IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 20, 2021, accepted March 21, 2021, date of publication March 24, 2021, date of current version April 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3068824

A Stochastic Local Search Algorithm for the
Partial Max-SAT Problem Based on Adaptive
Tuning and Variable Depth Neighborhood Search

HAIFA HAMAD ALKASEM ™~ AND MOHAMED EL BACHIR MENAI

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11375, Saudi Arabia

Corresponding author: Haifa Hamad Alkasem (hhkasem @imamu.edu.sa)

This work was supported by the Deanship of Scientific Research through the initiative of DSR Graduate Student Research Support (GSR),
King Saud University.

ABSTRACT The Partial Max-SAT (PMSAT) problem is an optimization variant of the well-known
Propositional Boolean Satisfiability (SAT) problem. It holds an important place in theory and practice,
because a huge number of real-world problems, such as timetabling, planning, routing, bioinformatics,
fault diagnosis, etc., could be encoded into it. Stochastic local search (SLS) methods can solve many real-
world problems that often involve large-scale instances at reasonable computation costs while delivering
good-quality solutions. In this work, we propose a novel SLS algorithm called adaptive variable depth
SLS for PMSAT problem solving based on a dynamic local search framework. Our algorithm exploits
two algorithmic components of an SLS method: parameter tuning and neighborhood search. Our first
contribution is the design of an adaptive parameter tuner that searches for the best parameter setting for
each instance by considering its features. The second contribution is a variable depth neighborhood search
(VDS) algorithm adopted for PMSAT problem, which our empirical evaluation proves is a more efficient
w.r.t. single neighborhood search. We conducted our experiments on the PMSAT benchmarks from MaxSAT
Evaluation 2014 to 2019, including more than 3600 instances which have been encoded from a broad range
of domains such as verification, optimization, graph theory, automated-reasoning, pseudo Boolean, etc. Our
experimental evaluation results show that AVD-SLS solver, which is implemented based on our algorithm,
outperforms state-of-the-art PMSAT SLS solvers in most benchmark classes, including random, crafted, and
industrial instances. Furthermore, AVD-SLS reports remarkably better results on weighted benchmark, and
shows competitive results with several well-known hybrid PMSAT solvers.

INDEX TERMS Partial Max-SAT, adaptive parameter tuning, variable depth search, stochastic local search,

Max-SAT evaluation.

I. INTRODUCTION

Partial Max-SAT (PMSAT) problem is an optimization vari-
ant of Propositional Boolean Satisfiability (SAT) problem,
which is a fundamental problem in computer science and
artificial intelligence [1], [2]. PMSAT problem is an NP-hrd
problem that is important for the theory and practice of a
range of applications, including timetabling [3], scheduling
[4], planning [5], routing [6], software debugging [7], and
bioinformatics [8]. Actually, many optimization problems
can be naturally expressed as a PMSAT problem. PMSAT

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li

49806

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

asks to find an assignment to the Boolean variables of a
given Boolean formula expressed in the Conjunctive Normal
Form (CNF), which satisfies all hard (mandatory) clauses
and the maximum number of soft (non-mandatory) clauses.
Maximum Boolean Satisfiability (Max-SAT) problem is a
specialization of PMSAT problem, where all clauses are soft
and the goal is to satisfy the maximum number of clauses.
PMSAT is a designation given to Max-SAT problem with
hard and soft clauses in 1996 by Miyazaki et al. [9].

There are two state-of-the-art approaches for solving
PMSAT problem: exact methods and stochastic local search
(SLS) methods. There are also hybrid methods that com-
bined both exact and SLS methods [10]-[17]. Exact methods

VOLUME 9, 2021

https://orcid.org/0000-0002-1045-2292
https://orcid.org/0000-0001-5981-6299
https://orcid.org/0000-0001-5486-5702

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

(also known as complete methods) implicitly enumerate all
the solutions of the considered instance of an optimization
problem using a search tree to explore the entire search space
and to prove the satisfiability. Recently, almost all Max-SAT
and PMSAT solvers that participated in MaxSAT Evaluation
(MSE) are SAT-based [11], [16], [18]-[21], where a given
problem instance is solved through successive calls to a
SAT solver. Exact methods can provide optimal solutions to
small or medium-sized problems with reasonable computa-
tional costs. However, many real-world applications, espe-
cially engineering and industrial applications, often involve
far larger scales which exact methods cannot handle, hence
the need for SLS methods [22]-[26].

SLS methods (also known as incomplete methods) have
become more popular because of their ability to provide
high-quality solutions to large-size problems with reasonable
computation costs. An SLS is a local search method that
incorporates a stochastic (i.e. randomness) property. Local
search methods are general methods that are widely used to
solve hard combinatorial optimization problems [27]-[31].
A local search method is defined by four main components:
search space, neighborhood relation, objective function, and
move method [30]. Each component may have one or more
parameters that determine its functioning [32]. In a local
search method for a propositional Boolean problem, and
starting from a complete assignment, a neighborhood solu-
tion is obtained by flipping the truth value of one variable
(1 —flip) or a small set of variables (k —flip). At each step,
the neighborhood is examined for a truth assignment that
decreases the number (or total weight) of unsatisfied clauses.
If such an assignment is found, the algorithm flips the value of
the corresponding variable (or set of variables), and continues
the search until a stopping criterion is encountered [33], [34].

Our investigation shows that there are three main state-
of-the-art PMSAT SLS-based methods: distinction-based
method [35], configuration checking-based method [36], and
dynamic local search [37] method. These SLS methods are
built around two algorithmic components: a variable-pick
heuristic and a weighting scheme. However, compared to
the breakthrough progress of SLS methods on random and
crafted benchmark instances, the performance of SLS meth-
ods on industrial benchmark instances lags far behind, espe-
cially on weighted industrial benchmark instances. Those
instances are often large-sized instances that involve huge
neighborhood size or highly complex structures.

In this paper, we introduce a novel SLS algorithm named
adaptive variable depth SLS, that employs an extended frame-
work of dynamic local search method. We chose the dynamic
local search SLS method, because it showed competitive
performance on unweighted industrial benchmarks in MSE
2018. Our method is based on the results of our study of
the state-of-the-art PMSAT SLS methods’ strengths and lim-
itations. A problem of fundamental interest and practical
importance is how to exploit SLS method components with
respect to constraints in order to manage high complexi-
ties and improve algorithm performance [38]. In this work,

VOLUME 9, 2021

we propose a novel method based on two components of an
SLS method: parameter tuning and neighborhood search.

First, we propose an adaptive parameter tuner that searches
for the best possible parameter values per instance. We stud-
ied the relationship between parameter setting and features of
input instances, and found that parameter setting is related to
some features of input instance. Second, we propose a vari-
able depth neighborhood search (VDS) method [39] adopted
for PMSAT SLS to explore very large neighborhoods. The
VDS method defines a dynamically determined number of
sequence of moves that varies from one iteration to another
(i.e. variable k — flips), where for each step leading to a dif-
ferent trial solution, the compound move that yields the best
trial solution is the one chosen [40]. Almost all SLS methods
proposed for solving PMSAT problem are based on single
neighborhood definition and single (1 — flip) move, whose
performance declines when exploring huge neighborhoods
for large-scale problem instances (i.e. industrial instances).

To evaluate the performance of our novel algorithm,
we implemented the AVD-SLS solver. We compared AVD-
SLS with the state-of-the-art PMSAT SLS solvers and
PMSAT hybrid solvers that participated in the MSE 2014-
2019, on a broad range of random, crafted and industrial
benchmarks. AVD-SLS reported the best results compared
with all of the PMSAT SLS solvers on weighted crafted and
industrial benchmark instances. Compared to PMSAT hybrid
solvers, AVD-SLS shows a competitive performance. Based
on our experimental evaluation study, AVD-SLS ranked
among the top three best PMSAT solvers for MSE 2015,
2016, 2017, 2018 on the weighted benchmark, and was also
among the top three best PMSAT solvers for MSE 2014 and
2017 on the unweighted benchmark.

The reminder of this paper is organized as follows. The
next section introduces preliminary knowledge. The related
work are presented in Section III. Then, we introduce our
AVD-SLS method in details in Section I'V. The experimental
evaluation study is presented in Section V. Finally, we elab-
orate on the results and conclude the paper in Section VI and
Section VII respectively.

Il. PRELIMINARIES
In this section, we briefly introduce the main notations, defi-
nitions, and background knowledge.

A Propositional Variable v; is a Boolean variable assigned
a truth value (true or false).

A Literal /; is a propositional variable (v;) or its negation
(=vi).

Propositional Operators are logical connectives defined
as a set of three operators {—, A, V} that represent the nega-
tion, conjunction, and disjunction operators respectively.

A Clause ¢; is a disjunction of literals defined by \/f: 1
li (e.g,c; = h vi...VvI VI, where k represents the
number of literals in each clause. A clause ¢; is said to be
satisfied if ¢; evaluates to true, such that at least one literal /; €
¢;j is assigned to frue; otherwise ¢; is said to be unsatisfied.

49807

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

If ¢; is a hard (mandatory) clause, then it must be satisfied.
Otherwise, c; is a soft clause that can be satisfied.

A Weighted Clause is a pair (cj, wj), where c; is a clause
and w; is an associated positive number that represents the
cost of ¢; unsatisfaction.

A Unit Clause ¢; is a clause that contains only one literal.

A Conjunctive Normal Form (CNF) formula F consists
of conjunction of clauses defined by /\Jm:1 cileg, F=cA
C2...ACj A cp), where m represents the number of clauses
in the CNF formula F.

The Set of All Variables appearing in F is defined by
V(F)={vi,v2,..., Vi ..., vy}, where n represents the num-
ber of variables in F.

An Assignment « of a given CNF formula F sets the truth
value of each variable v; € V(F) : value(v;) € {true, false}.

The Cost of an assignment « is defined by cost(«), that
denotes the number (or total weight) of the unsatisfied clauses
under the current assignment «. We say that o is better than
oy if cost(a) < cost(an).

The Score of a variable v; is defined by score(v;), that
denotes the increment of the number (or total weight) of
satisfied clauses by flipping the truth value of a selected
variable v; from frue to false or vice versa. The score(v;) =
make(v;) — break(v;). The property make(v;) is defined as the
total number (or total weight) of clauses that would become
satisfied if variable v; is flipped and the break(v;) is the
total number (or total weight) of clauses that would become
unsatisfied if variable v; is flipped.

The Hard Score of a variable v; is defined by hscore(v;),
that denotes the increment of the number (or total weight) of
satisfied hard clauses by flipping the truth value of a selected
variable v;.

The Soft Score of a variable v; is defined by sscore(v;),
that denotes the increment of the number (or total weight) of
satisfied soft clauses by flipping the truth value of a selected
variable v;.

A Decreasing Variable v; denotes that the score(v;) > 0;
if the score(v;) < 0 then v; is said to be an increasing variable.
hscore(v;) > 0 denotes a hard decreasing variable v; and
sscore(v;) > 0 denotes a soft decreasing variable v;.

A Non-decreasing Variable v;, defined as 0 — score,
denotes that the number (or total weight) of unsatisfied
clauses is not changed by flipping the truth value of a selected
variable v;. 0—hscore denotes a non-decreasing hard variable
Vi.

The Neighborhood of a variable v; is defined by N (v;) =
{vj € N(v;) : i # j}, which denotes the set of all neighboring
variables of v; € V(F). Two different variables are neighbors
if and only if they appear in at least one clause simultaneously.
HN(v;) = {vj € HN(v;) : i # j} denotes the set of all hard
neighboring variables of v; € V(F). Two different variables
are hard neighbors if and only if they appear in at least one
hard clause simultaneously.

A Configuration Checking of a variable v; is the state
that indicates whether any variable v; € N(v;) : i # j has
been selected and flipped since v; was last flipped. If at least

49808

one variable v; € N(v;) : i # j has been flipped since v;
was last flipped, then the configuration of v; is changed and
configuration(v;) = 1; otherwise, configuration(v;) = 0.

(Weighted) Partial Maximum Boolean Satisfiability
(PMSAT) problem is to find an assignment of truth values to
V (F) that satisfies a partial set of clauses, called hard clauses,
and minimizes the number (or weight) of unsatisfied soft
clause. An assignment o for the PMSAT problem is feasible,
if and only if, it satisfies all hard clauses. Minimizing (maxi-
mizing) the number of unsatisfied (satisfied) soft clauses is a
measure of solution quality.

(Weighted) Maximum Boolean Satisfiability (Max-
SAT) problem is to find an assignment of truth values to
V(F) that minimizes (maximizes) the number (weight) of
unsatisfied (satisfied) clauses.

lIl. RELATED WORK

Our investigation shows that there are three main state-of-
the-art SLS-based methods for PMSAT problem solving:
distinction-based [35] method, configuration checking-based
[36] method, and dynamic local search method [37]. These
SLS methods are built around two algorithmic components: a
variable-pick heuristic and a weighting scheme. SLS methods
differ in the variable-pick heuristic selected as they employ
priority-based variable-pick heuristics differently based on
the scores of variables. Clause weighting is a weighting
scheme that make SLS methods dynamic [41]. The weights
are adjusted during the search to determine the search trajec-
tory while maintaining reasonable weight differentials [42].
The following paragraphs review each of state-of-the-art SLS
methods.

The distinction-based method was proposed by Cai et al.
in 2014 [35], which distinguishes between hard and soft
clauses by maintaining a weighting scheme for hard clauses
only. The weighting scheme for hard clauses is called the hard
pure additive weighting scheme (HPAWS), that was inspired
by the pure additive weighting scheme (PAWS) algorithm
proposed by Thornton et al. [41] to solve SAT problem.
PAWS is a dynamic local search algorithm that has been used
in many SLS algorithms [43]-[46]. Whenever the search stag-
nates and no improving neighborhood solutions are found,
the weights of the unsatisfied (hard) clauses are adjusted to
help escape from the local minimum. Additive weighting
schemes show better scalability than other weighting schemes
such as DLM [29] and SAPS [47]. HPAWS incorporates a
diversification probability, called the smoothing parameter
(sp is a real number that controls the hard clause weights),
to decide whether to increase the weights of unsatisfied hard
clauses or to decrease the weights of satisfied hard clauses.

Based on the concept of separation between hard and
soft scores, the distinction-based method uses a multi-level
priority-based approach for the variable-pick heuristic. Hard
decreasing variables (hscore > 0) have the highest priority,
and the hard variable with the greatest hard score may be
selected. In the second priority level come the non-decreasing
hard variables (0 — hscore) that are also soft decreasing

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

(sscore > 0), and the variable with the greatest soft score
may be selected. The third level indicates that the search
stagnates and two actions take place. First, the weights of
the hard clauses are updated according to HPAWS. Second,
arandom unsatisfied hard clause, if any, is chosen; otherwise,
from a randomly selected unsatisfied soft clause, either a
random variable v or the variable with the greatest soft score
is selected based on a given random walk probability wp
(a real number controls the activation of the random walk
heuristic). The distinction-based is designed with a simple
neighborhood definition and 1-flip move at each step of the
search.

There are six PMSAT SLS solvers based on the distinction
method: Dist [35], [48], HS-Greedy,' Distl,> Dist2,? Dist-
r,* and DistUP [48]. The parameters were tuned either with
an automatic offline parameter tuning tool [42] or manually
based on researcher’s experience. Furthermore, some solvers
adopted the Best from Multiple Selections (BMS) heuristic
proposed in [49]. Generally, BMS is a probabilistic sampling
method that selects randomly ¢ candidate decreasing vari-
ables and returns the best one. The source code of distinction-
based solvers are not available online.

The configuration checking-based method was first pro-
posed by Cai et al. in 2011 [50]. The configuration checking-
based method, similar to the distinction-based method, uses
HPAWS for hard clauses weighting scheme and maintains
separate scores for hard and soft clauses. The variable-pick
heuristic is based on the configuration checking property of
variables. The configuration checking property serves two
purposes: to avoid cycling and to promote the diversification
[50]. The configuration checking property is inspired by the
tabu search mechanism [36], [50].

The configuration checking-based method starts the search
with a probability p, to decide on whether to perform a
random move that is biased towards the satisfaction of hard
clauses or to switch to a greedy mode. In this mode, the con-
figuration checking-based method uses a multi-level priority-
based approach for the variable-pick heuristic. The highest
priority is for the hard decreasing variables (hscore > 0)
whose configuration changed, and the hard variable with the
greatest hard score may be selected. If there are no hard
decreasing variables, the weights of the hard clauses are
updated according to HPAWS. Then, the decreasing variable
(score > 0) with the greatest score whose configuration
changed may be selected, if any. Otherwise, when the search
stagnates, a variable v from a random unsatisfied hard clause
¢, if any, is chosen or from a randomly selected unsatisfied
soft clause c. The configuration checking-based method is
similar to the distinction-based method, as it implements a
simple neighborhood definition and 1-flip move at each step
of the search.

1HS—Grec:dy - Max-SAT 2016 - http://www.maxsat.udl.cat/16/solvers/
index.html

2Dist1 - Max-SAT 2015 - http://www.maxsat.udl.cat/15/solvers/index.html
3Dist2 - Max-SAT 2015 - http://www.maxsat.udl.cat/15/solvers/index.html
4Dist-r - Max-SAT 2016 - http://www.maxsat.udl.cat/16/solvers/index.html

VOLUME 9, 2021

However, different priority-levels were adopted in litera-
ture [36], [S1], [52]. For example the hard clause state-based
configuration checking (HCSCC) [51] forbidding mecha-
nism that is similar to the one proposed by Luo et al. [53],
but it emphasizes on hard clauses with a configuration that
consists of the states of hard clauses instead of neighboring
variables (i.e., captures the global effect of flipping a selected
variable v). This variable-pick heuristic, improves the results
on some real-world application of wighted PMSAT problem
instances [51].

There are six SLS solvers proposed to solve the PMSAT
problem which are based on the configuration checking-
based method: configuration checking local search (CCLS)
[36], configuration checking with emphasis on hard clauses
(CCEHC) [51], and hard neighboring variables with con-
figuration checking (HNVCC) [52]. HNVCC is based on
CCEHC with a new forbidding strategy [45] for hard vari-
ables only. Details of both solvers CCMPA> and SC2016°
were not published. The parameters were tuned either with
an automatic offline parameter tuning tool [42] or manually
based on researcher’s experience. Furthermore, some solvers
adopted the Best from Multiple Selections (BMS) heuristic.
And the source code of configuration checking-based solvers
are not available online.

The dynamic local search method was proposed by Lei
and Cai in 2018 [37]. Unlike the distinction-based and con-
figuration checking-based methods, the dynamic local search
method uses one weighting scheme (called Weighting-PMS)
for both hard and soft clauses based on PAWS [41], but the
increments of soft clauses’ weights are limited by a maximum
weight threshold ¢, to avoid favoring soft clauses over hard
clauses, which may mislead the search. For the hard clauses,
each hard clause is associated with value one for the weight
that is then updated during the search by a constant amount
(hinc). Whereas the original input weights of the soft clauses
are used. However, dynamic local search uses a simpler
variable-pick heuristic. This variable-pick heuristic considers
three break levels on updating the scores of the variables.
SATLike [37], [54], [55] solver is based on this dynamic local
search method and was the first SLS solver that competes on
industrial benchmarks [56]. The parameters were tuned man-
ually based on researcher’s experience. Furthermore, the Best
from Multiple Selections (BMS) heuristic was adopted by
SATLike. The source code of SATLike solver is available
online at MaxSAT Evaluation (MSE) 2018 website.

IV. ADAPTIVE VARIABLE DEPTH SLS ALGORITHM

The novel algorithm proposed in this work extends the state-
of-the-art dynamic local search framework by incorporating
two main components of an SLS method: parameter tuning
and neighborhood search.

SCCMPA - Max-SAT 2014 - http://www.maxsat.udl.cat/14/results-
incomplete/index.html

65C2016 - Max-SAT 2016 - http://www.maxsat.udl.cat/16/solvers/6/
README.txt-201603260957

49809

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

In local search algorithms, even relatively minor deviations
from optimal parameter settings (i.e., parameter values) can
lead to a substantial increase in the expected time at which
a given problem instance is solved; this sensitivity seems
to increase with the size and hardness of an instance to
be solved [57]. In PMSAT SLS solvers, two main methods
are used to tune parameters: manual tuning (i.e., based on
a researcher’s experience) and automatic offline parameter
tuning [58]. The former is confronted with a serious diffi-
culty; that is, a parameter setting that results from the tuning
of some problem instances may not be applicable to other
(difficult) instances of the same class. This means that this
process is time consuming. By contrast, automatic offline
parameter tuning methods determine parameter settings on
the grounds of a representative set of benchmark instances
(i.e., per-set tuning) during a training phase before algorithm
deployment. Generally, these methods entail significant com-
putational cost and experimentation effort, but their outcomes
are nevertheless often reusable in a wide range of similar
problems [59]. Some PMSAT SLS solvers [48], [51], [52]
have been incorporated with an automatic offline parameter
tuner called the sequential model-based algorithm configura-
tion (SMAC) [60].

In contrast to automatic offline methods, adaptive parame-
ter tuning is aimed at dynamically establishing the parameter
values of an algorithm on the basis of feedback derived during
its run. Such tuning is easier to deploy because limited user
intervention is required. However, automatic adaptive meth-
ods may suffer from two major drawbacks: overspecialization
if developed for a specific algorithm or problem and the
requirement for additional parameters, which may expand the
parameter domain that also requires tuning [58], [61].

Several online tuners have been proposed in the literature.
McAllester et al. [62] proposed a tuning method for six dif-
ferent variable-pick heuristics based on a WalkSAT algorithm
to solve the SAT problem. They found that when the noise
parameter p is tuned well for each heuristic, the performance
will be approximately the same. They called this a noise level
invariant. They suggested that given the best performance
of a heuristic, p can be tuned for the other heuristics for a
given measure of performance. The proposed tuning method
is based on the statistical properties of the search: mean and
variance of the violation count (i.e., invariant ratio). Their
empirical study showed that the best parameter tuning method
is related to both the problem instance and the underlying
algorithm.

Patterson and Kautz [63] extended the work of
McAllester et al. [62], and proposed the Auto-WalkSAT tun-
ing method. This method is based on the standard devi-
ation of the invariant ratio and Brents method [64]. The
tuner searches the invariant ratio space by two mathematical
methods: recursive bracketed and parabolic interpolation.
Then, the optimized p-value is used during the search. The
experimental evaluation showed that the best parameter tun-
ing method is related to whether p should be decreased on
increased during the tuning process.

49810

Hoos [65] proposed a simple self-tuning noise mechanism
for the noise parameter p. This adaptive noise mechanism
was applied for different variants of a WalkSAT algorithm.
The basic idea is to increase the value of p to high values
when the search stagnates, leading to more diversification.
The empirical results showed that in some cases, the method
significantly improves the results in comparison to the basic
WalkSAT. Similarly, the reactive scaling and probabilistic
smoothing (RSAPS) method, proposed by Hutter et al. [47],
is also based on a simple self-tuning noise mechanism, but for
the smoothing parameter pgmo0s, that controls the weighting
scheme. The experimental evaluation showed that the per-
formance was better for the RSAPS method than the basic
WalkSAT.

Two other research studies were based on Hoos’s method
[65]. Li et al. [66] proposed adaptG2WSAT, which com-
bines the adaptive noise tuning in [65] and Look-Ahead
for a variable-pick heuristic to solve the SAT problem. The
empirical results show that adaptG>WSAT method signifi-
cantly improved the results in comparison to G*WSAT and
other variants of the basic WalkSAT. Furthermore, the adap-
tive memory-based local search (AMLS) method, which Lu
and Hao [67] proposed for solving the Max-SAT problem,
employs a variable-pick heuristic based on a tabu mechanism.
The parameters p and p,, are both adaptively tuned based
on Hoos’s method [65]. Moreover, the authors proposed an
additional random perturbation operator for diversification.
AMLS showed better results for some Max-SAT instances
compared to the basic WalkSAT. However, the empirical eval-
uation showed that the initial setting of some other parameters
may need to be better tuned.

Prestwich [68] proposed a reinforcement learning algo-
rithm to automate the tuning process of the parameters using
the average-reward method. The basic idea is to learn better
noise levels against objective function values. That method
considers the average progress towards a solution, which is
called gain optimality. The experimental evaluation showed
that this method achieves a better performance than other
learning methods, such as Q-learning.

Based on the discussion presented above, we developed a
novel adaptive parameter tuner (Section IV-A) that consid-
ers Hoos’s tuning method [65] and a set of features for an
input PMSAT problem instance for initial parameter setting
selection.

How a neighborhood is defined and explored is a criti-
cal factor that affects the performance of local search algo-
rithms. The larger the neighborhood, the better the local
optima but the higher the computational cost. The key fea-
ture is to improve neighborhood search for large problem
instances without explicitly evaluating all neighbors each
time a search is trapped in a local minimum [69]. State-of-the-
art large neighborhood search (LNS) methods have shown
outstanding results in solving various problems from different
domains. An LNS search method can explore complex neigh-
borhoods and find better candidate solutions in each iteration,
thereby guiding searches toward more promising search paths

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

[70], [71]. LNS methods are grouped into different categories,
such as variable neighborhood search (VNS) and variable
depth neighborhood search (VDS). In this work, we put for-
ward a VDS algorithm for PMSAT problem solving. An AVD
algorithm can search deeper neighborhoods in a heuristic way
using only one parameter that controls the depth of the neigh-
borhood search [39], [70]. Our proposed VDS algorithm is
presented in Section I'V-B.

A. ADAPTIVE PARAMETER TUNING

Building an adaptive parameter tuner for a PMSAT SLS
algorithm is a challenging task for two main reasons: the time
constraint involved and the number of parameters needed to
be tuned. Our aim is to design a simple yet efficient tuning
algorithm. In our proposed algorithm, we build an adaptive
tuner for the underlying dynamic local search SLS solver
to tune nine parameters. Four parameters are used in the
weighting scheme, two random walk parameters used by a
variable pick heuristic, one parameter for the BMS heuristic,
one parameter that controls the depth of the VDS algorithm,
and one parameter used by the search algorithm for diversifi-
cation.

We have studied the relationship between the parameters’
values and some features of input instances on the basis of a
subset of weighted and unweighted benchmarks from MSE
2017 and 2018 (see Appendix A and Appendix B). For many
instances, some parameter settings are more related to some
features of an input instance. One of the most important
features for our adaptive tuner is the hard ratio, which is the
ratio of the number of hard clauses to the number of hard
variables of an input PMSAT problem instance.

Fig. 1 shows the main steps of the proposed adaptive
parameter tuner. Starting from initial default parameters’
values and extracted features of the input PMSAT prob-
lem instance (F), the tuner calls the underlying solver to
solve F and find a solution (¢). The tuner then checks the
quality of the output solution, and if a feasible solution is
found, the tuner stops and the variable adaptive SLS search
starts. Otherwise, the tuner will re-tune each parameter sep-
arately and recall the solver again until a feasible solution is
found or the time limit is reached. In this re-tune step of each
parameter, the tuner is looking for improved solutions and a
parameter that results in a better solution is set as a sensitive
parameter of F and added to the list of sensitive parameters
for future recall of adaptive parameter tuner.

B. VARIABLE DEPTH NEIGHBORHOOD SEARCH (VDS)

As presented in Section III, state-of-the-art PMSAT SLS
algorithms rely on a single neighborhood search with single
(1 — flip) move in each iteration.However, this technique
fails to explore huge neighborhoods when solving large-
sized PMSAT problem instances. To tackle this limitation,
we propose a variable depth neighborhood search (VDS) [39]
adopted for PMSAT problem solving. To the best of our
knowledge, this is the first research work adopted VDS for
PMSAT problem solving.

VOLUME 9, 2021

Algorithm 1 VDS

Input: o*, a selected variable v; by adaptive variable depth
SLS algorithm

QOutput: return o*, cost*
// let o* the best solution found so far
/I 'let cost the number (or total weight) of unsatisfied
clauses of « and cost* is the cost of o*
// let BEST a list of decreasing neighborhood variables

1: BEST <« v;

2: while depth > 0 do

3: if BEST # ¢ then

4: Vpest <— remove a random variable from BEST

5: o < o with vy flipped

6: BEST <« BEST |J {vj € N(Vpest) : score(vj) >
0 and best # j}

7: end if

8: depth < depth — 1

9: end while
10: return o*, cost*

The VDS (Algorithm 1) maintains a list called BEST that
keeps deceasing neighborhood variables [line 1] of a selected
variable vy, . Starting with a selected variable v; by adative
variable depth SLS algorithm (Algorithm 2), VDS flips the
selected variable and then adds to the best list all of its
decreasing neighborhood variables [lines 4-6]. In the next
iteration, a random variable from the best list is selected,
flipped, and then removed from the best list and all of its
decreasing neighborhood variables are addded to the best
list. The process is repeated until the depth is reached [line
2] or the best list becomes empty [line 3]. Finally, VDS
returns the best solution («*) found. We believe that our pro-
posed VDS algorithm works simply and is naturally similar
to Distinction-based method and Configuration Checking-
based method which maintain a list of hard decreasing vari-
ables, but without using any additional data structures for
VDS. Algorithm 1 has a time complexity of O(depth) and a
memory complexity of O(depth).

C. ADAPTIVE VARIABLE DEPTH SLS ALGORITHM

The complete algorithm of adaptive variable depth SLS is
presented in this section. Our novel algorithm extends the
framework of state-of-the-art dynamic local search algo-
rithm SATLike [37] by using two main components: adap-
tive parameter tuning and variable depth search (VDS). The
adaptive variable depth SLS (Algorithm 2) works as follows.
First, an initial assignment « is randomly generated with
unit propagation-based decimation preprocessing [line 1].
Second, the adaptive parameter tuner is activated [lines 8-9]
before the search begin as described in section I'V-A.

Then the search begins; based on the variable-pick heuris-
tic, a decreasing variable v is selected, if any. Otherwise,
the weighing scheme is activated, and the best variable v is
chosen from ¢ a randomly selected unsatisfied hard clause,
if any. If not, it is chosen from a randomly selected unsatisfied

49811

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

input instance F
features

parameter

tuner setting

initial
parameter setting

solution quality

solver solves «a + input instance F

FIGURE 1. Adaptive parameters tuning.

TABLE 1. Execution environment for MSE 2014-2019.

MaxSAT Evaluation Execution Environment

Operating System: CentOS release 6.3 - 2.6.32 x86_64 GNU/Linux
Processor: Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

2014-2016 Memory: 3.5 GB
Cache: 15360 KB
Compilers: GCC 4.4.6, javac J2RE 2.3
Operating System: CentOS Linux release 7.7.1908 (Core) kernel
Processor: Starexec nodes - Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz (2393 MHZ)
Memory: 263932744 kB

2017-2019 Cache: 10240 KB

Compilers: glibe: glibc-2.17-292.e17.x86_64

gee-4.8.5-39.e17.x86_64
glibc-2.17-292.¢17.i1686

TABLE 2. PMS classes and statistics for MSE 2014-2019.

Benchmark
random crafted industrial

Year #inst. (#families) #inst. (#families) #inst. (#families) Total
2014 210 (7) 421 (10) 568 (22) 1199 (39)
2015 210 (7) 678 (13) 601 (23) 1489 (43)
2016

2017 - 194 (24) 194 (24)
2018 - 153 (23) 153 (23)
2019 - 299 (38) 299 (38)

soft clause [lines 11-21]. The selected variable v is then sent
to VDS (Algorithm 1) [line 22]. VDS explores the (huge)
neighborhood deeply with a variable number of moves (k —
flips) at each iteration as described in Section IV-B. If no
feasible solution is found before the curoff -time is reached,
the adaptive parameter tuner is re-activated to re-tune the
parameters [lines 8-9]. Algorithm 2 has a time complexity
of O(N) and a memory complexity of O(N + C), where N
represents the total number of variables, and C represents the
total number of clauses.

V. EXPERIMENTAL EVALUATION OF ADAPTIVE
VARIABLE DEPTH-BASED SLS SOLVER

In this section, we empirically evaluate our algorithm pre-
sented in Section IV by implementing a PMSAT SLS solver
that is based on it. The solver is called AVD-SLS, which is

49812

evaluated on both unweighted and weighted PMSAT bench-
marks from MaxSAT Evaluation (MSE) 2014-2019. In this
evaluation,, we refer to the unweighted PMSAT benchmark
as PMS and to the weighted PMSAT benchmark as WPMS.
The reported results are then compared to the results of
the PMSAT solvers that participated in MSE 2014-2019.
In this experimental evaluation, we do not consider the pub-
lished results of state-of-the-art PMSAT SLS solvers because
of two main reasons. The first reason is the inconsistency
of published results. A solver was ran more than once on
each benchmark with different results reported for each
run, although all adopted the MSE rules including the ““run
once” rule, as described in Section V-A under Evaluation
Methodology. Moreover, detailed results are not available
for comparison with per-instance solution for the number of
solved instances, best solutions found, and best family results.

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

Algorithm 2 Adaptive Variable Depth SLS

Input: PMSAT problem CNF
parameter setting, cutoff -time

Output: return o*, cost* if a* is a feasible solution. Other-
wise print “No solution found”
/I let o* the best solution found so far
/I let cost* the number (or total weight) of unsatisfied
clauses of a*

I: o < arandomly-generated complete initial assignment

of F with UP-based decimation preprocessing

instance F, initial

2 oF «—
3: cost* < 400
4: while elapsed time < cutoff -time do
5. if Bunsatisfied hard clauses and cost(«) < cost* then
6: a* < o, cost*= cost(a)
7. end if
8: if tuner activated then
9: new parameter Ssetting < tuner(current
parameter setting, a*)
10: endif
11: if 3 decreasing variables then
12: v <— a variable with the greatest score; breaking ties

for the one that is least recently flipped
13: else

14: update weights of clauses

15: if 3 unsatisfied hard clauses then

16: ¢ < arandom-seleted unsatisfied hard clause

17: else

18: ¢ < arandom-seleted unsatisfied soft clause

19: end if

20: v < the variable from ¢ with greatest score; break-

ing ties for the one that is least recently flipped
21: end if
22: VDS(a*,v);
23: end while
24: return o*, cost*

The second reason is that the state-of-the-art SLS solvers that
participated in MSE 2014-2019 showed better results than
the published ones.

A. EXPERIMENTAL SETUP

Our experiments were conducted on Shaheen, a supercom-
puter consisting of a 36 rack Cray XC40 system. The front-
end environment is running SUSE Linux Enterprise Server
15.The system has 6,174 dual sockets compute nodes based
on 16 core Intel Haswell processors running at 2.3GHz. Each
node has 128GB of DDR4 memory running at 2300MHz.’
AVD-SLS solver was implemented in C++ and compiled
by g++ with ‘—03’ option. The execution environment for
MSE 2014-2019 benchmarks are shown in Table 1. The time
to find the best solution is not considered here, since the
processing time is machine-dependent. As such, it was not
considered by the latest MSE since 2017.

7https://Www.hpc.kaust.edu.sa/content/shaheen-ii

VOLUME 9, 2021

1) BENCHMARKS

We consider in this experimental evaluation all the bench-
marks from incomplete track of MSE 2014-2019 for two
time limits 60 and 300 CPU seconds. The MSEs are affil-
iated events of the International Conference on Theory and
Applications of Satisfiability Testing (SAT) that is held every
year since 2006 [72]. The MSEs are devoted to empirically
evaluate MaxSAT and PMSAT solvers, and to publish public
benchmarks. There are two main tracks in the MSE: the
complete track and the incomplete track. The complete track
includes all complete solvers that are based on exact methods
and the incomplete track for hybrid and local search solvers.

Table 2 and Table 3 summarize each of MSE 2014-
2019 benchmarks classes and statistics. The total number
of distinct instances made public by MSE 2014-2019 for
the incomplete track is 3633 instances (1741 unweighted
instances, and 1892 weighted instances) under three classes:
random, crafted, and industrial instances. However, since
MSE 2017 only two benchmark classes of instances for
PMSAT problem are considered and merged: crafted and
industrial benchmark instances under both weighed and
unweighted categories [73]. The crafted and industrial bench-
mark instances are encoded from other domains and from
real-world applications.

In this evaluation study, subsets of MSE 2017 and MSE
2018 benchmarks were used for the initial tuning of the AVD-
SLS solver. Appendix A shows a subset (76 instances) of
the PMS benchmark instances from MSE 2017 and MSE
2018, where some of the instances are also a subset of the
MSE 2014, 2015, 2016, and 2019 PMS benchmarks as shown
in Table 14 - Appendix A. Appendix B shows a subset
(81 instances) of the WPMS benchmark instances from MSE
2017 and MSE 2018, where some of the instances are also a
subset of MSE 2014, 2015, 2016, and 2019 WPMS bench-
marks as shown in Table 15 - Appendix B. We have excluded
these two subsets of instances from this evaluation study;
thus, a total of 3476 instances were used in this evaluation:
1665 instances from the PMS benchmark and 1811 from the
WPMS benchmark.

2) EVALUATION METHODOLOGY

We follow for each MSE the same methodology adopted in
the incomplete track:

« Each solver is executed once on each instance within a
time limit which is set to 60 CPU second for MSE 2017-
2019 benchmarks and to 300 CPU seconds for MSE
2014-2019 benchmarks.

o In each run, the solver prints successively the best solu-
tion it has found so far.

o The total number of instances in each benchmark is
denoted by #inst. and number of families by #families.

« For each solver on each benchmark, we report number
of solved instances denoted by #sol., within parentheses
the number of best solutions denoted by (#wins), and

49813

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 3. WPMS classes and statistics from MSE 2014-2019.

Benchmark
random crafted industrial
Year #inst. (#families) #inst. (#families) #inst. (#families) Total
2014 280 (8) 310 (17) 410 (8) 1000 (33)
2015 662 (16) 319 (16) 610 (11) 1591 (43)
2016 502 (12) 331 (17) 630 (13) 1463 (42)
2017 156 (18) 156 (18)
2018 172 (20) 172 (20)
2019 297 (29) 297 (29)

score. The best results is presented in bold font face for
each benchmark and each evaluation criteria.

In this work, we consider three evaluation criteria for each
MSE result: number of solved instances, number of best
solutions found, and score. Score is based on the cost of the
output solutions and measures how far are the solutions found
by a solver from the best ones, taking into account the number
of solved instances. Solvers with a higher number of best
solutions and solved instances have higher scores.

« MSE 2014-2016: We adopt the same score measure as

MSE 2018-2019.

« MSE2017: S
score — Eicost (.Jf‘best :mlut.mn for fjound by cymy solver
; cost of solution for i found by solver
instances and score € [0, 1].

« MSE 2018-2019:
_ 2'(coxt of best solution for i found by any solver+1)
score = 2 (cost of solution for i found by solver +1)
i € instances, score € [0, 1], and the best solution

found by all incomplete solvers within 300 seconds is
considered for each instance.

In this evaluation, for MSE 2014, MSE 2015, and MSE
2016, we merged the benchmarks for both crafted and indus-
trial classes under weighted and unweighted categories to
have a coherent and consistent comparison with MSE 2017-
2019 results.

3) PMSAT SLS SOLVERS

The state-of-the-art PMSAT SLS solvers experimental
results, that compete with AVD-SLS are the participated
solvers in MSE 2014-2019: CCLS and its variants, CCMPA,
Dist, Distl, Dist2, Dist-r, DistUP, Ramp, HS-Greedy,
CCEHC, SC2016, and SATLike.

4) INITIAL PARAMETER SETTING FOR ADAPTIVE TUNER
The following nine parameters’ values are adjusted by the
adaptive tuner starting from initial default values adopted
from [37] and based on our experimental evaluation on tuning
our solver on a subset of benchmark instances from MSE
2017-2018 (Appendix A and Appendix B).
« number of samplings for BMS heuristic: t = 42 for PMS
and t = 15 for WPMS : ¢ € [10, 500].

49814

o smooth probability for weighting scheme: sp =
0.000003 for PMS and sp = 0.0000001 iff the number
of variables > 2000; otherwise sp = 0.01 for WPMS
: sp € [0, 1].

« increment for each falsified clause in the weighting
scheme: h_inc = 1 for PMS and h_inc = 3 for WPMS
: h_inc € [1, 500].

o limit on maximum value on soft clause weight in the
weighting scheme: { = 400 for PMS and ¢ = 1 for
WPMS : ¢ €[1, 500].

o random walk parameter: wp = 0.091 for PMS and wp =
0.1 for WPMS : wp € [0, 1].

« noise parameters: rdprob = 0.01 and rwprob = 0.091
for PMS and rdprob = 0.01 and rwprob = 0.1 for
WPMS : rdprob and rwprob € [0, 1].

o threshold of maximum flips without improvement:
max_non_improve_flip = 10000000 or 10M for
both PMS and WPMS : max_non_improve_flip €
[1M, 100M].

o weight multiplier for initial weights of soft clauses:
weight _multiplier =100 for PMS and weight _multiplier
= 1 for WPMS : weight_multiplier € [1, 100].

o PMSAT VDS algorithm depth parameter: depth = 1 for
both PMS and WPMS : depth € [1, 35].

However, based on our experimental evaluation, we set
the initial parameters’ values for some PMS and WPMS
instances to different initial values based on an instance
hard ratio (i.e. ratio of number of hard clauses to hard
variables). We found that for some different ranges of hard
ratios, the PMS initial parameters’ values with the value of
max_non_improve_flip = 65M and depth = 3 are better
as initial values. The hard ratio ranges that have been found
to be better with this initialization values are 1.9 to 9.5 for
WPMS instances, and 2 to 6.25 for PMS instances. Then,
the adaptive tuner will adjust the initialized values to guide the
search towards better (feasible) search regions. The adaptive
tuner is called before the search begin and then whenever the
max_non_improve_flip is reached and no feasible solution
found. We set the maximum time limit for the adaptive tuner
to 10% of time limit for each call based on our experiments.

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

TABLE 4. AVD-SLS performance evaluation on MSE 2014-2019 PMS benchmarks by families.

Performance %solved #families Comments
Excellent 100% 45 6 random + 23 crafted + 16 industrial #families
1 random + 1 crafted + 2 industrial #families
Very good 80-99% 3 1 random instance of pmax2sat-hi was never solved
4 industrial #families
Good 66-79% 4 2 industrial instances of bcp-msp were never solved
Poor 51-65% 1 1 industrial #families
2 crafted + 5 industrial #families
Fail 0-50% 7 2 industrial instances of atcoss-mesat were never solved
All (5) crafted instances of pseudo-Boolean-primes were never solved
Total 62 10 unweighted instances were never solved

TABLE 5. AVD-SLS performance evaluation on MSE 2014-2019 WPMS by families.

Performance %solved #families Comments

Excellent 100% 54 15 random + 23 crafted + 16 industrial #families
1 random + 3 industrial #families

Very good 80-99% 4 2 industrial instances of time-tabling were never solved
1 random instance of wpmax2sat-hi was never solved
1 crafted #families

Good 66-79% ! 5 crafted instances of lisbon-wedding were never solved

Poor 51-65% 1 1 industrial #families

. 1 crafted + 1 industrial #families
Fail 0-50% 3 2 crafted instances of miplib were never solved
Total 63 10 weighted instances were never solved

B. PERFORMANCE EVALUATION OF AVD-SLS SOLVER

In this section, we evaluate the performance of AVD-SLS
solver on both PMS and WPMS, and on each class: ran-
dom, crafted, and industrial instances. Then, we further focus
on the evaluation results based on benchmarks’ families.
We classify the performance of AVD-SLS based on the results
into 5 different classes as shown in Table 4 and Table 5.
We consider AVD-SLS fails to solve a benchmark family and
categorize a benchmark family as a hard family, if AVD-SLS
is unable to solve more than 50% of benchmark’s instances
for 300 CPU seconds.

Fig. 2 shows the overall performance results of AVD-SLS
on both PMS and WPMS. For PMS, the total number of
solved instances is 1492 (89.55%), and the average time to
find the best solution is below 50 CPU seconds. On the other
hand, for WPMS the total number of solved instances is 1774
(97.96%), and the average time to find the best solution is
also below 50 CPU seconds as the case of PMS. The results
indicate that AVD-SLS, in general, is an efficient solver w.r.t
time and percentage of solved instances. Moreover, AVD-
SLS remarkably perform better on WPMS than PMS.

VOLUME 9, 2021

1) AVD-SLS RESULTS ON PMS

For random class, AVD-SLS was able to solve all the
instances from random PMS except one instance that was
never solved by any solver. The average time to solve all
random PMS instances is 2.35 seconds. Table 4 shows that
AVD-SLS has an excellent performance on random families,
that were completely solved by AVD-SLS.

For crafted class, AVD-SLS was able to solve 94.13%
of instances from crafted PMS. The average time to solve
crafted PMS instances is 44.34 seconds. Table 4 shows that
AVD-SLS has an excellent performance on 88.5% of crafted
families, that were completely solved by AVD-SLS. How-
ever, AVD-SLS fails to solve many instances from reversi
family (multi-agent endgame). Excluding pseudo-Boolean-
primes family (as it was never solved by any solver), Fig. 3
shows that the number of solved instances from reversi family
is increased with time.

For industrial class, AVD-SLS was able to solve 81.26%
of instances from industrial PMS and the average time to
solve them is 63.49 seconds. Table 4 shows that AVD-SLS has
an excellent performance on 55.17% of industrial families.

49815

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

Number of z instances solved in y seconds

300 T T T T
1491 / 1774
—— unweighted benchmark (89.55% solved) /
—— weighted benchmark (97.96% solved) /J
f
250 - /’ .
200 - / i
3 /
g /
g /
- /
g /
o 150 / a
g
g //
2 /
Q /
100 |- al
50| Average time = 47.28 sec. |
average time = 45.77 sec.
0 L I
0 500 1,000 1,500

Number of instances

FIGURE 2. Variation of the running time of AVD-SLS with the number of MSE

2014-2019 benchmark instances.

Number of z instances solved in y seconds

300

50%

11.11%

CPU time in seconds

100 -

—— atcoss-mesat
——atcoss-sugar
circuit-trace-compaction
——des
—— hs-timetabling
reversi

0 4 8 12 16

20

Number of instances

FIGURE 3. Hard family-based PMS instances solving over time.

However, five industrial families have fail performance clas-
sification. AVD-SLS was unable to solve any instances from
atcoss mesat (air traffic controller shift scheduling) and cir-
cuit trace compaction families. Des (diagnosis of discrete
event systems) family and atcoss-sugar also reported very
poor results. However, the hs-timetabling family has only two
instances where only one is solved, which results in 50%.
As shown in Fig. 3, we can see that as the time increased,
the numbers of solved hard instances from industrial families
are modest or non-existent.

49816

2) AVD-SLS RESULTS ON WPMS
For random class, AVD-SLS was able to solve all the
instances from random WPMS except one instance that was
never solved by any solver. The average time to solve all
random WPMS instances is 2.11 seconds. Table 5 shows that
AVD-SLS has an excellent performance on random families,
that were completely solved by AVD-SLS.

For crafted class, AVD-SLS was able to solve 97.95% of
instances from crafted WPMS. The average time to solve
crafted WPMS instances is 54.74 seconds. Table 5 shows

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

Number of z instances solved in y seconds

300

250 |-

200

CPU time in seconds

100 |-

50

— miplib
——robot-navigation
—— shift-design

50%

I
0 2 4

I I
6 8 10

Number of instances

FIGURE 4. Hard family-based WPMS instances solving over time.

that AVD-SLS has an excellent performance on 92% of
crafted families, that were completely solved by AVD-SLS.
However, AVD-SLS was unable to solve more than 50% of
mip-lib-mps family from PB domain. However, two miplib
instances were never solved before, and we can see that
(Fig. 4) as the time increased, the number of solved instances
from miplib family is increased.

For industrial class, AVD-SLS was able to solve 96.20%
of instances from industrial WPMS and the average time
to solve them is 86.30 seconds. Table 5 shows that AVD-
SLS has an excellent performance on 72.72% of industrial
families. However, none of robot navigation family three
instances was solved by AVD-SLS. And, as shown in Fig. 4
as the time increased, the numbers of solved hard instances
from industrial families robot navigation and shift design are
modest or non-existent.

In concluding this section, we show that AVD-SLS
has an excellent performance results on both PMS and
WPMS. However, AVD-SLS performing remarkably better
on WPMS than PMS; especially on industrial families. Out
of 125 benchmark families, AVD-SLS shows an excellent
performance results on about 80% of benchmark families
which completely solved by AVD-SLS. On the other hand,
few hard instances were solved over time.

C. COMPARISON OF AVD-SLS WITH STATE-OF-THE-ART
SLS SOLVERS

AVD-SLS is compared to each SLS solver participated in
MSE 2014-2019. The results on PMS are shown in Table 6
and Table 7. The detailed results by family-based benchmarks
for PMS instances are shown in Appendix C. We highlight
here best and worse results of AVD-SLS on family-based
benchmarks compared to SLS solvers results.

VOLUME 9, 2021

For PMS 2014: Most SLS solvers were able to solve
random instances and AVD-SLS was the best SLS solver
for all three evaluation criteria except for total number
of solved crafted instances, where Dist solver was able
to solve two more instances. Dist was the second best
solver that is competitive for random and crafted bench-
marks. However, AVD-SLS is a prominent solver for merged
benchmark for all three evaluation criteria. For family-
based results as shown in Table 16 - Appendix C, AVD-
SLS has the best number of solved instances and aver-
age score with 20 best families, where second come Dist
with 10 best families. Moreover, only Dist and AVD-SLS
were able to solve a number of instances from atcoss-sugar
family. And all SLS solvers in this MSE failed to solve
any of atcoss-mesat and circuit-trace-compaction families
instances.

For PMS 2015: Most SLS solvers were able to solve ran-
dom instances. For crafted and industrial benchmarks, AVD-
SLS, Dist2 and DistUP were competitive. For the merged
benchmark, Dist2 solver was able to solve one more instance
but AVD-SLS have best number of best solutions and best
score. Dist2 was the second best solver that is competitive
for random and crafted benchmarks. For family-based results
as shown in Table 17 - Appendix C, AVD-SLS has the best
number of solved instances and average score with 20 best
families, where second come Dist2 with 10 best families.
Moreover, all Distinction-based solvers, CCEHC and AVD-
SLS were able to solve a number of instances from atcoss-
sugar family, where CCEHC has the best results. For Des
family, most of SLS solvers including AVD-SLS were able
to solve a number of Des instances, where DistUP has the
best results. And as in MSE 2014, all SLS solvers in this
MSE failed to solve any of atcoss-mesat and circuit-trace-
compaction families instances.

49817

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 6. Summary results of AVD-SLS and PMSAT SLS solvers on MSE 2014-2016 PMS.

MSE 2014-2016 - Unweighted Benchmark (300 seconds)

PMS_random_2014
#inst. (210)

PMS_crafted 2014
#inst. (414)

PMS_industrial_2014
#inst. (553)

PMS_crafted_industrial_2014
#inst. (967)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 209 (209) - 0.995 375 (364) - 0.905 434 (394) - 0.770 816 (764) - 0.827
CCLS2014 209 (207) - 0.995 307 (294) - 0.739 94 (58) - 0.155 405 (355) - 0.405
CCMPA 208 (204) - 0.990 305 (277) - 0.733 103 (80) - 0.170 414 (362) - 0.413
Dist 209 (209) - 0.995 377 (349) - 0.899 386 (195) - 0.615 768 (548) - 0.735

PMS_random_2015 PMS_crafted_2015 PMS_industrial_2015 PMS_crafted_industrial_2015
#inst. (210) #inst. (669) #inst. (584) #inst. (1253)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 209 (209) - 0.995 630 (503) - 0.925 465 (403) - 0.773 1095 (906) - 0.854
CCEHC 209 (209) - 0.995 548 (431) - 0.779 402 (165) - 0.580 950 (596) - 0.686
CCLS2015 208 (207) - 0.990 308 (293) - 0.459 114 (77) - 0.180 422 (370) - 0.329
Distl 209 (209) - 0.995 582 (426) - 0.834 453 (183) - 0.637 1035 (609) - 0.742
Dist2 209 (205) - 0.994 632 (437) - 0.885 464 (178) - 0.635 1096 (615) - 0.768
DistUP 209 (209) - 0.995 583 (418) - 0.837 474 (191) - 0.673 1057 (609) - 0.760

PMS_random_2016 PMS_crafted_2016 PMS_industrial_2016 PMS_crafted_industrial_2016
#inst. (210) #inst. (669) #inst. (584) #inst. (1253)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 209 (209) - 0.995 630 (532) - 0.923 465 (398) - 0.773 1095 (930) - 0.853
CCEHC 209 (209) - 0.995 546 (425) - 0.772 411 (170) - 0.583 957 (595) - 0.684
CCLS 208 (207) - 0.990 308 (290) - 0.459 113 (79) - 0.180 421 (369) - 0.329
Dist 209 (208) - 0.995 590 (456) - 0.851 463 (180) - 0.646 1053 (636) - 0.755
Dist-r 209 (209) - 0.995 411 (343) - 0.590 411 (122) - 0.520 822 (465) - 0.558
HS-Greedy 209 (22) - 0.795 622 (103) - 0.760 451 (53) - 0.366 1073 (156) - 0.577
Ramp 209 (206) - 0.995 312 (282) - 0.463 121 (90) - 0.189 433 (372) - 0.336
SC2016 208 (208) - 0.990 - 130 (99) - 0.208 -

For PMS 2016: Similar to PMS 2014 and 2015, most SLS
solvers were able to solve random instances. For all bench-
marks, AVD-SLS was the best solver for all three evaluation
criteria. Dist was the second competitive solver. For family-
based results as shown in Table 18 - Appendix C, AVD-SLS
has the best number of solved instances and average score
with 17 best families, where second come Dist with 10 best
families. Moreover, Dist, CCEHC and AVD-SLS were able to
solve a number of instances from atcoss-sugar family, where
CCEHC has the best results. For Des family, most of SLS
solvers including AVD-SLS were able to solve a number of
Des instances, where Dist has the best results. And as in MSE
2014 and 2015, all SLS solvers in this MSE failed to solve
any of atcoss-mesat and circuit-trace-compaction families
instances.

For PMS 2017: AVD-SLS was the best solver for all three
evaluation criteria. The results of CCEHC were improved

49818

as time limit increased to 300 seconds. In this MSE, AVD-
SLS is a prominent solver. For family-based results as shown
in Table 19 - Appendix C, AVD-SLS has the best number
of solved instances and average score with 14 best families,
where second come CCEHC with 6 best families. Moreover,
AVD-SLS and CCEHC were able to solve a number of
instances from atcoss-sugar family. And all SLS solvers in
this MSE failed to solve any of atcoss-mesat, Des, and close-
solutions (from Satisfiabily domain) families instances.

For PMS 2018: AVD-SLS was the best solver for all
three evaluation criteria. And the number of best solutions
found so far were approximately more than 1.7 times for
both solvers as time limit increased to 300 seconds. It is
remarkable to see that the number of solved instances are
not increased relatively as the number of best solutions found
is increased. For family-based results as shown in Table 20
- Appendix C, AVD-SLS has the best number of solved

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

instances and average score with 14 best families, where sec-
ond come SATLike with 8 best families. AVD-SLS was able
to solve a number of reversi instances that was never solved
by SATLike. Moreover, AVD-SLS and CCEHC were able to
solve a number of instances from atcoss-sugar family. And
both AVD-SLS and SATLike in this MSE were failed to
solve any of atcoss-mesat, Des, and close-solutions families
instances.

For PMS 2019: AVD-SLS is a competitive solver, although
no other SLS solver participated in this evaluation. The
scores and number of best solutions are better than some
other well-known hybrid solvers. In this evaluation, AVD-
SLS has the best number of solved instances and average
score with 7 best families as shown in Table 21 - Appendix C.
As AVD-SLS is the only SLS solver in this section, the results
shown in Table 7 - section PMS_2019 - are based on the
best solution found so far for each instance by any SLS
solver during the past MSE 2014-2018. If an instance is
never tested before by any SLS solver, we set the solution
found by AVDS-SLS as the best solution found so far (about
12% of unweighted benchmark instances were never tested
before by SLS solvers). In this evaluation, AVD-SLS failed
to solve any of atcoss-mesat, and pseudo-Boolean-primes
families instances, that never solved by any SLS solver. Three
new benchmark families were included in this MSE, where
AVD-SLS perform very well and the reported results has
a score range from 0.860 to 0.987 as shown in Table 21 -
Appendix C.

Fig. 5 shows the performance comparison on MSE 2014-
2018 crafted and industrial instances, where PMSAT SLS
solvers have been participated. For each column of each
solver per year:

« length of a column represents the percentage (%) of total
solved instances per year.

o the colored part (e.g. light violet for AVD-SLS) repre-
sents the percentage (%) of total number of best solu-
tions found by a solver.

From this summary, we show that AVD-SLS has the
best results throughout MSE 2014-2019 w.r.t MSE three
evaluation measures: number of solved instances, score and
number of best solutions found. AVD-SLS report the best
performance results on many graph-theory families (such
as max-clique, maxcut, ramsey, and set-covering), on some
verification families (such as mbd and bcp-syn), and on
some optimization problems such as uaq (User Authorization
Query problem). However, the hardest PMS families for
AVD-SLS are: atocss-mesat, circuit trace compaction, and
robot navigation. However competitive PMSAT SLS solvers
such as AVD-SLS, SATLike, Dist, and CCEHC were able
to solve some instances from other hard benchmark families
such as atcoss-sugar, des, close-solutions, and reversi.

Next, the results on WPMS are shown in Table 8 and
Table 9. The detailed results by family-based benchmarks
for WPMS problem instances are shown in Appendix D.

VOLUME 9, 2021

TABLE 7. Summary results of AVD-SLS and PMSAT SLS solvers on MSE

2017-2019 PMS.

MSE 2017-2019 - Unweighted Benchmark

60 seconds

300 seconds

PMS_2017
#inst. (134)

PMS_2017
#inst. (134)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 115 (92) - 0.840 115 (96) - 0.841
CCEHC 86 (42) - 0.521 103 (48) - 0.602
Dist 101 (37) - 0.533 104 (33) - 0.552

PMS_2018 PMS_2018
#inst. (100) #inst. (100)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 83 (41) - 0.762 83 (68) - 0.820
SATLike 80 (26) - 0.710 81 (50) - 0.751

PMS_2019 PMS_2019
#inst. (253) #inst. (253)

Solver #sol. (#wins) - score #sol. (#wins) - score

AVD-SLS 215 (121) - 0.785 215 (179) - 0.831

We highlight here best and worse results of AVD-SLS on
family-based benchmarks compared to SLS solvers results.

For WPMS 2014: AVD-SLS was the best SLS solver
for all three evaluation criteria for industrial and merged
benchmarks. However the number of best solutions found
for random benchmark is the worse among all solvers. For
crafted benchmarks, Dist has the best score. However, AVD-
SLS was the best solver on crafted benchmark for two evalu-
ation criteria. For family-based results as shown in Table 22
- Appendix D, AVD-SLS has the best number of solved
instances and best average score with 19 best families,
where second come Dist and CCMPA with 6 best families.
We found that all SLS solvers have reported the best results
for two auctions benchmark families. Moreover, AVD-SLS
was able to solve more instances from hard pseudo-miplib-
mps and hs-timetabling benchmark families than other SLS
solvers. And for upgrade-ability problem family, AVD-SLS
was the only solver that solved all instances, where non solved
by other SLS solvers. It is remarkable that both Dist and Dist-
r were not able to solve any instance from frb, ramsey, and
maxcut benchmark families.

For WPMS 2015: Most SLS solvers were able to solve
random instances but AVD-SLS, as in MSE 2014, has the
worse number of best solutions among all solvers. For crafted
benchmark, CCEHC has the best score. However, AVD-SLS
was the best solver for crafted benchmark for two evaluation
criteria and was the best solver for all three evaluation crite-
ria on industrial and merged benchmarks. For family-based

49819

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

% solved instances, % best solutions, and average score per SLS solver per year

100 —
90 0.854 0.768
0.827 0.760 o]
0.735 o
80 ,
0.686
70
0.558
" 60
[}
Q
£
3 50
R=
0413

S 4) 405

40

0.329

30

20

10

N | B
2014 2015
B [Avp-sLs B Bccenc MW HBois W0Occs
B Hpisir [| .HS—Greedy

0.684

0.853

0.577 0.841 0.820
0455 0.751
0.602 0.552
0.329 336 ‘ |
2016 2017 2018
Year
B [compa B pisa HEpise W Episor
B [ramp B W satLike

FIGURE 5. Performance comparison of AVD-SLS with state-of-the-art PMSAT SLS solvers on MSE 2014-2018 PMS.

results as shown in Table 23 - Appendix D, AVD-SLS has
the best number of solved instances and best average score
with 17 best families, where second come CCEHC with
7 best families. And as in MSE 2014, all SLS solvers have
reported the best results for two auctions benchmark fami-
lies. Moreover, AVD-SLS were able to solve more instances
from hard hs-timetabling benchmark families than other SLS
solvers. Both HS-Greedy and AVD-SLS were able to solve
all instances from timetabling family.

For WPMS 2016: For the random benchmark, only three
solvers have the best results: CCEHC, Ramp, and SC2016.
For crafted benchmark, CCEHC has the best score. However,
AVD-SLS was the best solver on crafted benchmark for
two evaluation criteria and was the best solver for all three
evaluation criteria on industrial and merged benchmarks. For
family-based results as shown in Table 24 - Appendix D,
AVD-SLS has the best number of solved instances and best
average score with 22 best families, where second come
Ramp with 7 best families. And as in MSE 2014 and 2015,
all SLS solvers have reported the best results for two auctions
benchmark families. And for abstraction-refinement family,
AVD-SLS was the only solver that solved all instances, where
non solved by other SLS solvers. Also, HS-Greedy were able
to solve more instances from hard hs-timetabling benchmark
family than AVD-SLS solver, that was the best for this family.

49820

However, AVD-SLS was the only solver that was able to solve
all instances from relational-inference family. And as in MSE
2014, both Dist and Dist-r were not able to solve any instance
from frb, ramsey, and maxcut benchmark families.

For WPMS 2017: AVD-SLS was the best solver for all
three evaluation criteria. The results of all solvers has very
slight improvement as time limit increased to 300 seconds.
In this MSE, AVD-SLS is a prominent solver. Generally,
many good-solutions were found by SLS solvers which indi-
cated by the enhanced score. For family-based results as
shown in Table 25 - Appendix D, AVD-SLS has the best
number of solved instances and best average score with
14 best families, where second come CCEHC with 6 best
families. Moreover, AVD-SLS the only solver that was able
to solve all instances from min-width family. And AVD-SLS
solved a number of instances from pseudo-miplib-mps and
shift design hard benchmark families, where non solved by
other SLS solvers.

For WPMS 2018: AVD-SLS was the best solver for all
three evaluation criteria. And the number of best solutions
found so far were approximately doubled for AVDS-SLS and
4.4 times increased for SATLike as time limit increased to
300 seconds. It is also remarkable as for PMS, that the number
of solved instances are not increased relatively as the number
of best solutions found increased by double or more. For

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

TABLE 8. Summary results of AVD-SLS and PMSAT SLS solvers on MSE 2014-2016 WPMS.

MSE 2014-2016 - Weighted Benchmark (300 seconds)

WPMS_random_2014

#inst. (280)

#inst. (302)

WPMS_crafted_2014 WPMS_industrial_2014

#inst. (402)

#inst. (704)

WPMS_ crafted_industrial_2014

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 279 (119) - 0.688 298 (225) - 0.818 391 (369) - 0.963 689 (589) - 0.900
CCLS2014 278 (277) - 0.993 221 (138) - 0.700 71 (40) - 0.159 292 (178) - 0.391
CCMPA 278 (274) - 0.993 247 (148) - 0.730 76 (47) - 0.179 323 (195)-0.415
Dist 279 (279) - 0.996 276 (182) - 0.824 236 (57) - 0.541 512 (239) - 0.663

WPMS_random_2015 WPMS_crafted_2015 WPMS_industrial_2015 WPMS_crafted_industrial_2015
#inst. (662) #inst. (311) #inst. (586) #inst. (897)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 661 (119)-0.514 307 (213) - 0.780 573 (420) - 0.905 880 (633) - 0.862
CCEHC 661 (659) - 0.998 292 (192) - 0.894 411 (131) - 0.539 703 (323) - 0.662
CCLS2015 660 (660) - 0.997 206 (131) - 0.631 73 (36) - 0.102 279 (167) - 0.285
Distl 661 (660) - 0.998 284 (165) - 0.808 525 (75) - 0.624 809 (240) - 0.688
Dist2 661 (660) - 0.998 296 (165) - 0.844 524 (88) - 0.637 820 (253) - 0.709
DistUP - - - -

WPMS_random_2016 WPMS_crafted_2016 WPMS_industrial_2016 WPMS_crafted_industrial_2016
#inst. (502) #inst. (319) #inst. (606) #inst. (925)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 501 (119) - 0.532 315 (213) - 0.778 593 (411) - 0.875 908 (624) - 0.841
CCEHC 501 (497) - 0.998 302 (192) - 0.897 434 (100) - 0.515 736 (292) - 0.647
CCLS 500 (498) - 0.996 216 (131) - 0.639 73 (42) - 0.103 289 (173) - 0.288
Dist 119 (119) - 0.237 204 (88)-0.518 566 (114) - 0.705 770 (202) - 0.640
Dist-r 119 (119) - 0.237 199 (76) - 0.512 519 (113) - 0.562 718 (189) - 0.545
HS-Greedy 501 (45) - 0.897 312 (69) - 0.778 566 (14) - 0.441 878 (83) - 0.557
Ramp 500 (496) - 0.996 228 (134) - 0.650 84 (47) - 0.124 312 (181) - 0.305
SC2016 501 (500) - 0.998 199 (137) - 0.596 102 (48) - 0.145 301 (185) - 0.300

family-based results as shown in Table 26 - Appendix D,
AVD-SLS has the best number of solved instances and best
average score with 11 best families, where SATLike was the
best for 7 families. For causal-discovery family, AVD-SLS
was the best and found optimal solutions for all instances
(zero cost). Also, AVD-SLS was able to solve more instances
from hard hs-timetabling benchmark family. The hardest
families that never solved by SLS solvers in this MSE are:
robot navigation and pseudo-miplib-mps families.

For WPMS 2019: AVD-SLS is a competitive solver,
although no other SLS solver participated in this evaluation.
The scores and number of best solutions are better than some
other well-known hybrid solvers. In this evaluation, AVD-
SLS has the best number of solved instances and average
score with 5 best families as shown in Table 27 - Appendix D.
As AVD-SLS is the only SLS solver in this MSE, the results
shown in Table 9 - section WPMS_2019 - are based on the
best solution found so far for each instance by any SLS

VOLUME 9, 2021

solver during the past MSE 2014-2018. If an instance is never
tested before by any SLS solver, we set the solution found by
AVDS-SLS as the best solution found so far (about 20% of
weighted benchmark instances were never tested before by
SLS solvers). The hardest families that never solved by SLS
solvers in this MSE are: robot navigation and shift design
families.

Fig. 6 shows the performance comparison on MSE 2014-
2018 crafted and industrial instances, where PMSAT SLS
solvers have been participated. For each column of each
solver per year:

« length of a column represents the percentage (%) of total
solved instances per year.

« the colored part (e.g. light violet for AVD-SLS) repre-
sents the percentage (%) of total number of best solu-
tions found by a solver.

49821

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 9. Summary results of AVD-SLS and PMSAT SLS solvers on MSE 2017-2019 WPMS.

MSE 2017-2019 - Weighted Benchmark

60 seconds

300 seconds

WPMS_2017
#inst. (100)

WPMS_2017
#nst. (100)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 89 (58) - 0.857 90 (58) - 0.867
CCEHC 57 (27) - 0.486 65 (29) - 0.553
Dist 64 (30) - 0.555 65 (29) - 0.568

WPMS_2018 WPMS_2018
#inst. (108) #inst. (108)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 94 (38) - 0.815 95 (65) - 0.844
SATLike 90 (11) - 0.696 92 (46) - 0.741

WPMS_2019 WPMS_2019
#inst. (261) #inst. (261)

Solver #sol. (#wins) - score #sol. (#wins) - score

AVD-SLS 233 (90) - 0.754 235 (181) - 0.850

% solved instances, % best solutions, and average score per SLS solver per year

From this summary, we show that AVD-SLS has the
best results throughout MSE 2014-2019 w.r.t MSE three
evaluation measures: number of solved instances, score and
number of best solutions found. AVD-SLS report the best
performance results on many graph-theory families (such
as maxcut, and set-covering), on realizability optimization
problems such as power distribution, and other optimization
problems such as random network, min-width, abstraction
refinement, causal discovery, and CSG families. However,
the hardest PMS families for AVD-SLS are: robot naviag-
tion and shift design. Competitive PMSAT SLS solvers such
as AVD-SLS, SATLike, Dist, and CCEHC were able to solve
some instances from other hard benchmark families such as
pseudo-miblip-mps and hs-timetabling.

We conclude this experimental evaluation results of AVD-
SLS and PMSAT SLS solvers that participated in MSE
2014-2019 on both PMS and WPMS with more than
3400 instances, that AVD-SLS reported the best results and
outperform all PMSAT SLS solvers, based on the evaluation
criteria presented in this study that were adopted from MSE
2014-2019. Generally, AVD-SLS improves the quality of
found solutions when the time limit increased. The minimum
score for AVD-SLS in this evaluation, as shown in Fig. 5
and Fig. 6, ranges from 0.820 to 0.900. This evaluation study
shows that AVD-SLS perform remarkably better on WPMS
instances.

49822

D. COMPARISON OF AVD-SLS WITH ALL
STATE-OF-THE-ART MaxSAT EVALUATION

2014-2019 PMSAT SOLVERS

We also compare AVD-SLS with all PMSAT solvers partic-
ipated in MSE 2014-2019. The results on PMS are shown
in Table 10 and Table 11. In this section, we plot distribution
of scores per instances figures for each MSE; the same used
by latest MSE since 2017. In each figure, each solver results
are represented by a curve, where each point represent the
score of each solved/unsolved instance. We encoded each
solver results with a unique color, where results of AVD-SLS
are represented with a violet color in all figures. We ordered
PMSAT solvers in the legend from best-scored to worse-
scored.

For PMS 2014: Both AVD-SLS and Dist have best
results on random instances. However, AVD-SLS has the
best number of best solutions for crafted benchmark. AVD-
SLS is competitive to a number of hybrid solvers. Based
on score measure results shown in Fig. 7, AVD-SLS is the
third best solver in this Evaluation after WPM-2014-in and
optimax2-rn-i. For family-based results as shown in Table 16
- Appendix C, AVD-SLS has the best average score for
4 benchmark families.

For PMS 2015: Most SLS solvers have best results on
random instances. AVD-SLS is competitive to a number
of hybrid solvers. Based on score measure results shown

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

100 0.900 0.862

% insatnces
o S S S =) =) =) <)

o

2014 2015

. . Dist
. . Dist-r

B [Aavp-sLs B W ccenc

0.709 0,688
90
8 0.662 0. 54;
0.663
7
6
5 0415
0.391
4
0.285
3
2
1

B [Jccws

| B | HS-Greedy

0.841

0.557
0.867 0.844
0.640 0.741
0.553 [0-568
0.305
0.288

2016 2017 2018
Year
B [Jcovpa B Opisa E[Opise W WsatLike

. D Ramp

FIGURE 6. Performance comparison of AVD-SLS with state-of-the-art PMSAT SLS solvers on MSE 2014-2018 WPMS.

in Fig. 8, AVD-SLS is ranked the fourth best solver in this
Evaluation. For family-based results as shown in Table 17
- Appendix C, AVD-SLS has the best average score for
2 benchmark families.

For PMS 2016: For random benchmark, almost all SLS
solves random instances with best solutions. For crafted
benchmark, AVD-SLS was able to solve the maximum num-
ber of instances. Based on score measure results shown
in Fig. 9, AVD-SLS ranked in the fifth position in this
Evaluation. For family-based results as shown in Table 18
- Appendix C, AVD-SLS has the best average score for
4 benchmark families.

For PMS 2017: For 60 seconds time limit, AVD-SLS has
the best number of best solutions and ranked the first based
on score measue. For 300 seconds, maxroster solver results
improved significantly as the time increased, and AVD-SLS
ranked as the second best solver as shown in Fig. 10. For
family-based results as shown in Table 19 - Appendix C,
AVD-SLS has the best average score for 3 benchmark fami-
lies.

For PMS 2018: AVD-SLS is a competitive solver with
number of hybrid solvers, where the best number of best
solutions is achieved by AVD-SLS for both time limits. AVD-
SLS ranked as the third best solver for 60 seconds time limit
and fourth for 300 seconds time limit as shown in Fig. 11;
maxroster solver results improved significantly as the time

VOLUME 9, 2021

increased. For family-based results as shown in Table 20
- Appendix C, AVD-SLS has the best average score for
4 benchmark families.

For PMS 2019: Similar to MSE 2018 results, AVD-SLS
has shown it is a competitive solver with number of hybrid
solvers, where the best number of best solutions is achieved
by AVD-SLS for both time limits. The increasing of best
solutions found by AVD-SLS is remarkable as the time limit
increased. Based on score measure results shown in Fig. 12,
AVD-SLS was competitive for a number of hybrid solvers.
For family-based results as shown in Table 21 - Appendix C,
AVD-SLS has the best average score for 7 benchmark fami-
lies.

Next, the results on WPMS Benchmark are shown
in Table 12 and Table 13.

For WPMS 2014: Only SAT4J-ms-inc solver was unable
to solve the random instances. However, AVD-SLS shows
competitive results and has the best number of best crafted
solutions. For industrial instances, AVD-SLS shows compet-
itive results with best performing hybrid solvers as shown
in Fig. 13, where AVD-SLS ranked as the fourth best
solver. For family-based results as shown in Table 22 -
Appendix D, AVD-SLS has the best average score for
8 benchmark families.

For WPMS 2015: AVD-SLS is ranked the first based on
score measure results as shown in Fig. 14 and was able to

49823

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 10. Summary results of AVD-SLS with PMSAT solvers on MSE 2014-2016 PMS.

MSE 2014-2016 - Unweighted Benchmark (300 seconds)

PMS_random_2014
#inst. (210)

PMS_crafted_2014
#inst. (414)

PMS_industrial_2014
#inst. (553)

PMS_crafted_industrial_2014
#inst. (967)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 209 (209) -0.995 375 (350) - 0.896 434 (275) - 0.730 809 (624) - 0.801
CCLS2014 209 (207) - 0.995 307 (294) - 0.739 94 (58) - 0.155 401 (352) - 0.405
CCMPA 208 (204) - 0.990 305 (276) - 0.731 103 (80) - 0.170 408 (356) - 0.410
Dist 209 (209) -0.995 377 (346) - 0.892 386 (168) - 0.588 763 (514)-0.718
SAT4J-ms-inc 0(0)-0.0 200 (200) - 0.483 117 (117) - 0.212 317 (317) - 0.328
WPM-2014-in 209 (0) - 0.696 414 (298) - 0.960 523 (400) - 0.890 937 (698) - 0.920
antom_nc 209 (1) - 0.807 406 (94) - 0.881 479 (106) - 0.697 885 (200) - 0.776

optimax2-1-i
optimax2-rn-i

186 (0) - 0.485
209 (0) - 0.805

390 (99) - 0.813
414 (290) - 0.967

503 (193) - 0.677
523 (336) - 0.850

893 (292) - 0.735
937 (626) - 0.900

PMS_random_2015

#inst. (210)

PMS_crafted_2015
#inst. (669)

PMS_industrial_2015

#inst. (584)

PMS_crafted_industrial_2015
#inst. (1253)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 209 (209) - 0.995 630 (400) - 0.781 465 (277) - 0.736 1095 (677) - 0.760
CCEHC 209 (209) - 0.995 548 (393) - 0.736 402 (155) - 0.556 950 (548) - 0.652
CCLS2015 208 (207) - 0.990 308 (293) - 0.459 114 (75) - 0.179 422 (368) - 0.328
Distl 209 (209) - 0.995 582 (393) - 0.717 453 (173) - 0.612 1035 (566) - 0.668
Dist2 209 (205) - 0.994 632 (411) - 0.751 464 (163) - 0.605 1096 (574) - 0.683
DistUP 209 (209) - 0.995 583 (396) - 0.726 474 (174) - 0.640 1057 (570) - 0.686
ILP-2015-in 53 (53)-0.252 389 (389) - 0.581 238 (237) - 0.407 627 (626) - 0.500
WPM3-2015-in 145 (35) - 0.567 629 (552) - 0.909 563 (511) - 0.945 1192 (1063) - 0.926

optiriss-def-i
optiriss-sel-i

178 (2) - 0.463
74 (0) - 0.194

641 (492) - 0.908
647 (302) - 0.830

566 (470) - 0.915
572 (329) - 0.753

1207 (962) - 0.911
1219 (631) - 0.794

PMS_random_2016

#inst. (210)

PMS_crafted_2016
#inst. (669)

PMS_industrial_2016

#inst. (584)

PMS_crafted_industrial_2016
#inst. (1253)

Solver #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 209 (209) - 0.995 630 (400) - 0.779 465 (279) - 0.736 1095 (679) - 0.759
CCEHC 209 (209) - 0.995 546 (395) - 0.730 411 (150) - 0.556 957 (545) - 0.649
CCLS 208 (207) - 0.990 308 (290) - 0.459 113 (79) - 0.180 421 (369) - 0.329
Dist 209 (208) - 0.995 590 (415) - 0.749 463 (152) - 0.621 1053 (567) - 0.689
Dist-r 209 (209) - 0.995 411 (342) - 0.577 411 (121) - 0.511 822 (463) - 0.546
HS-Greedy 209 (22) - 0.795 622 (100) - 0.645 451 (46) - 0.343 1073 (146) - 0.504
Ramp 209 (206) - 0.995 312 (281) - 0.463 121 (90) - 0.189 433 (371) - 0.335
SC2016 208 (208) - 0.990 - 130 (99) - 0.208 -
Naps-1.02-ms 0(0)-0.0 240 (240) - 0.359 22 (22)-0.038 262 (262) - 0.209
Optiriss6-in 179 (1) - 0.462 584 (499) - 0.829 523 (433)-0.818 1107 (932) - 0.824
SsMonteCarlo 209 (139) - 0.972 308 (208) - 0.450 57 (17) - 0.056 365 (225) - 0.267

WPM3-2015-in
dsat-wpm3-in-pms

dsat-wpm3-s-in-pms

160 (34) - 0.629
153 (127) - 0.723
158 (121) - 0.735

622 (536) - 0.893
623 (575) - 0.926
608 (519) - 0.888

564 (499) - 0.941
532 (513) - 0.906
471 (425) - 0.784

1186 (1035) - 0.915
1155 (1088) - 0.917
1079 (944) - 0.840

solve the maximum number of instances on all classes. For
family-based results as shown in Table 23 - Appendix D,
AVD-SLS has the best average score for 5 benchmark
families.

For WPMS 2016: Similar results to MSE 2015 are reported
to AVD-SLS. AVD-SLS was able to solve the maximum
number of instances on all classes and ranked here as the third
best solver after WPM3-2015-in, based on score measure

49824 VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

TABLE 11. Summary results of AVD-SLS with PMSAT solvers on MSE 2017-2019 PMS.

MSE 2017-2019 - Unweighted Benchmark

60 seconds

300 seconds

PMS_2017
#inst. (134)

PMS_2017
#nst. (134)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 115 (71) - 0.784 115 (71) - 0.777
CCEHC 86 (36) - 0.499 103 (37) - 0.568
Dist 101 (29) - 0.504 104 (28) - 0.514
Open-WBO-LSU 123 (30) - 0.687 122 (31) - 0.689
MaxHS-inc 123 (6) - 0.611 127 (17) - 0.642
maxroster 100 (49) - 0.645 125 (74) - 0.834
WPM3-in 133 (8) - 0.554 133 (8) - 0.529
SAT4] 113 (8) - 0.559 123 (11) - 0.581
LMHS-inc 112 (10) - 0.535 123 (15) - 0.567

PMS_2018 PMS_2018
#inst. (100) #inst. (100)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 83 (31)-0.702 83 (44) - 0.752
SATLike 80 (20) - 0.657 81 (37) - 0.692
SATLike-c 87 (21) - 0.729 96 (41) - 0.862
LinSBPS 92 (12)-0.714 95 (30) - 0.783
Open-WBO-Inc-OBV 92 (8) - 0.662 95(11)-0.719
Open-WBO-Inc-MCS 92 (8) - 0.636 95 (13) - 0.691
Open-WBO-Gluc 92 (6) - 0.623 95 (8) - 0.679
Open-WBO-Riss 90 (7) - 0.577 95 (9) - 0.643
maxroster 70 (20) - 0.562 93 (37) - 0.831

PMS_2019 PMS_2019
#nst. (253) #nst. (253)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 215(91)-0.718 215 (118) - 0.758
Loandra 241 (81) - 0.813 245 (119) - 0.878
LinSBPS2018 241 (76) - 0.780 246 (110) - 0.839
SATLike-c 236 (84) - 0.766 245 (121) - 0.837
Open-WBO-g 239 (39) -0.693 245 (53) - 0.747
sls-mcs-1su 195 (75) - 0.680 227 (99) - 0.777
sls-mcs 195 (75) - 0.680 227 (107) - 0.790
Open-WBO-ms 217 (32) - 0.606 242 (49) - 0.722

results shown in figure 15. For family-based results as shown
in Table 24 - Appendix D, AVD-SLS has the best average
score for 7 benchmark families.

For WPMS 2017: For 60 seconds time limit, AVD-SLS
has the best number of best solutions and ranked as the best
solver. For 300 seconds time limit, AVD-SLS ranked the
third based on score measure results shown in Fig. 16. For
family-based results as shown in Table 25 - Appendix D,
AVD-SLS has the best average score for 2 benchmark
families.

For WPMS 2018: AVD-SLS is a competitive solver with
number of hybrid solvers, and is ranked here as the third best
solver for 300 seconds time limit as shown in Fig. 17. While
AVD-SLS is the best solver for 60 seconds time limit based
on score measure and number of best solutions. For family-

VOLUME 9, 2021

based results as shown in Table 26 - Appendix D, AVD-SLS
has the best average score for 5 benchmark families.

For WPMS 2019: In this evaluation, no SLS solver was
participated. A number of well-known hybrid solvers partici-
pated in this evaluation such as TT-Open-WBO-Inc, Loandra,
LinSBPS2018, and Open-WBO solvers variants. However,
AVD-SLS was able to compete with a number of solvers
on the number of best solutions found as shown in Fig. 18.
For family-based results as shown in Table 27 - Appendix D,
AVD-SLS has the best average score for 5 benchmark fami-
lies.

We conclude this experimental evaluation of AVD-SLS
and PMSAT solvers that participated in MSE 2014-2019 on
both PMS and WPMS with more than 3400 instances, that
AVD-SLS is a competitive solver as shown in Fig.s 7 to

49825

IEEE Access H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

Distribution of scores per instances

0.9

0.8

0.7

0.6

0.5

Score

0.4

—&— WPM-2014-in (96.90% solved)
—— optimax2-rn-i (96.90% solved) |

0.3
—x— AVD-SLS (83.66% solved)
—— antom-inc (91.52% solved)

0.2 —— optimax2-1-i (92.35% solved) b
—o— Dist (78.90% solved)
- CCMPA (42.19% solved)

0.1 —%— CCLS2014 (41.47% solved) a
—&— SAT4J-ms-inc (32.78% solved)

N , | ‘
0 200 400 600 800 1,000
Instances

FIGURE 7. Distribution of scores for PMSAT solvers on MSE 2014 PMS (300s).

Distribution of scores per instances

0.9}
0.8} |
0.7} |
0.6 .
g 4
S os5p .

—a— WPM3-2015-in (95.13% solved)
—— optiriss-def-i (96.33% solved)
—+— optiriss-sel-i (97.29% solved)
—+— AVD-SLS (87.39% solved) B
—— DistUP (84.36% solved)
—eo— Dist2 (87.47% solved)
Distl (82.60% solved) B
—=— Distl (82.60% solved)
—+— CCEHC (75.82% solved)
—— ILP-2015-in (50.04% solved)
CCLS2015 (33.68% solved)

0.4

0.3

0.2

Rt

0.1

| L 4 | 1
400 600 800 1,000 1,200
Instances

FIGURE 8. Distribution of scores for PMSAT solvers on MSE 2015 PMS (300s).

18 w.r.t evaluation criteria presented in this study which are VI. DISCUSSION
adopted from MSE. AVD-SLS solver, improves the perfor- The MaxSAT Evaluation events (MSE) added great value
mance of SLS solvers especially on WPMS. to the literature, where thousands of benchmark instances

49826 VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

0.9

0.8

0.7

0.6

0.5

Score

0.4

0.3

0.2

0.1

FIGURE

0.9

0.8

0.7

0.6

0.5

Score

0.4

0.3

0.2

0.1

Distribution of scores per instances

—— dsat-wpm3-in-pms (92.18% solved)
—e— WPM3-2015-in (94.65% solved)
—— dsat-wpm3-s-in-pms (86.11% solved)
—<— Optiriss6-in (88.35% solved)
—+— AVD-SLS (87.39% solved)
—e— Dist (84.04% solved)
—=— CCEHC (76.38% solved)
—— Dist-r (65.6% solved)
—— HS-Greedy (85.63% solved)
—e— Ramp (34.56% solved)
CCLS (33.60% solved)
SsMonteCarlo (29.13% solved)
—— Naps-1.02-ms (20.91% solved)
| \‘

0 200 400 600

300 1,000 1,200

Instances

9. Distribution of scores for PMSAT solvers on MSE 2016 PMS (300s).

Distribution of scores per instances

—e— maxroster (93.28% solved)
—— AVD-SLS (85.82% solved)

—— Open-WBO-LSU (91.04% solved)
—+«— MaxHS-inc (94.78% solved)

—o— SAT4J (91.79% solved)

—e— CCEHC (76.87% solved)

—&— LMHS-inc (91.79% solved)

—— WPM3-in (99.25% solved)

—o— Dist (77.61% solved)

60

I
90 120

Instances

FIGURE 10. Distribution of scores for PMSAT solvers on MSE 2017 PMS (300s).

made available publicly. Problems from a large range of
domains were encoded as Partial Max-SAT (PMSAT) prob-
lem, including hardware and software verification, opti-

VOLUME 9, 2021

mization, graph theory, Satisfiability, automated reasoning,
multi-agent solving, etc. Overall, 125 benchmark families
(shown in Appendex C and D) were encoded from various

49827

lEEEACC@SS H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

Distribution of scores per instances

1
0.9 B
0.8 B
0.7 -
0.6 - B
2
S 05} B
v
04l | g
/ —ea— SATLike-c (96.0% solved)
0.3F 9 —<— maxroster (93.0% solved) N
—— LinSBPS (95.0% solved)
@ —— AVD-SLS (83.0% solved)
0.2 | —o— Open-WBO-Inc-OBV (95.0% solved) |
| —o— SATLike (81.0% solved)
| —— Open-WBO-Inc-MCS (95.0% solved)
0.1 ‘ —— Open-WBO-Gluc (95.0% solved) R
/] ‘\‘ —— Open-WBO-Riss (95.0% solved)
]
0 ﬂﬁ 1 1 1
0 20 40 60 80 100

Instances

FIGURE 11. Distribution of scores for PMSAT solvers on MSE 2018 PMS (300s).

Distribution of scores per instances

1
0.9
0.8
0.7
0.6 |-
1
S 05
v
0.4
03l —e— Loandra (96.84% solved)
—+— LinSBPS2018 (97.23% solved)
—»— SATLike-c (96.84% solved)
0.2 —o— sls-mcs (89.72% solved) N
—o— sls-mcs-Isu (89.72% solved)
—— AVD-SLS (84.98% solved)
0.1 —=— Open-WBO-g (96.84% solved)
—— Open-WBO-ms (95.65% solved)
O Il Il Il Il Il
0 40 80 120 160 200 240

Instances

FIGURE 12. Distribution of scores for PMSAT solvers on MSE 2019 PMS (300s).

domains under three classes: random, crafted, and industrial throughout the years. State-of-the-art solvers have shown
instances. great advancements in solving PMSAT problem instances.

Furthermore, the MSE represent the evolution of PMSAT However, the evaluation results of MSE 2014-2019 show that
solvers development, which can be traced and studied many benchmarks instances related to weighted industrial

49828 VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

TABLE 12. Summary results of AVD-SLS with PMSAT solvers on MSE 2014-2016 WPMS.

MSE 2014-2016 - Weighted Benchmark (300 seconds)

WPMS_random_2014 WPMS_crafted_2014 WPMS_industrial_2014 WPMS_crafted_industrial_2014

#inst. (280) #inst. (302)

#inst. (402) #inst. (704)

Solver #sol. (#wins) - score #sol. (#wins) - score

#sol. (#wins) - score #sol. (#wins) - score

AVD-SLS

279 (119) - 0.688

298 (195) - 0.805

CCLS2014 278 (277) - 0.993 221 (137) - 0.695
CCMPA 278 (274) - 0.993 247 (144) - 0.717
Dist 279 (279) - 0.996 276 (180) - 0.819
SAT4J-ms-inc 0(0)-0.0 82 (82) - 0.272

WPM-2014-in 279 (0) - 0.764 297 (154) - 0.883

optimax2-g-i
optimax2w-r-i

279 (0) - 0.680
279 (0) - 0.688

298 (130) - 0.868
299 (130) - 0.873

391 (173) - 0.823
71 (40) - 0.158
76 (47) - 0.179
236 (38) - 0.507
66 (66) - 0.164
399 (357) - 0.974
395 (253) - 0.939
386 (190) - 0.850

689 (368) - 0.816
292 (177) - 0.389
323 (191) - 0.409
512 (218) - 0.641
148 (148) - 0.210
696 (511) - 0.935
693 (383) - 0.908
685 (320) - 0.860

WPMS_random_2015

#inst. (662)

WPMS_crafted_2015 WPMS_industrial_2015

#inst. (311)

#inst. (586)

WPMS_crafted_industrial_2015

#inst. (897)

#sol. (#wins) - score

#sol. (#wins) - score

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 661 (119) - 0.514 307 (166) - 0.757
CCEHC 661 (659) - 0.998 292 (183) - 0.873
CCLS2015 660 (660) - 0.997 206 (131) - 0.630
Distl 661 (660) - 0.998 284 (158) - 0.794
Dist2 661 (660) - 0.998 296 (158) - 0.828
ILP-2015-in 63 (63) - 0.095 189 (189) - 0.608

WPM3-2015-in
optiriss-def-i
optiriss-sel-i

634 (10) - 0.800
661 (0) - 0.685
661 (1) - 0.657

232 (123) - 0.672

265 (57) - 0.723

573 (209) - 0.778
411 (74) - 0.477
73 (36) - 0.102
525 (47) - 0.520
524 (52) - 0.525
253 (251) - 0.430
501 (409) - 0.797
438 (313) - 0.705
438 (226) - 0.657

880 (375) - 0.771
703 (257) - 0.614
279 (167) - 0.285
809 (205) - 0.615
820 (210) - 0.630
442 (440) - 0.492
733 (532) - 0.754

703 (283) - 0.680

WPMS_random_2016

WPMS_crafted_2016 ' WPMS_industrial_2016

#inst. (606)

WPMS_ crafted_industrial_2016

#inst. (925)

#sol. (#wins) - score

#sol. (#wins) - score

#inst. (502) #inst. (319)
Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 501 (119) - 0.532 315 (181)-0.744
CCEHC 501 (497) - 0.998 302 (179) - 0.858
CCLS 500 (498) - 0.996 216 (131) - 0.638
Dist 119 (119) - 0.237 204 (80) - 0.496
Dist-r 119 (119) - 0.237 199 (72) - 0.493
HS-Greedy 501 (45) - 0.897 312 (67)-0.744
Ramp 500 (496) - 0.996 228 (134) - 0.648
SC2016 501 (500) - 0.998 199 (137) - 0.595
Naps-1.02-ms 1(1) - 0.002 80 (80) - 0.251
Optiriss6-in 501 (0) - 0.680 280 (0) - 0.741
SsMonteCarlo 460 (458) - 0.916 208 (22) - 0.361

WPM3-2015-in

dsat-wpm3-in-wpms
dsat-wpm3-s-in-wpms

474 (8) - 0.783
501 (500) - 0.998
501 (501) 0.998

258 (127) - 0.697
259 (196) - 0.781
281 (178) - 0.822

593 (225) - 0.784
434 (61) - 0.474
73 (42) - 0.103
566 (61) - 0.618
519 (66) - 0.504
566 (9) 0.376
84 (46) - 0.124
102 (48) - 0.145
35 (35) - 0.058
320 (222) - 0.483
8 (6)-0.012
559 (391) - 0.822
516 (390) - 0.771
463 (329) - 0.681

908 (406) - 0.770
736 (240) - 0.606
289 (173) - 0.288
770 (141) - 0.576
718 (138) - 0.500
878 (76) - 0.503
312 (180) 0.305
301 (185) - 0.300
115 (115) - 0.124
600 (0) - 0.572
216 (28) - 0.133
817 (518) - 0.779
776 (586) - 0.775
744 (507) - 0.730

applications are still beyond the capacity of existing PMSAT

SLS solvers. This present work is a contribution that aims
to advance the development of PMSAT SLS solvers. Our
proposed solver incorporates an adaptive parameter tuner and
a variable depth neighborhood search (VDS) method adopted
for solving PMSAT problem, which were combined with the
dynamic local search solver SATLike. To the best of our
knowledge, our proposed components have never adopted
previously for PMSAT solving by SLS methods.

VOLUME 9, 2021

In this study, we evaluate the performance of our AVD-SLS
solver that is implemented based on the proposed algorithm
presented in Section I'V. First, we evaluate the performance of
AVD-SLS on all unweighted and weighted instances. Second,
as the main goal of this paper, we compare the results obtained
by AVD-SLS to those drawn by state-of-the-art SLS solvers
that participated in the MSE 2014-2019. Finally, we compare
the results of AVD-SLS to those obtained by all state-of-
the-art PMSAT solvers that participated in MSE 2014-2019,

49829

IEEEACC@SS H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

Distribution of scores per instances

0.9

0.8

0.7

S

0.5

0.3 : g
f

Score

—&
=== E@Em—m{%
S5

—&— WPM-2014-in (98.86% solved) |
—=— optimax2-g-i (98.44% solved)
—o— optimax2w-1-i (97.30% solved)
—— AVD-SLS (97.87% solved) e
—o— Dist (72.73% solved)
- CCMPA (45.88% solved)

0.2

0.1 —«— CCLS2014 (41.48% solved)
£ —&— SAT4J-ms-inc (21.02% solved)
0 . . " | | |
100 200 300 400 500 600 700
Instances

FIGURE 13. Distribution of scores for PMSAT solvers on MSE 2014 WPMS (300s).

Distribution of scores per instances

1
0.9
0.8
0.7
0.6 |-
1
S 05
175}
0.4
0.3 —+— AVD-SLS (98.10% solved)
—a— WPM3-2015-in (81.72% solved)
—— optiriss-sel-i (78.37% solved)
0.2 —o— Dist2 (91.42% solved) N
—=—Distl (90.19% solved)
—+— CCEHC (78.37% solved)
0.1 —<—ILP-2015-in (49.28% solved) h
—— CCLS2015 (31.10% solved)
0 " & ¢ | | . . J‘ L L
0 100 200 300 400 500 600 700 300 900

Instances

FIGURE 14. Distribution of scores for PMSAT solvers on MSE 2015 WPMS (300s).

including many well-known hybrid solvers. Almost all hybrid mark family into five different classes, as shown in Table 4
solvers are SAT-based solvers [18]. and Table 5: excellent (100%), very good (80-99%), good

We classify the performance of the AVD-SLS solver in this (66-79%), poor (51-65%), and fail (0-50%). We consider
study based on the percentage of solved instances per bench- that AVD-SLS has failed to solve a benchmark family and

49830 VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

Distribution of scores per instances

0.8

0.7

0.5

Score

0.4

0.3

0.2

0.1

—e— WPM3-2015-in (88.32% solved)
—— dsat-wpm3-in-pms (83.89% solved)
—+— AVD-SLS (98.16% solved)
—— dsat-wpm3-s-in-pms (80.43% solved)
—&— CCEHC (79.57% solved)
—e— Dist (82.24% solved)
—o— Optiriss6-in (64.86% solved) d
—— HS-Greedy (94.92% solved)
—=— Dist-r (77.62% solved)
—e— Ramp (33.73% solved) T
CS2016 (32.54% solved)
CCLS (31.24% solved)
SsMonteCarlo (23.35% solved)
—=— Naps-1.02-ms (12.43% solved)
| !

500 600 700 800 900

Instances

FIGURE 15. Distribution of scores for PMSAT solvers on MSE 2016 WPMS (300s).

Distribution of scores per instances

0.7}

0.6 |-

Score
f=]
ot

T

0.4

0.3+

—&— maxroster (92.30% solved)
—— WPM3-in (95.0% solved) 4
—+— AVD-SLS (90.0% solved)
—+— MaxHS-inc (91.0% solved)
—— SAT4J (92.0% solved) *
—=— LMHS-inc (88.0% solved)

—s— Dist (65.0% solved)

—e— CCEHC (65.0% solved)

—— Open-WBO-LSU (56.0% solved)

60 80 100

Instances

FIGURE 16. Distribution of scores for PMSAT solvers on MSE 2017 WPMS (300s).

categorize the benchmark family as hard if AVD-SLS is
unable to solve more than 50% of the benchmark’s instances
for 300 CPU seconds.

A. DISCUSSION OF THE RESULTS ON PMS

AVD-SLS shows excellent performance on random
instances like most SLS solvers, whereas the hybrid solvers
were not competitive in this class.

VOLUME 9, 2021

For the crafted class, AVD-SLS is competitive with all
PMSAT solvers with regards to the number of best solu-
tions found. However, Dist and Dist2 SLS solvers solved
a few more instances than AVD-SLS from MSE 2014 and
2015 PMS. Furthermore, based on our categorization of
AVD-SLS performance, AVD-SLS shows excellent perfor-
mance in 23 crafted families. Only one benchmark family is a
hard family: reversi. We found that some reversi instances can

49831

lEEEACC@SS H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

Distribution of scores per instances

07} |

0.6 - |

Score

0.5 I

04

—— LinSBPS (95.37% solved)
—o— Open-WBO-Inc-BMO (95.37% solved) N
—+— AVD-SLS (87.96% solved)
—<— maxroster (94.44% solved)
—&— SATLike-c (94.44% solved) N
—=5— Open-WBO-Inc-Cluster (95.37% solved)
—o— SATLike (85.19% solved)

—o— Open-WBO-Riss (93.52% solved)

—<— Open-WBO-Gluc (90.74% solved)

0.3

0.2

0.1

1
0 10 20 30 40 50 60 70 80 90 100

Instances

FIGURE 17. Distribution of scores for PMSAT solvers on MSE 2018 WPMS (300s).

Distribution of scores per instances

0.9

0.8

0.7

Score
o
ot

T

TT-Open-WBO-Inc (94.64% solved)
¢ —e— Loandra (96.63% solved)

‘aé’ Open-WBO-Inc-bs (96.93% solved)
‘ —— SATLike-c (96.55% solved)

—5— Open-WBO-Inc-be (96.93% solved) |
—— LinSBPS2018 (95.02% solved)
—— Open-WBO-g (96.55% solved)
—o— sls-mcs2 (87.74% solved) N
—+— AVD-SLS (90.04% solved)

—<— Open-WBO-ms (91.57% solved)
—8— uwrmaxsat-inc (88.89% solved)

—o— sls-mcs (87.74% solved)

0.4

0.3

0.2

0.1

s 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Instances

FIGURE 18. Distribution of scores for PMSAT solvers on MSE 2019 WPMS (300s).

be solved when the time limit is increased. However, we did For the industrial class, AVD-SLS shows excellent perfor-
not include the pseudo-Boolean-primes benchmark family as mance in 16 benchmark families and is the best SLS solver
hard here, as it was never solved by any solver. on this class. Moreover, AVD-SLS is competitive with the

49832 VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

TABLE 13. Summary results of AVD-SLS with PMSAT SLS solvers on MSE 2017-2019 WPMS.

MSE 2017-2019 - Weighted Benchmark

60 seconds

300 seconds

WPMS_2017
#inst. (100)

WPMS_2017
#inst. (100)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 89 (39) - 0.777 90 (33) - 0.766
CCEHC 57 (14) - 0.468 65 (12)-0.514
Dist 64 (13) - 0.506 65 (14) - 0.515
Open-WBO-LSU 90 (20) - 0.668 56 (22) - 0.480
MaxHS-inc 88 (7) - 0.633 88 (3)-0.719
maxroster 94 (28) - 0.761 92 (45) - 0.809
WPM3-in 94 (8) - 0.721 95 (12) - 0.772
SAT4J 93 (8)-0.721 92 (6) - 0.742
LMHS-inc 92 (4)-0.721 91 (13) - 0.744

WPMS_2018 WPMS_2018
#inst. (108) #inst. (108)

Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 94 (19) - 0.717 95 (32) - 0.733
SATLike 90 (8) - 0.617 92 (18) - 0.650
SATLike-c 99 (5) - 0.638 102 (18) - 0.680
LinSBPS 101(26) - 0.706 103 (47) - 0.806

Open-WBO-Inc-Cluster
Open-WBO-Inc-BMO
Open-WBO-Gluc
Open-WBO-Riss

102 (4) - 0.661
102 (11)- 0.712
102 (10) - 0.620
101 (9) - 0.595

103 (6) - 0.678
103 (24) - 0.740
98 (19) - 0.624
101 (15) - 0.629

maxroster 99 (19) - 0.673 102 (32) - 0.691
WPMS_2019 WPMS_2019
#nst. (261) #nst. (261)
Solver #sol. (#wins) - score #sol. (#wins) - score
AVD-SLS 233 (55) - 0.635 235(78) - 0.721

TT-Open-WBO-Inc
Loandra

LinSBPS2018
SATLike-c
Open-WBO-g

sls-mcs2

sls-mcs
Open-WBO-ms
Open-WBO-inc-complete
Open-WBO-inc-satlike
uwrmaxsat-inc

241 (42) - 0.740
248 (40) - 0.717
246 (52) - 0.676
240 (35) - 0.682
248 (11) - 0.671
212 (46) - 0.677
212 (46) - 0.677
226 (13) - 0.617
247 (25) - 0.698
247 (31) - 0.704
209 (7) - 0.597

247 (81) - 0.808
253 (92) - 0.794
248 (84) - 0.765
252 (60) - 0.782
252 (25) - 0.747
229 (69) - 0.734
229 (53) - 0.692
239 (24) - 0.699
253 (54)-0.784
253 (56) - 0.770
232 (36) - 0.699

PMSAT solvers with regards to the number of best solu-
tions found. AVD-SLS have five hard benchmark families:
atcoss-mesat, atcoss-sugar, circuit-compaction, des, and hs-
timetabling. The hs-timetabling benchmark family only has
two instances, and AVD-SLS solved one; we believe this
result does not reflect the performance of AVD-SLS in this
family. On the other hand, instances from atcoss-mest and
circuit compaction families were never solved by any SLS
solver. In atcoss-mesat, we found very large-sized instances
with hundred thousands to millions of variables and clauses.
Meanwhile, the circuit compaction instances have only a few
thousands of variables and clauses, but had complex struc-
tures. Such hard instances may require more pre-processing

VOLUME 9, 2021

techniques or structure extraction methods for them to be
solved by SLS solvers. Most SLS solvers only consider unit
propagation (UP) for pre-processing, as is the case for our
solver AVD-SLS.

This evaluation study shows that AVD-SLS is the best
solver among SLS solvers (Fig. 5 and Fig. 6) and that it is
competitive with a number of well-known hybrid solvers,
as shown in Fig.s 7 to 12. For example, AVD-SLS is among
the top three solvers for MSE 2014 and MSE 2017. It is
remarkable that for most of solved instances, AVD-SLS is
able to find the best solution or near best solutions. AVD-
SLS may be improved to solve more hard instances either by
means of new pre-processing techniques [74], [75] to reduce

49833

lEEEACC@SS H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 14. A subset of PMS benchmark from MSE 2017-2018 used for the initial tuning of the parameters for our solver.

instance name MSE 2014 MSE 2015 MSE 2016 MSE 2017 MSE 2018 MSE 2019
v

aes-mul_8_9.wenf
aes-mul_8_13.wenf
atcoss_mesat_04.wenf
atcoss_mesat_15.wenf
atcoss_sugar_04.wenf
atcoss_sugar_15.wenf
bep-hipp-yRal-SU3__simp-genos.haps.63.wenf
bep-msp-normalized-f1000.wenf
bep-msp-normalized-f600.wenf
bep-msp-normalized-g250.15.wenf
bep-msp-normalized-ii16a2.wenf
bep-msp-normalized-par32-1.wenf
bep-msp-normalized-par32-2-c.wenf
bep-syn-normalized-m200_500_10_10.r.wenf
des-cnf.17.p.10.wenf
extension-enforcement_non-strict_stb_150_0.1_2_8_2.wcnf - - -
extension-enforcement_non-strict_stb_200_0.1_4_10_4.wenf - - -
extension-enforcement_non-strict_stb_200_0.05_1_10_1.wenf - - -
extension-enforcement_non-strict_stb_200_0.05_3_10_0.wenf - - -
extension-enforcement_non-strict_stb_200_0.05_4_10_1.wenf - - -
extension-enforcement_non-strict_stb_200_0.05_4_10_4.wcnf - - -
fault-diagnosis-s38584_nan_explicit_15_0.wenf - v v
fault-diagnosis-s38584_nan_explicit_5_0.wenf - v v
gen-hyper-tw-GenHyperTW_aim-50-1_6-no-3.wenf - - -
gen-hyper-tw-GenHyperTW_aim-50-1_6-yes1-3.wenf - - -
gen-hyper-tw-GenHyperTW _aim-50-3_4-yes1-3.wenf - - -
gen-hyper-tw-GenHyperTW_dubois21.wenf - - -
gen-hyper-tw-GenHyperTW_dubois25.wenf - - -
gen-hyper-tw-GenHyperTW_dubois29.wenf - - -
gen-hyper-tw-GenHyperTW_flat30-1.wenf - - -
gen-hyper-tw-GenHyperTW_grid4d_3.wenf - - -
gen-hyper-tw-GenHyperTW_hole8.wcnf - - -
gen-hyper-tw-GenHyperTW_par8-3-c.wenf - - -
gen-hyper-tw-GenHyperTW_pret60_25.wenf - - -
gen-hyper-tw-GenHyperTW_s208.wenf - - -
maxclique-brock200_1.clq.wenf v v v
maxclique-brock400_4.clg.wenf v v v
v v v
v v v

ANENENEN

ENENENENENE

ESENENENENENENENENENENENENENEN
ESENENENENENENENENENENENENENEN
ENENENENENENENENENENENENENEN

ANENE

ENENENENENENE
ESENENENE

AN ENENENEN RN ENENENENEN ENENENENENENENENENENENENEN

AN
INENE

<

ENENENENENENE
ENENENENE

NN

maxclique-p_hat1000-1.clq.wenf

maxclique-p_hat700-1.clq.wenf

maxcut-brock400_2.clq.wenf - - -
maxcut-brock800_3.clq.wenf - - -
maxcut-hamming8-4.clq.wenf - - -
maxcut-p_hat500-3.clq.wenf - - -
maxcut-san400_0.5_1.clg.wenf - - -
maxcut-san400_0.7_3.clq.wenf - - -
maxcut-sanr200_0.7.clq.wenf - - -
maxcut-t7pm3-9999.spn.wenf - - -
min-fill-MinFill_RO_mulsol.i.1.wenf - - -
min-fill-MinFill_R0O_mulsol.i.4.wenf - - -
min-fill-MinFill_RO_myciel6.wenf - - -
min-fill-MinFill_RO_queen11_11.wenf - - -
min-fill-MinFill_R0O_queen8_8.wcnf - - -
min-fill-MinFill_R3_miles750.wenf - - -
optic-gen_mult_3_6_9999.wenf - - -
optic-gen_mult_4_5_399.wenf - - -
optic-gen_mult_4_5_9999.wcnf - - -
optic-gen_mult_4_7_991.wenf - - -
rev66-16.wenf v v v
rev66-26.wenf v v v
scheduling-cnf_12.wenf v v v
sean-safarpour-rsdecoder-problem.dimacs_38.filtered.wenf - - -
sean-safarpour-wb_4m8s4.dimacs.filtered.wenf - - -
set-covering-scpclrl3_maxsat.wenf - - -
set-covering-scpcyc09_maxsat.wenf - - -
treewidth-computation-TWComp_1¢75_N69.wenf - v v
treewidth-computation-TWComp_queen5_5_N25.wenf - v v
uag-uaq-ppr-nr200-nc66-n5-k2-rpp4-ppr6-plb100.wenf - - - -
uaq-uaq-ppr-nr200-nc66-n5-k2-rpp4-ppr8-plb100.wenf - - - -
uag-uaq-ppr-nr200-nc66-n5-k2-rpp6-ppré6-plb100.wenf - - - -
uag-uaq-ppr-nr200-nc66-n5-k2-rpp6-ppr13-plb100.wenf - - - -
xai-mindset-bnn-last-layer-f10.wenf - - - -
xai-mindset-cleveland.wenf - - - -
xai-mindset-ecoli.wenf - - - -
xai-mindset-heart-statlog.wenf - - - -
xai-mindset-liver-disorder.wenf - - - -
xai-mindset-shuttleM.wenf - - - -

ENE
\

ENENENENENENENENENENENE

ENENENENENENENENENENENENENENENENENE

ENENENENENENENENENE

ENENENENENENENENENENENENENENEN N
ESENE

ENENENENENE

Total 22 26 26 60 53 46
% 2.22% 2.03% 2.03% 30.93% 34.64% 15.38%

49834 VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS IEEEACC@SS

TABLE 15. A subset of WPMS benchmark from MSE 2017-2018 used for the initial tuning of the parameters for our solver.

instance name MSE 2014 MSE 2015 MSE 2016 MSE 2017 MSE 2018 MSE 2019
af-synthesis-af-synthesis_stb_50_120_2.wcnf - - - -
af-synthesis-af-synthesis_stb_50_120_7.wenf - - - -
af-synthesis-af-synthesis_stb_50_140_0.wcnf - - - -
af-synthesis-af-synthesis_stb_50_140_5.wcnf - - - -
af-synthesis-af-synthesis_stb_50_140_8.wcnf - - - -
af-synthesis-af-synthesis_stb_50_180_2.wenf - - - -
af-synthesi: synthesis_stb_50_200_5.wenf - - - -
af-synthesis-af-synthesis_stb_50_60_2.wenf - -
BTBNSL_Rounded_ BTWBNSL_AbaloneTWBound_4.wenf - v
BTBNSL_Rounded_ BTWBNSL _adult]15N_TWBound_4.wenf - v
BTBNSL_Rounded_ BTWBNSL _alarm_100_1_3.scores_TWBound_4.wcnf - v
BTBNSL_Rounded_BTWBNSL_Flag.BIC_TWBound_4.wcnf - v
BTBNSL_Rounded_BTWBNSL_hailfinder_10000_1_3.scores_TWBound_3.wcnf - v

v
v
v
v

INENE

<

<

ENENENENENENENENEN

INENE

BTBNSL_Rounded_ BTWBNSL_Horse. BIC_TWBound_3.wenf -
BTBNSL_Rounded_BTWBNSL_Housing_ TWBound_3.wcnf -
BTBNSL_Rounded_ BTWBNSL _insurance_1000_1_3.scores_TWBound_4.wcnf -
BTBNSL_Rounded_ BTWBNSL_Water_1000_1_2.scores_TWBound_4.wcnf -
causal-discovery-causal_Autos_8_159.wenf - - -
causal-discovery-causal_Image_7_2310.wenf - - -
causal-discovery-causal_Pigs_6_1000.wenf - - - -
cluster-expansion-IS1_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS2_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS3_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS5_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS8_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS11_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS14_5.0.5.0.0.5_softer_periodic.wenf - - - -
cluster-expansion-IS17_5.0.5.0.0.5_softer_periodic.wenf -
CorrelationClustering_Rounded_CorrelationClustering_Ecoli_ BINARY_N260_D0.200.wcnf -
CorrelationClustering_Rounded_CorrelationClustering_Ionosphere_ BINARY_N220_D0.200.wenf -
CorrelationClustering_Rounded_CorrelationClustering_Protein2_BINARY_N340.wcnf -
CorrelationClustering_Rounded_CorrelationClustering_Protein4_BINARY_N360.wcnf -
CorrelationClustering_Rounded_CorrelationClustering_Vowel _BINARY_N800_D0.200.wcnf -
hs-timetabling_Brazillnstance2.xml.wenf v
hs-timetabling_BrazillnstanceS.xml.wenf v
hs-timetabling_FinlandCollege.xml.wcnf v
hs-timetabling_ItalyInstance4.xml.wenf v
lisbon-wedding-10-19.wenf - - -
lisbon-wedding-1-19.wenf - - -
lisbon-wedding-3-18.wenf - - -
lisbon-wedding-4-19.wenf - - -
lisbon-wedding-7-17.wenf - - -
lisbon-wedding-8-17.wenf - - -
lisbon-wedding-8-19.wenf - - -
lisbon-wedding-9-18.wenf - -
maxcut_hamming8-2.clq.wenf v v
maxcut_MANN_a81.clg.wenf v v
maxcut_san200_0.7_2.clq.wenf v v

v v

v v

v v

ENENENENENE

ENENENENE

NENE

ENENENENENENENENENENENENENE

INENE

ENENENENENENENENENENT

ENENENENENENENENENENE

ENENENENENENT

ENENENN
LN

NANE

maxcut_san200_0.9_3.clq.wenf
maxcut_sanr200_0.9.clq.wenf
maxcut_t7g3-9999.spn.wenf
MinWidthCB_milan_200_12_1k_10s_1t_12.wcnf - - -
MinWidthCB_mitdbsample_300_43_1k_3s_2t_3.wenf - - -
MinWidthCB_mitdbsample_300_43_1k_6s_It_6.wcnf - - -
MinWidthCB_mitdbsample_300_43_1k_6s_2t_8.wenf - - -
MinWidthCB_mitdbsample_300_43_1k_15s_2t_I5.wenf - - -
MinWidthCB_mitdbsample_300_64_1k_3s_2t_5.wenf - - -
MinWidthCB_mitdbsample_300_64_1k_3s_3t_5.wenf - - -
MinWidthCB_mitdbsample_300_64_1k_6s_3t_6.wenf - - -
MinWidthCB_mitdbsample_300_64_1k_15s_2t_15.wenf - - -
MinWidthCB_power_1000_24_1k_10s_It_12.wenf - - -
MinWidthCB_power_1000_24_1k_20s_2t_22.wenf - B -
MinWidthCB_power_1000_24_1k_50s_2t_50.wcnf -
miplib_normalized-mps-v2-20-10-mod008.opb.msat.wenf v
miplib_normalized-mps-v2-20-10-sentoy.opb.msat.wenf v
railway-transport_d4.wenf -
railway-transport_r11.wenf -
rna-alignment_k100-13-99.rna.pre.wenf - - -
rna-alignment_k100-39-93.rna.pre.wenf - - -
robot-nagivation-robot-navigation_8.wcnf - - -
Spot5_1403.wesp.log.wenf v v v
staff-scheduling_instance3.wenf - - v
staff-scheduling_instance6.wenf - - v
v
v

ENENENENENE

ENENENENN

ESESESRNENE

NN

<

ENENENENENENEN EN I ENENEN N EN AN ENEN EN ENENENENENENENENENENENE
<

staff-scheduling_instance9.wenf - -

staff-scheduling_instancell.wenf - -

tep-tep_students_98_it_11.wenf - - -
tep-tep_students_105_it_6.wenf - - -
timetabling_comp03.wenf v v v
timetabling_comp12.wenf v v v
timetabling_comp21.wenf v v v
timetabling_comp16.lp.sm-extracted.wenf - - -

ENENENENENE

ENENENENENENENENE
ENENENENENENENENE

ANENEN

<

Total 16 32 36 55 64 36
% 2.22% 3.44% 3.75% 35.26% 37.21% 12.12%

VOLUME 9, 2021 49835

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 16. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2014 (crafted and industrial) benchmark - 300 seconds.

solver CCLS2014 CCMPA Dist SAT4J-ms-inc ‘WPM-2014-in antom-inc optimax2-r-i optimax2-rn-i avdsls
benchmark family #Ins. | #sol. | avg. score | #sol. | avg. score | #sol. | avg.score | #sol. | avg. score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score

frb 25 25 1.000 25 1.000 25 0.999 0 0.000 25 0.999 25 0.980 22 0.880 25 0.999 25 1.000
job-shop 3 0 0.000 0 0.000 3 0.217 1 0.333 3 1.000 3 1.000 2 0.667 3 0.980 3 0.235
maxclicque-random 96 96 1.000 96 1.000 96 1.000 60 0.625 96 0.996 96 0.972 96 0.967 96 0.997 96 0.998
maxclicque-structured 58 58 0.979 58 0.980 58 0.980 14 0.241 58 0.971 58 0.942 45 0.747 58 0.971 58 0.999
maxone-3sat 80 78 0.975 74 0.925 80 1.000 30 0.375 80 0.987 80 0.774 80 0.716 80 0.981 79 0.988
maxone-structured 60 3 0.050 1 0.017 51 0.850 60 1.000 60 1.000 60 0.981 54 0.858 60 1.000 49 0.816
min-enc-kbtree 42 42 1.000 42 0.989 42 1.000 0 0.000 42 0.828 42 0.655 42 0.636 42 0.764 42 1.000
pseudo-miplib 4 4 1.000 4 1.000 4 1.000 3 0.750 4 1.000 4 1.000 4 0.978 4 1.000 4 1.000
reversi 42 1 0.024 5 0.103 14 0.262 32 0.762 42 0.880 35 0.819 42 0.852 42 1.000 15 0.340
scheduling 4 0 0.000 0 0.000 4 0.697 0 0.000 4 0.688 3 0.685 3 0.299 4 0.957 4 0.779
aes 5 1 0.200 4 0.800 1 0.200 0 0.000 4 0.495 4 0.201 5 0.593 4 0.530 5 0.993
atcoss-mesat 16 0 0.000 0 0.000 0 0.000 0 0.000 14 0.875 2 0.125 6 0.138 5 0.138 0 0.000
atcoss-sugar 17 0 0.000 0 0.000 8 0.105 4 0.235 16 0.865 8 0.471 11 0.170 12 0.250 6 0.199
bep-fir 32 29 0.887 32 0.919 22 0.656 0 0.000 26 0.801 31 0.654 32 0.903 32 0.988 32 0.993
bep-hipp-yRal-simp 9 0 0.000 1 0.100 10 1.000 4 0.400 10 0.998 10 0.980 10 0.836 10 1.000 10 0.768
bep-hipp-yRal-su 37 0 0.000 1 0.013 37 0.996 7 0.189 37 0.989 37 0.955 37 0.797 37 1.000 37 0.898
bep-msp 34 0 0.000 0 0.000 27 0.790 3 0.088 28 0.754 28 0.696 16 0.391 28 0.809 29 0.847
bep-mtg 30 0 0.000 0 0.000 30 0.860 21 0.700 30 1.000 30 0.897 30 0.717 30 1.000 29 0.886
bep-syn 38 30 0.704 37 0.769 34 0.617 1 0.000 36 0.641 37 0.500 36 0.556 37 0.641 37 1.000
circuit-trace-compaction 4 0 0.000 0 0.000 0 0.000 2 0.500 4 1.000 4 1.000 4 0.857 4 1.000 0 0.000
close-solutions 50 16 0.320 9 0.180 27 0.516 13 0.260 41 0.772 18 0.218 37 0.567 43 0.503 36 0.713
des 49 0 0.000 1 0.020 12 0.214 0 0.000 45 0.871 48 0.824 49 0.793 49 0.986 5 0.087
haplotype-assembly 6 5 0.131 6 0.124 1 0.129 0 0.000 6 0.924 6 0.489 6 0.904 6 0.457 6 0.992
hs-timetabling 2 0 0.000 0 0.000 0 0.000 0 0.000 2 0.726 0 0.000 2 0.814 2 0.444 1 0.500
mbd 46 0 0.000 0 0.000 33 0.246 0 0.000 46 0.968 46 0.286 46 0.959 46 0.886 46 0.873
packup-pms 40 0 0.000 0 0.000 40 0.988 5 0.125 40 1.000 40 0.970 40 0.987 40 1.000 40 0.999
pbo-mqc-nencdr 25 0 0.000 0 0.000 4 0.056 16 0.640 25 0.847 25 0.855 25 0.319 25 0.824 15 0.225
pbo-mgc-nlogencdr 25 0 0.000 0 0.000 24 0.445 25 1.000 25 1.000 25 0.847 25 0.643 25 1.000 25 0.991
pbo-routing 15 1 0.067 0 0.000 15 0.991 12 0.800 15 1.000 15 0.945 15 1.000 15 1.000 14 0.933
protein-ins 12 12 0.882 12 0.911 12 0.923 4 0.308 13 0.940 13 0.968 13 0.610 13 0.941 12 0.882
tpr-Multiple-path 36 0 0.000 0 0.000 25 0.592 0 0.000 36 0.797 28 0.737 34 0.530 36 0.955 25 0.675
tpr-One-path 25 0 0.000 0 0.000 24 0.907 0 0.000 24 0.997 24 0.946 24 0.469 24 0.982 24 0.963

32 families 967 | 401 0.288 408 0.308 763 0.601 317 0.292 937 0.894 885 0.730 893 0.692 937 0.843 809 0.737

TABLE 17. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2015 (crafted and industrial) benchmark - 300 seconds.

solver CCEHC CCLS2015 Distl Dist2 DistUP ILP-2015-in WPM3-2015-in optiriss- avdsls
k family #Ins. | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score | #sol. | avg.score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score #sol. | avg. score | #sol. | avg. score

aes-key-recovery 76 0 0.000 0 0.000 76 0.061 76 0.059 73 0.084 2 0.026 76 0.797 76 0.980 76 0.086
causal-discovery 81 81 0.499 0 0.000 30 0.133 71 0311 30 0.146 0 0.000 81 0.992 81 0.695 81 0.614
fault-diagnosis 98 97 0.880 0 0.000 98 0.941 98 0.936 98 0.929 50 0.510 98 0.997 95 0.921 98 0.970
frb 25 25 1.000 25 1.000 25 0.998 25 1.000 25 0.999 10 0.400 8 0319 22 0.820 25 1.000
job-shop 3 3 0.302 0 0.000 3 0.217 3 0.217 3 0.217 0 0.000 3 1.000 3 1.000 3 0.235
maxclicque-random 96 96 1.000 96 1.000 96 1.000 96 1.000 96 1.000 96 1.000 96 1.000 95 0.960 96 0.998
maxclicque-structured 58 58 0.980 58 0.979 58 0.980 58 0.981 58 0.978 32 0.552 35 0.602 50 0.822 58 0.999
maxone-3sat 80 79 0.988 78 0.975 79 0.988 80 1.000 80 1.000 80 1.000 80 1.000 80 0.674 79 0.988
maxone-structured 60 47 0.783 4 0.066 52 0.866 56 0.933 53 0.883 58 0.967 60 1.000 53 0.832 49 0.816
min-enc-kbtree 42 42 0.977 42 0.977 42 0.977 42 0.977 42 0.977 42 0.977 42 0.906 42 0517 42 0.977
pseudo-miplib 4 4 1.000 4 1.000 4 1.000 4 1.000 4 1.000 4 1.000 4 1.000 4 0.939 4 1.000
reversi 42 12 0.282 1 0.024 15 0.305 19 0411 17 0.375 15 0.357 42 0.972 42 0.944 15 0.340
scheduling 4 4 0.858 0 0.000 4 0.875 4 0.842 4 0.832 0 0.000 4 0917 4 0.438 4 0919
aes 5 1 0.200 1 0.200 2 0.400 3 0.495 4 0.800 1 0.200 5 0.683 5 0.654 5 0.993
atcoss-mesat 16 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 13 0.808 14 0.595 0 0.000
atcoss-sugar 17 11 0.247 0 0.000 7 0.084 7 0.057 8 0.083 0 0.000 16 0.867 16 0.763 6 0.187
bep-fir 32 26 0.710 29 0.892 30 0.887 30 0.880 32 0.948 32 1.000 32 0.997 32 0.965 32 0.981
bep-hipp-yRal-simp 10 10 0.995 0 0.000 10 1.000 10 0.993 10 0.987 0 0.000 10 0.997 10 0.984 10 0.768
bep-hipp-yRal-su 38 37 0.953 0 0.000 37 0.996 37 0.997 37 0.997 0 0.000 37 0.989 37 0.945 37 0.898
bep-msp 33 24 0.695 0 0.000 27 0.788 28 0.819 28 0.821 19 0.559 18 0.519 26 0.641 29 0.847
bep-mtg 30 30 0.907 0 0.000 30 0.846 29 0.698 30 0.889 16 0.533 30 1.000 30 1.000 29 0.886
bep-syn 37 35 0.919 32 0.767 37 0.924 37 0.926 37 0.919 35 0.940 36 0.902 37 0.809 37 0.998
circuit-trace-compaction 4 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 1 0.250 4 1.000 4 0.995 0 0.000
close-solutions 50 29 0.449 16 0.320 31 0.618 32 0.614 38 0.727 23 0.460 50 1.000 49 0.724 36 0.713
des 49 3 0.050 0 0.000 15 0.257 13 0.230 16 0.274 10 0.204 49 0.987 49 0.837 5 0.087
haplotype-assembly 6 4 0.337 5 0.133 6 0.576 6 0.310 6 0.559 3 0.500 6 0.930 6 0.914 6 0.992
hs-ti: i 2 0 0.000 0 0.000 0 0.000 1 0.419 0 0.000 0 0.000 2 0.688 2 0.671 1 0.500
mbd 46 24 0.166 0 0.000 46 0.306 46 0312 46 0.344 15 0.326 46 0.997 46 0.951 46 0.855
packup-pms 40 39 0.960 0 0.000 40 0.989 40 0.984 40 0.990 40 1.000 40 1.000 40 1.000 40 0.999
pbo-mgc-nencdr 25 5 0.048 0 0.000 4 0.057 15 0.172 10 0.104 1 0.040 25 1.000 25 0.269 15 0.225
pbo-mgc-nlogencdr 25 24 0.246 0 0.000 24 0.507 23 0.412 25 0.387 0 0.000 25 1.000 25 0.706 25 0.991
pbo-routing 15 8 0.527 1 0.063 15 0.997 15 0.998 15 0.997 15 1.000 15 1.000 15 1.000 14 0.933
protein-ins 12 12 1.000 12 0.956 12 1.000 12 1.000 12 1.000 1 0.083 12 1.000 12 0.601 12 0.955
tpr-Multiple-path 36 24 0.526 0 0.000 24 0.559 24 0.569 24 0.557 1 0.028 36 0.988 36 0.224 24 0.635
tpr-One-path 25 25 0.658 0 0.000 25 0.900 25 0911 25 0911 25 1.000 25 1.000 25 0.209 25 0.963
treewidth-computation 31 31 1.000 18 0.570 31 0.256 31 0271 31 0.389 0 0.000 31 0.927 . 31 0.799 31 0.901

36 families 1253 | 950 0.587 422 0.276 1035 0.619 1096 0.631 1057 0.642 627 0414 1192 0911 1207 0.896 1219 0.772 1095 0.729

the dimensionality of large-size instances, by extracting com-
plex structure such as Boolean gates of input CNF formula
F [76], or by using both. Almost all complete and hybrid
PMSAT solver incorporate many pre- or co-processing tech-
niques to reduce the dimensionality of large-sized instances.

B. DISCUSSION OF THE RESULTS ON WPMS
AVD-SLS shows excellent performance on random
instances like most SLS solvers, with regards to number of

49836

solved instances, but is able to find only few best solutions.
Only few hybrid solvers were able to solve all random
instances.

For the crafted class, AVD-SLS perform competitively
with all PMSAT solvers with regards to the number of best
solutions found and is the best SLS solver on this class. Fur-
thermore, based on our categorization of AVD-SLS’ perfor-
mance, it demonstrates excellent performance in 23 crafted
families. In fact, only one benchmark family is hard: miplib.

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS IEEEACC@SS

TABLE 18. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2016 (crafted and industrial) benchmark - 300 seconds.

solver CCEHC CCLS Dist Distr HS-Greedy Naps-1.02-ms Optiriss-in Ramp SsMonteCarlo_ | WPM3-2015-in_| dsat-wpm3-in-pms | dsal-wpm3-s-in-pms avdsls
Tamily | #Ins. | #ol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg score | #sol. | avg. score | #sol. | avg. score | #ol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | _avg.score | #sol. | avg. score

acs-key-recovery 76 | 0 0000 0 0000 | 64 | 0125 0 0000 | 76 | 0.040 0 0000 | 76 | 0970 0 0.000 0 0000 | 76 | 0785 | 73 0961 64 0814 76 | 0076
Causal-discovery 8T | 81 0.492 0 0000 | 44 | 0220 | 30 | 0132 | 81 0370 0 0000 | 79 | 0860 0 0,000 0 0000 | 81 0982 78 0949 71 0813 8 0.606
Tault-diagnosis 98 | 95 | 0855 0 0000 | 98 | 0952 8 0067 | 95 | 0755 0 0000 | 92 | 0927 0 0.000 0 0000 | 98 | 0985 | o7 0984 83 0839 9% | 0967
b 3 | 25 T000 | 25 000 | 25 TO00 | 25 | 0999 | 25 | 0994 | 20 | 0800 | 25 0997 | 25 T000 | 20 | 093 3 0319 | 23 0917 25 0997 25 1000
job-shop 3 3 0319 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 3 1000 0 0.000 0 0.000 3 1000 3 T.000 3 1000 3 0235
‘maxclicque-random 9 | 96 T000 | 9 T000 | 96 7000 | 9 TO00 | 96 | 0995 | 70 | 029 | 39 | 0615 | 9% 1000 | 96 T000 | 95 | 0989 | 92 0958 93 0958 9% | 0998
maxclicque-structured 58 | 58 | 0980 | 58 | 0079 | 58 | 0979 | 58 | 0977 | 38 | 0971 19 | 0328 19 | 0328 | 58 | 0980 | 52 | 0868 | 3l 0527 | 46 0.785 58 0977 58 1000
‘maxone-3sal 80 [79 | 0988 | 78 | 0975 | %0 7000 | 80 T000 | 79 | 0879 | 64 | 0800 | 80 | 0967 | 75 | 0938 | 78 | 0970 | 80 7000 | %0 T.000 80 1000 79 | 0988
maxone-structured 60 | 47 | 0787 3 0066 | 56 | 0934 | 55 | 0918 | 42 | 0667 | 55 | 0902 | 60 | 0997 1 0033 15 | 0251 60 1000 | 60 T.000 60 0999 29 | 0819
‘min-enc-kbiree 2 | a2 T000 | 4 1000 | 42 To00 | 42 1000 | 42 | 0499 3 0071 a1 0713 | 42 | 099 | 42 | 0905 | 40 | 0882 | 32 0.745 3 0.753) 1.000
pseudo-miplib 7|4 T.000 7 T.000 1 T.000 1 T.000 1 0823 1 1,000 1 1000 7 0992 1 0985 1 1000 7 1000 7 1000 1 1000
reversi 2| 12 | 0258 2 0.048 19 | 0405 9 0195 | 20 | 0276 5 0119 | 42 | 0966 i 0240 T 0024 | 42 | 0976 | 33 0.786 3 0.707 5 | 0340
scheduling T4 0838 0 0000 7 0926 1 0431 1 0344 0 0.000 1 0652 0 0.000 0 0.000 1 0799 2 0389 7 0650 1 0915
aes 5 I 0200 2 0400 [0551 2 0400 2 0.400 0 0.000 5 0.204 T 0.200 T 0.200 5 0.687 2 0323 7 0534 5 1.000
atcoss-mesat 6| 0 0.000 0 0000 0 0.000 0 0000 0 0.000 0 0.000 | 0870 0 0.000 0 0.000 7| 0865 8 0500 7 0438 0 0.000
atcoss-sugar 77 | 11 0252 0 0.000 5 0026 5 0.139 5 0010 0 0.000 16 | 0876 0 0.000 0 0.000 6 | 0875 T 0.647 9 0529 6 0.192
bep-fir 32 | 28 | 0778 | 29 | 0887 | 32 | 0955 | 30 | 0879 | 30 | 0.0% 0 0000 | 32 | 0985 | 31 0895 10 | 0036 | 32 | 0997 31 0969 2 0688 32 | 0981
bep-hipp-yRal-simp 10 | 10 | 0995 0 0.000 10 | 0993 10 | 098 10 | 0603 0 0.000 10 | 0986 2 0.170 6 0378 10 | 099 10 0998 9 0.886 10 | 0769
bep-hipp-yRal-su 37 [37 | 0952 0 0000 | 37 | 0985 | 37 | 093 | 37 | 0501 0 0000 | 37 | 0961 2 0024 0 0000 | 37 | 0988 37 0997 30 0,806 37 | 0898
bep-msp 3 | 22 | 0636 0 0000 | 27 | 0789 | 28 | 0820 | 28 | 098 1 0118 | 22 | 0564 0 0.000 T 0029 9 | 0546 [0514 2 0669 2% | 0847
bep-mig 30 | 30 | 0898 0 0000 | 29 | 08% | 27 | 082 | 30 | 0471 3 0267 | 30 1000 0 0.000 1 0018 | 30 1000 | 30 1000 % 0933 29 | 0386
bep-syn 38 | 35 | 0927 30 0760 | 37 | 0925 | 37 | 093 | 36 | 0958 2 0054 | 33 | 0428 | 35 | 0938 | 37 | 0660 | 36 | 0911 30 0819 32 0843 37 | 099
Circuit-trace-compaction | 4 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 [1000 0 0.000 0 0.000 7 1000 7 1000 7 0365 0 0.000
close-solutions 50 | 29 | 0423 15 | 0300 | 40 | 0744 | 28 | 0452 | 23 | 019 0 0000 | 49 | 0927 9 0.180 0 0000 | 50 | 0991 50 0998 3 0833 36 | 0713
des o | 4 0066 0 0.000 2 | 0206 0 0.000 9 0.130 0 0000 | 49 | 0917 1 0.020 0 0000 | 49 | 0955 | 47 0959 37 0755 5 0.087
haplotype-assembly 6 5 0389 5 0.131 6 0325 6 0380 6 0.088 0 0.000 6 0.904 6 0.124 0 0.000 6 0919 6 0930 5 0743 6 0992
his-timetabling) 0 0.000 0 0.000 T 0414 0 0.000 2 0418 0 0.000 2 0.731 0 0.000 0 0.000 2 0.688 T 0500 T 0.188 T 0500
‘mbd 46 | 33 | 0204 0 0000 | 46 | 0373 | 46 | 0174 | 46 | 0022 0 0000 | 46 1000 0 0.000 0 0000 | 46 | 0997 | 45 0978 37 0804 46 | 0855
packup-pms, 40 | 38 | 093 0 0000 | 40 | 0991 40 | 0981 40 | 0689 0 0.000 0 0.000 0 0.000 0 0000 | 40 1000 | 40 1.000 33 0.824 40 | 0999
pbo-mqe-nencdr % [4 0044 0 0.000 [J 0084 0 0.000 5| 0152 0 0000 | 25 0.908 0 0.000 0 0000 | 25 T000 | 25 T.000 21 0801 5 | 0235
pbo-mgc-nlogencdr 25 | 25 | 0269 0 0000 | 24 | 03% 77 | 0209 | 25 | 071 0 0000 | 25 1.000 0 0.000 0 0000 | 25 1000 | 25 1.000 20 0621 25 | 0991
pbo-routing B 7 0467 3 0.200 5| 0995 [J 0400 15 | 0958 5 0333 5 1000 0 0.000 0 0.000 5 1000 15 1000 [1.000 7| 093
protein-ins o iz 1.000 2 | 098 [1.000 2 1.000 12 | 0881 3 0250 2| 0900 B 1.000 T 0.083 2 1.000 2 1.000 i 0917 2 | 095
tpr-Multiple-path 36 | 24 | 0527 0 0000 | 24 | 0543 | 24 | 0414 | 34 | 0135 0 0000 | 35 | 0865 0 0.000 0 0000 | 35 | 0909 | 36 0984 34 0942 24 | 0635
tpr-One-path 25 | 25 | 0653 0 0000 | 25 | 0920 | 25 | 0638 | 25 | 0257 0 0000 | 25 1.000 0 0.000 0 0000 | 25 1000 | 25 1.000 3 0.920 25 | 0963
idth 31| 31 0998 6 | 0516 | 3 0307 | 31 0262 | 31 0246 0 0000 | 31 0911 2 | 0668 0 0000 | 31 092 | 23 0.742 2 0679 31 0902
36 families 1253 | 957 | 0387 | 421 | 0285 | 1053 | 0634 | 822 | 0515 | 1073 | 0436 | 262 | 0.60 | 1107 | 0831 | 433 | 0289 | 365 | 0200 | 1186 | 0903 | 1155 | 0870 | 1079 | 0.798 1095 | 0.730

TABLE 19. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2017 (crafted and industrial) benchmark - 300 seconds.

solver maxroster Open-WBO-LSU MaxHS-inc SAT4) CCEHC LMHS-inc ‘WPM3-in Dist avdsls
benchmark family #inst. | #sol. | avg. score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg.score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score

aes-key-recovery 2 2 0.728 2 0.800 2 0.499 2 0.590 0 0.000 2 0.730 2 0.427 2 0.515 2 0.513
aes 3 2 0.655 2 0.280 2 0.537 3 0.499 2 0.667 2 0.047 3 0.535 3 0.588 3 0.989
atcoss-mesat 5 5 1.000 5 0.694 5 0.294 3 0.282 0 0.000 5 0.091 5 0.226 0 0.000 0 0.000
atcoss-sugar 5 5 1.000 5 0.902 5 0.284 5 0.542 3 0.267 5 0.101 5 0.203 0 0.000 2 0.133
bep-hipp-yRal-su 3 3 1.000 3 1.000 3 0.997 3 0.972 3 0.979 3 0.984 3 0.958 3 0.978 3 0.994
bep-msp 10 4 0.372 4 0.394 4 0.359 4 0.343 4 0.365 4 0.324 10 0.854 5 0.486 6 0.593
bep-syn 2 2 0.891 2 0.578 2 0.851 2 0.549 2 0.831 2 0.543 2 0.561 2 0.668 2 1.000
close-solutions 1 1 0.989 1 1.000 1 0.411 1 1.000 0 0.000 1 0.115 1 0.994 0 0.000 0 0.000
des 2 2 0.908 2 0.929 2 0.854 2 0.730 0 0.000 2 0.788 2 0.979 0 0.000 0 0.000
extension-enforcement 12 12 0.685 12 0.540 12 0.868 12 0.412 12 0.444 12 0.917 12 0.346 12 0.424 12 0.976
fault-diagnosis 5 5 0.983 5 0.997 5 0.859 5 0.746 4 0.645 5 0.833 5 0.905 5 0.816 5 0.853
gen-hyper 20 20 0.890 20 0.516 20 0.330 19 0.523 17 0.587 20 0.300 20 0.344 15 0.118 20 0.900
haplotype-assembly 1 1 0.778 1 0.458 1 0.824 1 0.518 1 0.629 1 0.947 1 0.581 1 0.537 1 1.000
hs-timetabling 1 1 1.000 1 0.893 1 0.597 1 0.657 0 0.000 1 0.673 1 0.359 1 0.793 1 0.959
maxclicque-structured 8 8 0.999 8 0.994 8 0.987 8 0.984 8 1.000 8 0.989 8 0.991 8 1.000 8 1.000
maxcut-dimacs-mod 13 13 1.000 13 0.969 13 0.891 13 0.820 13 1.000 13 0.968 13 0.603 13 1.000 13 1.000
maxcut-spinglass 2 2 1.000 2 0.764 2 0.821 2 0.654 2 1.000 2 0.935 2 0.599 2 1.000 2 1.000
mbd 1 1 1.000 1 0.839 1 0.813 1 0.194 1 0.283 1 0.441 1 0.743 1 0.265 1 0.650
min-fill 12 12 0.757 12 0.551 12 0.704 12 0.402 10 0.480 12 0.507 12 0.464 12 0.578 12 0.771
reversi 6 6 1.000 6 1.000 6 0.616 6 0.836 1 0.117 6 0.520 6 0.518 2 0.288 2 0.248
scheduling 2 2 1.000 2 0.867 2 0.500 2 0.495 2 0.489 2 0.611 2 0.538 2 0.530 2 0.510
sean-safarpour 5 3 0.086 1 0.148 5 0.432 3 0.300 5 0.000 1 0.068 4 0.341 2 0.220 5 0.922
set-covering-scpc 7 7 0.971 6 0.555 7 0.840 7 0.367 7 1.000 7 0.757 7 0.142 7 0.931 7 0.984
treewidth-computation 6 6 0.994 6 1.000 6 0.706 6 0.994 6 0.977 6 0.457 6 0.701 6 0.571 6 0.960

24 families 134 125 0.862 122 0.736 127 0.661 123 0.600 103 0.490 123 0.569 133 0.580 104 0.513 115 0.706

TABLE 20. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2018 (crafted and industrial) benchmark - 300 seconds.

solver SATLike-c maxroster LinSBPS SATLike Open-WBO-Inc-OBV | Open-WBO-Inc-MCS | Open-WBO-Gluc | Open-WBO-Riss avdsls
L h k family #inst. | #sol. | avg.score | #sol. | avg. score | #sol. | avg.score | #sol. | avg.score | #sol. avg. score #sol. avg. score #sol. | avg.score | #sol. | avg. score | #sol. | avg. score

aes-key-recovery 1 1 0.738 1 0.689 1 1.000 1 0.413 1 0.886 1 0.838 1 0.912 1 0.738 1 0.508
aes 3 3 0.862 3 0.915 3 0.488 3 0.862 3 0.511 3 0.488 3 0.488 3 0.216 3 0.989
atcoss-mesat 5 5 0.624 5 1.000 5 0.806 0 0.000 S 0.711 5 0.706 5 0.667 5 0.528 0 0.000
bep-msp 8 4 0.494 3 0.340 3 0.356 4 0.488 3 0.362 3 0.356 3 0.362 3 0.359 5 0.625
bep-syn 2 2 0.998 2 0.891 2 0.747 2 1.000 2 0.576 2 0.550 2 0.550 2 0.518 2 1.000
close-solutions 1 1 1.000 1 0.989 1 1.000 0 0.000 1 1.000 1 1.000 1 1.000 1 0.745 0 0.000
des 2 2 1.000 2 0.980 2 0.980 0 0.000 2 0.884 2 0.852 2 0.902 2 0.872 0 0.000
extension-enforcement 7 7 0.941 7 0.703 7 0.746 7 0.943 7 0.682 7 0.658 7 0.591 7 0.563 7 0.957
fault-diagnosis 2 2 0.998 2 1.000 2 0.988 2 0.686 2 0.985 2 0.995 2 0.972 2 0.978 2 0.889
gen-hyper 15 15 0.881 15 0.849 15 0.712 15 0.901 15 0.495 15 0.478 15 0.497 15 0.496 15 0.927
hs-timetabling 1 1 0.109 1 0.170 1 1.000 1 0.018 1 0.094 1 0.101 1 0.100 1 0.114 1 0.128
maxclicque-structured 2 2 0.996 2 0.999 2 0.999 2 0.995 2 0.997 2 0.996 2 0.996 2 0.996 2 1.000
maxcut-dimacs-mod 4 4 1.000 4 1.000 4 0.996 4 1.000 4 0.973 4 0.974 4 0.976 4 0.967 4 1.000
maxcut-spinglass 1 1 1.000 1 1.000 1 0.851 1 1.000 1 0.741 1 0.703 1 0.725 1 0.688 1 1.000
min-fill 4 4 0.875 4 0.820 4 0.812 4 0.679 4 0.798 4 0.931 4 0.813 4 0.836 4 0.846
optic-gen 7 7 0.997 7 0.880 7 0.801 7 0.997 7 0.802 7 0.801 7 0.801 7 0.634 7 0.989
reversi 4 4 1.000 4 1.000 4 1.000 0 0.000 4 1.000 4 1.000 4 1.000 4 1.000 2 0.376
scheduling 2 2 0.472 2 0.974 2 0.968 2 0.495 2 0.909 2 0.929 2 0.886 2 0.891 2 0.509
sean-safarpour 3 3 0.992 1 0.000 3 0.259 3 1.000 3 0.406 3 0.262 3 0.259 3 0.001 3 0.942
set-covering-scpc 7 7 0.987 7 0.984 7 0.731 7 0.987 7 0.782 7 0.569 7 0.659 7 0.699 7 0.996
treewidth-computation 3 3 0.921 3 0.967 3 1.000 3 0.942 3 0.955 3 0.967 3 0.955 3 0.967 3 0.921
uaq-uaq-ppr 5 5 1.000 5 0.973 5 0.967 5 1.000 5 0.922 5 0.916 5 0.922 5 0.924 5 1.000
Xai-mindset 11 11 0.806 11 0.942 11 0.937 8 0.310 11 0.862 11 0.796 11 0.698 11 0.720 7 0.443

23 families 100 96 0.856 93 0.829 95 0.832 81 0.640 95 0.754 95 0.733 95 0.727 95 0.672 83 0.698

VOLUME 9, 2021 49837

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 21. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2019 (crafted and industrial) benchmark - 300 seconds.

solver Loandra SATLike_c LinSBPS2018 sls-mes sls-mes-Isu Open-WBO-g Open-WBO-ms avdsls
benchmark family #inst. | #sol. | avg. score | #sol. | avg.score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score

aes-key-recovery 5 5 0.857 5 0.880 5 0.887 5 0.401 5 0.396 5 0.860 5 0.902 5 0.426
acs 3 3 0.699 3 0.973 3 0.467 3 0.859 3 0.849 3 0.298 3 0.287 3 0.954
atcoss-mesat 5 5 0.853 5 0.816 5 0.965 1 0.037 1 0.037 5 0.728 5 0.779 0 0.000
atcoss-sugar 5 5 0.934 5 0.953 5 0.953 5 0.586 5 0.537 5 0.808 5 0.926 2 0.136
bep-fir 1 1 1.000 1 0.961 1 0.980 1 0.961 1 0.961 1 0.583 1 0.219 1 0.980
bep-hipp-yRal-simp 1 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 1 0.967
bep-hipp-yRal-su 2 2 0.992 2 0.990 2 0.983 2 0.995 2 0.995 2 0.961 2 0.966 2 0.990
bep-msp 2 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
bep-syn 1 1 0.920 1 0.939 1 0.958 1 0.979 1 1.000 1 0.639 1 0.667 1 0.920
causal-discovery 3 3 1.000 3 1.000 3 1.000 3 0.425 3 0.425 3 1.000 3 0.949 3 0.425
close-solutions 14 14 0.929 14 0.909 14 0.791 14 0.996 14 0.996 14 0.798 14 0.581 10 0.618
des 11 11 0.988 11 0.000 11 0.967 0 0.000 0 0.000 11 0.870 11 0.814 1 0.083
extension-enforcement 10 10 0.795 10 0.969 10 0.857 10 0.961 10 0.901 10 0.663 10 0.600 10 0.982
fault-diagnosis 7 7 0.980 7 0.981 7 0.981 7 0.722 7 0.722 7 0.968 7 0.962 7 0.870
gen-hyper 15 15 0.836 15 0.890 15 0.749 13 0.729 13 0.689 15 0.708 14 0.695 15 0.948
hs-ti bli 1 1 0.679 1 0.950 1 1.000 1 0.213 1 0.151 1 0.186 1 0.047 1 0.128
logic-synthesis 1 1 0.848 1 0.812 1 0.805 1 1.000 1 0.990 1 0.511 1 0.505 1 0.990
maxclicque-structured 14 14 0.993 14 0.999 14 0.996 14 0.995 14 0.995 14 0.987 14 0.991 14 1.000
maxcut-bipartite 3 3 0.894 3 1.000 3 0.921 3 0.994 3 0.984 3 0.820 3 0.836 3 1.000
maxcut-dimacs-mod 8 8 0.997 8 1.000 8 0.993 8 0.998 8 0.998 8 0.980 8 0.983 8 0.969
MaximumCommonSub-GraphExtraction 15 14 0.933 15 0.981 15 0.999 15 0.983 15 0.986 14 0.925 12 0.790 15 0.987
MaxSATQueries-in-Interpretable-Classifiers-MLIC 7 7 0.914 7 0.943 7 0.820 7 0.985 7 0.975 7 0.544 7 0.520 7 0.882
MaxSATQueries-in-Interpretable-Classifiers-wenf 8 8 0.955 8 0.944 8 0.931 8 0.899 8 0.898 8 0.628 8 0.743 8 0.860
mbd 6 6 1.000 6 0.636 6 1.000 6 0.693 6 0.682 6 0.788 6 0.731 6 0.728
min-fill 11 11 0.811 11 0.672 11 0.606 10 0.764 10 0.685 11 0.497 11 0.587 11 0.816
optic-gen 12 12 0.941 12 0.937 12 0.835 12 0.998 12 0.998 12 0.697 12 0.671 12 0.991
pseudoBoolean-garden 1 1 0.850 1 0.941 1 0.639 1 0.997 1 0.997 1 0.639 1 0.650 1 1.000
pseudoBoolean-primes-dimacs 5 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000
railway-transport 3 3 0.943 3 0.547 3 0.652 2 0.648 2 0.620 3 0.301 3 0.254 3 0.685
ramsey 14 14 0.933 14 1.000 14 0.945 14 1.000 14 1.000 14 0.788 14 0.726 14 1.000
reversi 9 9 1.000 9 1.000 9 1.000 9 0.699 9 0.747 9 1.000 9 1.000 2 0.167
scheduling 4 4 0.992 4 0.637 4 0.962 4 0.601 4 0.627 4 0.925 4 0.881 4 0.660
sean-safarpour 11 11 0.399 10 0.493 11 0.254 11 0.718 11 0.718 11 0.235 11 0.254 11 0.869
set-covering-scpc 7 7 0.888 7 0.940 7 0.733 7 0.989 7 0.985 7 0.740 7 0.637 7 1.000
treewidth-computation 6 6 1.000 6 0.934 6 1.000 6 0.967 6 0.956 6 0.983 6 0.977 6 0.944
uag-uag-plb 1 1 0.976 1 1.000 1 1.000 1 1.000 1 1.000 1 0.952 1 0.930 1 1.000
uaq-uag-ppr 12 12 0.971 12 1.000 12 0.959 12 1.000 12 1.000 12 0.916 12 0.881 12 1.000
xai-mindset 9 9 0.932 9 0.926 9 0.903 9 0.861 9 0.747 9 0.791 9 0.903 7 0.557

38 families 253 | 245 0.859 245 0.830 246 0.829 227 0.754 227 0.743 245 0.703 242 0.680 215 0.724

TABLE 22. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2014 (crafted and industrial) benchmark - 300 seconds.

solver CCLS2014 CCMPA Dist SAT4J-ms-inc ‘WPM-2014-in optimax2-g-i optimax2w-r-i avdsls
benchmark family #Ins. | #sol. | avg. score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score

CSG 10 4 0.156 10 0.541 10 0.341 10 1.000 10 0.848 10 0.999 10 0.998 10 0.909
auctions-auc-paths 20 20 1.000 20 1.000 20 1.000 0 0.000 20 0.996 19 0.948 20 0.998 20 1.000
auctions-auc-scheduling 20 20 1.000 20 1.000 20 1.000 5 0.250 20 1.000 20 1.000 20 1.000 20 1.000
frb 34 34 1.000 34 1.000 34 1.000 4 0.118 34 0.992 34 0.999 34 0.999 34 0.001
min-enc-planning 18 0 0.000 0 0.000 17 0.940 18 1.000 18 0.970 18 1.000 18 1.000 18 0.995
min-enc-planning-old 26 7 0.268 7 0.269 26 1.000 26 1.000 26 1.000 26 1.000 26 1.000 26 1.000
min-enc-planning 12 0 0.000 0 0.000 12 1.000 12 1.000 12 1.000 12 1.000 12 1.000 12 1.000
min-enc-warehouses 18 18 0.914 18 0.768 18 0.768 1 0.056 18 0.593 18 0.676 18 0.665 18 1.000
pseudo-miplib-normalized-mps | 10 3 0.269 4 0.361 5 0.409 3 0.300 8 0.755 8 0.797 8 0.793 6 0.467
ramsey 15 15 0.970 15 0.954 15 0.986 3 0.200 15 0.188 14 0.407 14 0.428 15 0.798
random-net 32 32 0.880 32 0.959 32 0.835 0 0.000 32 0.959 32 0.651 32 0.658 32 0.967
set-covering-scp4x 10 10 0.940 10 0.772 10 0.604 0 0.000 10 0.961 10 0.920 10 0.920 10 1.000
set-covering-scpSx 10 10 0.877 10 0.612 10 0.487 0 0.000 10 0.948 10 0.901 10 0.901 10 1.000
set-covering-scpox S S 0.960 5 0.738 S 0.541 0 0.000 5 0.924 5 0.887 5 0.887 5 1.000
set-covering-scpn 20 1 0.032 20 0.401 0 0.000 0 0.000 17 0.768 20 0.905 20 0.904 20 0.763
wmaxcut-dimacs_mod 38 38 1.000 38 1.000 38 0.998 0 0.000 38 0.909 38 0.849 38 0.858 38 0.819
wmaxcut-spinglass 4 4 1.000 4 1.000 4 1.000 0 0.000 4 0.902 4 0.756 4 0.757 4 0.314
haplotyping-pedigrees 100 24 0.176 18 0.175 51 0.413 4 0.040 100 0.999 98 0.961 91 0.668 100 0.985
hs-timetabling 10 0 0.000 0 0.000 2 0.042 0 0.000 10 0.837 9 0.573 9 0.556 5 0.196
packup-wpms 99 2 0.019 10 0.100 99 0.973 0 0.000 99 0.991 99 0.937 99 0.954 99 0.986
preference_planning 29 7 0.230 7 0.122 25 0.713 27 0.931 29 1.000 29 0.967 29 0.967 26 0.793
timetabling 23 0 0.000 0 0.000 18 0.215 0 0.000 20 0.673 20 0.686 20 0.431 20 0.242
upgradeability-problem 100 0 0.000 0 0.000 0 0.000 29 0.290 100 1.000 100 1.000 100 1.000 100 0.641
wcsp-spot5-dir 21 18 0.844 21 0.997 21 0.977 3 0.143 21 0.996 21 0.976 20 0.927 21 0.986
wcsp-spot5-log 20 20 0.994 20 0.999 20 0.989 3 0.150 20 0.989 19 0.926 18 0.872 20 0.980

25 families 704 | 292 0.541 323 0.551 512 0.689 148 0.259 696 0.888 693 0.869 685 0.846 689 0.794

We found that some miplib instances can be solved when the
time limit is increased.

For the industrial class, AVD-SLS shows excellent perfor-
mance in 16 benchmark families and is the best SLS solver
on this class. Moreover, AVD-SLS perform competitively
with the PMSAT solvers with regards to the number of best
solutions found. AVD-SLS has two hard benchmark families:
robot navigation and shift design. We found that the robot
navigation instances of large-size with hundred thousands of
variables and clauses, whereas the shift design instances have
very large size with hundred millions of variables and clauses.

49838

As discussed in the PMS results, such hard instances may
need more pre-processing techniques or structure extraction
methods for them to be solved by SLS solvers.

This evaluation study shows that AVD-SLS is the best
solver among SLS solvers (Fig. 5 and Fig. 6) and that it
is competitive to a number of well-known hybrid solvers,
as shown in Fig.s 13 to 18. For MSE 2015 to MSE 2018,
AVD-SLS is among the top three solvers. It is remarkable
that for most of solved instances, AVD-SLS is able to find the
best solution or near best solutions. As discussed in the PMS
section above, AVD-SLS may be improved to solve more hard

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS IEEEACC@SS

TABLE 23. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2015 (crafted and industrial) benchmark - 300 seconds.

solver CCEHC CCLS2015 Dist1 Dist2 ILP-2015-in WPM3-2015-in avdsls
benchmark family #Ins. | #sol. | avg. score | #sol. | avg. score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score #sol. | avg. score

CSG 10 10 0.785 5 0.187 10 0.345 10 0.310 2 0.200 8 0.800 10 0.940
auctions-auc-paths 20 20 1.000 20 1.000 20 1.000 20 1.000 20 1.000 9 0.450 20 1.000
auctions-auc-scheduling | 20 20 1.000 20 1.000 20 1.000 20 1.000 20 1.000 19 0.950 20 1.000
causal-discovery 35 35 0.743 0 0.000 14 0.319 26 0.453 0 0.000 20 0.475 35 0.491
frb 34 34 1.000 34 1.000 34 1.000 34 1.000 19 0.559 21 0.609 34 0.001
min-enc-planning 30 29 0.960 0 0.000 29 0.962 29 0.964 27 0.900 29 0.967 30 0.997
min-enc-warehouses 18 18 0.749 6 0.299 18 0.770 18 0.802 18 1.000 14 0.588 18 0.993
pseudo-miplib-mps 10 4 0.332 3 0.282 5 0.404 5 0.403 3 0.300 8 0.798 6 0.465
ramsey 15 15 0.962 15 0.981 15 0.979 15 0.972 3 0.200 15 0.240 15 0.787
random-net 32 32 0.931 32 0.906 32 0.860 32 0.865 23 0.719 6 0.188 32 0.998
set-covering-scp4x 10 10 0.976 10 0.943 10 0.607 10 0.896 10 1.000 10 0.975 10 1.000
set-covering-scpSx 10 10 0.944 10 0.892 10 0.511 10 0.694 10 1.000 10 0.980 10 1.000
set-covering-scpox 5 5 0.983 5 0.951 5 0.526 5 0.703 5 1.000 5 0.932 5 1.000
set-covering-scpn 20 8 0.384 4 0.144 20 0.684 20 0.679 9 0.450 20 0.885 20 0.760
wmaxcut-dimacs-mod 38 38 1.000 38 1.000 38 0.998 38 1.000 16 0.421 38 0.964 38 0.819
wmaxcut-spinglass 4 4 1.000 4 1.000 4 0.998 4 1.000 4 1.000 0 0.000 4 0.314
BTBNSL 51 51 0.982 3 0.059 51 0.949 51 0.954 9 0.176 27 0.529 51 0.880
correlation-clustering 124 | 100 0.274 3 0.004 106 0.211 115 0.195 4 0.032 74 0.388 124 0.575
haplotyping-pedigrees 100 30 0.244 21 0.113 78 0.576 66 0.546 10 0.100 100 1.000 100 0.985
hs-timetabling 10 1 0.003 0 0.000 2 0.051 2 0.050 0 0.000 9 0.802 5 0.213
packup-wpms 99 99 0.974 3 0.027 99 0.973 99 0.957 99 0.992 99 0.992 99 0.986
preference-planning 29 25 0.772 6 0.195 25 0.461 25 0.681 8 0.276 29 1.000 26 0.793
railway-transport 9 4 0.189 0 0.000 5 0.226 5 0.206 0 0.000 9 0.710 7 0.596
timetabling 23 9 0.087 0 0.000 18 0.313 20 0.425 0 0.000 19 0.689 20 0.379
upgradeability-problem 100 51 0.083 0 0.000 100 0.130 100 0.130 100 1.000 100 1.000 100 0.641
wesp-spot5-dir 21 21 0.966 17 0.796 21 0.977 21 0.982 17 0.810 18 0.851 21 0.986
wcsp-spot5-log 20 20 0.999 20 0.993 20 0.988 20 0.989 6 0.300 17 0.840 20 0.979

27 families 897 | 703 0.716 279 0.473 809 0.660 820 0.698 442 0.535 733 0.726 880 0.762

TABLE 24. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2016 (crafted and industrial) benchmark - 300 seconds.

solver CCEHC CCLS Dist TS-Greedy Naps-1.02-ms Optiriss6-in Ramp 5C2016 SsMonteCarlo | WPM3-2015-in_| dsat-wpm3-in-wpms | dsal-wpm3-s-in-wpms avdsls

benchmark family | #Inst. | #sol. | avg. score | #sol- | avg. score | #sol ol [ave. score | #sol. | avg. score | #isol. | avg. score | #sol. | avg. score | #sol. | ave.score | #sol. | avg. score | Aol | avg. score | #sol. | avg. score | #sol | ave score | #sol c ol | avg. score
CSG 0 [10 [0803 5 0207 0 0 [0540 0 | 0228 3 0300 | 10 | 0.609 10 | 0578 9 0381 3 0058 0 [099% 9 0900 0 0 [0914
‘auctions-auc-paths 20 | 20 | 1000 | 20 T000 | 20 20 T000 | 20 | 099 7 0350 | 20 | 0985 | 20 T000 | 20 TO00 | 20 | 0863 5 | 0750 | 20 T.000 20 20 1000
‘auctions-aue-scheduling | 20 | 20 | 1000 | 20 T000 | 20 20 [1000 | 20 T000 | 20 7000 | 20 T000 | 20 T000 | 20 T000 [17 | 083 9 [095 £ 0950 20 20 T.000
Causal-discovery 35 | 35 | 0305 0 0.000 7 7 [021 35 | 0345 0 0.000 0 0.000 0 0.000 0 0.000 0 0000 | 31 | 0595 | 23 0518 27 35 | 039
3| 4 T000 | 3% T.000 0 0 0000 | 34 | 0994 | 27 | 0794 | 34 | 0998 | 34 T000 | 34 TO000 | 34 | 0888 T4 | 0dos | 34 0997 3 32| o001
30 [29 | 0956 0 0000 | 29 29 | 0964 | 29 | 0750 15 [0500 | 30 | 1.000 0 0.000 0 0.000 0 0000 | 20 | 0967 | 29 0967 % 30 | 0997
18 [18 | 0914 6 0302 18 18 [0811 18 | 0411 T 0.056 7| 0420 18 | 0807 6 0314 0 0.000 15 | 0660 7 0321 10 18 1.000
0 | 4 0330 3 0281 5 5 0407 T 0273 2 0200 i 0750 T 0359 3 0290 0 0.000 8 0792 7 0691 7 6 0465
15 [15 | 095 15 | 0955 0 0 0.000 15 | 041 3 0200 | 15 | 0.607 15 [0927 15 1000 | 15 | 0360 15 | 0251 15 03872 5 5 | 077
32 | 32 | 0935 | 32 | 0907 | 3 32 | 0864 | 32 | 094 0 0000 | 1 0933 | 32 | 0991 32 | 0921 32 | 0050 16 [048 | 28 03863 32 32 | 0998
10 [10 | 0982 10 [0937 10 10 | 0887 10 [0648 0 0000 | 10 | 0863 10 [0758 10 [0973 10 [0011 9 0875) 0397 10 10 1.000
10 [10 | 0967 10 [0892 10 10 | 0687 10 | 0718 0 0000 | 10 | 0936 10 [0602 2 0,154 0| 0003 9 0877 s 0789 10 10 1.000
5 5 099 5 0955 5 5 0704 5 0723 0 0.000 5 0728 5 0.736 5 0978 5 0.003 3 0362 2 0380 5 5 1.000
20 [10 [0500 3 | 0545 | 20 20 | 0189 | 20 | 0988 0 0000 | 20 | 0.602 3 0.061 0 0000 | 20 | 0231 18 | 0781 10 0489 15 20 | 0759
Staff-scheduling 3 3 0599 0 0.000 6 3 0301 3 0265 T 0125 3 0417 5 0354 T 0075 0 0.000 3 0460 2 0.164 3 3 0962
wmaxcut-dimacs-mod | 38 | 38 | 0997 38 1.000 0 0 0.000 38 | 0975 0 0000 | 38 | 0843 3% TO00 | 38 T000 | 38 | 0078 | 37 | 09043 | 38 000 38 3 | 0819
wmaxcut-spinglass £ i 1.000 £ 1.000 0 0 0.000 £ 03833 T 0250 T 0395 4 1.000) 1.000 i 0379 2 0477) 0999 3) 0314
BTBNSL ST | st 0974 3 0059 | 50 ST 0952 | 51 | 0803 6 0118 ll 0.199 3 0059 3 0059 0 0000 | 43 | 0836 | 34 0659] 51 0872
abstraction-refinement l 0 0.000 0 0.000 0 0 0.000 0 0.000 0 0.000 5 0206 0 0.000 0 0.000 0 0.000 5 0394 5 0269 2] 1.000
correlation-clustering 14| 101 | 0259 £ 0005 | 103 117 | 0548 | 114 [0162 0 0000 | 123 | 0919 4 0.006 9 0010 0 0000 | 103 | 0412 | 85 0352 i 4 [0575
haplotyping-pedigrees | 100 | 38 | 0281 22 | 0158 | 8 100 [0705 [100 | 0015 0 0000 | 100 | 1.000 1§ [0159 | 32 | 0269 0 0000 | 98 | 0980 | o8 0980 76 100 | 0985
hs-timetabling 0 |1 0.001 0 0.000 5 2 0.066 7 0291 0 0000 | 10 | 0890 0 0.000 0 0.000 0 0.000 9 0714 1 0214 3 5 0218
packup-wpms 99 [99 [097 T 0007 | 99 99 | 0976 | 9 | 0959 0 0.000 0 0.000 9 0.090 D[0114 0 0000 [99 | 0992 | 99 0992 82 99 | 0986
preference-planning 29 [25 | 0783 3 0.195 9 25 | 0765 | 24 | 0243 0 0.000 0 0.000 7 0122 7 0230 0 0000 | 29 | 0997 | 29 0999 26 26 | 079
railway-transport 9 3 0250 0 0.000 5 5 0214 5 0.046 0 0.000 3 0,603 0 0.000 0 0.000 0 0.000 8 0633 7 0559 7 7 0607
relational-inference 9 2 0202 0 0.000 6 6 0.664 5 0555 0 0.000 5 0338 2 0222 0 0.000 0 0.000 7 0776 7 0757) 9 0904
timetabling 23 | 7 0076 0 0.000 B 20 | 0306 | 20 | 0104 0 0000 | 20 | 0557 0 0.000 0 0.000 0 0.000 19 [0720 16 0670 17 20 | 039
@ 100 | 66 | 0120 0 0000 | 100 100 [0024 [100 [0156 0 0.000 0 0.000 0 0.000 0 0.000 0 0000 | 100 | 1000 | 100 T.000 90 100 [0.641
‘Wesp-spots-dir 21 | a1 0966 17 | 0797 [21 21 0983 | 21 | 0853 15 [0714 | 20 | 0935 | 21 | 0995 19 [089 5 0212 | 21 | 0988 9 0897 9 21 0986
wesp-spots-log 20 | 20 [0999 | 20 | 0995 | 20 20 | 0989 | 20 | 09712 12 [0700 | 18 | 08IT 20 | 099 | 20 | 0996 3 0150 18 | 0891 11 0700 19 20 | 0980
30 families 935 | 736 | 0678 | 289 [0440 | 718 770 | 0546 | 878 | 0557 | 105 | 0177 | 600 | 0635 | 312 | 0461 | 301 | 0423 [216 | 0167 | 817 [0737 | 776 0711 744 908 | 0776

TABLE 25. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2017 (crafted and industrial) benchmark - 300 seconds.

solver maxroster ‘WPM3-in SAT4J MaxHS-inc LMHS-inc Dist CCEHC Open-WBO-LSU avdsls
benchmark family | #Inst. | #sol. | avg.score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score

af-synthesis 1 1 1.000 1 0.993 1 0.993 1 0.971 1 0.950 1 0.545 1 0.957 1 1.000 1 0918
BTBNSL 11 11 0.985 11 0.983 11 0.982 11 0.996 11 0.955 11 0.928 11 0.954 6 0.449 11 0.869
causal-discovery 3 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 3 1.000 3 1.000 0 0.000 3 1.000
correlation-clustering 12 12 0.860 12 0.576 12 0.780 12 0.878 12 0.859 12 0.661 11 0.534 2 0.023 12 0.780
css-refactoring 1 1 0.999 1 1.000 1 0.999 1 0.999 1 1.000 1 0.999 1 0.999 0 0.000 1 0.999
haplotyping-pedigrees 1 1 1.000 1 0.995 1 0.446 1 0.643 1 0.061 1 0.504 1 0.347 1 1.000 1 0.959
hs-timetabling 6 6 0.819 6 0.748 6 0.528 6 0.393 6 0.531 1 0.050 0 0.000 6 0.797 4 0.307
lisbon-wedding 9 9 0.996 9 0.968 9 0.970 9 0.676 9 0.835 8 0.613 5 0.340 9 1.000 8 0.622
wmaxcut-dimacs-mod 9 9 1.000 9 0.975 9 0.901 9 0.897 8 0.861 9 1.000 9 1.000 9 0918 9 1.000
min-width 18 18 0.897 18 0.878 18 0.792 18 0.920 18 0.891 0 0.000 6 0.318 0 0.000 18 0.991
pseudo-miplib-mps 5 3 0.433 5 0.886 3 0.474 3 0.360 3 0.438 0 0.000 0 0.000 1 0.195 1 0.016
railway-transport 4 3 0.388 3 0.196 4 0.466 3 0.737 2 0.279 2 0.188 2 0.190 3 0.400 3 0.480
rna-alignment 5 5 1.000 5 0.999 5 0.995 5 0.998 5 0.991 5 0.998 5 0.993 5 1.000 5 0.996
shiftdesign-limits 2 2 0.998 1 0.500 2 0.999 1 0.250 0 0.000 0 0.000 0 0.000 2 1.000 2 0.833
wcsp-spot5-log 2 2 1.000 2 0.937 2 0919 2 0918 2 0.979 2 0.966 2 0.992 2 0.944 2 0.880
staff-scheduling 6 6 0.390 6 0.346 6 0.650 6 0.445 6 0.357 6 0.709 6 0.479 6 0.781 6 0.881
timetabling 5 3 0.536 5 0.717 2 0.070 3 0.498 3 0.445 3 0.313 2 0.160 3 0.510 3 0.370

17 families 100 92 0.782 95 0.747 92 0.704 91 0.681 88 0.614 65 0.557 65 0.545 56 0.589 90 0.759

instances by means of new pre-processing techniques [74], complete and hybrid PMSAT solvers incorporate many pre-
[75] to reduce the dimensionality of large-size instances or by or co-processing techniques to reduce the dimensionality of

extracting complex structure [76] or by using both. Almost all large-sized instances.

VOLUME 9, 2021 49839

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 26. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2018 (crafted and industrial) benchmark - 300 seconds.

solver LinSBPS Open-WBO-Inc-BMO maxroster Open-WBO-Inc-Cluster SATLike-c SATLike Open-WBO-Gluc | Open-WBO-Riss avdsls
benct k family #Inst. | #sol. | avg. score | #sol. avg. score #sol. | avg. score | #sol. avg. score #sol. | avg.score | #sol. | avg.score | #sol. | avg.score | #sol. | avg.score | #sol. | avg. score

abstractic i 2 2 0.999 2 1.000 2 0.996 2 0.924 2 0.900 2 1.000 2 0.900 2 0.120 2 1.000
af-synthesis 11 11 1.000 11 0.992 11 0.998 11 0.898 11 0.701 11 0.708 11 0.991 11 0.982 11 0.722
BTBNSL 9 9 0.992 9 0.996 9 0.978 9 0.881 9 0.848 9 0.847 9 0.837 9 0.842 9 0.896
causal-discovery 11 11 0.000 11 0.000 11 0.000 11 0.000 11 0.000 10 0.000 9 0.000 10 0.000 11 1.000
cluster-expansion 12 12 0.944 12 0.978 12 0.996 12 0.944 12 0.999 12 0.999 12 0.944 12 0.943 12 1.000
correlation-clustering 8 8 0.959 8 0.869 8 0.895 8 0.729 8 0.969 8 0.973 7 0.257 8 0.293 8 0.721
hs-timetabling 9 9 1.000 9 0.321 9 0.241 9 0.239 9 0.161 3 0.050 9 0.268 9 0.321 5 0.078
lisbon-wedding 6 3 0.500 3 0.500 3 0.500 3 0.491 3 0.370 3 0.350 3 0.500 3 0.500 3 0.319
wmaxcut-dimacs-mod 6 6 0.975 6 0.908 6 1.000 6 0.909 6 0.999 6 1.000 6 0.898 6 0.777 6 1.000
min-width 9 9 0.976 9 0.982 9 0.894 9 0.856 9 0.974 9 0.973 7 0.550 8 0.633 9 0.979
pseudo-miplib-mps 3 1 0.164 1 0.333 1 0312 1 0.222 1 0.164 0 0.000 1 0.164 1 0.150 0 0.000
power-distribution 2 2 1.000 2 0.948 2 0.696 2 1.000 2 1.000 2 1.000 2 1.000 2 1.000 2 1.000
railway-transport 3 3 0.910 3 0.837 3 0.696 3 0.704 3 0.771 2 0.491 3 0.742 3 0.848 2 0.500
relational-inference 2 2 0.009 2 0.155 2 0.000 2 0.153 2 0.024 2 0.025 2 0.041 2 1.000 2 0.034
robot-nagivation 2 2 1.000 2 0.938 1 0.188 2 1.000 2 1.000 0 0.000 2 1.000 2 0.778 0 0.000
wesp-spot5-log 2 2 1.000 2 0.957 2 1.000 2 0.926 2 0.944 2 0.886 2 0.944 2 0.846 2 0.880
staff-scheduling 6 6 0.873 6 0.783 6 0.472 6 0.731 5 0.743 6 0.914 6 0.724 6 0.700 6 0.784
tcp-tep-students 5 5 1.000 5 1.000 5 0.974 5 0.972 5 0.986 5 0.990 5 1.000 5 0.997 5 0.990

18 families 108 103 0.795 103 0.750 102 0.657 103 0.699 102 0.697 92 0.623 98 0.653 101 0.652 95 0.661

TABLE 27. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2019 (crafted and industrial) benchmark - 300 seconds.

solver TT-Open-WBO-Inc Loandra Open-WBO-Incl | _LinSBPS2018 SATLike-c Open-WBO-Inc2 | _Open-WBO-g sls-mes2 uwrmaxsat-ine_|_Open-WBO-ms sls-mes avdsls
Tamily Fnst. | #sol. | avg. score | #isol. | avg. score | #sol. | avg.score | #sol. | avg. score | #sol. | avg. score | #sol. | avg. score | Fsol. | ave.score | Asol. | avg. score | #sol. | avg. score | fisol. | avg. score | #sol. | avg. score | #sol. | avg. score

abstraction-refinement 0 [9 0900 0 | 0918 0 | 0953 8 0797 0 | 0892 0 | 0953 9 0865 7 0629 1 0399 0 | 0981 7 0629 0 | 093
af-synthesis [FRE 1.000 2 1000 | 12 | 09% B 1.000 o | 0787 | 099 | 0992 | 0913 | 0957 o | 0992 | 0613 o | 0752
BTBNSL [12 0988 12 | 09% | 12 | 098 12| 0981 | 0877 12| 098 | 0984 2 | 0948 12| 0950 | 0983 1| 0948 | 0832
Causal-discovery 515 0.000 15 | 0000 | 15 | 0000 15 [0000 15 | 0000 [15 | 0000 15 | 0000 9 0000 | 15 | 0000 15 | 0000 9 0000 | 15 T.000
correlation-clustering % | 2 0868 2 | 0947 | 23 | 0874 | 23 | 0754 | 32 | 0734 | 3 | 0788 | 22 | 082 | 20 | 0754 | 22 | 0751 10 | 0675 | 20 | 0701 % [0429
drmx-cryptogen T T 0884 T 0956 T 0887 T 0941 T 0928 T 0887 T 0896 T 0.980 T 1.000 1 0898 T 0978 T 0980
hs-timetabling 7 7 0.688 7 0842 7 0392 7 0873 7 0.604 7 0385 7 0290 7 0369 7 0443 7 0352 7 0.166 5 0099
Tisbon-wedding 3 [0.750 3 0.749 [0.750 6 0.750 3 0387 3 0.750 6 0589 [0.749 [} 0490 6 0612 [0.603 6 0502
wmaxcut-dimacs-mod | i 0908 T 0981 T | 0985 [0983 T T000 | 11 | 0904 1 0912 | 11 0999 | 0932 T 0912 T T000 | 11 | 0999
MaxSATQueries-in-Interpretable-Classifiers MLIC | & 8 0901 8 0729 8 0,691 8 0.735 8 0937 3 0691 8 0666 8 0954 7 0611 8 0722 8 0948 8 0927
MaxSATQueries-in-Interpretable-Classifiers-wenf |7 7 0888 7 0674 7 0.646 7 0.754 7 0826 7 0646 7 0613 7 0.909 4 0381 7 0.668 7 0873 7 0889
metro 2 2 T.000 7 T.000 2 0983 7 T.000) 0.79 2 T.000 7 T.000) 0918 2 T.000 7 0.761 2 0.752 7 0825
Minimum-Weight Dominating-Set-Problem 7 7 0.743 7 0.746 7 0957 6 0648 [J 0715 7 0957 7 0744 5 0336 5 0563 G 0651 5 0336 7 0593
min-width 5[15 0966 15 | 0987 5 | 0072 15 | 0958 5 | 0968 15 | 0966 15 | 0888 15 | 0974 | 15 | 089 15 | 0880 | 15 [0071 5 | 0919
random-net 5 [10 0610 15 | 0950 | 15 | 0968 5 | 0977 15 | 09% | 15 | 0912 5 | 0912 15 | 099 15 | 09%9 5 | 0917 15 | 099 i5 1.000
Parametric-RBAC 5 [15 03865 15 | 0846 | 15 | 0846 5 [054 15 | 098I 15 | 0846 15 | 0850 15 | 098I 15 | 0850 5 | 0852 5 [0904 5 [0992
pseudo-miplib-mps 5 3 0,507 3 0592 3 0353 3 0360 3 0360 3 0353 3 0456 3 0305 3 0463 3 0376 3 0326 1 0016
power-distribution 0 [10 0958 10 | 0878 10 | 0082 10 T.000 10 | 1000 | 10 | 0942 10 | 0963 10 | 1000 | 10 | 0863 10 | 0958 10 [1000 | 10 T.000
railway-transport 3 3 0929 3 0954 3 0810 3 0844 3 0.734 3 0.798 3 0617 3 0.785 3 0.752 2 0372 3 0.664 2 0460
ramsey 12 0713 12 | 0611 2 [0710 7 [0630 7 | 0982 7 [0683 12 | 0671 7 | 0949 7 0684 12 | 0683 [0975 7 | 0978
relational-inference 2 2 0.627 2 0274 2 0848 2 0.053 2 0562 2 0848 2 0275 2 0092 2 0.061 2 0279 2 0.092 2 0.174
2 2 1.000 2 1.000 2 0938 2 T.000 2 1000 2 0938 2 0969 2 0556 0 0000 0 0.000 2 0375 0 0.000

12 0961 2| 0965 12 | 0964 12 | 0903 | 09% 12 | 0951 12 | 089 | 12 | 099 12| 08% | 0895 2| 0997 | 075

[11 0978 T 0325 T | 0931 9 0818 T 0999 T | 093% T 0909 0 0000 | 11 | 0964 7 0324 0 0.000 0 0.000

1 T 0958 T T.000 T 0962 1 1000 T 0996 T 0962 T 0979 T 1000 T 0913 T 0.966 T T.000 1 T.000

3 3 0958 3 0989 3 0955 3 1.000 3 0983 3 0955 3 0979 3 0977 3 0994 3 0978 3 0975 3 0880

staf 7 7 0961 7 0928 7 0727 7 0870 7 0805 7 0.727 7 0.731 7 0849 2 0222 7 0.768 7 0.801 7 0.719
Tep-tep-students (I 1.000 T 0988 T | 097 T T.000 T 0981 T [099 T 0995 I} 0992 T | 0985 I 0992 T 0981 T [0985
timetabling 5[0 0633 T 0617 [0319 T 0492 T 0175 T | 0321 T 0353 T 0.261 T [0507 T 0351 [l 0.147 T 0.149
29 families 261 | 247 | 0832 353 | 0808 | 253 | 0802 | 248 | 0782 | 252 | 0798 | 253 | 0794 | 252 | 0752 | 239 | 0730 | 232 | 0672 | 239 | 0679 | 239 | 0685 | 235 | 0685

VIi. CONCLUSION

In this work, we have presented an adaptive variable depth
SLS algorithm for the PMSAT problem. In this novel algo-
rithm framework, we have proposed two main components:
an adaptive parameter tuner and a VDS algorithm adopted for
the PMSAT problem. This work provides a comprehensive
evaluation of the AVD-SLS solver implemented based on our
proposed algorithm with the use of MSE 2014-2019 bench-
marks. AVD-SLS was evaluated on more than 3,600 instances
from MSE weighted and unweighted benchmarks.

As expected, the experimental evaluation study in
Section V demonstrates that our solver AVD-SLS is a highly
competitive SLS solver. AVD-SLS proves that PMSAT SLS
solvers have the capability to compete with hybrid PMSAT
solvers in both PMS and WPMS. Generally, AVD-SLS
improves the quality of solutions when the time limit is
increased. This emphasizes the critical role of each SLS
method’s component.

Furthermore, AVD-SLS outperforms all PMSAT SLS
solvers that participated in MSE 2014-2019 on crafted and
industrial benchmarks with regards to three evaluation cri-
teria: number of solved instances, number of best solutions,
and score measure. AVD-SLS performs remarkably better
in WPMS than in PMS. For example, if we compare the

49840

rankings of AVD-SLS and SATLike on PMS (Fig. 11) and
on WPMS (Fig. 17) in MSE 2018, AVD-SLS ranked fourth
and third, respectively, whereas SATLike ranked fifth and
seventh, respectively.

Our investigation shows that state-of-the-art PMSAT SLS
solvers are built around two important algorithmic com-
ponents: a variable-pick heuristic and a weighting scheme.
However, some hard benchmark families constitute very large
and/or complex structures, which are still beyond the capacity
of existing SLS solvers. Based on the evaluation results in
Section V, we found that the general framework of an SLS
method consists of additional algorithmic components that
can be exploited to improve state-of-the-art SLS solvers.
In this study, we selected two components, namely, parameter
tuning and VDS for large neighborhood search. Other algo-
rithmic components include new pre-processing techniques,
neighborhood definition and search method, and other diver-
sification techniques such as reset and restarts.

In our proposed algorithm, we designed the adaptive
parameter tuner based on our study of the features of an
input instance. In this study, we considered the problem size
features, variable-clause features, and balance features [77].
More features may be included in the future to improve the
adaptive tuner, such as variable-graph features, clause-graph

VOLUME 9, 2021

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

features, and local search probes including the minimum
fraction of unsatisfied clauses per run, the number of steps
to the best local minimum per run, etc. In addition, more
heuristics may be adopted with the VDS algorithm to facil-
itate its improvement, such as the highest cumulative score
heuristic [78].

Several algorithmic components of an SLS algorithm can
be exploited to improve its performance. The results of the
evaluation study emphasize many of these components, such
as preprocessing techniques, parameter tuning, neighborhood
definition and search algorithms, diversification techniques,
and exploitation of the structure of instances.

Nevertheless, SAT and PMSAT solvers have been shown
to be competitive for solving hard constrained combinatorial
problems in many different domains with various techniques
while speeding up solving, including automated software and
hardware engineering problems such as fault test, detection
and diagnosis [79], [80], upgradability [81], circuit design
diagnosis [82], etc., that encoded as SAT and PMSAT prob-
lems and solved by SAT solvers [83] and PMSAT solvers
[84]-[86]. However, robustness and correctness are essential
criteria, since these solvers are used as core decision engines
and optimization methods [87]. Automated software engi-
neering approaches, such as combinatorial testing (CT), can
be used as systematic techniques that detect faults and failures
in the software under testing (SUT) [83].

Thank you for the team of the Supercomputing Labora-
tory at King Abdullah University of Science & Technology
(KAUST) for their support and kindness. For computer time,
this research used SHAHEEN hpc, one of the resources of
the Supercomputing Laboratory at KAUST in Thuwal, Saudi
Arabia.

APPENDIX A
UNWEIGHTED BENCHMARK USED FOR INITIAL TUNING
See Table 14.

APPENDIX B
WEIGHTED BENCHMARK USED FOR INITIAL TUNING
See Table 15.

APPENDIX C
UNWEIGHTED FAMILY-BASED BENCHMARKS
See Tables 17-21.

APPENDIX D
WEIGHTED FAMILY-BASED BENCHMARKS
See Tables 22-27.

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Proc.
3rd Annu. ACM Symp. Theory Comput. - STOC, 1971, pp. 151-158.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1979.

[3] E.Demirovic and N. Musliu, ““Modeling high school timetabling as partial
weighted maxSAT,” in Proc. LaSh 4th Workshop Logic Search (SAT/ICLP)
Workshop FLoC, Jul. 2014, pp. 1-39.

VOLUME 9, 2021

[4]

[5

—

[6]

[7

—

[8]

[9

—

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]
(20]

(21]

(22]

(23]

(24]

[25]

E. Demirovi¢, N. Musliu, and F. Winter, “Modeling and solving staff
scheduling with partial weighted maxSAT,” Ann. Oper. Res., vol. 275,
no. 1, pp. 79-99, Apr. 2019.

F. Juma, E. I. Hsu, and S. A. Mcllraith, ‘““Preference-based planning via
MaxSAT,” in Advances in Artificial Intelligence (Lecture Notes in Com-
puter Science), L. Kosseim and D. Inkpen, Eds. Berlin, Germany: Springer,
2012, pp. 109-120.

H. Xu, R. A. Rutenbar, and K. Sakallah, “Sub-SAT: A formulation for
relaxed Boolean satisfiability with applications in routing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 6, pp. 814-820,
Jun. 2003.

Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris, ‘“‘Automated
design debugging with maximum satisfiability,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 29, no. 11, pp. 1804-1817,
Nov. 2010.

D. M. Strickland, E. Barnes, and J. S. Sokol, “Optimal protein struc-
ture alignment using maximum cliques,” Oper. Res., vol. 53, no. 3,
pp. 389-402, Jun. 2005.

S. Miyazaki, K. Iwama, and Y. Kambayashi, “Database queries as combi-
natorial optimization problems,” in Proc. Int. Symp. Cooperat. Database
Syst. Adv. Appl., 1996, pp. 448—-454.

K. L. Sadowski, P. A. N. Bosman, and D. Thierens, “On the usefulness
of linkage processing for solving MAX-SAT,” in Proc. 15th Annu. Conf.
Genetic Evol. Comput. Conf. GECCO, 2013, pp. 853-860.

R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: A modular
MaxSAT solver,” in Theory Applications of Satisfiability Testing—SAT
(Lecture Notes in Computer Science), C. Sinz and U. Egly, Eds. Cham,
Switzerland: Springer, 2014, pp. 438-445.

P. Saikko, J. Berg, and M. Jarvisalo, “LMHS: A SAT-IP hybrid MaxSAT
solver,” in Theory and Applications of Satisfiability Testing (SAT) (Lecture
Notes in Computer Science), N. Creignou and D. L. Berre, Eds. Cham,
Switzerland: Springer, 2016, pp. 539-546.

C. Ansétegui, J. Gabas, and J. Levy, “Exploiting subproblem optimization
in SAT-based MaxSAT algorithms,” J. Heuristics, vol. 22, no. 1, pp. 1-53,
Feb. 2016.

C. Ansotegui and J. Gabas, “WPM3: An (in)complete algorithm for
weighted partial MaxSAT,” Artif. Intell., vol. 250, pp. 37-57, Sep. 2017.
F. Bacchus, A. Hyttinen, M. Jarvisalo, and P. Saikko, “Reduced cost
fixing in MaxSAT,” in Principles and Practice of Constraint Programming
(Lecture Notes in Computer Science), J. C. Beck, Ed. Cham, Switzerland:
Springer, 2017, pp. 641-651.

E. Demirovic and P. Stuckey, “Local-style search in the linear MaxSAT
algorithm: A computational study of solution-based phase saving,” in
Proc. Pragmatics SAT Workshop, 2018.

J. Berg, E. Demirovié, and J. Peter Stuckey, “Core-boosted linear search
for incomplete MaxSAT,” in Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (Lecture Notes in Com-
puter Science), L.-M. Rousseau and K. Stergiou, Ed. Cham, Switzerland:
Springer, 2019, pp. 39-56.

A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva,
“Iterative and core-guided MaxSAT solving: A survey and assessment,”
Constraints, vol. 18, no. 4, pp. 478-534, Oct. 2013.

C. Ansétegui, M. L. Bonet, and J. Levy, “SAT-based MaxSAT algorithms,”
Artif. Intell., vol. 196, pp. 77-105, Mar. 2013.

C. Ansotegui, F. Didier, and J. Gabas, “Exploiting the structure of unsat-
isfiable cores in MaxSAT,” in IJCAI, 2015.

A. Ignatiev, A. Morgado, and J. Marques-Silva, “RC2: An efficient
MaxSAT solver,” J. Satisfiability, Boolean Model. Comput., vol. 11, no. 1,
pp. 53-64, Sep. 2019.

J. Gu, “Efficient local search for very large-scale satisfiability problems,”
ACM SIGART Bull., vol. 3, no. 1, pp. 8-12, Jan. 1992.

B. Selman, H. Levesque, and D. Mitchell, “A new method for solving hard
satisfiability problems,” in Proc. 10th Nat. Conf. Artif. Intell. (AAAI), 1992,
pp. 440-446.

B. Selman and H. Kautz, ‘“Domain-independent extensions to GSAT:
Solving large structured satisfiability problems,” in Proc. 13th Int. Joint
Conf. Artifical Intell. (IJCAI), Chambery, France: Morgan Kaufmann,
Aug. 1993, pp. 290-295.

B. Selman, A. H. Kautz, and B. Cohen, “Noise strategies for improving
local search,” in Proc. 12th Nat. Conf. Artif. Intell. (AAAI), Menlo Park,
CA, USA: American Association for Artificial Intelligence, vol. 1, 1994,
pp. 337-343.

49841

IEEE Access

H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

M. El Bachir Menai and T. N. Al-Yahya, “A taxonomy of exact methods
for partial max-SAT,” J. Comput. Sci. Technol., vol. 28, no. 2, pp. 232-246,
Mar. 2013.

P. Hansen and B. Jaumard, ““Algorithms for the maximum satisfiability
problem,” Computing, vol. 44, no. 4, pp. 279-303, Dec. 1990.

R. Battiti and M. Protasi, “Approximate algorithms and heuristics for
MAX-SAT,” in Handbook of Combinatorial Optimization, D.-Z. D. Panos
and M. Pardalos, Eds. New York, NY, USA: Springer, 1998, pp. 77-148.
Z. Wu and W. Benjamin Wah, “Trap escaping strategies in discrete
Lagrangian methods for solving hard satisfiability and maximum satisfi-
ability problems,” in Proc. 16th Nat. Conf. Artif. Intell. Eleventh Innov.
Appl. Artif. Intell. Conf. Innov. Appl. Artif. Intell. (AAAI). Menlo Park, CA,
USA: American Association for Artificial Intelligence, 1999, pp. 673-678.
T. Stutzle, H. Hoos, and A. Roli, “A review of the literature on local
search algorithms for MAX-SAT,” Allen Inst. Al, Seattle, WA, USA,
Tech. Rep., 2001.

H. H. Hoos and T. Stutzle, ‘“Stochastic local search algorithms:
An overview,” in Springer Handbook of Computational Intelligence,
J. Kacprzyk and W. Pedrycz, Eds. Berlin, Germany: Springer, 2015,
pp. 1085-1105.

M. Sevaux, K. Sorensen, and N. Pillay, “Adaptive and multilevel
metaheuristics,” in Handbook Heuristics, R. Marti, P. Panos, and
M. G. C. Resende, Eds. Springer, 2018, pp. 1-19.

H. Kautz, A. Sabharwal, and B. Selman, “Incomplete algorithms,” in
Handbook of Satisfiability, vol. 185. Amsterdam, The Netherlands: 10S
Press, 2009, pp. 185-203.

R. Marti, M. P. Pardalos, and G. C. M. Resende, ‘“Local search,” in
Handbook Heuristics. Springer, 2018.

S. Cai, C. Luo, J. Thornton, and K. Su, “Tailoring local search for
partial MaxSAT,” in Proc. 28th AAAI Conf. Artif. Intell. (AAAI), 2014,
pp. 2623-2629.

C. Luo, S. Cai, W. Wu, Z. Jie, and K. Su, “CCLS: An efficient local search
algorithm for weighted maximum satisfiability,” IEEE Trans. Comput.,
vol. 64, no. 7, pp. 1830-1843, Jul. 2015.

Z. Lei and S. Cai, “Solving (weighted) partial MaxSAT by dynamic local
search for SAT,” in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 1346-1352.

C. S. Kambhampati and T. Liu, “Phase transition and network structure
in realistic SAT problems,” in Proc. 27th AAAI Conf. Artif. Intell. (AAAI),
Bellevue, WA, USA: AAAI Press, 2013, pp. 1619-1620.

F. Glover, “New ejection chain and alternating path methods for travel-
ing salesman problems,” in Computer Science and Operations Research,
O. Balci, R. Sharda, and S. A. Zenios, Eds. New York, NY, USA: Perga-
mon, 1992, pp. 491-509.

C. Rego and F. Glover, “Local search and metaheuristics,” in The Trav-
eling Salesman Problem and its Variations, Combinatorial Optimization,
G. G. Abraham and P. Punnen, Eds. New York, NY, USA: Springer, 2007,
pp. 309-368.

J. Thornton, D. N. Pham, S. Bain, and V. Ferreira, ‘“Additive versus
multiplicative clause weighting for SAT,” in Proc. 19th Nat. Conf. Artif.
Intell. (AAAI), 2004, pp. 191-196.

B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki, “Local search algo-
rithms for partial MAXSAT,” in Proc. AAAI/IAAL 1997, pp. 263-268.

D. N. Pham, J. Thornton, C. Gretton, and A. Sattar, “Combining adap-
tive and dynamic local search for satisfiability,” J. Satisfiability, Boolean
Model. Comput., vol. 4, nos. 2—4, pp. 149-172, May 2008.

Y. Kilani, M. Bsoul, A. Alsarhan, and I. Obeidat, ‘“Improving PAWS by the
island confinement method,” in Artificial Intelligence and Soft Computing
(Lecture Notes in Computer Science), L. Rutkowski, M. Korytkowski,
R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, Eds. Berlin,
Germany: Springer, 2012, pp. 662-670.

S. Cai and K. Su, “Local search for Boolean satisfiability with configura-
tion checking and subscore,” Artif. Intell., vol. 204, pp. 75-98, Nov. 2013.
A. Frohlich, A. Biere, C. Wintersteiger, and Y. Hamadi, *“Stochastic local
search for satisfiability modulo theories,” in Proc. 29th AAAI Conf. Artif.
Intell. (AAAI), 2015, pp. 1136-1143.

F. Hutter, A. D. D. Tompkins, and H. H. Hoos, ““Scaling and probabilistic
smoothing: Efficient dynamic local search for SAT,” in Principles and
Practice of Constraint Programming—(CP) (Lecture Notes in Computer
Science). vol. 2470, P. Van Hentenryck, Ed. Berlin, Germany: Springer,
2002, pp. 233-248.

S. Cai, C. Luo, J. Lin, and K. Su, “New local search methods for partial
MaxSAT,” Artif. Intell., vol. 240, pp. 1-18, Nov. 2016.

49842

(49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

(64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

S. Cai, ““Balance between complexity and quality: Local search for mini-
mum vertex cover in massive graphs,” in Proc. 24th Int. Conf. Artif. Intell.
(IJCAI), 2015, pp. 747-753.

S. Cai, K. Su, and A. Sattar, “Local search with edge weighting and
configuration checking heuristics for minimum vertex cover,” Artif. Intell.,
vol. 175, nos. 9-10, pp. 1672-1696, Jun. 2011.

C. Luo, S. Cai, K. Su, and W. Huang, “CCEHC: An efficient local search
algorithm for weighted partial maximum satisfiability,” Artif. Intell.,
vol. 243, pp. 2644, Feb. 2017.

Y. Chu, C. Luo, W. Huang, H. You, and D. Fan, “Hard neighboring vari-
ables based configuration checking in stochastic local search for weighted
partial maximum satisfiability,” in Proc. IEEE 29th Int. Conf. Tools Artif.
Intell. (ICTAI), Nov. 2017, pp. 139-146.

C. Luo, S. Cai, K. Su, and W. Wu, “Clause states based configuration
checking in local search for satisfiability,” IEEE Trans. Cybern., vol. 45,
no. 5, pp. 1028-1041, May 2015.

S. Cai, C. Luo, and H. Zhang, “From decimation to local search and back:
A new approach to MaxSAT,” in Proc. 26th Int. Joint Conf. Artif. Intell.,
Aug. 2017, pp. 571-577.

S. Cai and Z. Lei, “Old techniques in new ways: Clause weighting, unit
propagation and hybridization for maximum satisfiability,” Artif. Intell.,
vol. 287, Oct. 2020, Art. no. 103354.

MaxSAT Evaluation 2018 Homepage, MaxSAT, Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 2018.

F. Hutter, H. Holger Hoos, and T. Stutzle, “Automatic algorithm configu-
ration based on local search,” in Proc. 22nd Nat. Conf. Artif. Intell., vol. 2,
2007, pp. 1152-1157.

E. Montero, M.-C. Riff, and N. Rojas-Morales, “Tuners review: How
crucial are set-up values to find effective parameter values,” Eng. Appl.
Artif. Intell., vol. 76, pp. 108—118, Nov. 2018.

H. H. Hoos, “Automated algorithm configuration and parameter tuning,”
in Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds.
Berlin, Germany: Springer, 2012, pp. 37-71.

F. Hutter, H. Holger Hoos, and K. Leyton-Brown, ‘“Sequential
model-based optimization for general algorithm configuration,” in
Learning and Intelligent Optimization (Lecture Notes in Computer
Science), C.A.C.Coello, Ed. Berlin, Germany: Springer, 2011,
pp. 507-523.

V. A. Tatsis and K. E. Parsopoulos, ‘“Dynamic parameter adaptation in
metaheuristics using gradient approximation and line search,” Appl. Soft
Comput., vol. 74, pp. 368-384, Jan. 2019.

D. McAllester, B. Selman, and H. Kautz, “Evidence for invariants in local
search,” in Proc. 14th Nat. Conf. Artif. Intell. 9th Conf. Innov. Appl. Artif.
Intell. (AAAI/IAAI), 1997, pp. 321-326.

D. J. Patterson and H. Kautz, “Auto-walksat: A self-tuning implemen-
tation of walksat,” Electron. Notes Discrete Math., vol. 9, pp. 360-368,
Jun. 2001.

P. R. Brent, Algorithms for Minimization Without Derivatives; Dover
Books on Mathematics. Mineola, NY, USA: Dover, Apr. 2013.

H. H. Hoos, “An adaptive noise mechanism for walkSAT,” in Proc. 18th
Nat. Conf. Artif. Intell., Menlo Park, CA, USA: American Association for
Artificial Intelligence, 2002, pp. 655-660.

C. M. Li, W. Wei, and H. Zhang, “Combining adaptive noise and look-
ahead in local search for SAT,” in Trends in Constraint Programming.
Hoboken, NJ, USA: Wiley, 2010, pp. 261-267.

Z. Li and J.-K. Hao, “Adaptive memory-based local search for MAX-
SAT,” Appl. Soft Comput., vol. 12, no. 8, pp. 20632071, Aug. 2012.

S. Prestwich, “Tuning local search by average-reward reinforcement learn-
ing,” in Learning and Intelligent Optimization (Lecture Notes in Computer
Science), V. Maniezzo, R. Battiti, and J.-P. Watson, Eds. Berlin, Germany:
Springer, 2008, pp. 192-205.

R. K. Ahuja, 0. Ergun, J. B. Orlin, and A. P. Punnen, “A survey of
very large-scale neighborhood search techniques,” Discrete Appl. Math.,
vol. 123, nos. 1-3, pp. 75-102, Nov. 2002.

D. Pisinger and S. Ropke, “Large neighborhood search,” in Handbook
Metaheuristics (International Series in Operations Research & Manage-
ment Science), M. Gendreau and J.-Y. Potvin, Eds. New York, NY, USA:
Springer, 2010, pp. 399-419.

N. Bouhmala, “A variable neighborhood walksat-based algorithm for
MAX-SAT problems,” Sci. World J., vol. 2014, pp. 1-11, Jan. 2014.
MaxSAT. (2018). Evaluation—History. [Online]. Available: https:/
maxsat-evaluations.github.io/2018/history.html

MaxSAT. (2049). Evaluation Benchmarks. [Online]. Available: https://
maxsat-evaluations.github.io/2019/benchmarks.html

VOLUME 9, 2021

H. H.

Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

IEEE Access

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

N. Een and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory Applications of Satisfiability Testing
(Lecture Notes in Computer Science), F. Bacchus and T. Walsh, Eds.
Berlin, Germany: Springer, 2005, pp. 61-75.

N. Manthey, “Coprocessor 2.0—A flexible CNF simplifier,” in Theory
Applications of Satisfiability Testing (SAT) (Lecture Notes in Computer
Science), A. Cimatti and R. Sebastiani, Eds. Berlin, Germany: Springer,
2012, pp. 436-441.

D. N. Pham, J. Thornton, and A. Sattar, “Building structure into local
search for SAT,” in Proc. 20th Int. Joint Conf. Artif. Intell. (IJCAI),
San Francisco, CA, USA: Morgan Kaufmann, Jan. 2007, pp. 2359-2364.
E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham,
“Understanding random SAT: Beyond the clauses-to-variables ratio,” in
Principles and Practice of Constraint Programming—(CP) (Lecture Notes
in Computer Science), M. Wallace, Ed. Berlin, Germany: Springer, 2004,
pp. 438-452.

N. Bouhmala, “A variable depth search algorithm for binary constraint sat-
isfaction problems,” Math. Problems Eng., vol. 2015, pp. 1-10, Jan. 2015.
A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 10, pp. 1606-1621, Oct. 2005.
A. Riefert, M. Sauer, S. Reddy, and B. Becker, “Improving diagnosis
resolution of a fault detection test set,” in Proc. IEEE 33rd VLSI Test Symp.
(VTS), Apr. 2015, pp. 1-6.

J. Argelich, I. Lynce, and J. Marques-Silva, “On solving Boolean
multilevel optimization problems,” in Proc. 21st Int. Jont Conf. Artif.
Intell. (IJCAI), San Francisco, CA, USA: Morgan Kaufmann, Jul. 2009,
pp. 393-398.

J. Marques-Silva, M. Janota, A. Ignatiev, and A. Morgado, ‘“Efficient
model based diagnosis with maximum satisfiability,” in Proc. 24th
Int. Conf. Artif. Intell. (IJCAI), Buenos Aires, AR, USA: AAAI Press,
Jul. 2015, pp. 1966-1972.

H. Wu, N. Changhai, J. Petke, Y. Jia, and M. Harman, ‘“Comparative anal-
ysis of constraint handling techniques for constrained combinatorial test-
ing,” IEEE Trans. Softw. Eng., early access, Nov. 26, 2019, doi: 10.1109/
TSE.2019.2955687.

C. Ansotegui, 1. Izquierdo, F. Manya, and J. Torres-Jimenez, A Max-SAT-
Based Approach to Constructing Optimal Covering Arrays. Amsterdam,
The Netherlands: 10S Press, Oct. 2013.

VOLUME 9, 2021

(85]

(86]

(87]

X. Si, X. Zhang, R. Grigore, and M. Naik, “Maximum satisfiability in
software analysis: Applications and techniques,” in Computer Aided Verifi-
cation (Lecture Notes in Computer Science), R. Majumdar and V. Kuncak,
Eds., Cham, Switzerland: Springer, 2017, pp. 68-94.

A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental SAT solving,” in
Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation (ICST),
Apr. 2015, pp. 1-10.

R. Brummayer, F. Lonsing, and A. Biere, “Automated testing and debug-
ging of SAT and QBF solvers,” in Theory Applications of Satisfiability
Testing—(SAT) (Lecture Notes in Computer Science), O. Strichman and
S. Szeider, Eds. Berlin, Germany: Springer, 2010, pp. 44-57.

HAIFA HAMAD ALKASEM received the B.Sc. and M.Sc. degrees in com-
puter science from King Saud University, in 2000 and 2009, respectively,
where she is currently pursuing the Ph.D. degree. She is also a Lecturer with
the Department of Computer Science, Imam Muhammad Ibn Saud Univer-
sity. Her research interests include satisfiability problems, metaheuristics,
and e-learning.

MOHAMED EL BACHIR MENAI received the
Ph.D. degree in computer science from the Men-
touri University of Constantine, Algeria, and the
University of Paris VIII, France, in 2005, and the
Ph.D. degree Habilitation Universitaire in com-
puter science from the Mentouri University of
Constantine, in 2007 (it is the highest academic
qualification in Algeria, France, and Germany). He
is currently a Professor with the Department of
Computer Science, King Saud University, Saudi

Arabia. His main research interests include satisfiability problems, evolu-
tionary computing, machine learning, and natural language processing.

49843

http://dx.doi.org/10.1109/TSE.2019.2955687
http://dx.doi.org/10.1109/TSE.2019.2955687

