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ABSTRACT Lung nodule classification plays an important role in diagnosis of lung cancer which is essential
to patients’ survival. However, because the number of lung CT images in current dataset is relatively small
and the ratio of nodule samples to non-nodule samples is usually very different, this makes the training of
neural networks difficult and poor performance of neural networks. Hence, LDNNET is proposed, which
adopts Dense-Block, batch normalization (BN) and dropout to cope with these problems. Meanwhile,
LDNNET is an adaptive architecture based on convnets combining softmax classifier which is utilized to
alleviate the problems of training deep convnets. Follows are our main work: Firstly, we utilized LDNNET
on database LUng Nodule Analysis 2016 (LUNA16) for lung nodule classification and database KAGGLE
DATA-SCIENCE-BOWL-2017(Kaggle DSB 2017) for lung cancer classification; Secondly, the comparison
experiments are designed to compare the performance of dense connection, pooling layer and the input
pixel size of lung CT(Computed Tomography) images; Thirdly, data enhancement, dense connection and
dropout layer were utilized in LDNNET to reduce overfitting; Fourthly, pre-processing methods, for instance
enhanced contrast, median filtering, Laplacian filtering are compared to the no-processing method to explore
the effect of pre-processing on lung CT images classification. Fifthly, accuracy, specificity and sensitivity
on LUNA16 are 0.988396, 0.994585 and 0.982072 and these indicators on Kaggle DSB 2017 are 0.999480,
0.999652 and 0.998974. Furthermore, AUC for both two datasets is over 0.98. Consequently, this paper
conducts experiments with uniform parameter settings on two publicly available databases and shows that
even in challenging situation where lung images are directly utilized as input images without preprocessing,
LDNNET is still the more advanced algorithm than other recent algorithms respectively. Moreover, a series
of comparative experiments were conducted to further confirm that the proposed algorithm has the higher
accuracy and robustness through verification and discussion.

INDEX TERMS Deep dense neural network, classification, lung nodule, lung cancer.

I. INTRODUCTION
Nowadays lung cancer has become a huge death-threat which
is threatening human health worldwide. Lung cancer is one of
themostmalignant tumors in theworld and its 5-year-survival
rate is only 18% [1] Early and accurate classification of lung
nodule and lung cancer is of great significance to the treat-
ment of patients and the improvement of survival. Because,
early lung cancer often appears as lung nodules with or with-
out malignant signs on CT, therefore the classification of lung
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nodules is the first step in the early diagnosis of lung cancer.
The second step is to classify lung and non-lung cancer on CT
images of lung nodules to assist doctors in medical diagno-
sis. Various diagnostic procedures are utilized by physicians
for early diagnosis of malignant lung nodules, for instance
clinical settings, computed tomography (CT) scan analysis
(morphological assessment), positron emission tomography
(PET) (metabolic assessments) and needle prick biopsy
analysis [2]. However, it is difficult to widely realize the
detection method of needle prick biopsy analysis. Because,
it is difficult for patients to accept needle prick biopsy
analysis. Further, the actual use cannot be popularized
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in the medical field. Hence, CT images are still the most
effective means to detect lung cancer. Hence, it is essen-
tial to classify the lung nodule in CT images. Early clas-
sification of lung nodules of lung CT images can save the
lives of lung cancer patients. Further, a fast and accurate
Computer-Aid Diagnosis (CAD) system for lung nodule
classification is urgently desired. The classification of lung
nodules is important for the diagnosis of lung cancer based
on CT images for instance nodule, non-nodule and cancer,
non-cancer. Early detection is critical to give patients the
best chance of survival and recovery [3]. In the medical
process, there are often a large number of CT images for
the doctors to diagnose. However, the diagnosis of lung
CT images in the past only relied on the experience of the
physician. In reality, looking over and judging such numerous
images will inevitably increase doctors’ workload and even
cause error medical accidents [4]. Machine learning meth-
ods can be used to classify lung nodules. Gupta et al. [5]
extracted relevant features from the lung images and used
a machine learning classifier to realize feature selection and
identification of lung diseases. However, the accuracy of the
machine learning method is relatively low. In the paper [5],
the classification accuracy of the Improvised Cuttlefish Algo-
rithm (ICFA) method is 97.3%. In our previously published
paper [6], the LDDNET network was proposed for robust
lung parenchymal segmentation. Paper [6]and this paper are
both based on lung CT images, and both utilize convolutional
neural network algorithms to realize the intelligentization of
medical images. The dataset used in paper [6] is LIDC-IDRI
for lung CT image segmentation. Further, the datasets used in
this paper are LUNA16 and KAGGLEDSB 2017 for lung CT
image classification, which are the subset of the LIDC-IDRI
dataset. In this paper, the number of images utilized by
the LDNNET network on datasets LUNA16 and KAGGLE
DSB 2017 are 50000 and 90000, meanwhile the number
of images used by LDDNET in paper [6] on LIDC-IDRI
dataset is 4000. The main point of the difference between
LDNNET and LDDNET is that the LDDNET network has
an up-sampling structure (that is the decoder), and LDDNET
finally outputs a binary image of lung parenchymal segmen-
tation. However, this structure is not utilized in LDNNET
network in this paper. At last, LDNNET finally outputs the
classification results of lung CT images directly. Further,
at present, most methods utilized for classifying lung nod-
ules and lung cancer are to use deep neural networks to
perform experiments for higher accuracy. However, due to the
lung CT data collection, the ratio of nodule and non-nodule
samples is often very different, which makes the training of
the neural network difficult. In this paper, we have adopted
data enhancement, dropout, batch normalization (BN) and
dense connections to alleviate the problem of sample
imbalance.

The contributions in this paper are summarized as follows:
1) We proposed LDNNET network for lung CT images

classification which fully takes the end-to-end advantage of
deep learning and directly classify lung CT images without

lung parenchymal segmentation and lung nodule segmenta-
tion that the current lung nodule classification algorithms
require;

2) We conducted the comparison experiments to compare
the performance of dense connection, pooling layer and the
input pixel size of lung CT (Computed Tomography) images
for lung nodule classification and lung cancer classification.
The image sizes we set gradually changes to maximize the
performance comparison of LDNNET, for instance, 80× 80,
64× 64, 48× 48, 32× 32 and 16× 16;
3) Data enhancement, dense connection and dropout layer

were utilized in LDNNET network to reduce overfitting.
At the same time, dense connections increase the robustness
of lung features extracted by LDNNET network through
feature reuse so that the network has a higher accuracy and
robustness than previous algorithms;

4) Pre-processing methods, for instance enhanced contrast,
median filtering, Laplacian filtering are compared with the
no-processing method to explore the effect of pre-processing
on lung CT images for lung nodule classification and lung
cancer classification. The experimental results show that even
if LDNNET does not perform any preprocessing methods,
for instance, enhanced contrast, median filtering, Laplacian
filtering, and without parameter adjustment for the databases
LIDC-IDRI and LUNA16, the LDNNET is always better than
the best-performing algorithm;

(5) This paper conducts experiments on multiple pub-
licly available databases. We conducted experiments on
LUNA16 dataset and LDNNET achieved a good classi-
fication effect of lung nodules. Meanwhile, on Kaggle
DSB 2017 dataset, LDNNET still achieved a good lung clas-
sification effect, which is proved that the LDNNET network
has good classification performance not only for lung nodules
but also for lung cancer. Additionally, a series of experiments
are carried out to analyze the advantages and limitations of
the LDNNET.

The remainder of this paper is organized as follows:
Section 2 outlines deep neural network algorithms based on
geometric features and lung feature description algorithms
based on transform domain. Section 3 describes the proposed
architecture for lung nodule classification and lung cancer
classification in detail. The details of two public lung image
databases are represented, inwhich the LUNA16 dataset is for
lung nodule classification and the Kaggle DSB 2017 dataset
is for lung cancer classification in Section 4. Moreover, envi-
ronmental configuration of the experiment, network training
parameters metrics and measurements for experiments are
also described in Section 4. Experimental results evaluation
and comparison are represented in Section 5. Section 6 sum-
marizes this paper.

II. RELATED WORKS
A. OVERVIEW OF LUNG NODULE CLASSIFICATION AND
LUNG CANCER CLASSIFICATION METHODS
Traditional methods are not using machine learning and do
not have higher requirements for equipment performance.
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Ahmed et al. [7] proposed that disadvantages of machine
learning is long training time in comparison with the tradi-
tional methods, for instance, histogram-based, edge-based,
region-based, model-based, watershed and clustering-based.
Hence the traditional methods are less time consuming in
executing. Traditional algorithms for lung nodule classifica-
tion and lung cancer classification do not have the accuracy
rate of the neural network-based algorithms. However, less
time is taken by the traditional algorithms. Hence traditional
algorithms are still of great value.

1) TRADITIONAL LUNG NODULE CLASSIFICATION AND
LUNG CANCER CLASSIFICATION ALGORITHMS
BASED ON TRANSFORM DOMAIN
These algorithms project normalized lung CT images to a fre-
quency domain and use geometric transformation to extract
image features of lung nodules. Wei et al. [8] proposed a
new two-step CBIR scheme (TSCBIR) for computer-aided
diagnosis of lung nodules. Two similarity metrics, semantic
relevance and visual similarity were introduced to measure
the similarity of different nodules. The first step is to search
for K most similar reference ROIs for each queried ROI
with the semantic relevance metric. The second step is to
weight each retrieved ROI based on its visual similarity to
the queried ROI. Gong et al. [9] applied a series of pre-
processing steps to segment the lung volume and generate
the isotropic volumetric CT data. Next, a unique 3D tensor
filtering approach and local image feature analysis were used
to detect nodule candidates. A 3D level set segmentation
method was utilized to correct and refine the boundaries of
nodule candidates subsequently. Then, the features of the
detected candidates were extracted and the optimal features
were selected by using a CFS (Correlation Feature Selec-
tion) subset evaluator attribute selection method. Finally,
a random forest classifier is trained to classify the detected
candidates. Froze et al. [10] proposed a methodology to clas-
sify lung nodule candidates and non-nodule candidates based
on computed tomography (CT) images. The Lung Image
Database Consortium (LIDC-IDRI) database was employed
for testing. Three techniques are employed to extract texture
measurements. The first technique was artificial crawlers
(ACs), an artificial life algorithm. The second technique
used the rose diagram (RD) to extract directional measure-
ments. The third technique was a hybrid model that combines
texture measurements from artificial crawlers and the rose
diagram. Chabon et al. [11] developed and prospectively
validated a machine-learning method termed ‘lung cancer
likelihood in plasma’ (Lung-CLiP), which can robustly dis-
criminate early-stage lung cancer patients from risk-matched
controls. This approach achieves performance similar to that
of tumour-informed ctDNA detection and enables tuning of
assay specificity in order to facilitate distinct clinical appli-
cations. Jacobs et al. [12] described the different components
of the CAD system and presents experiments to optimize
the performance of the proposed CAD system. A rich set
of 128 features is defined for subsolid nodule candidates.

In addition to previously used intensity, shape and texture
features, a novel set of contextual features is introduced. Their
experiments showed that these features significantly improve
the classification performance. Ye et al. [13] proposed a
new computed tomography (CT) lung nodule computer-aided
detection (CAD) method for detecting both solid nodules
and ground-glass opacity (GGO) nodules (part solid and
nonsolid). Demir and Camurcu [14] developed a computer-
aided detection (CAD) system for the detection of lung
nodules in computed tomography images. The CAD system
consists of four phases, including two-dimensional and three-
dimensional preprocessing phases. In the feature extraction
phase, four different groups of features were extracted from
volume of interests: morphological features, statistical and
histogram features, statistical and histogram features of outer
surface and texture features of outer surface.

However, traditional methods are less accurate for lung
nodule classification and lung cancer classification. These
methods are far from meeting the accuracy requirements of
clinic physical examination and hospital diagnosis. Further,
the traditional methods are summarized by the mature lung
CT medical experience in which the selection and setting
of lung CT features of lung nodule classification and lung
cancer classification are all set manually. Furthermore, in the
current context, traditional algorithms based on the lung
CT medical experience of algorithm researchers are
increasingly unable to adapt to the high-precision data-driven
algorithm requirements under the condition of massive and
massive medical data. The lung CT medical experience
required by traditional algorithms often takes several years
or even ten years to form. Therefore, for the aim of adapt
to the modern medical system, algorithms based on deep
neural networks are widely utilized. This algorithm has a
higher accuracy rate in lung nodule classification and lung
cancer classification and the generation of the algorithm
model always takes only a few hours.

2) LUNG NODULE CLASSIFICATION AND LUNG CANCER
CLASSIFICATION ALGORITHMS BASED
ON DEEP NEURAL NETWORK
Traditional lung nodule classification and lung cancer clas-
sification algorithms require manually extracted features.
Meanwhile, features of lung CT images can be automatically
extracted by the algorithms based on deep neural network,
which can be more accurate and effective than traditional
algorithms.

Zuo et al. [4] put forward a multi-resolution convolutional
neural network (CNN) to extract features of various levels and
resolutions from different depth layers in the network for clas-
sification of lung nodule candidates. Inspired by the AlphaGo
system, Ali et al. [3] proposed a kind of deep reinforcement
learning network. Their deep learning algorithm takes a raw
CT image as input, views it as a collection of states and out-
puts a classification of whether a nodule is present or not. The
dataset used to train the model is the LIDC/IDRI database,
which is hosted by the LUng Nodule Analysis (LUNA)
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challenge. The training results yielded an overall accuracy
of 0.991. Mobiny et al. [15] proposed a memory-augmented
capsule network for the rapid adaptation of CAD models to
new domains. It consists of a capsule network that was meant
to extract feature embeddings from some high-dimensional
inputs, and a memory-augmented task network meant to
exploit its stored knowledge from the target domains. When
trained on the LUNA dataset, the memory-augmented cap-
sule network requires only 30 additional samples from their
collected lung nodule and incidental lung nodule datasets
to achieve clinically relevant performance. In paper [16],
Heuvelmans retrospectively validated their Lung Cancer Pre-
diction Convolutional Neural Network (LCP-CNN), which
was trained on US screening data, on an independent dataset
of indeterminate nodules in an European multicentre trial,
to rule out benign nodules maintaining a high lung cancer
sensitivity. William et al. [17] proposed a novel lung nodule
detection and classification model using one stage detector
called as ‘‘I3DR-Net’’. The model was formed by combining
pre-trained natural images weight of Inflated 3D ConvNet
(I3D) backbone with feature pyramid network to multi-scale
3D Thorax Computed tomography scan (CT-scan) dataset.
Nasrullah et al. [2] proposed a novel deep learning-based
model with multiple strategies for the precise diagnosis of
the malignant nodules. Due to the recent achievements of
deep convolutional neural networks (CNN) in image anal-
ysis, two deep three-dimensional (3D) customized mixed
link network (CMixNet) architectures were utilized for lung
nodule detection and classification, respectively. Nodule
detections were performed through faster R-CNN on
efficiently-learned features from CMixNet and U-Net like
encoder–decoder architectures. Classification of the nodules
was performed through a gradient boosting machine (GBM)
on the learned features from the designed 3D CMixNet struc-
ture. Xie et al. [18] proposed a multi-view knowledge-based
collaborative (MV-KBC) deep model to separate malignant
from benign nodules using limited chest CT data. The
MV-KBC model learns 3D lung nodule characteristics by
decomposing a 3D nodule into nine fixed views. Ali et al. [19]
proposed transferable texture Convolutional Neural Net-
works (CNN) to improve the classification performance of
pulmonary nodules in CT scans. An Energy Layer (EL) was
incorporated in the proposed scheme, which extracts texture
features from the convolutional layer. The inclusion of EL
reduces the number of learnable parameters of the network,
which further reduces the memory requirements and com-
putational complexity. Naik and Edla [20] surveyed around
108 research papers to focus on the contribution of deep
learning methodologies in detection of malignant tumor in
Lung CT scans. Naik and Edla [20] also presented chal-
lenges and opportunities in classifying lung nodule by using
advanced deep learning strategies. Lin and Li [21] proposed
a Taguchi-based convolutional neural network (CNN) for
classifying nodules into malignant or benign. For setting
parameters in a CNN, most users adopt trial and error to
determine structural parameters. Dey et al. [22] proposed four

two-pathway Convolutional Neural Networks (CNN), includ-
ing a basic 3D CNN, a novel multi-output network, a 3D
DenseNet, and an augmented 3D DenseNet with multi-
outputs. These four networks were evaluated on the public
LIDC-IDRI dataset and outperformed most existing meth-
ods. However, Dey et al. [22] work directly on 3D vol-
umes yields instead of using 2D slices or approximating
3D im-age with multi-views better results for the lung nod-
ule classification problem. These 3D images are better than
2D images in the classification of lung nodules. However,
the server performance requirements are higher here, which
is not conducive to the promotion of the algorithm. Hence,
our proposed LDNNET network is still experimenting on
2D images. Al-Shabi et al. [23] proposed a novel CNN
architecture called Gated-Dilated (GD) network to classify
nodules as malignant or benign. Unlike previous studies,
the GD network uses multiple dilated convolutions instead
of max-poolings to capture the scale variations. Moreover,
the GD network has a Context-Aware sub-network that ana-
lyzes the input features and guides the features to a suitable
dilated convolution. Al-Shabi et al. [23], lung CT images
were divided into two categories in the experiment. Mean-
while, our network is used for this classification of nodule
and non-nodule. Furthermore, the number of lung CT images
for LDNNET network is 100000 and 90000 for LUNA16 and
Kaggle DSB 2017 dataset, which is greater than the number
of 1000 lung CT images from LIDC-IDRI used in paper [23].
Nobrega et al. [24] proposed approach which aims to explore
the performance of deep transfer learning for lung nodules
malignancy classification. The deep features returned were
classified using Naive Bayes, MultiLayer Perceptron (MLP),
Support Vector Machine (SVM), Near Neighbors (KNN) and
Random Forest (RF) classifiers. Qin et al. [25] proposed
a computer-aided diagnosis (CAD) system for simultane-
ous accurate pulmonary nodule detection and false positive
reduction. They build a full 3D CNN model that employs
3D U-Net architecture and a 3D DenseNet-based model is
presented to reduce false positive. Ardila et al. [26] proposed
a deep learning algorithm that uses a patient’s current and
prior computed tomography volumes to predict the risk of
lung cancer. The model achieves a state-of-the-art perfor-
mance (94.4% area under the curve). The main work in this
paper is similar to the paper [27], Detection and classification
of pulmonary nodules using convolutional neural networks:
A survey. Meanwhile, the network LDNNET proposed in
this paper actually have the process of lung nodule detection.
Because the title and subject are both classification of lung
CT images, this part of lung nodule detection does not men-
tion too much. Furthermore, classification experiment is also
used in the Kaggle DSB 2017 dataset to classify lung cancer
and non-lung cancer. In paper [27], the author introduced the
fundamental knowledge of CNN as well as the reasons for
their suitability to medical images analysis and proved by
experimental results that CNNs have transformed greatly the
early diagnosis and management of lung cancer. However,
in paper [27], the author used experiments to illustrate that
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TABLE 1. Comparisons of previous studies on lung nodule classification.

CNN is very practical in the direction of medical image
analysis, meanwhile no new neural network model is pro-
posed for the classification of lung nodules. In this paper,
LDNNET network is proposed to cope with the classification
of lung nodules and good experimental results are achieved.
Zhao et al. [28] proposed three schemes of designing CNN
models and resulting eleven deep CNNmodels. In paper [28],
classification criteria were benign lung nodules and malig-
nant lung nodules. The dataset used is LIDC-IDRI. Mean-
while in this paper, classification criteria are lung nodules and
non-nodules and the dataset is LUNA16.

Comparative analysises between our proposed method and
other lung nodule classification and lung cancer classification
methods are summarized in TABLE 1.

In recent years, great success has been achieved by
Convolutional Neural Network (CNN) in image classifi-
cation [29]–[31], target recognition [32]–[34], detection in
addition other fields. CNN is used as a feature extraction
method by many networks, furthermore the network has been
improved to achieve better results.

III. THE PROPOSED ARCHITECTURE FOR LUNG NODULE
ClASSIFICATION
A. FLOWCHART OF THE LUNG NODULE CLASSIFICATION
SYSTEM
The method proposed in this paper is an end-to-end struc-
ture which fully takes the end-to-end advantages of deep
learning and directly classify lung CT images without lung
parenchymal segmentation and lung nodule segmentation
that the current lung nodule classification algorithms require.
The proposed structure, LDNNET, adopts many structures
of modern neural network, for instance, Dense-Block, batch

normalization (BN) and dropout. Meanwhile, LDNNET is an
adaptive architecture based on convnets combining softmax
classifier which are utilized to alleviate the problems of train-
ing deep convnets. We input the original lung CT images into
the network and finally get the classification results of lung
CT images. The structure is shown in the FIGURE 1 below.

B. LDNNET FOR LUNG NODULE AND LUNG CANCER
CLASSIFICATION
We proposed a LDNNET network. LDNNET is a deep neu-
ral network with direct connections between any two lay-
ers. The input of each layer of the network is the fusion
of all the previous layer outputs. Besides the feature map
learned by this layer is directly passed to all subsequent
layers as input. Network structure of LDNNET is shown as
follow FIGURE 2.

Huang et al. [35] proposed that as CNNs become
increasingly deep, a new research problem emerges: as
information about the input or gradient passes through
many layers, it can vanish and ‘‘wash out’’ by the time it
reaches the end (or beginning) of the network. To solve
this problem, we applied the Dense-Block structure in our
LDNNET network. Dense-Block has good effects for image
classification and has been adopted by the latest papers.
Fielding and Zhang [36] proposed a Swarm Optimised
DenseBlock Architecture Ensemble (SODBAE) method,
a joint optimisation and training process that explores a con-
strained search space over a skeleton Dense Block Convolu-
tional Neural Network (CNN) architecture. Being evaluated
using the CIFAR-10 dataset, the proposed model shows great
superiority in classification performance over other state-of-
the-art methods. Dense-Block can also extract image features
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FIGURE 1. Flowchart of the lung nodule classification system.

FIGURE 2. Network structure of LDNNET.

better recently. For instance, in the paper [37], zhao et al.
proposed a novel medical image fusion algorithm based on
deep convolutional generative adversarial network and dense
block models, which is used to generate fusion images with
rich information. Chen et al. [38] proposed a new dense block
which uses complex connections between each layer to build
a more powerful generator. Next, to improve the perceptual
quality, they found a new set of feature maps to compute the
perceptual loss, which would make the output image look
more real and natural. Dense-Block, Batch Normalization
(BN), Relu, and Convolution which size is 3× 3 and a layer
of Concatenation were included in the structure of Dense-
Block. For Batch Normalization, in paper [39], Sergey et al.
proved that Batch Normalization: accelerating deep network
training by reducing internal covariate shift which is essential
for LDNNET network training. For ReLu, in the paper [40],
Xavier et al. proposed that while logistic sigmoid neurons are
more biologically plausible than hyperbolic tangent neurons,
the latter work better for training multi-layer neural networks.
And rectifying neurons are an even better model of biological
neurons and yield equal or better performance than hyper-
bolic tangent networks in spite of the hard non-linearity and

non-differentiability at zero, creating sparse representations
with true zeros, which seem remarkably suitable for naturally
sparse data. There is a direct connection between every two
layers in the Dense-Block, which makes the most of features
of lung CT images for the aim of ensuring the largest informa-
tion flow in the network. Assuming there are L convolutional
layers, the traditional convolution network has L connections.
However, there are Lx(L+1) connections in the LDNNET
network. Through this structure, the number of parameters
in the network can be reduced and the image information can
be fully utilized to train the LDNNET network. Besides the
disappearance of the gradient during the training process will
seriously restrict the improvement of the accuracy of the deep
neural network. The structure of Dense-Block can alleviate
this problem for some extent for the dense connections.

The LDNNET network is composed of 7 Dense-Blocks.
Huang et al. [35] introduced the Dense Convolutional Net-
work (DenseNet), which connects each layer to every other
layer in a feed-forward fashion. Whereas traditional convo-
lutional networks with L layers have L connections—one
between each layer and its subsequent layer their network
has L(L+1)/2 direct connections. In paper [35], the structure
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of Dense-Block consist of the proposed network DenseNet.
In this paper, each Dense-Block consists of two BN-RELU-
Convolution structures. The LDNNET network begins with a
convolutionwith 5×5 kernels, stride 1, padding 0, number 96.
In the convolution of Dense-Blocks, the size is kernel 3× 3,
stride 1 and padding 0. AlexNet [41] used the convolution
with 11 × 11 × 3 kernels, stride 4. The larger the convo-
lution kernel, the larger the receptive field, the more image
information can be seen, the better the features can be got by
the deep neural network. However, a large convolution kernel
will cause a sudden increase in the amount of calculation,
which is not conducive to the increase of the depth of the
model and the calculation performance will also be reduced.
VGG [30] used evaluation of networks to increase depth using
an architecture with very small (3 × 3) convolution filters,
which shows that a significant improvement on the prior-
art configurations can be achieved by pushing the depth to
16–19 weight layers. Hence, we get the point of that using
a combination of two 3 × 3 convolution kernels work better
than using one 5× 5 convolution kernel and the total amount
of parameters (3×3×2VS 5×5×1) is reduced. Furthermore,
the convolutions with 3×3 kernels are utilized to increase the
number of layers of the neural network. And the amount of
network calculations is reduced to obtain better experimental
performance in the field of lung nodule classification and
lung cancer classification. The number of convolution kernels
in Dense-Block is 64. The effect of the convolution with
kernel size 1 × 1 is cross-channel characteristic and reduce
the convolution kernel parameters to achieve the purpose
of simplifying the model to speed up calculation. For this
reason, the convolution with kernel size 1× 1 is also utilized
by us. Every Dense-Block (except the last Dense-Block) is
followed by an average pooling layer with size 2 × 2 and
stride 2, namely for a transition layer. At the end of LDNNET
network, there are four FC-Dropout structures. For Dropout,
in paper [42], Stefan et al. proposed that Dropout training
is designed for deep neural networks and has been success-
ful on high-dimensional single-layer natural language tasks.
Dropout layer preserves the Bayes decision boundary and
should therefore induce minimal bias in high dimensions and
Dropout training improves the exponent in the generaliza-
tion bound for empirical risk minimization. Each FC (Fully
Connected Layer) contains 8192 neurons which is followed
by a dropout layer with the dropout rate 0.5, except for the
fourth FC. At last, the probabilities of each input data are
obtained by the classifier.

For optimization, the mini-batch Adam algorithm is
adopted to minimize the cost function. The lung CT images
are composed of mostly non-lung regions and a few lung
regions, which lead to the adoption of the standard stochas-
tic gradient descent (SGD) algorithm. Kingma and Ba [43]
introduced Adam, an algorithm for first-order gradient-based
optimization of stochastic objective functions, based on
adaptive estimates of lower-order moments. The method is
straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal

rescaling of the gradients and is well suited for problems that
are large in terms of data and/or parameters. Adam algorithm
increases the learning rate for sparse data and decreases it
for common data and updates quickly for sparse features and
slowly for common features.

On the classification layers of the LDNNET network,
the convnets transform the feature maps extracted from the
original image into final class scores. If the output scores are
regarded as class probabilities, a softmax function is used as
the output:

fj(y) =
eyj∑k=K
k=1 e

yk
(1)

where fj (y) denotes the probabilities of the jth class, yx is the
output value of the xth neuron.

Cross entropy function is utilized as cost function on our
convnets. J is cost function, f̃j (y) denotes the desired label
probabilities of the training images and fj (y) denotes the
actual network output:

J (θ ) =
1
s

∑s

i=1

∑n

j=1
f̃j(z) log

[
fj(z)

]
(2)

where θ are parameters, s is the value of batch sizes, n spans
the classes numbers of input data sets. In our experiment,
the classes we set are all 2, that is, n is equal to 2.

IV. EXPERIMENTAL CONFIGURATION
A. DESCRIPTION OF THE LUNG CT IMAGE DATABASE
1) PROPERTIES FOR CT IMAGES
Diagnostic, lung cancer screening chest tomography (CT)
scans and indicates annotated lesions are included in
Lung Image Database Consortium’s image collection
(LIDC-IDRI) [53]. The dataset LIDC-IDRI has a total
of 1018 CT scans, and each CT image has a label
file in xml format. The dataset LUng Nodule Analy-
sis 2016(LUNA16) [55] is the subset of LIDC-IDRI.
LUNA16 consists of the CT scans where all nodules≥ 3 mm
are accepted by at least 3 out of 4 radiologists. Meanwhile
these type of CT scans are not included. Hence LUNA16 has a
total of 888 CT scans for lung nodule analysis. This database
also contains annotations collected in two phases with four
experienced radiologists. Each radiologist marked lesions
they identified as non-nodule (<3 mm) and nodule (≥3 mm).
We labeled the lung CT images of the LUNA16 according to
the annotations provided by the LUNA16. The classification
of lung nodules comes from the annotation file in xml format
in the dataset LUNA16. Number 1 is in the name of nodule
lung CT images and 0 is on behalf of non-nodule lung CT
images. This dataset is used to classify nodule and non-nodule
of lung CT images. The difference between LIDC-IDRI and
LUNA16 can be seen as follows: Zhao et al. [44] utilized the
LIDC-IDRI dataset for lung nodule classification, in which
the lung CT images are divided into three categories ‘‘nodule
> or = 3 mm’’, ‘‘nodule < 3 mm’’ and ‘‘non-nodule >
or = 3 mm’’). Meanwhile in this paper, the dataset used
for classification is LUNA16, in which the CT scans can
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TABLE 2. The architecture details of LDNNET.

be divided into nodule and non-nodule. Further, the nodules
are all ≥ 3 mm and there are no lung nodules smaller
than 3mm in the LUNA16 dataset. In addition, in this paper,
the input image size is 48 × 48 and in paper [44], the size
is 53 × 53, which are both not the one whole CT slice.
Monkam et al. [45] also utilized LIDC-IDRI dataset for lung
nodule classification. The lung CT images are divided into
two categories ‘‘micro-nodule’’ and ‘‘non-nodule’’). And the
image sizes are set to 20 × 20, 16 × 16, 12 × 12, 8 × 8
and 4 × 4 which are all not the original sizes of CT scans
and are relatively small in size, hence, ‘‘micro-nodule’’ is
called.

In 2017, Kaggle had a competition for lung cancer classi-
fication. The dataset is called Kaggle DSB 2017 [56]. This
dataset provided the lung CT images in DICOM format.
CT images with lung cancer are marked as 1, otherwise they
are marked as 0. There are nine labeled attributes for each
nodule, i.e., subtlety, internal structure, calcification, spheric-
ity, margin, lobulation, spiculation, radiographic solidity and
malignancy. For each nodule, its malignancy rating (attribute
rating) is evaluated by radiologists, the score of which ranges
from 1 to 5 where 1 denotes highly unlike malignant (highly
without the given attribute) and 5 denotes highly malignant.
In this paper, lung CT images are identified as non-cancer

50308 VOLUME 9, 2021



Y. Chen et al.: LDNNET: Towards Robust Classification of Lung Nodule and Cancer

TABLE 3. Detailed parameters of the dataset LUNA16 AND Kaggle DSB 2017.

(score≤3) and nodule (score≥4). This dataset is used to clas-
sify cancer and non-cancer of lung CT images. The detailed
parameters of LUNA16 and Kaggle DSB 2017 are as shown
in TABLE 3.

The dataset LUNA16 is saved as the formats of MHD and
RAW. The files of MHD format contain the descriptive infor-
mation of lung CT for instance object type and element type.
The files of RAW format contain the original lung CT image
information. There is a one-to-one correspondence between
a RAW file and an MHD file to get the PNG format lung CT
images for training. The dataset Kaggle DSB 2017 is saved
as the format of DICOM. DICOM contains not only lung
CT image information, but also patient information, hospital
information and equipment information. However, only the
part of image information is needed to be inputted into deep
neural network training. Here PNG format was selected as the
image format for LDNNET. In addition, the network training
will be burdened by the extra information in the DICOM
format other than images. The class packet PYDICOM is
utilized to extract the image information inside the DICOM
format. Furthermore, the image is saved in the PNG format
by the class packet CV2 (OPENCV).

2) ENHANCEMENT AND LABEL FOR CT IMAGES
From the above table 3, it can be seen that the ratio of
nodule and non-nodule are not balanced, so data enhancement
measures are adopted to solve this problem. And overfitting
is a result of network parameters greatly outnumbering the
number of features in the input images [3] The number of lung
CT images for experiment, which are chosen from datasets
LUNA16 and Kaggle DSB 2017, is relatively small. Hence
the method of enhancing data is executed by us for avoiding
overfitting. The images are expanded by a factor of 20 in
this paper. The methods like rotations, horizontal, flip, clip,
blurry and so on, are utilized in this paper. The examples
of the enhancement of lung CT images can be seen from
FIGURE 4. The image in the column a is the original lung CT
image. Furthermore, the images of column b, column c and

column d are obtained by some random cropping and
rotation et al. operations in the first column.

3) DATASET SETTINGS USED IN THE EXPERIMENT
Firstly, in dataset LUNA16, 100000 of the 754,976 original
lung CT images are selected. There is a problem in dataset
LUNA16 that the unbalanced ratio of non-nodule (551065)
and nodule (1186) sample images is too large, so in order
to balance the samples during LDNNET network training.
Hence, we select all the lung CT images of nodule. Further,
these images are data-enhanced, according to the way
in FIGURE 4 above. Then in the rest of LUNA16 dataset,
we select 50,000 lung CT images of non-nodule. Hence,
we select the same number of samples for nodule and
non-nodule images for LDNNET the network training.
This approach can greatly guarantee the authenticity of the
experiment.

In dataset Kaggle DSB 2017, 90000 original images are
selected from the total of 96209, which are almost all the
images inKaggleDSB2017 dataset. Secondly, among dataset
used for our experiment, the number of training set images,
validation set images and test set images account for 54000,
18000, 18000 for Kaggle DSB 2017 and 60000, 20000,
20000 for LUNA16. The ratio is 0.6, 0.2, 0.2. These images
are divided into training set images, validation set images
and test set images according to random, not manual inter-
vention. This dataset obtained in this way is more objective,
so that the network LDNNET can learn the real classification
capability to the greatest extent. Thirdly, our classification
experiment uses a lot of data on the two datasets, especially
in Kaggle DSB 2017, almost all the images are used for the
experiment. In addition, the test set has reached 20000 in
LUNA116 dataset. The detailed parameters of the dataset are
displayed in TABLE 4.

The above settings of our experimental datasets ensure
the authenticity of the experiment to the greatest extent.
Hence, we don’t take 10-fold cross-validation. Due to the rel-
atively large number of datasets in our experiment, we adopt
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FIGURE 3. Structure of the Dense-Block.

FIGURE 4. Examples of the enhancement of datasets of LUNA16 and Kaggle DSB 2017.

3-fold cross-validation which is enough for the experiment in
this paper. This process is iteratively executed 3 times using
the 3 different combinations of subgroups. The area under
the receiver operating characteristic (ROC) curve (AUC)
measurements can be seen from FIGURE 5. And AUC for
LUNA16 is over 0.98 and AUC for Kaggle DSB 2017 is
over 0.99.

The nodule classification on the LUNA16 dataset is shown
in FIGURE 6. In FIGURE 6, the lung CT image of part b
is the original image on the LUNA16 dataset whose size is
512× 512. The lung candidate nodule images to be inputted
into LDNNET network are like part a and part c of FIGURE 6,
in which the nodule part and the non-nodule part are marked
with red boxes in the part b of FIGURE 6. The pixel size
of the lung CT images of the nodule candidates is 48 × 48.

The lung nodule image samples gotten from LUNA16 dataset
are lung CT images of nodule candidates which are produced
from this kind of image like part a and part c of FIGURE 6.
Part a and part c of FIGURE 6 are not taken from part b.
Furthermore, part b is just a sample of the original lung CT
image. LUNA16 dataset divides the data into two classes:
nodule and non-nodule. The classification of lung CT images
on the LUNA16 dataset is completed by the configuration
files on the LUNA16 dataset. The size of the lung CT images
sent to LDNNET network for training is 48 × 48 which are
the lung CT images of the nodule candidates obtained from
the LUNA16 dataset.

The classification of the lung CT images on the Kaggle
DSB 2017 dataset is shown in FIGURE 7. The sample images
obtained from the Kaggle DSB 2017 dataset are the original
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TABLE 4. Detailed parameters of the dataset used in this paper.

FIGURE 5. ROC curves for LDNNET networks on LUNA16 dataset and
Kaggle DSB 2017 dataset.

lung CT images whose pixel size is 512 × 512. The lung
CT images on the Kaggle DSB 2017 dataset are divided into
two parts of cancer and non-cancer which can be seen from
part a, part b and part c of FIGURE 7. In part a and part b
of FIGURE 7, each cancer position is marked with a red
box. The discrimination between cancer and non-cancer is
also based on the configuration file on the Kaggle DSB
2017 dataset. The size of the lung CT images sent to
LDNNET network for training is 512×512 which is the orig-
inal size of images obtained from Kaggle DSB 2017 dataset.

B. EXPERIMENT ENVIRONMENTAL CONFIGURATION AND
NETWORK TRAINING PARAMETERS
In this paper, TABLE 4 shows the experiment environment
details. Furthermore, experiment environmental configura-
tion and network training parameters are shown as follows.
Because the memory of our experimental equipment is rel-
atively small. The size of memory is 32G. Hence, the size
of batch is set to 32. The learning rate is set to 0.0001.
The dropout rate is set to 0.5. The number of the epoch is
set to 200. From FIGURE 8, it can be seen that the model
accuracy gets steady after 150 of the iteration steps. Hence,
we set 200 as the iteration number to ensure that the training
convergence is enough, in addition to make the most use of
the lung CT images. The experimental accuracy by epochs
of LDNNET network with no preprocessing, with median
filtering, with enhanced contrast and with Laplacian filter
for lung nodule classification on LUNA16 dataset and lung
cancer classification on Kaggle DSB 2017 dataset are shown
in part a and part b of FIGURE 8.

For the performance comparison parameters of the pro-
posed LDNNET network, accuracy, precision, recall, dice
similarity coefficient (DSC), specificity, sensitivity and
FPs/Scan are chosen by us. The details of these metrics are
shown as TABLE 6. In TABLE 6, TP, FP, FN, and TN are
represented by the number of True Positives, False Positives,
False Negatives and True Negatives, respectively. The param-
eter scan represents the number of scan series of the dataset
which is executed in this paper.

V. EXPERIMENTAL RESULTS EVALUATION AND
COMPARISON
A. EFFECT OF THE PRE-PROCESS OF LUNG CT IMAGE
Image preprocessing methods are combined with the
LDNNET neural network to obtain the classification result
of the lung CT images. For the aim of testing the accuracy
and robustness of our proposed method, no preprocessing
and preprocessing methods are obtained before inputting
the lung CT images into the LDNNET in TABLE 7 and
TABLE 8. Image preprocessing will reduce or improve the
performance of deep neural networks. One of our work is to
compare the impacts of some common preprocessing meth-
ods on LDNNET. The preprocessing methods of the lung
CT images are composed of enhanced contrast, median filter-
ing, Laplacian filtering. Themedian filteringmethod is a non-
linear smoothing technique that sets the gray value of each
pixel to the median of the gray values of all pixels in a neigh-
borhood window at that point. Laplacian is a kind of differ-
ential operator. Its application can enhance areas with abrupt
changes in gray levels and weaken areas with slow changes
in gray levels. For contrast-enhancing experiments, a mask is
utilized to enhance the image contrast to process the image.
Contrast enhancing, median filtering and Laplacian filtering
are utilized to preprocess the images before the images are
inputted into the LDNNET, meanwhile LDNNET with no
preprocessing is executed as the comparison. The results
of experiments on LUNA16 dataset and Kaggle DSB 2017
dataset are shown in TABLE 7 and TABLE 8.

It can be seen from the above TABLE 7 and TABLE 8 that
through preprocessing methods which consist of enhanced
contrast, median filtering and Laplacian filtering, the accu-
racy of the algorithm is generally not improved or even
the accuracy rate has decreased, whether it is on the
LUNA16 dataset or Kaggle DSB 2017 dataset. The reason
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FIGURE 6. Samples of lung nodule and lung non-nodule on LUNA16 dataset.

FIGURE 7. Samples of lung cancer and non-lung cancer on Kaggle DSB 2017 dataset.

FIGURE 8. The accuracy by epochs of LDNNET for lung nodule classification on LUNA16 dataset (a) and lung cancer classification on
Kaggle DSB 2017 dataset (b).

for the decrease in accuracy is that the image preprocessing
method on lung CT images will cause the original pixel
information of the image to be lost. Furthermore, the network
LDNNET proposed in this paper is insufficient in learning the

classification information based on the lung CT image in the
pixel, which leads to the accuracy decline. Further, the accu-
racy of network LDNNET on both LUNA16 dataset and
Kaggle DSB 2017 dataset are above 0.964726 and 0.999117,
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TABLE 5. Detailed parameters of the experimental environment.

TABLE 6. Detailed parameters of the experimental environment.

TABLE 7. The comparison of accuracy by LDNNET on the LUNA16 dataset.

TABLE 8. The comparison of accuracy by LDNNET on the Kaggle DSB 2017 dataset.

which shows that LDNNET network has good robustness
to classify lung nodule and lung cancer. However, in some
special cases, preprocessing methods can slightly improve
the accuracy, for example, the image processing method of
median filter on the Kaggle DSB 2017 dataset in TABLE 7.
The accuracy can reach 0.999636. Median filtering is a
non-linear smoothing algorithm, which sets the gray value
of each pixel to the median of the gray values of all pix-
els in a certain neighborhood window of that point. In the
field of image processing, median filtering can protect the
pixel edges of the image from being blurred and remove
noise. Therefore, in the TABLE 8, the accuracy of prepro-
cessing with median filtering is higher than that without
preprocessing by 0.015%. This preprocessing of median filter
does not destroy the pixel information here, but strength-
ens the classification information between pixels and then
the network LDNNET can learn more of this information
to improve the accuracy. In conclusion, LDNNET network
both achieve high accuracy in lung nodule classification on
LUNA16 dataset and lung cancer classification on Kaggle
DSB 2017 dataset with the effect preprocessing methods of
lung CT images. Therefore, LDNNET network has both good

robustness and good performance in the field of lung nodule
classification and lung cancer classification.

B. EFFECT OF INPUT IMAGE SIZE
Medical CT images are generally huge. However, it is impos-
sible to enter the original lung CT image into LDNNET dur-
ing the process of classification. The pixel size of the original
lung CT image acquired in the Kaggle DSB 2017 dataset
is 512 × 512. Hence, in this paper, the image of the
LUNA16 dataset is resized to 512×512 and other pixel sizes
for comparison. The pixel size of the original lung CT image
acquired in the LUNA16 dataset is 48 × 48. Because the
image pixel size of 48 × 48 is relatively small, in this paper,
the lung CT images of the comparison experiment will not
be performed according to the multiple reduction. Otherwise,
there will be input images, for instance, 3 × 3 and 6 × 6.
The pixel sizes of these types of images are too small, which
will make the judgment standard of network accuracy lose
academic fairness. Therefore, in this paper, the pixel sizes of
the lung CT image to be inputted into LDNNET network are
set as 80 × 80, 64 × 64, 48 × 48, 32 × 32 and 16 × 16.
In this set of comparative experiments, this series of pixel
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TABLE 9. Statistical analysis of different input image size by LDNNET on the LUNA16 dataset.

TABLE 10. Statistical analysis of different input image size by LDNNET on the Kaggle DSB 2017 dataset.

sizes are utilized to fully demonstrate the impact of pixel size
on network performance which can be seen in TABLE 9 and
TABLE 10.

From TABLE 9, the size sequence of lung CT images is
80×80, 64×64, 48×48, 32×32 and 16×16. The results show
that when the pixel size of the image is 48× 48, the network
LDNNET has the highest accuracy in classifying lung nod-
ules which is 0.988396. However, the data in TABLE 9 here is
not the same as in TABLE 10. The accuracy of the LDNNET
network will decrease as the image pixels decrease always.
The pixel size of the original lung CT image obtained from
Kaggle DSB 2017 dataset in TABLE 10 is 512×512, which is
more suitable for reduction in multiples, but the pixel size of
the original lung CT image obtained from LUNA16 dataset in
TABLE 9 is 48× 48. The size of these images can no longer
be reduced by multiples. In TABLE 9 the pixel size of the
lung CT images of 64 × 64 and 80 × 80 are both enlarged
from 48× 48. This will cause 64× 64 and 80× 80 lung CT
images with large pixel size, but they lose the lung nodule
classification information in the original images. Therefore,
the LDNNET network cannot learn lung nodule classification
skills well which resulted in a decrease in accuracy. For lung
CT images of different pixel sizes inputted into the LDNNET
network, LDNNET can give very good accuracy for each
pixel size.

Meanwhile as demonstrated in TABLE 10, LDNNET is
trained by different sizes of the input images for instance,
512 × 512 and so on. Additionally, the performance of the
bigger image size is better relatively. Because the reduction
of the image will lead to the loss of semantic information,
eventually the LDNNET network cannot learn enough fea-
tures for lung cancer classification. LDNNET needs to learn
the pixel level information of the images during training. For
instance, after reducing the size of the input image, the pixel
information of the 512 × 512 image is sixteen times the
pixel information of the 128 × 128 image. Hence, when
the pixels obtained by LDNNET are insufficient, the deep
neural network cannot learn sufficient lung cancer classifica-
tion performance by itself. At last, images with larger pixels

will have a higher accuracy than images with smaller pix-
els by LDNNET. Although in TABLE 10, the classification
accuracy of the 256 × 256 pixel image size is 0.998996,
which is slightly higher than the classification accuracy of
the 512×512 pixel image size by 0.041%. The reason for the
violation of the overall trend here should be that 256 × 256
pixels are smaller than 512 × 512 pixels. As the number
of training pixels is reduced, overfitting is more likely to
occur. But this still hasn’t changed the overall trend that as
the pixels decrease, the accuracy decreases. Hence, it can
be concluded from the TABLE 10 that as the image pixels
become smaller, the effect of LDNNET classification of lung
nodule is gradually getting worse.

Hence the conclusion can be made that the network still
has high robustness in lung nodule classification and lung
cancer classification for input lung CT images of different
pixel sizes.

C. EFFECT OF TYPE OF POOLING
The most commonly used pooling layers are maximum pool-
ing and average pooling. Average pooling is to average only
the feature points in the neighborhood. This pooling can
reduce the error caused by the increase in the variance of
the estimated value in the limited size of the neighborhood.
Maximum pooling is to take the maximum of the feature
points in the neighborhood. This kind of pooling can reduce
the convolution layer parameter error which is caused by the
deviation of the estimated mean value. Two different types of
the pooling layers are used for comparative experiments. The
structure of average pooling and maximum pooling can be
seen in FIGURE9. There are alsomany other types of pooling
layers, for instance, Yu et al. [46] proposed the mixed pooling
layer to regularize CNNs, which replaces the deterministic
pooling operations with a stochastic procedure by randomly
using the conventional max pooling and average pooling
methods. Inspired by Dropout (that randomly sets half the
activations to zeros), the proposed mixed pooling method
replaces the conventional deterministic pooling operations
with a stochastic procedure, randomly employing the max
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FIGURE 9. The structures of the two types of pooling layers.

TABLE 11. Statistical analysis of type and number of pooling by LDNNET on the LUNA16 dataset.

TABLE 12. Statistical analysis of type and number of pooling by LDNNET on the Kaggle DSB 2017.

pooling and average pooling methods during the training
of CNNs.

To further explore the effect of pooling layer function on
LDNNET classification of lung nodules and classification of
lung cancer, comparative experiments are designed in this
paper. There are five-layer average pooling, five-layer maxi-
mum pooling, six-layer average pooling, six-layer maximum
pooling, seven-layer average pooling, seven-layer maximum
pooling, eight-layer average pooling, eight-layer
maximum pooling, nine-layer average pooling and nine-layer
maximum pooling. The results of the comparative experi-
ments can be seen in TABLE 11 and TABLE 12.

As can be seen from the TABLE 11, both average pooling
and maximum pooling have relatively little influence on the
accuracy of the LDNNET network on lung nodule classifi-
cation, in which no matter which pooling layer structure is

used, the accuracy rate is between 0.980000 and 0.987000.
Furthermore, the accuracy rate error is between 0.005000.
It can also be seen from the comparison in the TABLE 11 that
under the premise of the same number of pooling layers,
the average pooling layer has a higher accuracy than the
maximum pooling layer, in which the difference of average
accuracy is about 0.0048.

In TABLE 12, since the accuracy of LDNNET network
on Kaggle DSB 2017 dataset is above 0.999480, there is
no obvious difference between the average pooling layer
and the maximum pooling layer on LDNNET network for
lung cancer classification, in which the accuracy of average
pooling is 0.00027 lower than the maximum accuracy.

From above, we can get the conclusion that the average
pooling layer has better performance than themaximumpool-
ing layer on LDNNET network for lung nodule classification
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TABLE 13. Statistical analysis of the effect of dense connection by LDNNET on the LUNA16 dataset.

TABLE 14. Statistical analysis of the effect of dense connection by LDNNET on the Kaggle DSB 2017 dataset.

TABLE 15. Statistical analysis of different numbers of DENDE blocks by LDNNET on the LUNA16 dataset.

TABLE 16. Statistical analysis of different numbers of DENDE blocks by LDNNET on the Kaggle DSB 2017 dataset.

but worse for lung cancer classification. Further, both two
types of pooling layer structures can make the LDNNET
network have a high accuracy rate, which also shows that the
LDNNET network has good robustness in this aspect of the
type of pooling layer.

D. EFFECT OF DENSE CONNECTION
LDNNET utilized the structure of dense-connection which
can get the better result than the deep neural network with
same depth. Secondly, we utilized the Dense-Block to reduce
overfitting. The Dense-Block alleviates the overfitting and
gradient vanishing effectively, which adds the larger feature
value of the bottom layers to the small feature value of
the top layers. Hence, we have designed two comparative
experiments, one with dense connections and one without
dense connections, for the aim of exploring effect of type
of dense connection on lung nodule classification and lung
cancer classification by LDNNET.

From the above TABLE 13, the application of dense con-
nection has a significant influence on the accuracy of the
network, in which LDNNET without dense connection has
the higher accuracy than LDNNET with dense connection
by 1.53254% on LUNA16 dataset.

In the TABLE 14, the effect of dense connection on Kaggle
DSB 2017 on accuracy is not as great as that of dense connec-
tion on LUNA16 dataset. But in the case of utilizing dense
connection, it will still increase the accuracy by 0.13014%

compared with the case of not using dense connection. From
the expression of the experimental results in this paragraph
and the previous paragraph, we can conclude that dense
connection can indeed improve the accuracy of the LDNNET
network in terms of lung nodule classification and lung cancer
classification.

Because the dense connection in LDNNET is realized
by the Dense-Block structure. To further explore the effect
of dense connection on LDNNET for classification of lung
nodules and classification of lung cancer, further compara-
tive experiments are designed. There are five Dense-Blocks,
six Dense-Blocks, seven Dense-Blocks, eight Dense-Blocks
and nine Dense-Blocks within LDNNET. The results of
the comparative experiment can be seen in TABLE 15
and TABLE 16.

In the TABLE 15, with the increase in the number of
Dense-Blocks, the accuracy of the LDNNET network is con-
stantly improving for lung nodule classification which means
that Dense-Block enables the LDNNET network to learn
more fully the classification information of lung nodules,
thereby improving accuracy.

In the TABLE 16, on Kaggle DSB 2017 dataset, the effect
of Dense-Blocks is not evident like TABLE 15. The accu-
racy of utilizing different numbers of Dense-Block can reach
more than 0.999376. Therefore, it does make little sense to
modify the number of Dense-Block to improve the accu-
racy of the LDNNET network on the Kaggle DSB 2017
dataset.
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In conclusion, from above TABLE 13, TABLE 14,
TABLE 15 and TABLE 16, Dense-Block can improve the
accuracy of the LDNNET network in lung nodule clas-
sification and lung cancer classification, therefore in this
paper, this structure Dense-Block is adopted to increase
accuracy.

E. COMPARISON WITH OTHER METHODS AND
ROBUSTNESS EVALUATION
Masood et al. [47] proposed a Computer-Assisted Decision
Support System in Pulmonary Cancer by using the novel
model based on deep learning and metastasis information
obtained from MBAN (Medical Body Area Network). The
proposed model, DFCNet is based on the deep fully convolu-
tional neural network (FCNN)which is used for classification
of each detected pulmonary nodule into four lung cancer
stages. Lan et al. [48] proposed a new network named RUN
to complete nodule detection in a single step by bypassing
the candidate selection. The system introduced the shortcut
of the residual network to improve the traditional U-Net,
thereby solving the disadvantage of poor results due to its
lack of depth. Furthermore, the experimental results were
compared with the traditional U-Net. Jung et al. [49] pro-
posed a three dimensional deep convolutional neural network
(3D DCNN) with shortcut connections and a 3D DCNN
with dense connections for lung nodule classification. The
shortcut connections and dense connections successfully alle-
viate the gradient vanishing problem by allowing the gra-
dient to pass quickly and directly. Connections help deep
structured networks to obtain general as well as distinctive
features of lung nodules.Moreover, they increased the dimen-
sion of DCNNs from two to three to capture 3D features.
Nasrullah et al. [2] proposed a novel deep learning-based
model with multiple strategies for the precise diagnosis of
the malignant nodules. Due to the recent achievements of
deep convolutional neural networks (CNN) in image analysis,
two deep three-dimensional (3D) customized mixed link net-
work (CMixNet) architectures were utilized for lung nodule
detection and classification, respectively. Nodule detections
were performed through faster R-CNN on efficiently-learned
features from CMixNet and U-Net like encoder–decoder
architecture. Dou et al. [50] proposed a novel framework
with 3D convolutional networks (ConvNets) for automated
detection of pulmonary nodules from low-dose CT scans,
which is a challenging yet crucial task for lung cancer early
diagnosis and treatment. El-Bana et al. [51] proposed a two-
stage framework that exploits the ever-growing advances in
deep neural network model and that is comprised of a seman-
tic segmentation stage followed by localization and classifi-
cation. The recently publishedDeepLabmodel was employed
for semantic segmentation and that it significantly improves
the accuracy of nodule detection compared to the classical
U-Net model and its most recent variants was shown. Polat
and Danaei Mehr [52] proposed two Convolutional Neural
Network (CNN)-based models as deep learning methods to
diagnose lung cancer on lung CT images. To investigate

the performance of the two proposed models (Straight 3D-
CNN with conventional softmax and hybrid 3D-CNN with
Radial Basis Function (RBF)-based SVM), the altered mod-
els of two-well known CNN architectures (3D-AlexNet and
3D-GoogleNet) were considered. It is needed to be empha-
sized that the accuracy of paper [51] is relatively high, with
an accuracy of 0.964000 on LUNA16 dataset and an accu-
racy of 0.912000 on Kaggle DSB 2017 dataset. However,
the algorithm in paper [51] is divided into two steps. The
first step is semantic segmentation and positioning of lung CT
images. The second step is to classify lung CT images. On the
contrary, LDNNET network directly uses original lung CT
images, and does not use semantic segmentation and position-
ing. In the end, LDNNET network can obtain better results
which indicated that our network has better performance and
higher robustness. The above methods are current methods
which are widely applied in lung nodule classification and
lung cancer classification. Further, these methods are utilized
to compare the performance of the LDNNET network. Per-
formance comparison for LDNNET and other methods on the
LUNA16 dataset and Kaggle DSB 2017 dataset can be seen
in TABLE 17 and TABLE 18.

In TABLE 17, LDNNET network obtained the highest
accuracy rate among other methods on lung nodule classi-
fication, which is 0.988396. In contrast, the accuracies of
lung nodules classification by CNN [47] and DFCNet [47]
are lower, only 0.740100 and 0.801200. The accuracies
of Deeplab-V3 plus(ex_65) + FRCNN-Inception-V2 [51]
and Multi-Resolution CNN + Knowledge Transfer [4] are
slightly lower than that of our proposed network LDNNET,
and the accuracy values are 0.970000 and 0.973300. The
sensitivity of LDNNET network is higher than other methods
in TABLE 17. Meanwhile, the LDNNET network achieved
the lowest value of FPs/Scan, which is 0.07995. Therefore,
LDNNET has better performance on lung nodule classifica-
tion than the current mainstream algorithms. The LDNNET
network obtains lower FPs/Scan while obtaining the higher
accuracy rate. Hence the LDNNET will have lower false
positives, which is more suitable for application in actual
medical institutions to assist the doctor in diagnosing the
patients’ lung CT images, for instance hospitals and clinics.

In TABLE 18, the LDNNET network achieved the highest
accuracy, which is 0.999480. The performance of LDNNET
provides an improvement over straight 3D-CNN + softmax
classifier [52] by 9.7%, Hybrid 3D-CNN + RBF-based
SVM [52] by 8.2%, DeeplabV3plus(ex_65) + Mobilenet-
V1_1.0_224 [51] by 6.9%, DeeplabV3plus(ex_65) +
Inception-V3 [51] by 4.2%. The index FPs/Scan obtained
by the network is 0.00357 which is enough for commercial-
ization and medical application. Hence, LDNNET surpassed
other algorithms on accuracy of lung cancer classification
on Kaggle DSB 2017 dataset. Combining the contents of
TABLE 17 and TABLE 18, we can conclude that here the
LDNNET network has a high accuracy rate on both the lung
nodule classification of the LUNA16 dataset and the lung
cancer classification of the Kaggle DSB 2017 dataset, which
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TABLE 17. Performance comparison for LDNNET and other models on the LUNA16 dataset.

TABLE 18. Performance comparison for LDNNET and other models on the Kaggle DSB 2017 dataset.

proves that the LDNNET network is also robust on these two
datasets.

VI. CONCLUSION
In this paper, a new network structure of the LDNNET was
proposed. LDNNET network is utilized on two datasets,
LUNA16 and Kaggle DSB 2017. LDNNET network is robust
for the reason that both in the classification of lung nodules
and the classification of lung cancer have both achieved good
performance. Further, the accuracy rate for the classifica-
tion of lung nodules has been reached 0.982072 on dataset
LUNA16 by LDNNET network, which surpasses other exist-
ing methods. Meanwhile, LDNNET network achieves the
accuracy of 0.999480 on lung cancer classification on dataset
Kaggle DSB 2017. This accuracy is much higher than the
comparison method of other papers. Actually, for this accu-
racy of 0.999480, LDNNET can be deployed on the field
of medical examination on commercial clinics and hospi-
tal to assist doctors in diagnosing patients. Furthermore,
the comparative experiments were designed in preprocess-
ing, dense connection, input image size, pooling layer and
depth of neural network on LUNA16 and Kaggle DSB 2017
datasets for a sufficient comparison experiment. In addi-
tion, the results of comparison experiments proved that
these parameters have an impact on the performance of
the network. Meanwhile, by changing these parameters, the
accuracy of lung nodules on LUNA16 still can reach over
0.988396 and the accuracy of lung cancer classification on
Kaggle DSB 2017 can reach over 0.999480 too. Hence,
that LDNNET network is robust, which can be proved by
above comparative experiments. It should be emphasized
that the lung CT images sent into LDNNET network of
LUNA16 dataset are 48×48 pixel size for lung nodule classi-
fication, meanwhile, the lung CT images sent into LDNNET

network of Kaggle DSB 2017 dataset are 512 × 512 pixel
size for lung cancer classification. The LDNNET network
can achieve higher accuracy than other existing algorithms
for different pixel sizes of input lung CT images and dif-
ferent experimental targets. LDNNET does not use semantic
segmentation and positioning, hence this network is easier to
be deployed and utilized under actual circumstances. Finally,
the conclusion can be made that the proposed network not
only has good performance in lung nodule classification and
lung cancer classification, but also has good robustness on the
field of input image pixel size, network structure and both two
datasets, LUNA16 and Kaggle DSB 2017. Focusing on the
field of medical image classification, lung CT image classi-
fication scenarios by using more effective network structures
to extract common features from images of different types
and performing cross-type matching to improve the perfor-
mance, which is the first work we have planned for the future.
In addition, merging the features of different types of medical
images, for instance, brain CT images, liver CT images,
bone CT images and so on, to achieve more accurate and
more robust medical image classification will be considered
in future work. Furthermore, we will apply the LDNNET
network to other medical diseases fields, for instance classi-
fication and detection of diseases namely breast cancer, brain
tumor, colon cancer and diabetic retinopathy. Our pursuit is
always to apply deep convolution neural network deployment
to commercial organizations and medical units to promote
auxiliary medical diagnosis systems.
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