
Received March 1, 2021, accepted March 12, 2021, date of publication March 24, 2021, date of current version May 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3068772

A Parallel Algorithm of Image Mean
Filtering Based on OpenCL
HAN XIAO 1, BAOYUN GUO 2, HONGYAN ZHANG 1, AND CAILIN LI 2
1School of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China
2School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255000, China

Corresponding author: Cailin Li (licailin@sdut.edu.cn)

This work was supported in part by the Key Laboratory Open Foundation for Geo-Environmental Monitoring of Great Bay Area (Shenzhen
University) through the Ministry of Natural Resources of the People’s Republic of China under Grant SZU51029202003, in part by the
National Natural Science Foundation of China under Grant 41701525 and Grant 41601496, and in part by the Key project of Art Science in
Shandong Province under Grant ZD202008267 and Grant 201806353.

ABSTRACT The image will be contaminated by noise during the imaging process, which severely degrades
the image quality. It is necessary to filter the collected image. With the increasing amount of image
data, the traditional single-processor or multiprocessor computing equipment has been unable to meet the
requirements of real-time data processing. In this paper, the computational model of weighted mean filtering
and the characteristics of high performance computer architecture are studied. An efficient hierarchical
image weighted mean filtering parallel algorithm for Open Computing Language (OpenCL) is designed
and implemented, which can fully express the parallelism of the computing model. The parallel algorithm
takes full account of the characteristics of image discrete convolution computing and the multi-layer logic
architecture of high performance computer, deeply excavates the parallelism of the computing platform and
computing model, and realizes the efficient task mapping from computing model to computing resources.
The model is implemented in parallel with the two levels of work-group and work-item. The experimental
results show that compared with the serial algorithm based on CPU, the parallel algorithm based on Open
Multi-Processing (OpenMP) and the parallel algorithm based on Compute Unified Device Architecture
(CUDA), the parallel algorithm of weighted mean filtering achieves 20.88 times, 18.52 times and 1.26 times
acceleration ratio on the NVIDIA GPU computing platform based on OpenCL architecture, respectively.
It realizes better computing performance and runs on different Graphic Processing Unit (GPU) computing
platforms, and has good portability and scalability.

INDEX TERMS Weighted mean filtering, Gaussian noise, Graphic Processing Unit (GPU), Open Comput-
ing Language (OpenCL), parallel algorithm.

I. INTRODUCTION
In the process of image acquisition, transmission, storage,
and processing, due to the performance limitations of trans-
mission media and receiving equipment, there are inevitably
external interference and internal interference [1]. This leads
to the generation of all kinds of noise, resulting in vary-
ing degrees of degradation in the image quality, and the
image becomes blurred. The effect of removing image noise
is an important part of image analysis and image recogni-
tion [2]. Therefore, in order to effectively deal with noise
and improve image quality, image filtering technology has
become a research focus in the fields of image segmentation,

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

feature extraction, pattern recognition, and so on. Gaussian
noise is the most common noise in digital images [3]. Mean
filtering has the characteristics of simple operation and strong
ability to remove Gaussian noise, which makes it the most
commonly used method among many denoising methods.
However, mean filtering also destroys the details of the image
while the image is denoising so that the image becomes
blurred.Mean filteringmainly includes arithmetic (weighted)
mean filtering, geometric mean filtering, harmonic mean fil-
tering, and inverse harmonic mean filtering, and so on [4].
Because the amount of image data that needs to be pro-
cessed is getting larger and larger, and the complicated fil-
tering processing is required to obtain clear images. At the
same time, some application fields have higher real-time
requirements for the process of obtaining clear images, which

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

65001

https://orcid.org/0000-0002-5538-7789
https://orcid.org/0000-0002-2370-9771
https://orcid.org/0000-0002-8419-6017
https://orcid.org/0000-0003-0266-1032


H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

makes high-speed image processing technology become a
key technology [5].

At present, CPU-based personal computers, workstations,
and large computing servers are usually used for image
processing. At this time, a large amount of money needs
to be invested to purchase a number of computing equip-
ment with sufficient processing capacity. The software is
implemented by parallel programming techniques such as
Open Multi-Processing (OpenMP) or Message Passing Inter-
face (MPI). If it is implemented by Field Programmable Gate
Array (FPGA) or Digital Signal Processor (DSP), more com-
plex programming methods and expensive hardware equip-
ment are required [6]. Modern Graphic Processing Unit
(GPU) uses relatively simple control logic, and a large num-
ber of transistors are used in Arithmetic Logic Unit (ALU)
to participate in the data processing. With its strong com-
puting power and excellent performance-to-price ratio, GPU
has attracted more and more general-purpose computing,
including fluid simulation, video detection, sequence align-
ment, and protein molecular field, and so on [7]. In order to
overcome the shortcomings of traditional GPU programming
based on the graphical interface, AMD and NVIDIA respec-
tively put forward their programming models-Brook+ and
Compute Unified Device Architecture (CUDA). However,
AMD GPU is not compatible with NVIDIA GPU, and the
programming model of GPU is mostly limited to a fixed
platform, which brings a lot of inconvenience to the design
and transplantation of the program. In order to give full
play to the performance potential of various devices under
heterogeneous processing platforms, and make the software
system portable, Khronos Group introduces Open Computing
Language (OpenCL). The release of the OpenCL 1.0 standard
has brought about new changes. It is an open standard that has
been supported by many vendors and can be widely used for
general-purpose parallel programming on multi-core CPU,
GPU, and other processors [8], [9].

On the basis of comparing and analyzing the similarities
and differences of the current main hardware architecture,
this paper proposes an OpenCL-based image mean filtering
(OCL_MF) parallel algorithm for CPU + GPU heteroge-
neous computing system. The parallel algorithm of image
mean filtering based on OpenMP (OMP_MF) and the par-
allel algorithm of image mean filtering based on CUDA
(CUDA_MF) are compared and studied. Evaluate the accel-
eration performance of each algorithm and the performance
bottleneck of the OCL_MF parallel algorithm, optimize
the memory and the NDRange index space configuration,
and effectively improve the performance of the algorithm.
The optimized algorithm can not only greatly improve the
performance, but also achieve cross-platform applications.
Specifically, this paper makes the following contributions:

(1) The OCL_MF parallel algorithm for OpenCL heteroge-
neous systems is proposed, which can efficiently filter images
of more than tens of millions of scales on a single heteroge-
neous node. For the four sets of images in the experiment,
the OCL_MF algorithm on a single computer is 20.88 times

faster than the CPU serial processingmean filtering algorithm
(CPU_MF), with obvious performance advantages.

(2) Adopt a diversified performance comparison standard.
This paper implements the processing of imagemean filtering
onmultiple parallel computing platforms, and tests the impact
of three parallel modes on the performance of the algo-
rithm. The performance of the OCL_MF parallel algorithm
is compared with the OMP_MF algorithm, the CUDA_MF
algorithm, and the related literature algorithms. From the
performance comparison of the horizontal and vertical direc-
tions, we can see that the OCL_MF parallel algorithm has
achieved a better performance improvement.

The second section of this paper introduces the related
work, the third section studies and analyzes the weighted
mean filtering algorithm, the fourth section introduces the
design and implementation of OpenCL accelerated weighted
mean filtering parallel algorithm, and the fifth section
introduces the experimental results and analysis. Finally,
a summary of the full text is made.

II. RELATED RESEARCH WORKS
Around the performance improvement method of image
denoising, many scholars have made a lot of algo-
rithm improvements, especially in parallel computing.
Jaime et al. [10] determined the covariance matrix from the
partial covariance matrix in parallel, which was used for
the fast calculation of the covariance matrix and was conve-
nient for hyperspectral imaging. Zeinab and Gholamreza [11]
studied the unsupervised segmentation algorithm of SAR
images based on Gabor filter bank and unsupervised spectral
regression, and the running time was significantly short-
ened. Dariusz [12] implemented a recurrent Gaussian filter
for separating the shape, waviness, and roughness com-
ponents of surface texture by using the parallel method.
Jorge et al. [13] proposed an ultra-low-power massively par-
allel processing array for image enhancement and edge
detection. By optimizing the calculation process of mean
filtering, Bai et al. [14] realized the de-fogging algorithm
on multi-core DSP, which greatly shortened the execution
time of the algorithm. Dang and Tsutomu [15] proposed an
FPGA image segmentation system based on the Mean Shift
algorithm, which reduces the running time of the system.
The adaptive transverse LMS, GAL, and QRD-LSL filtering
algorithms proposed by Lee et al. [16] achieved maximum
speed increases of 174%, 432%, and 35.5%, respectively,
on computers with four-core and four-way SIMD architec-
ture. He et al. [17] proposed an improved mean filtering algo-
rithm to remove image noise quickly and efficiently, which
reduced the time cost of the whole algorithm. Devrim [18]
implements an adaptive image noise filter based on TDLMS
on a multicore computer using OpenMP. Cheng et al. [19]
parallelized the mean filtering algorithm using multi-core
processors and applied it to the MCMC algorithm to improve
the running speed of the system. Salvatore et al. [20] pro-
posed a full 3D non-local mean parallel method based on
multi-GPUs, which had high applicability and scalability.

65002 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

Nguyen et al. [21] implemented a non-local mean denoising
filter based on multi-GPUs, which reduced shared memory
access and improved denoising speed. Zou et al. [22] used
OpenMP on a multi-core computer to realize the parallel
simulation of the image processing process of ocean wave
sample data set by weighted mean filtering, and the accel-
eration ratio was up to 24.29 times. Subhra et al. [23] pro-
posed GPU accelerated particle filter algorithm and obtained
4 times the speedup. Chang et al. [24] studied the GPU
accelerated bilateral filter based on the BPN model related to
image texture features, and obtained 208 acceleration ratio.
Chen et al. [25] realized the process of image mean filtering
using GPU, which greatly reduced the execution time of the
algorithm in the linear binocular cost aggregation algorithm.
He and Zhang [26] realized the automatic gain compensation
algorithm through the GPU parallel mean filtering process,
and the speed was increased by about 267 times. Lu et al. [27]
implemented an inverse Gaussian bilateral filter on GPU,
which was applied to a non-photorealistic real-time virtual
engraving system. Chang et al. [28] proposed a bilateral fil-
ter based on CUDA and established a ‘‘high precision’’
parameter prediction system, which improved the processing
speed. Duan and Li [29] proposed an improved GPU parallel
algorithm for image mean filtering based on CUDA, and
the acceleration ratio was more than 300×. Xia et al. [30]
realized the application of image mean filtering algorithm in
steel plate image denoising by using CUDA, and obtained
3.91 times acceleration ratio.

At present, most of the research work focuses on using the
traditional parallel computing method to parallelize the mean
filtering algorithm and apply it to various application fields
or carry out parallel processing for the improved mean filter-
ing algorithm. Thus, the processing speed of the application
system is improved and the effect of image noise reduction
is improved. Most of them use FPGA, DSP, multi-core CPU,
CPU cluster, and CUDA many-core processor to realize the
parallel algorithm of image processing. Generally speaking,
although these studies improve the processing speed of the
system, there are some problems, such as complex design,
long development cycle, low flexibility, and so on. There
is a lack of research results in a single parallel algorithm
for image weighted mean filtering, and there is a lack of
research on the implementation of cross-platform transplan-
tation to greatly improve the computational efficiency and
performance of the algorithm. For this reason, a weighted
mean filtering parallel algorithm based on OpenCL archi-
tecture is proposed in this paper. The parallelization pro-
cess of the algorithm retains the data flow structure of the
original algorithm. This paper mainly focuses on the data
parallelization and task parallelization for the image local
processing function which consumes a lot of time in the
weighted mean filtering algorithm. Then the performance of
the algorithm is further optimized from the aspects of data
memory access and kernel configuration of the general paral-
lel computing architecture OpenCL. The performance migra-
tion of the algorithm on different GPU computing platforms is

realized, and the execution time of the algorithm is effectively
shortened.

III. ALGORITHM ANALYSIS
A. OpenCL PARALLEL COMPUTING PLATFORM
In June 2008, Apple proposed the open parallel programming
specification OpenCL at the WWDC (World Wide Develop-
ers Conference) conference, which was maintained by the
Khronos Compute Working Group. On December 9, 2008,
at the 2008 Asian SIGGRAPHConference held in Singapore,
the Khronos Group, which is composed of the world’s major
semiconductor giants, issued the OpenCL version 1.0 tech-
nical specification. Apple, AMD, NVIDIA, and IBM have
successively announced full support for OpenCL. Version 1.1
of OpenCL was released on June 11, 2010. OpenCL 1.1
is backward compatible with OpenCL 1.0, provides more
new features, and improves performance. OpenCL 1.1 adds
a large number of functions to improve the flexibility, func-
tionality, and execution efficiency of parallel computing.
Version 1.2 of OpenCL was released on November 14, 2011.
OpenCL 1.2 adds separate compilation and linking of pro-
grams. Custom devices and built-in kernels are supported.
Device partitioning allows a device to be partitioned based
on a number of partitioning schemes supported by the device.
Version 2.0 of OpenCL was released on March 18, 2014.
OpenCL 2.0 adds shared virtual memory, enqueue kernels
on the device, pipes mechanism, and dynamic parallelism of
kernel. OpenCL 2.0 adds that images support for 2D image
from buffer, depth images, and sRGB images. Version 2.1 of
OpenCL was released on November 5, 2015. The SPIR-V
and OpenCL SPIR-V Environment specifications have been
added. Version 2.2 of OpenCL was released on July 19,
2019. OpenCL 2.2 adds the third prerequisite (executing
non-trivial constructors for program scope global variables).
Version 3.0 of OpenCL was released on September 30, 2020.
OpenCL 3.0 adds a new API to register a function that will be
called when a context is destroyed, enabling an application
to safely free user data associated with a context callback
function. OpenCL 3.0 adds two new APIs to support creating
buffer and image memory objects with additional proper-
ties. OpenCL 3.0 adds new queries for the properties arrays
specified when creating buffers, images, pipes, samplers, and
command queues. OpenCL 3.0 adds new queries to deter-
mine supported OpenCL C language versions and supported
OpenCL C features.

Figure 1 shows the abstract model defined by OpenCL.
In the OpenCL execution architecture, the host-side program
is used to uniformly manage and schedule multiple com-
puting devices that support OpenCL [31]. When the host
side submits the kernel to the computing device, OpenCL
defines the organizational structure of the work-item through
the index space and defines how the kernel operates on the
computing device in a mapping manner on the computing
device [32], [33].

In the OpenCL abstract model, each instance of the exe-
cution kernel is called a work-item, which is represented by

VOLUME 9, 2021 65003



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

FIGURE 1. OpenCL abstract model.

its coordinates in the NDRange. The corresponding hard-
ware is the processing element [34]. Multiple work-items
are organized as a work-group, providing a coarser divi-
sion of NDRange, where work-items in a given work-group
are executed concurrently on the processing element of a
compute unit. Global memory and constant memory can be
shared between one or more devices within a context, and an
OpenCL device is associated with local memory and private
memory. Fig. 1 describes the operating space of the various
memory areas, that is, their position in the platform [35], [36].

B. ALGORITHM BASIC PROCESS
1) WEIGHTED MEAN FILTER PRINCIPLE
The weighted mean filter is a common technique of lin-
ear filter, which has a good effect on suppressing Gaussian
noise [37]. The basic idea of the weighted mean filtering
algorithm is to replace the gray value of each pixel with
the average gray level of several neighborhood pixels. The
neighborhood is selected as an 8 neighborhood composed of√
2 unit distance 1x as the radius r , such as Figure 2 shows

the circular region, where r =
√

12x [38], [39].

FIGURE 2. Schematic diagram of 8 neighborhood selection of mean
filtering.

The weighted mean filtering algorithm is an effective fil-
tering algorithm to remove Gaussian noise. The gray value
of the center point of the filtering window is obtained by the
weighted average of the gray value of each pixel sample point
in the window. The expression is as follows:

g (x, y) =

a∑
s=−a

b∑
t=−b

w (s, t) f (x + s, y+ t)

a∑
s=−a

b∑
t=−b

w (s, t)

(1)

FIGURE 3. 3 × 3 weighted mean filter template.

where f (x + s, y+ t) is the gray value of the pixel in the
neighborhood of the central point (x, y), g(x, y) is the gray
estimated value of the filtered central pixel, and w(s, t) is
the weight corresponding to the pixel f (x + s, y+ t) in the
filtering window [40].

When the image polluted by Gaussian noise is filtered by
the weighted mean filter, the singular points caused by noise
in the smooth region are usually isolated or discontinuous,
and the edge of the image is not isolated because of its
persistence in a certain direction. Therefore, when we want
to estimate the edge points of the image, we want to give
the points on the edge of the neighborhood a larger weight,
while the non-edge points in the neighborhood correspond to
a smaller weight [41]. In the point estimation of the smooth
region, because the gray value of the pixel in the neighbor-
hood is similar, the corresponding weight of the pixel which
is not polluted by noise or the pollution is not serious is
larger, and the weight of the isolated point seriously polluted
by noise will be relatively small, so as to smooth the noise.
The 3 × 3 smoothing filter shown in Figure 3 is used in this
paper [42].

FIGURE 4. Image extension principle.

2) IMAGE BOUNDARY PROCESSING
In the image processing algorithm, a large number of algo-
rithms use templates to participate in the calculation. These
algorithms have the same characteristics: when dealing with
the current pixels, they need the information of other pixels in

65004 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

the neighborhoodwithin the scope of the template. Therefore,
when executing these algorithms, it is necessary to traverse
the image pixels corresponding to the template according to
the size of the template. When the template is used to traverse
the image, the judgment is more complex in the boundary
area of the image. Because at this point, the area covered
by the template may have exceeded the boundaries of the
image [43].

At present, the method of filling 0 or retaining the original
value is mostly used for the extended boundary. The weighted
mean filter parallel algorithm uses even extended explicit
edge expansion method for image expansion, that is, the
0-th column is copied to the first column of the left extension,
and the first column is copied to the second column of the
left extension, and so on, the extension of the four bound-
aries [44]. In this method, the original image is extended by
using the points close to the edge pixels, and the similarity is
higher. Taking the 3 × 3 image size and the template of the
5×5 filter as an example, the concrete steps of even extending
the image expansion process are illustrated below [45]. The
principle of specific image expansion is shown in Figure 4.

(1) Because the radius of the neighborhood window of the
filter template window size is 2, an extended image of
7× 7 image size is generated.

(2) Fill the gray value of the original image pixel into
the corresponding position coordinate of the extended
image

(3) Fill the left and right boundaries. As shown in Figure 4,
the values of the pixels P1, P4, and P7 are first copied
and filled as the values on the left side of the extended
image closest to the left boundary of the original
image. Then copy the values of the pixels P2, P5, and
P8 as the values on the left boundary of the extended
image. The filling process of the data on the right side
of the extended image is similar to that on the left part.

(4) Fill the upper and lower boundaries. Unlike the left
and right boundary fills, you need to consider the fill
of the four corners. Therefore, you need to copy the
pixel value of the entire row to the extended location.
As shown in Figure 4, the values of P2, P1, P1, P2, P3,
P3, and P2 line pixels are first duplicated as the values
closest to the upper boundary of the original image in
the extended image. The values of P5, P4, P4, P5, P6,
P6, and P5 line pixels are then duplicated to fill in the
values of the upper boundary of the extended image.
The filling process of the lower part of the extended
image is similar to that of the upper part.

C. ALGORITHM HOT SPOT ANALYSIS
An experimental analysis of the image weighted mean filter-
ing algorithm is carried out. The experimental data are test
image with an image size of 5326 × 5764, and the 3 × 3
weighted mean filter template shown in Figure 3. The com-
piling and running environment of the software is as follows:
the operating system is Windows 10 64 bits, the compiler
is Microsoft Visual Studio 2015, and the CPU is Intel Core

i7 6700@3.4 GHz. The running time distribution of each
functional module of the algorithm is shown in Table 1.

TABLE 1. Running time distribution of each functional module of the
weighted mean filtering algorithm.

The percentage of running time for each functional mod-
ule is shown in Table 1. It can be seen that the operation
time of the image local processing function module is the
longest, accounting for 65% of the total running time of the
algorithm, the running time of the extended image function
module accounts for 8%, and the running time of other parts
accounts for 27%. It can be seen that the local image pro-
cessing is a hot module of the image weighted mean filter-
ing algorithm, and the module is computationally intensive.
Therefore, if we analyze the parallelism of this hot module,
choose to parallelize themodule, and then transplant themod-
ule to GPU for calculation, we can get a good acceleration
effect.

D. PARALLELIZATION ANALYSIS OF ALGORITHM
The data of an image in a computer is expressed as a real
two-dimensional matrix, and the storage mode in memory
can transform the two-dimensional structure into a one-
dimensional linear structure in the order of rows. The pixels
in an image are scattered and independent of each other. The
image mean filtering algorithm uses the 3×3 weighted mean
filter template to calculate the convolution of each pixel in the
image, the masking coefficient and the corresponding pixel
gray value of the mask cover area are dotted multiplication
and summed up. Although the pixel is correlated with the
remaining pixels in the mask coverage area, the whole con-
volution calculation process only reads the original image
and does not change the original image data. Therefore,
the convolution result contributes to only one pixel but has
no effect on the other pixels, and the calculation of one pixel
will not affect the calculation results of the other pixels. In the
algorithm, the calculation of each pixel can be carried out
at the same time, with parallelism. That is, the weighted
mean filtering algorithms directly called by different pixels
are independent and unrelated to each other. This fully proves
that it is feasible to convert the serial algorithm into the
parallel algorithm. In this paper, the weighted mean filtering
convolution of different pixels can be assigned to different
work-items without having to worry about their dependence
on each other. Therefore, in the parallel computing based on
OpenCL architecture, the local image processing functions
of different pixels can be processed at the same time, because
their calculations are interdependent.

VOLUME 9, 2021 65005



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

IV. OpenCL IMPLEMENTATION OF THE IMAGE MEAN
FILTERING ALGORITHM
A. PARALLEL ALGORITHM DESCRIPTION
According to the characteristics of OpenCL architecture,
eachwork-item in Single InstructionMultiple Thread (SIMT)
model is only responsible for the mean filtering of one pixel
and then stores the processing results to the corresponding
pixel location. The formal description of the image weighted
mean filtering parallel algorithm is shown in listing 1.

LISTING 1. The formal description of the weighted mean filtering parallel
algorithm.

(1) Assuming that the image size is M × N , if imple-
mented by a single-thread CPU, the image weighted
mean filtering serial algorithm is calculated by traversing
the whole image pixel data, so the time complexity is
O
(
M × N ×MODELDIM2

)
.

(2) When using a multi-core CPU for parallel comput-
ing, the number of threads is created based on the num-
ber of CPU cores csum. Each thread is assigned to the
image block in a self-heuristic way, and the convolution
operation of the weighted mean filtering of the pixels
in each image block is carried out in parallel. There-
fore, the time complexity of the algorithm is reduced to
O
((
M × N ×MODELDIM2

)/
csum

)
.

(3) The multi work-items of many-core GPU are used
to calculate the image local processing function in parallel.
A work-item is responsible for calculating the weighted mean
filtering convolution of a pixel, and the time complexity
of the algorithm is reduced to O(MODELDIM )2. If all the

pixels in the image are not processed in a kernel function,
each work-item will execute the kernel function that com-
pletes the image local processing function at least (M ×
N )/tsum times, where tsum represents the total amount of
active work-items. At this point, the time complexity will be
O
((
M × N ×MODELDIM2

)
tsum

)
.

It should be noted that, in general, the core number csum
in a multi-core CPU is not large, and the Intel Core i7 6700
(four cores) is used in this paper. On the other hand, there are
a large number of active work-items that can be maintained
in GPU, that is, tsum is always a large value. Therefore,
csum � tsum. Therefore, there are three image weighted
mean filtering algorithms with time complexity relation

O
((
M × N ×MODELDIM2

)/
tsum

)
� O

((
M × N ×MODELDIM2

)/
csum

)
< O

(
M × N ×MODELDIM2

)
.

B. CALCULATION PROCESS
The GPU parallelization process of image mean filtering is
shown in Figure 5.

FIGURE 5. Parallel computing process of image mean filtering.

The main steps to realize the parallel computation of the
weighted image mean filtering are as follows:

(1) Create the platform object, get the OpenCL platform,
and create the GPU device. Establish the OpenCL platform
context.

(2) Creates a command sequence object from the context
and the specified device, and uses the command queue to
establish a connection between the device and the context.

(3) The image data are read in, the parameters are cal-
culated and the data are transmitted to the video memory.

65006 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

Get the identification, height, width, color, size, and other
data of the image.

According to the size of the image, the storage area is estab-
lished on the device. CPU reads the image data into the host
memory and calls the OpenCL function to transfer the data
from the host memory to the device global memory. Due to
the limitation of bandwidth, the data communication between
host memory and video memory has become the biggest
bottleneck restricting the speed improvement of the system.
Therefore, the whole data transmission is used in the parallel
algorithm instead of multiple block transmission.

(4) After the system first loads and compiles the image
mean filter kernel to generate the executable file, when it runs
again, it uses the precompiled offline to generate the binary
executable file and compiles the executable system on the
specified device. Create and compile program objects.

(5) Create a kernel object from a program object.
(6) Set the passed parameters for the kernel object to start

the kernel. The system schedules kernel functions to perform
image mean filtering calculations. This phase consists of the
following steps:

Determine the execution configuration of the kernel.
According to the data density and computation, the index
space dimension and work-group dimension of the device are
set.

The decomposition of the input data. The work-items in
each work-group determine the pixel objects that need to be
calculated based on the index address.

Kernel functions are placed in the command queue through
clEnqueueNDRangeKernel to perform parallel computing
between work-items.

The weighted mean filtering results of all the pixels of
the image calculated by GPU are all written to the global
memory.

(7) The data is read out and the image output is carried out.
The calculation results are transmitted from the video mem-
ory back to the host memory, and the image mean filtering
results are displayed.

C. PARALLEL COMPUTING METHOD
1) DESIGN OF THE KERNEL FUNCTION
In order to carry out a large number of data processing,
the OpenCL kernel needs to carry out a large number of
data partition operations. The more reasonable the data par-
tition processing is, the shorter the data processing time
is. The smallest unit that can be executed independently in
OpenCL is a work-item. Several work-items form a work-
group. Work-items within a work-group can share resources
within the work-group and execute concurrently within the
work-group. Different work-groups execute in parallel on
different compute units.

OpenCL uses the clEnqueueNDRangeKernel function to
put specific tasks into the queue for execution and divides
the tasks by setting parameters. Different work-items com-
plete different tasks for different data and work-items are

executed in parallel. OpenCL can use a data-parallel pro-
gramming model to construct a weighted mean filter in paral-
lel. The NDRange parameter of clEnqueueNDRangeKernel
is an array, and the dimension of the index space is set to
two dimensions according to the characteristics of the digital
image. As shown in Figure 6, NDRange is a two-dimensional
array, and one element of the array is a work-group, each
of which can independently carry out weighted mean filter
processing for the corresponding sub-image blocks. A work-
group contains a fixed number of work-items, each of which
can independently carry out weighted mean filter processing
for the corresponding for pixels. In this paper, the dimension
of the work-group is set to (Sx , Sy), and the whole image
is logically divided into ((M + Sx − 1)/Sx × (N + Sy −
1)/Sy) sub-image blocks, that is, in theory, these sub-image
blocks can be put into compute units for parallel comput-
ing by the same number of work-groups at the same time.
Therefore, the OpenCL workspace NDRange is configured
with (M + Sx − 1)

/
Sx work-groups in the X direction and(

N + Sy − 1
)/
Sy work-groups in the Y direction. Because

different GPU models have different performance, the maxi-
mum number of work-items supported varies. To take advan-
tage of the best performance of GPU, you need to find the
best number of work-items to achieve the best performance
ofGPU. Through the experiment, 256work-items are enabled
to execute kernel functions per work-group.

FIGURE 6. The principle of parallel constructing weighted mean filter
model using OpenCL.

2) CONVOLUTION CALCULATION
Weighted mean filtering is realized by discrete sliding win-
dow convolution calculation. Figure 7 shows a schematic
diagram of a convolution calculation. In a two-dimensional
convolution calculation, if the convolution of p[i][j] the pixel
in the range of the original image is calculated, the weighted
mean filter template and the two-dimensional sub-matrixwith
the same size as the template matrix centered on p[i′][j′] in
the extended image matrix srcImageData′ are required. In the
convolution calculation, it is necessary to multiply and accu-
mulate the data of the template matrix and the corresponding
submatrix in the extended image matrix and divide by the
weighted sum to obtain the updated results of the original
image after the weighted mean filtering. For all the pixels,
the parallel convolution calculation process is carried out,
and the parallel processing of the weighted mean filtering
algorithm is realized.

VOLUME 9, 2021 65007



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

FIGURE 7. Two-dimensional convolution calculation.

D. OPTIMIZATION STRATEGY
1) CONSTANT MEMORY OPTIMIZATION
The constant memory in GPU is read-only. If each work-
item in half-warp reads data from the same address in con-
stant memory, GPU only produces one read request and then
broadcasts the data to each work-item. At the same time,
because the content of the constant memory will not change
and the constant memory has a cache mechanism, GPU can
put the constant data directly into the L1 cache. After the
first read from an address in constant memory, when other
half-warp requests the same address, the cache is hit, speeding
up access. Therefore, reading the same data from the constant
memory can save a large amount of memory bandwidth
compared with reading the data from global memory.

Because in the process of image weighted mean filtering,
the coefficients of the weighted mean filtering template will
not change, and the filter template is used in the processing of
each work-item. In order to improve the running efficiency,
the parallel algorithm copies the filter template data directly
from CPU memory to GPU constant memory. In this way,
each work-item can accelerate access to the mean filter and
save the running time of the algorithm. In order to represent
the degree of improvement in the performance efficiency of
the weighted mean filtering algorithm before and after using
constant memory, the performance improvement is defined as
shown in formula (2).

p =

(
Tbef − Taft

)
Taft

× 100% (2)

Among them, p is the performance improvement ratio, Tbef
is the execution time of the algorithm before performance
optimization, and Taft is the execution time of the algorithm
after performance optimization. The system effect of the
image weighted mean filtering algorithm before and after
using constant memory is compared as shown in Table 2.

Table 2 shows that the running time of the algorithm is dif-
ferent before and after the weightedmean filtering template is
stored in constant memory. The global memory is used to lag
the calculation time before optimization. After optimization,
the running time of the algorithm is shortened, the comput-
ing time delay is reduced, the maximum acceleration ratio

TABLE 2. The use effect of constant memory.

of 1.77 times is obtained, and the execution efficiency of the
algorithm is improved by 77%.

2) LOCAL MEMORY OPTIMIZATION
In OCL_MF, the source image data is simply copied to the
global memory on the GPU, which gains great benefits. Any
work-item in the entire workspace can read/write anywhere
in the global storage, and the global memory can be accessed
either from the GPU side or from the CPU side. It takes about
400 ∼ 800 clock cycles to access the global memory, and
a large number of work-items repeatedly access the source
image data from the global memory, resulting in a high delay,
which will lead to idle GPU computing resources. The local
memory is located in the GPU chip and is much faster than
the global memory. In the case of no bank conflict, the latency
of the local memory is almost only 1/100 of that of the global
memory, and the access speed is as fast as that of the registers.

In the convolution calculation of the image local process-
ing function module, when the source image data is convo-
luted with the filter coefficients, each image data is reused
for 1 ∼ MODELDIM × MODELDIM times, resulting in a
large overhead of global storage access. Therefore, the local
memory can be used instead of the global memory to put
the source image block data into the local memory. Split
the source image into

(
(M + Sx − 1)

/
Sx×

(
N + Sy − 1

)/
Sy
)

sub-image blocks and assign
(
(M + Sx − 1)

/
Sx ×(

N + Sy − 1
)/
Sy
)
work-groups. Each work-group is allo-

cated local memory space, each sub-image block data is
stored in the local storage space of the corresponding work-
group, and Sx , Sy work-items are allocated in the X ,Y direc-
tion of the work-group respectively, and each work-item
completes a convolution calculation.

3) OPTIMIZE WORK-ITEM CONFIGURATION
The layout of different work-groups have different perfor-
mance for memory access. The number of work-items per
work-group should be an integer multiple of warp size.
When there are enough work-groups, the waste of comput-
ing resources caused by insufficient warp block filling is
avoided. Based on the requirements of global memory merge
access and partition conflicts, it is recommended that each
work-group use 128 to 256 work-items. This improves the
efficiency of accessing global memory. As many work-items
as possible are executed at the same time, making it easier

65008 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

to hide memory delays. The work-group should try to make
the dimensions in the X and Y directions multiple of the
warp size. Table 3 shows the system operation time when
setting up a different number of work-items in a work-group
when the image size is 2481 × 2768. It can be seen that
the number of work-items in each work-group varies with
the corresponding operation time. When the work-group is
configured to be 16× 16, the system performance is optimal.
Assigning more work-items to each work-group can achieve
effective time segmentation, thereby increasing the speed of
operation. However, if there are too many work-items in each
work-group, the fewer registers available for each work-item,
and the fewer work-groups that can actually be scheduled to
run on the compute units and even cause the kernel to fail to
start due to insufficient registers.

TABLE 3. Effect of work-group size on operation speed.

4) DATA TRANSMISSION OPTIMIZATION
By using pinned host memory for data transmission opti-
mization, the overhead of data transmission caused by com-
munication between devices in the system is reduced. The
extended image and filtered image of the OCL_MF parallel
algorithm on the host are generally stored in the pageable
host memory, and the GPU device can not directly access the
pageable host memory. As shown in Figure 8 (a). Before the
data transmission between the host and the device, it is nec-
essary to open up a temporary pinned host memory, to copy
the expanded image and filtered image data from the paged
host memory to the pinned host memory, and finally transfer
the image data directly from the pinned host memory to the
global memory of the device. As shown in Figure 8 (b).

FIGURE 8. Data transmission.

The zero-copy memory is actually a pinned host memory
on a host. By using zero-copy memory, the copying pro-
cess from pageable host memory to pinned host memory is

avoided. Unified memory creates a pool of managed storage
shared by CPU and GPU to bridge the gap between CPU
and GPU. Both CPU and GPU can access managed storage
using a single pointer, and the key is that the system auto-
matically migrates the data allocated in the unified memory
between the host and the device. Unified Memory combines
the advantages of explicit copy and zero-copy access: GPU
can access any page of the entire system memory, while
migrating extended image and filtered image data to its mem-
ory on demand to achieve high-bandwidth access.

E. OTHER PARALLELIZATION SCHEMES
In order to facilitate the performance comparison of vari-
ous parallelization schemes, this paper implements a parallel
algorithm that meets the weighted mean filtering algorithm
principle of Section III based on the OpenMP and CUDA
parallel computing architectures, respectively.

1) THE WEIGHTED MEAN FILTERING PARALLEL ALGORITHM
BASED ON OPENMP
In theWindows system, use the built-inMicrosoft Visual Stu-
dio 2015 compiler of OpenMP, set ‘C/C++→ Language→
OpenMP Support’ to Yes (/openmp) in the property page of
Microsoft.Cpp.x64.user of the project, and open the OpenMP
compilation option in Visual Studio 2015. Then change the
option ‘C/C++→ Gode Generation→ Runtime Library’ to
Multi-threaded Debug (/ MTd).

OpenMP is a coarse-grained parallel. According to the
number of CPU cores, sub-threads are enabled through
omp_set_num_threads (number of threads) to execute par-
allel blocks in parallel. When the weighted mean filtering
parallel computing system based on OpenMP is executed by
the main thread, the #pragma omp parallel for compilation
guidance instruction before the function of local image mean
filtering processing is encountered, the following loop bodies
are decomposed by multithreading. Each thread processes
one pixel of the original image in parallel and ends with the
main thread. This makes rational use of system resources and
improves computational efficiency.

OpenMP allocates a total of csum sub-threads, which need
to deal with the computing tasks of M × N pixels in image
size. In general, the number of sub-threads is much less
than the number of pixels. Therefore, each sub-thread is
responsible for the calculation of multiple pixels. The basic
idea of partition is to decompose the pixels into csum groups
according to rows, each of which is calculated by a sub-
thread. The key point is to establish the mapping relationship
between the thread index and the pixel point index. The task
decomposition of each sub-thread is completed through a
double loop below:

int threadIdx= omp_get_thread_num(); // Gets the current
sub-thread index

for (int i = threadIdx; i < M ; i + = csum)
for (int j = 0; j < N ; j++)

PixelNodeCompute(. . .);

VOLUME 9, 2021 65009



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

That is, for the current thread threadIdx in the parallel
domain, the thread is responsible for processing all the cal-
culations of the pixel points of each column in the image
from the 0th column of the row i = threadIdx to the range
of column (N − 1), where the increment interval of the row
csum is the total number of sub-threads csum. The reason is
that csum sub-threads have been allocated, and the previous
0 ∼ (csum− 1) lines have been assigned to these csum sub-
threads for parallel processing. Therefore, the previous csum
lines do not need to be recalculated, which is the key to the
partition of thread parallel tasks. i = i + csum means to
continue searching in the X direction for rows that need to
be calculated by the thread to ensure that the calculation is
not missed. i < M guarantees that the index access to the
pixels will not exceed the range of the image pixel index (not
beyond the boundary). In the process of image mean filtering,
the number of threads is not the more the better. In order to
select the optimal number of threads, when the image size
is 2481 × 2768, 1, 2, 3, 4, and 8 threads are designated in
the experiment to execute the image weighted mean filtering
function respectively, and the results are shown in Table 4.

TABLE 4. The influence of thread quantity on operation speed.

It can be seen from Table 4 that when the number of CPU
threads is set to 4, the operation time of the OMP_MF parallel
algorithm is the shortest. When the number of CPU threads
is set to 8, the computing time of the OMP_MF parallel
algorithm increases. It can be seen that the execution time
of the OMP_MF parallel algorithm optimized by OpenMP is
reduced to about 43% of the original, and it can be seen that
the more threads are used, the higher the efficiency. When the
number of threads exceeds 4, the goal of further improving
efficiency can no longer be achieved simply by increasing
the number of threads. According to the above analysis, this
paper uses four threads to execute the algorithm.

2) THE WEIGHTED MEAN FILTERING PARALLEL ALGORITHM
BASED ON CUDA
CUDA is a fine-grained parallel. The parallelizable convolu-
tion calculation and mean calculation for each pixel of the
weighted mean filtering algorithm are divided into one task.
The task is handled by the corresponding global functions.
During the running of the algorithm, the global function
corresponds one-to-one with the grid, and the grid assigns
the task to the blocks, and the block reassigns the task to the
threads for processing. The global function is invoked by the

host side, and parallel computation is performed in multiple
computation and processing units at the GPU side to achieve
optimization and acceleration.

V. EXPERIMENTAL TEST DATA AND EXPERIMENTAL
RESULTS DISCUSSION
The test results of the weighted mean filtering serial / parallel
algorithms described in this article will be introduced in this
section. The core source code of the weighted mean filtering
parallel algorithm is developed by OpenCL C language. The
parallel algorithm consists of two parts, one is the main pro-
gram executed on the host machine, and the other is the kernel
program executed on the OpenCL device. The kernel codes
implement the convolution calculation and mean calculation.

A. EXPERIMENTAL COMPUTING PLATFORMS
Our experimental work is carried out on the CPU/GPU
heterogeneous hybrid parallel computing platform. The hard-
ware and software environment of the experiment is config-
ured as follows. The hardware environment parameters are
shown in Table 5.

TABLE 5. The main performance parameters.

The operating system of the host software environment is
Microsoft Window 10 64-bits, the CPU simulation exper-
iment software is MATLAB R2018b, the NVIDIA GPU
application programming interface (API) is CUDA Toolkit
10.0, the computing development kit of AMD GPU is AMD
APP SDK 2.7, OpenCL 1.2 is supported internally in the
system, multicore processor support environment OpenMP
3.0, and the development environment is Microsoft Visual
Studio 2015. The version of the NVIDIA’s driver is 411.31
and the version of the AMD’s driver is 8.801.0.0.

B. EXPERIMENTAL RESULTS
In order to carry out the comparative experiment of multiple
groups of data, the original image data need to be prepro-
cessed. Eight groups of experimental data with image sizes
of 256 × 256, 345 × 758,1354 × 1675, 2481 × 2768,

65010 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

FIGURE 9. Gaussian noise image processing effect under different computing platforms.

4352 × 4877, 5326 × 5764, 6248 × 6792, and 8134 ×
8256 were obtained by clipping.

In order to verify the effectiveness of the algorithm,
four different categories of images of circuit boards, letters,
flowers, and Lena figures are selected in the experiment.
Figure 9 (a) noise image is obtained by adding a mean value
of 0 and a variance of 0.005 Gaussian noise to the four
original images by MATLAB software. Figure 9 (b), (c), (d),
and (e) are the images processed by the CPU_MF, OMP_MF,
CUDA_MF, and OCL_MF systems, respectively.

The contrast experiment of image weighted mean filtering
was carried out with eight images of different sizes prepro-
cessed. The CPU_MF, the OMP_MF, the CUDA_MF, the
OCL_MF based on AMD GPU, and the OCL_MF based on
NVIDIAGPU are used to run respectively, and the processing
time is recorded, as shown in Table 6.

The verification of the efficiency of parallel algorithms
under various frameworks can intuitively use the acceleration
ratio as a measure of acceleration effect, which is defined as
follows:

The speedup refers to the ratio of the operation time of the
CPU_MF serial algorithm to the operation time of the parallel
algorithm.

The relative speedup 1 refers to the ratio of the operation
time of the OMP_MF parallel algorithm to the operation time
of the OCL_MF parallel algorithm based on NVIDIA GPU.

The relative speedup 2 refers to the ratio of the operation
time of the CUDA_MF parallel algorithm to the operation

TABLE 6. Execution time of weighted image mean filtering algorithm
under different computing platforms.

time of the OCL_MF parallel algorithm based on NVIDIA
GPU.

The speedup reflects the overall improvement of the effi-
ciency of the parallel algorithm compared with the CPU_MF
serial algorithm under the corresponding parallel comput-
ing architecture and can be used to objectively evaluate the
speed of the actual system. The relative speedup 1 reflects
the improvement of the efficiency of the OCL_MF paral-
lel algorithm based on NVIDIA GPU compared with the
OMP_MF parallel algorithm. Relative speedup 2 reflects the
improvement of the efficiency of the OCL_MF parallel algo-
rithm based on NVIDIAGPU compared with the CUDA_MF
parallel algorithm. As shown in Table 7.

VOLUME 9, 2021 65011



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

TABLE 7. Performance comparison of weighted image mean filtering parallel algorithm under different computing platforms.

C. VALIDITY VERIFICATION
The image weighted mean filtering algorithm implemented
in CPU serial calculation is used as the benchmark CPU pro-
gram for GPU transplantation and optimization. All parame-
ters of the parallel algorithm system are consistent with the
benchmark program. Therefore, the validity verification is
only compared with the running results of the CPU serial
algorithm.

1) CONSISTENCY OF RESULTS AT THE MACRO-LEVEL
From the experimental results of Figure 9 (b) — (e), it can
be seen that in the experiment, the original image is polluted
by additive Gaussian noise, and the noise is attenuated by
serial and parallel processing of the weighted mean filtering
algorithm. Smoothed local changes in the original image. The
running results of the image weighted mean filtering serial
system and the parallel system are the same, and there is no
identifiable difference with the naked eye.

2) CONSISTENCY OF RESULTS AT THE MICRO-LEVEL
Figure 10 shows the comparison of the histograms of the
image before and after the weighted mean filtering process.
From the analysis results of Figure 10, it can be seen that the
serial processing of the weighted mean filtering algorithm in
the experiment is the same as the corresponding data of the
image histogram of all kinds of parallel processing, that is,
the number of pixels with the same gray level is the same,
and the consistency of the processing results is maintained.

D. EXPERIMENTAL DATA ANALYSIS
1) SYSTEM BOTTLENECK ANALYSIS
It requires M × N times the memory read operations of the
extended image data and M × N times the memory write
operations of themean filter image processing result. The size
of the image isM × N = 5326× 5764, and each pixel takes
up storage space of 2B. As a result, the total amount of image
data accessed by the memory is approximately 0.12 GB.
Divided by the elapsed time of 0.00042 s for the kernel
execution on the device. The actual bandwidth obtained by

the system is approximately 285.71 GB/s, which is close
to the theoretical bandwidth of GeForce GTX1080 display
memory. Thus, it can be seen that the bandwidth of the global
memory limits the further improvement of the efficiency of
the mean filtering parallel algorithm based on OpenCL archi-
tecture. Therefore, the performance bottleneck for the mean
filtering parallel algorithm based on OpenCL architecture is
the display memory bandwidth.

From Table 7, it can be seen that the acceleration of the
algorithm based on the CPU + GPU is obvious, but the
acceleration ratio of the GPU parallel algorithm shows a slow
decreasing trend with the increase of the image size. This is
because in the design of OpenCL parallel algorithm, the task
of reading and outputting image data is assigned to CPU, but
the performance of this process is not improved. With the
increase of image size, the time-consuming of reading and
outputting image data also increases. Comprehensive analysis
shows that the bandwidth of video memory and the data
transmission bandwidth between main memory and video
memory become the performance bottlenecks of OpenCL
accelerated the mean filtering parallel algorithm.

2) ANALYSIS OF OPERATION TIME OF WEIGHTED MEAN
FILTERING ALGORITHM UNDER DIFFERENT ARCHITECTURE
The experimental images with different image sizes are pro-
cessed by weighted mean filtering on four computing plat-
forms, and the serial running time of CPU is compared with
the running time under three different parallel computing
frameworks, as shown in Figure 11. When the image size is
the same, the execution time on different parallel computing
platforms is reduced to varying degrees compared with the
CPU serial execution time, that is, the acceleration effect
is obtained. For example, for the weighted mean filter with
an image size of 2481 × 2768, the serial operation time is
519.00 ms, and the operation time is shortened to 220.85 ms
in the OpenMP computing platform. The computing time on
the parallel computing platform based on CUDA architecture
is greatly reduced to 26.68 ms, while the low computing time
on the OpenCL-based parallel computing platform is about
24.86 ms.

65012 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

FIGURE 10. Comparison of histograms before and after image weighted mean filtering.

FIGURE 11. Comparison of operation time of the weighted mean filtering
algorithm.

Under the same image size, the running time of the
weighted mean filtering algorithm after OpenMP paralleliza-
tion is significantly less than that of the traditional serial
algorithm. And under the same number of threads, with the
increase of the image size, the running time is getting longer
and longer, which is basically in line with the trend of linear
growth.

According to the above analysis, because the data inter-
action between host memory and GPU memory requires a
certain amount of time overhead, when the image size is
small, this part of the overhead has little impact on the final
computing time. When the scale of the image data is very
large, the proportion of data interaction time has increased,

and the GPU computing time is not enough to cover the
time overhead caused by transmission delay, so the effect of
OpenCL acceleration tends to slow down.

The overall acceleration effect of the algorithm in this
paper is compared with that of reference [30]. As most of
the other literatures use the weightedmean filtering algorithm
for various application researches, there is little research on
the acceleration effect of the weighted mean filtering algo-
rithm. Therefore, it is impossible to compare the acceleration
effect directly. According to the test data provided in refer-
ence [30], when the image size is 256 × 256, the operation
time of the mean filtering parallel algorithm based on CUDA
acceleration in reference [30] is 1.11 ms, and the speedup
is 3.91 times. According to the test results of Table 6 and
Table 7, we can see that the operation time of the weighted
mean filtering parallel algorithm based on OpenCL acceler-
ation in this paper is 0.58 ms, and the speedup is 5.17 times.
Therefore, the operation time of the parallel algorithm in
this paper is shorter than that in reference [30], and better
acceleration performance is achieved.

3) COMPARATIVE ANALYSIS OF THE ACCELERATION EFFECT
OF WEIGHTED MEAN FILTERING ALGORITHM IN PARALLEL
COMPUTING ARCHITECTURE
As can be seen from Figure 12, the image average filtering
algorithm based on multi-core CPU has achieved certain
acceleration results. Compared with the serial algorithm, with
the increase of the image size, the overall acceleration is from
2 times to nearly 4 times. Due to the restriction of the number
of CPU cores, it is difficult for the OpenMP parallel algorithm

VOLUME 9, 2021 65013



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

FIGURE 12. Acceleration ratio trend diagram of the weighted mean
filtering parallel algorithm.

to achieve a high acceleration ratio. However, the acceleration
effect of the GPU parallel algorithm is very obvious. For
example, when the image size is 2481 × 2768, the sys-
tem achieves 19.45 times speedup in the parallel algorithm
accelerated by CUDA. On the other hand, on the NVIDIA
platform accelerated by OpenCL, the parallel algorithm is
20.88 times faster than the serial algorithm, which greatly
saves the noise reduction time. However, with the further
increase of the image size, the OpenCL speedup shows a
slow downward trend. The reason for this phenomenon is
that the data transmission bandwidth between the host and
the device is much lower than that between the device and
the device, so the data interaction between host memory
and GPU memory has a certain time overhead. When the
image scale is large, the proportion of data interaction time
increases gradually, the GPU parallel computing time is not
enough to cover the system transmission delay overhead,
the data transmission overhead has a certain impact on the
computing time of the system. Even so, the performance
of the parallel algorithm is improved 15.35 times when
the image size is 8134 × 8256. Therefore, the weighted
mean filtering parallel algorithm based on the OpenCL
acceleration proposed in this paper can meet the real-time
requirements.

Figure 13 shows that the performance of the optimized
OpenCL parallel algorithm is slightly faster than that of the
CUDA parallel algorithm, and the relative speedup 2 shows
a maximum improvement of 1.26 times. At the same time,
it reflects that with the increase of image size, the perfor-
mance gap between the two parallel algorithms tends to
widen. Therefore, the performance of the optimized OpenCL
parallel algorithm is close to that of the CUDA parallel algo-
rithm. When the image size is large, the OpenCL parallel
algorithm has more performance advantages. The relative
speedup 1 shows that the performance of the weighted mean
filter parallel algorithm based on OpenCL is much better
than that based on the OpenMP platform, and the maximum
speedup is 18.52 times.

FIGURE 13. Relative acceleration ratio trend graph.

4) PORTABILITY ANALYSIS OF OPENCL ACCELERATED THE
WEIGHTED MEAN FILTERING ALGORITHM
Figure 12 shows the performance of the optimized image
weighted mean filtering algorithm on two different GPU
computing platforms, AMD Radeon RX 5700 and NVIDIA
GTX 1080, and its performance improvement relative to CPU
serial computing. It is worth noting that the performancemea-
surement of the OpenCL algorithm includes all the running
time of the OpenCL system, including the initialization time
of the OpenCL, the data transfer time between the CPU and
GPU, and the running time of the kernel.

From Figure 12, it can be seen that the OpenCL weighted
mean filtering parallel algorithms with different image sizes
have achieved some performance improvement compared
with the CPU serial algorithm on the AMD GPU platform
and the NVIDIA GPU platform, respectively. Moreover, with
the expansion of the computing scale, the acceleration ratio of
the parallel algorithm is always more than 15 times. The good
performance of GPU comes from the fact that it has many
compute units and huge throughput to provide multipoint
computing. It can make full use of the GPU’s many com-
puting resources to fully realize its performance. This is why
the speedup has been maintained at a high level. Compared
with the NVIDIA platform, the acceleration ratio of the AMD
platform is smaller, the main reason is that the performance
of the AMD GPU card used in this paper is not as good as
the NVIDIA GPU card, and the performance of the parallel
algorithm is affected to a certain extent.

VI. CONCLUSION
In this paper, the parallel acceleration of the image weighted
mean filtering algorithm is completed by using the OpenCL
heterogeneous computing platform. The part of image
processing is parallelized by using the two-level parallel
computing method of work-group and work-item in the
two-dimensional index space. In the image convolution
calculation, the two-dimensional convolution template and
the corresponding image window data are used to do the
convolution calculation. In order to speed up the convolution

65014 VOLUME 9, 2021



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

calculation, constant memory and synchronization instruc-
tions are used in the mean filter processing section to speed
up the speed of data access. The experimental results show
that the weighted mean filtering algorithm accelerated by
OpenCL achieves the maximum speedup of 20.88 times and
20.29 times on the NVIDIA GPU and AMD GPU respec-
tively, verifies the portability of the system performance,
and solves the problem of hardware dependence of CUDA
parallel acceleration. At the same time, compared with the
weighted mean filtering parallel algorithm implemented in
OpenMP multi-core CPU and CUDA, the maximum rel-
ative speedup of 18.52 times and 1.26 times is obtained
respectively, which verifies the effectiveness of the algo-
rithm. The acceleration results of this paper can be applied
to image applications such as image measurement, image
fusion, digital watermarking, edge detection, and so on.

There is room for performance improvement in the next
step: The GPU used in this paper is NVIDIA GTX 1080,
which is the fifth generation Pascal architecture. The GPU
of the latest Ampere architecture has been interviewed, and
the newer generation GPU can be selected for optimization
to obtain a higher acceleration ratio. The single GPUworking
modewill be extended to a heterogeneous platform composed
of multi-core CPU and multi-GPUs to meet the storage space
and computing power requirements of a larger image test set.

REFERENCES
[1] U. Ozgunalp, ‘‘Robust lane-detection algorithm based on improved sym-

metrical local threshold for feature extraction and inverse perspective
mapping,’’ IET Image Process., vol. 13, no. 6, pp. 975–982, May 2019.

[2] A. Dudhane and S. Murala, ‘‘Cardinal color fusion network for single
image haze removal,’’ Mach. Vis. Appl., vol. 30, no. 2, pp. 231–242,
Mar. 2019.

[3] L. Shang, S. Duan, L. Wang, and T. Huang, ‘‘SRMC: Amultibit memristor
crossbar for self-renewing image mask,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 12, pp. 2830–2841, Dec. 2018.

[4] A. K.Maurya, P. Agrawal, and S. Dixit, ‘‘Modified model and algorithm of
LMS adaptive filter for noise cancellation,’’Circuits, Syst., Signal Process.,
vol. 38, no. 5, pp. 2351–2368, May 2019.

[5] Y. Yuan, X. Yang, W. Wu, H. Li, Y. Liu, and K. Liu, ‘‘A fast single-image
super-resolution method implemented with CUDA,’’ J. Real-Time Image
Process., vol. 16, no. 1, pp. 81–97, Feb. 2019.

[6] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
‘‘Approximate multipliers based on new approximate compressors,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 12, pp. 4169–4182,
Dec. 2018.

[7] J. Liu, B. Hu, and Y.Wang, ‘‘Optimum adaptive array stochastic resonance
in noisy grayscale image restoration,’’ Phys. Lett. A, vol. 383, no. 13,
pp. 1457–1465, Apr. 2019.

[8] W. Witwit, Y. Zhao, K. Jenkins, and S. Addepalli, ‘‘Global motion based
video super-resolution reconstruction using discrete wavelet transform,’’
Multimedia Tools Appl., vol. 77, no. 20, pp. 27641–27660, Oct. 2018.

[9] D. Liu and X. Chen, ‘‘Image denoising based on improved bidimen-
sional empirical mode decomposition thresholding technology,’’Multime-
dia Tools Appl., vol. 78, no. 6, pp. 7381–7417, Mar. 2019.

[10] J. Zabalza, J. Ren, J. Ren, Z. Liu, and S. Marshall, ‘‘Structured covariance
principal component analysis for real-time onsite feature extraction and
dimensionality reduction in hyperspectral imaging,’’ Appl. Opt., vol. 53,
no. 20, pp. 4440–4449, 2014.

[11] T. Zeinab and A. Gholamreza, ‘‘Unsupervised texture-based SAR image
segmentation using spectral regression and Gabor filter bank,’’ J. Indian
Soc. Remote Sens., vol. 14, no. 4, pp. 1–10, 2015.

[12] D. Janecki, ‘‘Edge effect elimination in the recursive implementation of
Gaussian filters,’’ Precis. Eng., vol. 36, no. 1, pp. 128–136, Jan. 2012.

[13] J. Fernandez-Berni, R. Carmona-Galan, and Á. Rodriguez-Vazquez,
‘‘Ultralow-power processing array for image enhancement and edge
detection,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 11,
pp. 751–755, Nov. 2012.

[14] L. T. Bai, Y. W. Wu, J. C. Xie, P. C. Wen, and X. J. Liu, ‘‘Optimization
methods for image haze removal based on multi-core DSP,’’ Electron. Opt.
Control, vol. 22, no. 10, pp. 14–18, 2015.

[15] D. B. K. Trieu and T. Maruyama, ‘‘Real-time color image segmentation
based on mean shift algorithm using an FPGA,’’ J. Real-Time Image
Process., vol. 10, no. 2, pp. 345–356, Jun. 2015.

[16] D.-H. Lee, J. Ahn, andW. Sung, ‘‘Parallel computation of adaptive filtering
algorithms on multi-core systems,’’ J. Signal Process. Syst., vol. 69, no. 3,
pp. 253–265, Dec. 2012.

[17] H. M. He, D. L. Qi, G. Y. Zhang, and J. L. Zhang, ‘‘Fast and efficient mean
filtering algorithm for removing the salt and pepper noise,’’ Laser Infrared,
vol. 4, no. 4, pp. 469–472, 2014.

[18] D. Akgün, ‘‘A practical parallel implementation for TDLMS image filter
on multi-core processor,’’ J. Real-Time Image Process., vol. 13, no. 2,
pp. 249–260, Jun. 2017.

[19] M. Cheng, J. Z. Zhang, and Y. Yu, ‘‘Parallel image denoising algorithm
based on multi-core MCMC,’’ Comput. Eng. Appl., vol. 50, no. 18,
pp. 152–155, 2014.

[20] C. Salvatore, D. Pasquale, and P. Francesco, ‘‘3D data denoising via
nonlocal means filter by using parallel GPU strategies,’’ Comput. Math.
Methods Med., vol. 12, no. 3, pp. 1–15, 2014.

[21] T.-A. Nguyen, A. Nakib, and H.-N. Nguyen, ‘‘Medical image denois-
ing via optimal implementation of non-local means on hybrid parallel
architecture,’’ Comput. Methods Programs Biomed., vol. 129, pp. 29–39,
Jun. 2016.

[22] G. L. Zou, C. J. Chen, and J. B. Hao, ‘‘Parallel implementation of wave
sample data set for deep learning algorithm and its performance optimiza-
tion,’’ Comput. Appl. Softw., vol. 34, no. 9, pp. 57–62, 2017.

[23] K. D. Subhra, M. Chandan, and B. Kumardeb, ‘‘GPU accelerated novel
particle filtering method,’’ Computing, vol. 57, no. 8, pp. 1–25, 2014.

[24] H.-H. Chang, Y.-J. Lin, and A. H. Zhuang, ‘‘An automatic parameter
decision system of bilateral filtering with GPU-based acceleration for brain
MR images,’’ J. Digit. Imag., vol. 32, no. 1, pp. 148–161, Feb. 2019.

[25] B. Chen, H. Chen, and X. H. Li, ‘‘Near real time linear stereo cost
aggregation on GPU,’’ J. Image Graphics, vol. 19, no. 10, pp. 1481–1489,
2014.

[26] X. W. He and X. Zhang, ‘‘A parallel algorithm of automatic time gain
compensation for ultrasound imaging based on Fermi architecture,’’ Sci.
Technol. Rev., vol. 30, no. 31, pp. 61–65, 2012.

[27] P. Lu, B. Sheng, S. M. Luo, X. Jia, and W. Wu, ‘‘Image-based non-
photorealistic rendering for realtime virtual sculpting,’’ Multimedia Tools
Appl., vol. 22, no. 8, pp. 1–18, 2014.

[28] H.-H. Chang and Y.-N. Chang, ‘‘CUDA-based acceleration and BPN-
assisted automation of bilateral filtering for brain MR image restoration,’’
Med. Phys., vol. 44, no. 4, pp. 1420–1436, Apr. 2017.

[29] Q. Duan and H. Li, ‘‘High-speed parallel mean filter algorithm based on
CUDA,’’ J. Xianyang Normal Univ., vol. 28, no. 4, pp. 52–55, 2013.

[30] H. L. Xia, Y. P. Chen, S. Y. Zhou, andY.G. Tan, ‘‘Denoisingmethod of steel
sheet image based on CUDA,’’ Inf. Technol., vol. 40, no. 11, pp. 35–39,
2017.

[31] Y. N. Khalid, M. Aleem, U. Ahmed, M. A. Islam, and M. A. Iqbal,
‘‘Troodon: A machine-learning based load-balancing application sched-
uler for CPU–GPU system,’’ J. Parallel Distrib. Comput., vol. 132,
pp. 79–94, Oct. 2019.

[32] K. Shata, M. K. Elteir, and A. A. El-Zoghabi, ‘‘Optimized implementation
of OpenCL kernels on FPGAs,’’ J. Syst. Archit., vol. 97, pp. 491–505,
Aug. 2019.

[33] Z. Wu, T. Alkhalifah, Z. Zhang, F. Alonaizi, and M. Almalki, ‘‘A new full
waveform inversion method based on shifted correlation of the envelope
and its implementation based on OPENCL,’’ Comput. Geosci., vol. 129,
pp. 1–11, Aug. 2019.

[34] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, ‘‘Optimizing
memory bandwidth exploitation for OpenVX applications on embedded
many-core accelerators,’’ J. Real-Time Image Process., vol. 15, no. 1,
pp. 73–92, Jun. 2018.

[35] S. Nair, N. Somani, A. Grunau, E. Dean-Leon, and A. Knoll, ‘‘Image
processing units on Ultra-low-cost embedded hardware: Algorithmic opti-
mizations for real-time performance,’’ J. Signal Process. Syst., vol. 90,
no. 6, pp. 913–929, Jun. 2018.

VOLUME 9, 2021 65015



H. Xiao et al.: Parallel Algorithm of Image Mean Filtering Based on OpenCL

[36] A. S. Minkin, A. A. Knizhnik, and B. V. Potapkin, ‘‘GPU implementations
of some many-body potentials for molecular dynamics simulations,’’ Adv.
Eng. Softw., vol. 111, pp. 43–51, Sep. 2017.

[37] M. Korki and H. Zayyani, ‘‘Weighted diffusion continuous mixed p-norm
algorithm for distributed estimation in non-uniform noise environment,’’
Signal Process., vol. 164, pp. 225–233, Nov. 2019.

[38] I. Erer and N. H. Kaplan, ‘‘Fast local SAR image despeckling by
edge-avoiding wavelets,’’ Signal, Image Video Process., vol. 13, no. 6,
pp. 1071–1078, Sep. 2019.

[39] F. Duan, Y. Pan, F. Chapeau-Blondeau, and D. Abbott, ‘‘Noise benefits in
combined nonlinear Bayesian estimators,’’ IEEE Trans. Signal Process.,
vol. 67, no. 17, pp. 4611–4623, Sep. 2019.

[40] C. Liu, Z. Zhang, and X. Tang, ‘‘Sign normalised Hammerstein spline
adaptive filtering algorithm in an impulsive noise environment,’’ Neural
Process. Lett., vol. 50, no. 1, pp. 477–496, Aug. 2019.

[41] V. N. Karnaukhov and M. G. Mozerov, ‘‘Fast non-local mean filter algo-
rithm based on recursive calculation of similarity weights,’’ J. Commun.
Technol. Electron., vol. 63, no. 12, pp. 1475–1477, Dec. 2018.

[42] F. Huang, J. Zhang, and S. Zhang, ‘‘Affine projection versoria algorithm for
robust adaptive echo cancellation in hands-free voice communications,’’
IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 11924–11935, Dec. 2018.

[43] W. Wang, J. Sun, R. Dong, Y. Zheng, and Q. Hua, ‘‘The development
of a high accuracy algorithm based on small sample size for fingerprint
location in indoor parking lot,’’ IEICE Trans. Commun., vol. E101.B,
no. 12, pp. 2479–2486, Dec. 2018.

[44] Z. Zhu, X. Zhou, L. Deng, K. Wang, and B. Zhou, ‘‘Quantitative analysis
of geophysical sources of common mode component in CMONOC GPS
coordinate time series,’’ Adv. Space Res., vol. 60, no. 12, pp. 2896–2909,
Dec. 2017.

[45] S. Jayaprakasam, X. Ma, J. W. Choi, and S. Kim, ‘‘Robust beam-tracking
for mmWave mobile communications,’’ IEEE Commun. Lett., vol. 21,
no. 12, pp. 2654–2657, Dec. 2017.

HAN XIAO was born in Wuhan, Hubei, China,
in 1970. He received the Ph.D. degree in pho-
togrammetry and remote sensing from the School
of Remote Sensing and Information Engineering,
Wuhan University, China, in 2011. From 2011 to
2014, he was a Postdoctoral Researcher with the
School of Information Engineering, Zhengzhou
University. Since 2012, he has been a level 3 Pro-
fessor with the School of Information Science and
Technology, Zhengzhou Normal University. His

main research interests include research and design of massively parallel
algorithms, research on parallel processing of remote sensing big data,
photogrammetry and remote sensing, and parallel computing.

BAOYUN GUO was born in Chuzhou, Anhui,
China, in 1986. She received the Ph.D. degree
in photogrammetry and remote sensing from the
School of Remote Sensing and Information Engi-
neering, Wuhan University, China, in 2013. She is
currently a Lecturer with the School of Civil and
Architectural Engineering, Shandong University
of Technology. Her main research interests include
industrial photogrammetry and computer vision.

HONGYAN ZHANG was born in Zhengzhou,
Henan, China, in 1982. She received the mas-
ter’s degree in computer application technology
from the School of Information Engineering,
Zhengzhou University, China, in 2008. She is cur-
rently a Lecturer with the School of Information
Science and Technology, Zhengzhou Normal Uni-
versity. Her main research interests include image
processing and high performance computing.

CAILIN LI was born in Anqing, Anhui, China,
in 1985. He received the Ph.D. degree in pho-
togrammetry and remote sensing from the School
of Remote Sensing and Information Engineering,
Wuhan University, China, in 2011. He is currently
an Associate Professor with the School of Civil
and Architectural Engineering, Shandong Univer-
sity of Technology. His main research interests
include digital photogrammetry, computer vision,
and digital image processing.

65016 VOLUME 9, 2021


