
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path is not changed, the flight risk of the UAV significantly
increases. The red line shows the adjustment by using the
artificial potential field method. When the UAV detects the
risk area, the flight direction is adjusted by the resultant force
of both the repulsive force of the risk area and the attractive
force of the destination. It can be seen from Fig. 14 that the
UAV could effectively avoid dangerous areas and achieve the
purpose of safe flight.

VI. CONCLUSION
In this paper, a meteorology-aware path planning algorithm
of the UAV based on the improved intelligent water drops
algorithm is proposed. The path planning model of the UAV
in a dynamic environment is established. The influence of
the wind direction, wind speed, ice accumulation, Richard-
son number, and other meteorological factors on the UAV
flight are comprehensively considered. The intelligent water
drops algorithm is improved by introducing parameters of
risk degree in order to adjust the path selection probability to
choose the trajectory with low risks. The simulation results
show that the improved water drop algorithm exhibits better
performance than the ACO, GA, and Q-learning algorithm in
solving the problem of path planning. The results show that
the higher the altitude level is, the more the flight time can
be shortened by using wind speed. Moreover, the risk degree
of the UAV decreases with the increase of the flight altitude.
Finally, the flight effect of the virtual potential force algo-
rithm in a dynamic environment is verified. The algorithm
can effectively avoid the dangerous area and ensure the UAV
flight’s safety.

In the future study, the influence of wind speed,
temperature, altitude, and relative humidity on fuel consump-
tion and the efficiency of the engine will be considered.
The minimum energy consumption will be considered the
optimization objective in the path planning to improve the
economic benefits while ensuring safety. Simultaneously,
the sudden convective weather phenomenon considered at
present is static, which does not change with the development
of the atmospheric circulation. Therefore, we will take the
dynamic of the convective weather phenomenon into account
in the future.
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