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ABSTRACT Neural architecture search (NAS) is an automated method searching for the optimal network
architecture by optimizing the combinations of edges and operations. For efficiency, recent differentiable
architecture search methods adopt a one-shot network, containing all the candidate operations in each edge,
instead of sampling and training individual architectures. However, a recent study doubts the effectiveness
of differentiable methods by showing that random search can achieve comparable performance with
differentiable methods using the same search cost. Therefore, there is a need to reduce the search cost
even for previous differentiable methods. For more efficient differentiable architecture search, we propose
a differentiable architecture search based on coordinate descent (DARTS-CD) that searches for optimal
operation over only one sampled edge per training step. DARTS-CD is proposed based on the coordinate
descent algorithm, which is an efficient learning method for resolving large-scale problems by updating
only a subset of parameters. In DARTS-CD, one edge is randomly sampled, in which all the operations are
performed, whereas only one operation is applied to the other edges. Weight update is also performed only at
the sampled edge. By optimizing each edge separately, as in the coordinate descent that optimizes each coor-
dinate individually, DARTS-CD converges much faster than DARTS while using the network architecture
similar to that used for evaluation. We experimentally show that DARTS-CD performs comparably to the
state-of-the-art efficient architecture search algorithms, with an extremely low search cost of 0.125 GPU days
(1/12 of the search cost of DARTS) on CIFAR-10 and CIFAR-100. Furthermore, a warm-up regularization
method is introduced to improve the exploration capability, which further enhances the performance.

INDEX TERMS Automatic machine learning (AutoML), differentiable architecture search (DARTS), neural
architecture search (NAS).

I. INTRODUCTION
Over the past few years, deep neural networks have shown
remarkable performance in many computer vision tasks such
as object recognition [1]-[5], object detection [6]-[8], and
semantic segmentation [9]-[11]. Researchers have attempted
to design specialized architectures for each task. When a new
task or a new dataset arises, human experts’ trial-and-error
search methods are time-consuming. To resolve this issue,
recent studies have attempted to automate the process of
architecture search.

Most recent neural architecture search (NAS) studies have
focused on searching for a better performing architecture effi-
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ciently, without considerable computational burden. A major-
ity of NAS works perform searches on cell structures (see
FIGURE 1), building blocks of networks such as residual
blocks for ResNet [4]. When the NAS problem is downscaled
to the cell structure decision problem, it significantly reduces
the search space. However, state-of-the-art methods based on
reinforcement learning [12] or evolutionary algorithms [13]
still require thousands of GPU days for the search. Thus, they
are not considered an appropriate tool for finding the optimal
architecture for a new task or a new dataset.

In the spirit of efficient architecture search, differentiable
architecture search (DARTS) [14] was proposed to train
the one-shot network [15], which contains all the candi-
date operations and their corresponding coefficients, called
architecture parameters. The architecture parameters are also
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FIGURE 1. Network divided into repeated cells. Normal cells produce
output of the same spatial dimension, while reduction cells downscale
input (usually into half) along each spatial dimension. The number of
repeated cells can be decided depending on the dataset’s complexity and
may be different during the search and evaluation stages.

trained with gradient descent and expected to evaluate the
importance of the corresponding operation. After the search,
the final network architecture is derived by choosing one
operation per edge according to the architecture parameter
values. Although a single one-shot network is trained instead
of multiple candidate networks, DARTS runs in three orders
of magnitude faster than NASNet [12] or AmoebaNet [13]
and still shows comparable performance.

Although DARTS has been suggested as an efficient
alternative to computationally heavy NAS methods, several
studies have highlighted the inefficiency of the method. For
example, Li and Talwalkar [16] showed that a random search
can identify architectures with performances comparable to
those that result from DARTS within the same time limit.
Owing to the absence of search costs in random selection,
multiple architectures are sampled and evaluated through
early stopping during a single round of the DARTS search
phase. This implies that DARTS does not effectively spend
training time to identify the optimal architecture. To allow
a differentiable architecture search to be more meaningful,
the search time should be improved further.

In various optimization problems, the coordinate descent
algorithm is adopted as an efficient approach compared with
other methods [17]-[20]. Coordinate descent achieves rapid
convergence by updating only the parameters of the selected
coordinates. Accordingly, we propose differentiable archi-
tecture search based on coordinate descent (DARTS-CD)
to leverage coordinate descent in training a one-shot net-
work. In this framework, a sampled subset of the architecture
parameters is updated in each training step. DARTS-CD is
efficient in both memory and computation, showing better
performance under a search cost of 1/12 and a memory cost
of 1/8 compared with DARTS.
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DARTS-CD is also an alternative method to bridge the
gap between the derived network performance and one-shot
network performance. There is inconsistency between the
derived network and one-shot network in DARTS [21]. This
is because the search progress of DARTS is dominated by the
loss function for one-shot network training. In DARTS-CD,
candidate operations are mingled for only selected coordi-
nate; thus, the training loss in the search stage is more relevant
to the performance of the derived network.

DARTS-CD limits exploration over the search space owing
to the constrained update directions of the architecture param-
eters. To compensate for this, a regularization method called
warm-up is proposed, which inverts the signs of all the archi-
tecture parameters to provide fair learning opportunities to all
candidate operations. This novel regularization method can
enhance the exploration ability of DARTS-CD resulting in
better performance than the standalone version.

The primary contributions of this study can be summarized
as follows:

o DARTS-CD is the first framework to apply the coor-
dinate descent algorithm to the training of architecture
parameters in a one-shot network, which is efficient in
both memory and computation.

o In DARTS-CD, the training objective optimizes the
one-shot network and derived network, which alleviates
the inconsistency issue highlighted in [21].

o To compensate for the reduced exploration caused by
the nature of coordinate descent, we propose a simple
regularization method that manually explores the search
space during the early stages of the search.

o« We demonstrate that DARTS-CD shows comparable
performance to DARTS with a search time and mem-
ory consumption of approximately 1/12 and 1/8,
respectively, on benchmark datasets CIFAR-10 and
CIFAR-100.

Il. RELATED WORKS

Since the innovation of CNNs, led by AlexNet [1], several
experts have manually designed variants of CNN architec-
tures. Following Krizhevsky er al. [1], architectures with
smaller filter sizes [2], multi-path structures [3], or extremely
deep networks [4] have been proposed. In recent years, some
efforts have been made, such as widening the network instead
of increasing the depth [22] or densely connecting layers [5]
to ease the gradient flow.

Automatic search for neural network architectures has
attracted attention in recent years. There are two main
streams in the development of early NAS methods, includ-
ing reinforcement learning-based methods [12], [23] and
evolution-based methods [13]. In NASNet [12], several archi-
tectures are sampled from a controller and trained to a certain
extent to estimate performance. The controller then judges
how the architecture should be changed to maximize the esti-
mated performance. Because the process of training multiple
models of different architectures is computationally heavy,
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Pham et al. [23] proposed to share model weights among
the sampled architectures. Some other methods, as sug-
gested in [13], share the sampling and evaluation process of
NASNet; however, they use evolutionary algorithms as meta
controller.

Recently proposed DARTS [14] is an efficient and effective
algorithm, that takes only 1.5-4 GPU days for the search
stage. DARTS is a one-shot architecture search method that
includes all candidate paths in a single overparameterized net-
work called a one-shot network, as in Bender et al. [15]. In a
gradient-based approach such as DARTS [14], architecture
parameters are trained using a separate data split from that
used for operation parameters in the one-shot network, and
used to choose operations that can obtain higher validation
accuracy. The gradient-based method is extremely efficient
compared to previous search methods by Zoph et al. [12] and
Real et al. [13]. The operation parameters of all the candidate
architectures can be obtained by training a single one-shot
network.

After the introduction of DARTS, several attempts have
been made to improve the differentiable search. [21] stated
that the information flow in the search stage differs from
that in the evaluation stage in DARTS. This problem is
verified by a dramatic performance drop when evaluating
the derived architecture with the operation parameters trans-
ferred from the trained one-shot network in DARTS. In [21],
stochastic NAS was suggested to alleviate this gap by apply-
ing Gumbel-Softmax to the architecture parameters to opti-
mize discrete random variables. Another method named P-
DARTS [24] was proposed to mitigate the depth gap prob-
lem in DARTS. The one-shot network is shallower than the
evaluation network in DARTS, making it less reasonable
to determine architectures based on the architecture param-
eters trained in a one-shot network. Thus, Chen et al. [24]
suggested building the network gradually deeper in the
search stage while addressing the memory issue by reducing
the number of candidate operations whenever the depth is
increased.

ProxylessNAS [25] suggested sampling a single stochas-
tic path in a one-shot network, explicitly using architec-
ture parameters such as the sampling probability. This also
bridges the gap in the cell structures between the search
and evaluation stages of DARTS. In addition, it allows
direct searching for networks of substantial depth on a
large scale dataset such as ImageNet, thus being proxy-
less. Because only a single operation is computed at each
edge, the memory issue is significantly alleviated during
search.

Although variants of DARTS have been suggested to
resolve various shortcomings of DARTS, most of them still
have a gap in network behavior because of the difference
in path activation in the search and evaluation stages. This
gap originates from the difference in path activation, which
requires further investigation. In this study, we propose to
alleviate this gap by introducing coordinate descent into opti-
mization; thus, the proposed method has a path activation
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scheme that is different from any other method, discussed in
Section VI-A.

lll. METHOD

A. PRELIMINARY: DARTS
Before introducing the proposed method, we summarize how
the differentiable one-shot architecture search works and
define the notations that will appear in the following sub-
sections. Most of this subsection refers to the explanation
of Liu et al. [14]. In a differentiable one-shot architecture
search, all candidate operations in every edge are included in a
single overparameterized network, called one-shot network.
Each operation has a corresponding architecture parameter
in this network, which increases as the operation becomes
more likely to influence the network performance. After the
search stage ends, DARTS determines the optimal archi-
tecture by selecting one operation among candidate opera-
tions for each edge with the highest architecture parameter
value.

In DARTS, the network is represented as repeated cell
structure, as in other recent NAS methods (FIGURE 1). Based
on state-of-the-art convolutional neural network (CNN)
architectures [4], [5], the network is divided into multiple
stages, each of which consists of repeated cell structures,
called normal cells. Between the stages, reduction cells are
located to downsample feature maps along the spatial dimen-
sions. Both normal and reduction cells are in the form of a
directed acyclic graph (DAG) with N,, nodes.

Inside a cell, each edge connects a pair of nodes (i, j),
where 0 < i < j < N, — 1, and performs specific operations
on the node i to generate features for the node j. The output
of an edge is a weighted sum of features processed by each
candidate operation:
expal’

£ = Toco 5 * o) (1)

Syeoexpal)

where x; denotes the i-th node’s value, o is a candidate
operation in O, and « denotes the architecture parameter for
each operation. Each intermediate node represents the sum of
the results from all edges connected to the preceding nodes.
The output node of a cell is the concatenation of all the
intermediate nodes.

The architecture parameters («) in the same edge are bound
with a softmax function to compute importance weights for
each operation, making DARTS fully differentiable. This
is the key to continuous relaxation of the discrete search
problem. Accordingly, all the one-shot network parameters,
including the architecture parameters, can be trained by gra-
dient descent. The network parameters are trained through
bi-level optimization, using training data for operation param-
eters and validation data for architecture parameters. Thus,
the network architecture with better generalization capabil-
ity can be determined using separate data for each set of
parameters. After the search stage, the cell structure is derived
by pruning each edge to have only the max-o operation.
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Then, the network for evaluation is constructed by repeating
the derived cell structure, which is trained from scratch to
evaluate the final performance.

B. PROPOSED METHOD

In this section, we introduce the proposed method and
describe how it improves DARTS. The max-a method is
explained first, followed by the DARTS-CD framework.
DARTS-CD reduces the search cost by forwarding only one
operation, instead of all the candidate operations, in most
edges. Thus, both computation and memory costs are reduced
by approximately a factor of N,, which is the number of
candidate operations. The search direction of DARTS-CD
is constrained compared with that of DARTS, although
being better than that of the max-a method. To overcome
this limitation, we additionally propose a regularization
technique.

1) MAX-a

Here, we propose to sample one operation per edge at every
training step. At each edge, the operation with the maxi-
mum architecture parameter value («) is sampled so that
the network’s active path is the same as the model derived
at that moment. Then, the operation parameters are trained
in this network, preventing the aforementioned performance
gap.

Although this method significantly alleviates the perfor-
mance inconsistency problem, the search direction is biased
toward initially selected operations because of the absence
of continuous relaxation. If only one operation is trained at
each training step, the architecture parameter of that operation
is more likely to increase, limiting the learning opportunity
for other operations. We will experimentally verify this in
Section V-C.

2) DARTS-CD
DARTS-CD employs coordinate descent to use both differ-
entiable search and sampling-based search to determine the
optimal architectures efficiently. In DARTS-CD, the parame-
ter update is carried out at only one edge in every training step.
As shown in FIGURE 2 (left), DARTS-CD randomly samples
one edge (red arrow) and trains all the operation parameters at
that edge. Meanwhile, the other edges (black arrow) process
the input signal through the max-o operation (blue arrow).
The following equation formulates this procedure:

exp (x((,l J)

Yoco— = *xo(x;)) if (i, )=k, 1)
fiti)= o S oco eXp af}’,’f) l 2)

Om(x;) otherwise

where (k, ) is sampled from a uniform distribution over the
set of all the edges, and oy, is the operation with the maxi-
mum «. The algorithm is described in detail in Algorithm 1.

DARTS-CD has the advantages of both differentiable and
sampling-based search algorithms. It does not exhibit perfor-
mance inconsistency, which is a critical problem of DARTS,
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FIGURE 2. Schematic comparison between DARTS-CD (ours, left) and
DARTS (right). An example with 6 nodes is presented, including 2 input
nodes (yellow circles), 3 intermediate nodes (dark blue circles), and

1 output node. Edges represented by red arrows compute a weighted sum
of all candidate operations while those represented as black arrows
indicate only one operation (light blue arrow). Only one edge is
stochastically sampled as a red edge in DARTS-CD (left), whereas in
DARTS (right), all edges are red.

Algorithm 1: Forward Algorithm of the Cell in DARTS-
CD
Input: Two input nodes x¢ and x1, the number of
intermediate nodes N, the set of candidate
operation sets for each edge
{0ij, 0<i<j<N+1}\{0p,1}, setof
architecture parameters over all edges and
operations {azj, 0<i<j<N+1l,0e
Oij}\ {ozg’l, o0 € 0y,1}, uniform distribution
over all the edges U
Result: Output node y
sample (k, ) ~ U
allocate temporary zero tensors x, (2 < p < N+1)
forj:=21t0 N+1do
fori:= 010 j—1do
if (i, ) = (k, ) then

X< X+ e, =——1—+
J J 0€0; Zo’eO,;_,- exp(arf)

S o(x)
else
| X < xj + (argmaxoco,; exp(af))x)
end if

end

end

y <— concat(xy, X4, ..., XN+1)

as discussed in Section VI-B. Furthermore, the parameters of
the max-« operation and the others are trained using stochas-
tic continuous relaxation, facilitating changes of max-« oper-
ation, as discussed in Section V-C.

3) WARMUP REGULARIZATION
We suggest a regularization method to further improve
the exploration capability of DARTS-CD. Sampling-based
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methods, either in all of the edges or in most of them, limits
the exploration of the operations that have lower architecture
parameters at the beginning of training. To alleviate this
problem, we propose to invert the sign of every architecture
parameter once per epoch, for a certain period at the begin-
ning of the search stage. In those epochs in which the signs
are inverted, the edge (i, j) is computed as follows:
exp (—ay”)

(i»j))

o

Jixi) = Xoco * 0(x;) 3

Lyeoexp(—a

where all the notations follow equation 2. Based on this
regularization, non-max-o operations have a better chance of
obtaining higher weights.

IV. EXPERIMENTS

The training procedure of DARTS-CD consists of two sep-
arate stages following the DARTS pipeline [14]: the search
and the evaluation stage.

In the search stage, DARTS-CD searches for the optimal
cell structure. The most significant difference from DARTS
is that DARTS-CD can perform search in a deeper net-
work architecture with the same hardware resources. This is
because the input is processed with only one operation at most
of the edges, which significantly reduces memory require-
ments. In the following evaluation stage, the derived network
is trained afresh, based on the cell structures determined in the
search stage, and then the test accuracy is reported.

All the experiments were performed on CIFAR-10 and
CIFAR-100, using a single NVIDIA Titan X (Pascal) GPU
(with 12GB VRAM). A batch size of 64 was used for all
experiments, which was the maximum size under the memory
constraint.

A. SEARCH STAGE

1) SEARCH SPACE

Following recent studies including DARTS [14] and
P-DARTS [24], we used a candidate operation set of seven
operations: 1) 3 x 3 separable convolution, 2) 5 x 5 separable
convolution, 3) 3 x 3 dilated separable convolution, 4) 5 x 5
dilated separable convolution, 5) 3 x 3 max pooling, 6)
3 x 3 average pooling, and 7) skip connection. For the actual
implementation, an additional zero operation was included as
the eighth operation.

2) DEEPER ONE-SHOT NETWORK

In DARTS, a one-shot network consists of eight cells: two
normal cells in each of the three stages and two reduction cells
between stages. The term ‘stage’ refers to the set of blocks
with the same feature map size in the residual network. The
network is trained by alternatively optimizing the operation
parameters and architecture parameters (i.e., bi-level opti-
mization). In DARTS-CD, the stochastic single-edge modi-
fication scheme uses a deeper one-shot network of 20 cells
(six normal cells for each of the three stages and two reduc-
tion cells) despite the 12GB memory constraint of a single
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(Titan X) GPU. The Titan X GPU hardware used in this study
has the lowest performance among the GPU hardware used
in the previous studies. Both DARTS [14] and ENAS [23]
used NVIDIA GTX 1080Ti GPU, whereas P-DARTS [24]
and SNAS [21] used NVIDIA Tesla P100 GPU and NVIDIA
Titan XP GPU, respectively.

3) EXPERIMENTAL SETTINGS

The one-shot network was trained for 25 epochs with a
batch size of 64 using bi-level optimization (as in DARTS).
Meanwhile, only the parameters in one randomly sampled
edge were trained. The operation parameters were trained
by the stochastic gradient descent (SGD) with a momentum
of 0.9 and weight decay of rate 3e-4. The learning rate was
scheduled by the cosine annealing with initial and minimum
learning rate of 0.025 and 0.001 respectively. The architec-
ture parameters were trained using Adam optimizer with a
learning rate of 0.025, betas of 0.5 and 0.999, and no weight
decay. Weight decay regularization is removed to prevent the
edges from being updated when they are not selected in the
training step. Thus, DARTS-CD only focuses on modifying
the architecture parameters for the selected edge. However,
in the initial warmup setting, the weight decay rate was set to
le-3, same as DARTS, to inhibit the architecture parameters
from selecting the optimal cell too early. In addition, warmup
regularization was applied for the first 10 epochs, inverting
the sign of all the architecture parameters after every epoch.

B. EVALUATION STAGE

1) ARCHITECTURE DERIVATION

We used the derivation algorithm in DARTS and considered
the operation with the maximum architecture parameter at
each edge as the optimal choice. Thus, the cell structure was
determined by pruning all operations other than the max-«
operation at each edge. After derivation, the network was
trained from scratch.

2) EXPERIMENTAL SETTINGS

The derived network was trained for 600 epochs. The settings
other than the number of training epochs were kept the same
as in the search stage.

V. RESULTS

A. EVALUATION

TABLE 1 presents a comparison of DARTS-CD with the
state-of-the-art algorithms. DARTS-CD exhibits better per-
formance than DARTS (see “DARTS (first order)” and
“DARTS-CD-warmup CIFAR-10"), although the search cost
is reduced to 1/12. DARTS-CD operates within only 3h on
a single Titan X GPU, which allows a fast search of archi-
tectures for a new task. In addition, compared with other
efficient methods, such as ENAS and SNAS, DARTS-CD
shows comparable results with considerably smaller search
cost.
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TABLE 1. Comparison with state-of-the-art NAS methods on CIFAR-10 and CIFAR-100. “c.0.” stands for cutout regularization [26].

Architecture % Params (M) ?gg{}hdggss)t Search Method
DenseNet-BC [5] | 346 17.18 | 25.6 | - | manual
AmoebaNet-A + c.o. [13] 3.34 - 3.2 3150 evolution
AmoebaNet-B + c.o0. [13] 2.55 - 2.8 3150 evolution
NASNet-A + c.o. [12] 2.65 - 33 1800 RL
Hierarchical Evo [27] 3.75 - 15.7 300 evolution
PNAS [28] 341 - 32 225 SMBO
ProxylessNAS + c.o. [21] 2.08 - 5.7 4.0 gradient-based
DARTS (first order) + c.o. [14] 3.00 17.76 33 1.5 gradient-based
DARTS (second order) + c.o. [14] 276  17.54 3.3 4.0 gradient-based
SNAS + mild + c.o. [21] 2.98 - 2.9 1.5 gradient-based
SNAS + moderate + c.o. [21] 2.85 - 2.8 1.5 gradient-based
SNAS + aggressive + c.o0. [21] 3.10 - 2.3 1.5 gradient-based
ENAS + c.o. [23] 2.89 - 4.6 0.5 RL
P-DARTS CIFAR-10 + c.o. [24] 2.50 16.55 34 0.3 gradient-based
P-DARTS CIFAR-100 + c.o. [11] 2.62 1592 3.6 0.3 gradient-based
DARTS-CD (first order) + c.o. (ours) 292 17.61 3.44 0.125 gradient-based
DARTS-CD (first order) + warmup + c.o. (ours) 2.86 17.16 3.15 0.125 gradient-based

We also report the evaluation results of the architectures
discovered on the CIFAR-100 dataset, on which only few
previous methods exhibited performance improvement. The
results indicate that DARTS-CD can effectively perform
search on CIFAR-100 dataset, showing improved results over
DARTS.

B. SEARCH BEHAVIOR

FIGURE 3 qualitatively demonstrates how the decision
of cell structure changes during the search stage. The
network was relatively shallow during the early period
of training (See FIGURE 3 (b)-(d)). We attribute this
phenomenon to the easier optimization of shallower
networks. As training progresses, the network depth
increases, which improves the network performance. (See
FIGURE 3 (e) and (f)) The cell structure changes more
rapidly in the first few epochs. Once the parameters are
trained to a certain degree, it gradually changes for the
rest of the training process. The structures determined by
DARTS-CD, as shown in FIGURE 3 (b)—(f) appears to be
similar.

We also conduct a quantitative analysis of the search
progress in terms of parameter size and test accuracy of
the models built with the cell structures, as shown in FIG-
URE 3. As described in TABLE 2, the test accuracy of the
discovered network increases as the search progresses, thus
demonstrating that DARTS-CD successfully searches for a
better structure. There was no distinct pattern according to the
change in the cell structure during the search stage in terms
of the parameter size.
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C. ARCHITECTURE PARAMETER DYNAMICS

This section analyzes how the architecture parameters change
during the search stage of the proposed methods and presents
some examples in FIGURE 4. All these methods are based on
sampling. Briefly reiterating each method, max-o samples
the operation with the maximum « at every edge, DARTS-
CD samples one edge to be relaxed and use max-o oper-
ation for the others, and DARTS-CD-warmup refers to
DARTS-CD with the sign of the architecture parameters
inverted during the first few epochs.

We randomly selected three edges from any -cell.
We recorded the value of the architecture parameters after
applying the softmax function to observe how they change
during the search stage. We observed that in max-c, the archi-
tecture parameter rankings changed less often, and thus,
the cell structures were determined early. In DARTS-CD,
the ranking of architecture parameters changes slightly more
often; however, the operation with the maximum « still rarely
changes. This behavior suggests that the partial relaxation
of the search problem, which is the change from max-« to
DARTS-CD, is not sufficient for desired exploration capa-
bility. In DARTS-CD-warmup, the rankings of the archi-
tecture parameters change dynamically during the entire
search stage, thereby allowing more exploration over the
operations with lower «. Fair experience among the can-
didate operations helps the ranking to change even after
the warmup stage. Accordingly, we conclude that the per-
formance improvement of DARTS-CD-warmup compared
with DARTS-CD originates from the increased exploration
capability.

48549



IEEE Access

P. Ahn et al.: DARTS-CD

sep_conv_3x3

(a) Before training

sep_conv_3x3

(€ 5T

w .
~
o

dil_conv_3x3

FIGURE 3. Change of the normal cell structure during the search stage of DARTS-CD. (T denotes the entire training process.)

TABLE 2. Parameter size and test accuracy of the models shown in
FIGURE 3. The test accuracy is obtained by retraining each network for
600 epochs as in the evaluation stage.

Architecture (a) (b) (© (d) (e ()
Parameter size (MB) 2.89 2.89 3.07 2.89 3.27 3.09
Test acc. (%) 96.87 | 97.15 | 97.14 | 97.15 | 97.22 | 97.21

VI. DISCUSSION
A. COMPARISON WITH OTHER METHODS
In this subsection, we provide a comparison of DARTS-CD
with several related studies in detail. We first compare
DARTS-CD with DARTS in terms of the exploration of
the search space. Then, DARTS-CD is compared with other
methods in terms of path activation scheme, which represents
how information flows through the network during the search,
according to which the parameters are updated.

The primary difference of DARTS-CD from DARTS is that
it performs optimization at only one edge in each training
step, following the coordinate descent algorithm. Because
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DARTS-CD reduces the cell structure search problem to the
operation decision problem within an edge, one could point
out that the algorithm performs the search only within a small
local region, compared with DARTS. However, we argue that
this is not a critical problem in a differentiable architecture
search. As experimentally analyzed by Li and Talwalkar [16],
arandom sampling-based search achieves comparable results
to DARTS under the same time constraint. This indicates that
although DARTS is based on continuous relaxation, there
are numerous random initial points that show comparable
performance to its solution. This observation supports that
DARTS-CD can identify local optima comparable to DARTS
in terms of network performance. This insight is also sup-
ported by several recent studies on local search [29], [30].
TABLE 3 and FIGURE 5 present the main difference
of DARTS-CD from several NAS studies. The novelty of
the proposed method is that edges use different path acti-
vation schemes that choose whether to perform only one
operation per edge (single-path) or all candidate opera-
tions (multi-path) in a single forward pass. In TABLE 3,
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FIGURE 4. Architecture parameter dynamics during the search stage of the methods introduced in Section I1I-B: max-« (a,b,c), DARTS-CD (d,e,f), and
DARTS-CD-warmup (g h,i). In (j.k,I), we present the same results as in (g h,i) again with the architecture parameters inverted back to their original sign
during warmup, to explicitly show the change in max-« operation.

according to previous methods, all the edges share the path For example, differentiable methods such as DARTS [14],
activation scheme and possibly use different schemes to SNAS [21], and P-DARTS [24] use multi-path activation.
update the operation parameters and architecture parameters. Other methods based on sampling, including NASNet [12]
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FIGURE 5. Path activation types in TABLE 3 are visualized. Blue planes denote nodes, apricot planes denote operations, and red planes
indicate operations selected by some policy (i.e., random sampling or max-«).

TABLE 3. Comparison of path activation scheme used for updating each parameter group in NAS methods.

Method operation parameter update | architecture parameter update

DARTS [14] multi-path multi-path
SNAS [21] multi-path multi-path
P-DARTS [24] multi-path multi-path
NASNet [12] single-path single-path
AmoebaNet [13] single-path single-path
ENAS [23] single-path single-path
ProxylessNAS [25] single-path multi-path

DARTS-CD (ours) multi-path for one edge, single-path for the others

and AmoebaNet [13], use single-path activation. Proxyless-
NAS [25] uses single-path activation when updating the oper-
ation parameters and multi-path activation for architecture
parameters. Still, it uses the same path activation scheme
for all the edges in each training step. Only the operation
parameters or architecture parameters are updated. Compared
with other methods, DARTS-CD is the first to use a mixed
path activation scheme, which leverages the efficiency of the
differentiable search while maintaining the interpretability of
the derivation process.

There are many possible intermediate path activation
schemes between the proposed method and DARTS. For
example, a multi-path activation scheme can be applied to
M (M > 1) sampled edges, where M can be fixed or varied
during training. This type of variant can have better explo-
ration ability than the current version of DARTS-CD because
search parameters are optimized for more edges in a single
epoch. However, we choose to use multi-path activation in
only one edge to spare search cost in terms of memory and
computation, and propose a regularization method to improve
the exploration ability of the proposed method.

48552

In addition, the proposed method samples a single edge
from uniform distribution based on the assumption that every
edge is of equal importance. However, more effective sam-
pling strategies can be used. For example, if the contribution
of each edge to the network performance can be measured,
it can be used as a sampling probability to give more
search opportunities to more important edges. Therefore, our
future work involves determining improved edge sampling
strategies.

B. MODEL INCONSISTENCY FOR SEARCH

AND EVALUATION

The one-shot network trained in the search stage of DARTS
has a large gap from the derived network. In Xie et al. [21],
this gap is attributed to the derivation process of DARTS,
which removes most of the operations and edges, thereby
changing the output of the network significantly. If this gap
is critical in the forward pass of the network, it would also
affect the gradient. Assuming that the gradients of specific
operation parameters are affected by others, the speed and the
performance of the optimization process would be degraded.
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We focus on the perspective that gradient descent (stochas-
tic, batch, etc.) is not the only approach to train a neural
network. Recent deep learning algorithms mostly use gradi-
ent descent as the optimizer. Following early deep learning
studies that mostly used stochastic (batch) gradient descent,
researchers have suggested improved optimization methods
such as RMSprop, Adagrad [31], and Adam [32]. Although
these methods have successfully trained large-scale deep neu-
ral networks, some other methods are known to be better
for solving specific problems. One example is the coordinate
descent algorithm, in which one parameter is updated per
training step. This is a considerable difference from gradient
descent-based algorithms, which update all the parameters
collectively. Because coordinate descent searches for the
optimal point along one axis in each training step, it serves
as an effective optimization method when the parameters
are independent of others. When the algorithm is applied to
regression problems such as LASSO, it not only leads to fast
convergence but also provides state-of-the-art optimization
results [17], [20].

We suggest leveraging the coordinate descent algorithm
for one-shot architecture search. In the one-shot network,
the number of operation parameters is quite larger than that
of ordinary neural networks. Thus, if all the operation param-
eters contribute to the gradient calculation as in gradient
descent algorithms, it could lead to heavy dependence among
the operations. This is verified by the near-random perfor-
mance of the derived model with the operation parameters
trained in the search stage (see FIGURE 6, blue line). There-
fore, the one-shot networks must not be optimized in the
same manner as training ordinary CNNs. According to the
coordinate descent algorithm, we propose a novel training
strategy in which only the parameters at one edge are opti-
mized at each training step. In this framework, the parameters
are trained considering that the other edges perform exactly
the same as the derived network, so that the discrepancy of
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network behavior is minimal between the search and evalu-
ation stages. Thus, all the candidate operations adjust better
to the derivation of operations in other edges, which leads to
expected performance curve, as shown in FIGURE 6.

VIi. CONCLUSION

In this study, we propose DARTS-CD, an efficient differen-
tiable architecture search algorithm based on the coordinate
descent. In DARTS-CD, only one edge inside the cell is
sampled at every training step for differentiable training,
whereas one operation is chosen for the other edges. This
modification to DARTS improves performance with only
1/12 relative search cost. Through experimental analysis,
we show that DARTS-CD achieves satisfactory performance
and trains the operation parameters so that they can perform
well even in the derived model. Additionally, we suggest a
warmup regularization to alleviate the low explorative power
of sampling-based methods. This technique enhances the
performance while showing the desired search behavior of
differentiable search algorithms.

This study proposes an improvement to DARTS, which can
be further extended in several aspects. First, we plan to apply
DARTS-CD to the second-order version of DARTS, which
is expected to benefit more from the efficiency of coordinate
descent algorithm. The multi-path activation scheme can be
applied to multiple edges instead of only one edge with only
a small increase of computational cost. This extension is
expected to improve the exploration ability of the proposed
method. Furthermore, DARTS-CD can be widely applied to
other differentiable search methods, by combining coordinate
descent and NAS algorithms.
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