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ABSTRACT The Partial Max-SAT (PMSAT) problem is an optimization variant of the well-known
Propositional Boolean Satisfiability (SAT) problem. It holds an important place in theory and practice,
because a huge number of real-world problems, such as timetabling, planning, routing, bioinformatics,
fault diagnosis, etc., could be encoded into it. Stochastic local search (SLS) methods can solve many real-
world problems that often involve large-scale instances at reasonable computation costs while delivering
good-quality solutions. In this work, we propose a novel SLS algorithm called adaptive variable depth
SLS for PMSAT problem solving based on a dynamic local search framework. Our algorithm exploits
two algorithmic components of an SLS method: parameter tuning and neighborhood search. Our first
contribution is the design of an adaptive parameter tuner that searches for the best parameter setting for
each instance by considering its features. The second contribution is a variable depth neighborhood search
(VDS) algorithm adopted for PMSAT problem, which our empirical evaluation proves is a more efficient
w.r.t. single neighborhood search. We conducted our experiments on the PMSAT benchmarks fromMaxSAT
Evaluation 2014 to 2019, including more than 3600 instances which have been encoded from a broad range
of domains such as verification, optimization, graph theory, automated-reasoning, pseudo Boolean, etc. Our
experimental evaluation results show that AVD-SLS solver, which is implemented based on our algorithm,
outperforms state-of-the-art PMSAT SLS solvers in most benchmark classes, including random, crafted, and
industrial instances. Furthermore, AVD-SLS reports remarkably better results on weighted benchmark, and
shows competitive results with several well-known hybrid PMSAT solvers.

INDEX TERMS Partial Max-SAT, adaptive parameter tuning, variable depth search, stochastic local search,
Max-SAT evaluation.

I. INTRODUCTION
Partial Max-SAT (PMSAT) problem is an optimization vari-
ant of Propositional Boolean Satisfiability (SAT) problem,
which is a fundamental problem in computer science and
artificial intelligence [1], [2]. PMSAT problem is an NP-hrd
problem that is important for the theory and practice of a
range of applications, including timetabling [3], scheduling
[4], planning [5], routing [6], software debugging [7], and
bioinformatics [8]. Actually, many optimization problems
can be naturally expressed as a PMSAT problem. PMSAT
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asks to find an assignment to the Boolean variables of a
given Boolean formula expressed in the Conjunctive Normal
Form (CNF), which satisfies all hard (mandatory) clauses
and the maximum number of soft (non-mandatory) clauses.
Maximum Boolean Satisfiability (Max-SAT) problem is a
specialization of PMSAT problem, where all clauses are soft
and the goal is to satisfy the maximum number of clauses.
PMSAT is a designation given to Max-SAT problem with
hard and soft clauses in 1996 by Miyazaki et al. [9].

There are two state-of-the-art approaches for solving
PMSAT problem: exact methods and stochastic local search
(SLS) methods. There are also hybrid methods that com-
bined both exact and SLS methods [10]–[17]. Exact methods
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(also known as complete methods) implicitly enumerate all
the solutions of the considered instance of an optimization
problem using a search tree to explore the entire search space
and to prove the satisfiability. Recently, almost all Max-SAT
and PMSAT solvers that participated in MaxSAT Evaluation
(MSE) are SAT-based [11], [16], [18]–[21], where a given
problem instance is solved through successive calls to a
SAT solver. Exact methods can provide optimal solutions to
small or medium-sized problems with reasonable computa-
tional costs. However, many real-world applications, espe-
cially engineering and industrial applications, often involve
far larger scales which exact methods cannot handle, hence
the need for SLS methods [22]–[26].

SLS methods (also known as incomplete methods) have
become more popular because of their ability to provide
high-quality solutions to large-size problems with reasonable
computation costs. An SLS is a local search method that
incorporates a stochastic (i.e. randomness) property. Local
search methods are general methods that are widely used to
solve hard combinatorial optimization problems [27]–[31].
A local search method is defined by four main components:
search space, neighborhood relation, objective function, and
move method [30]. Each component may have one or more
parameters that determine its functioning [32]. In a local
search method for a propositional Boolean problem, and
starting from a complete assignment, a neighborhood solu-
tion is obtained by flipping the truth value of one variable
(1−flip) or a small set of variables (k−flip). At each step,
the neighborhood is examined for a truth assignment that
decreases the number (or total weight) of unsatisfied clauses.
If such an assignment is found, the algorithmflips the value of
the corresponding variable (or set of variables), and continues
the search until a stopping criterion is encountered [33], [34].

Our investigation shows that there are three main state-
of-the-art PMSAT SLS-based methods: distinction-based
method [35], configuration checking-based method [36], and
dynamic local search [37] method. These SLS methods are
built around two algorithmic components: a variable-pick
heuristic and a weighting scheme. However, compared to
the breakthrough progress of SLS methods on random and
crafted benchmark instances, the performance of SLS meth-
ods on industrial benchmark instances lags far behind, espe-
cially on weighted industrial benchmark instances. Those
instances are often large-sized instances that involve huge
neighborhood size or highly complex structures.

In this paper, we introduce a novel SLS algorithm named
adaptive variable depth SLS, that employs an extended frame-
work of dynamic local search method. We chose the dynamic
local search SLS method, because it showed competitive
performance on unweighted industrial benchmarks in MSE
2018. Our method is based on the results of our study of
the state-of-the-art PMSAT SLS methods’ strengths and lim-
itations. A problem of fundamental interest and practical
importance is how to exploit SLS method components with
respect to constraints in order to manage high complexi-
ties and improve algorithm performance [38]. In this work,

we propose a novel method based on two components of an
SLS method: parameter tuning and neighborhood search.

First, we propose an adaptive parameter tuner that searches
for the best possible parameter values per instance. We stud-
ied the relationship between parameter setting and features of
input instances, and found that parameter setting is related to
some features of input instance. Second, we propose a vari-
able depth neighborhood search (VDS) method [39] adopted
for PMSAT SLS to explore very large neighborhoods. The
VDS method defines a dynamically determined number of
sequence of moves that varies from one iteration to another
(i.e. variable k − flips), where for each step leading to a dif-
ferent trial solution, the compound move that yields the best
trial solution is the one chosen [40]. Almost all SLS methods
proposed for solving PMSAT problem are based on single
neighborhood definition and single (1 − flip) move, whose
performance declines when exploring huge neighborhoods
for large-scale problem instances (i.e. industrial instances).

To evaluate the performance of our novel algorithm,
we implemented the AVD-SLS solver. We compared AVD-
SLS with the state-of-the-art PMSAT SLS solvers and
PMSAT hybrid solvers that participated in the MSE 2014-
2019, on a broad range of random, crafted and industrial
benchmarks. AVD-SLS reported the best results compared
with all of the PMSAT SLS solvers on weighted crafted and
industrial benchmark instances. Compared to PMSAT hybrid
solvers, AVD-SLS shows a competitive performance. Based
on our experimental evaluation study, AVD-SLS ranked
among the top three best PMSAT solvers for MSE 2015,
2016, 2017, 2018 on the weighted benchmark, and was also
among the top three best PMSAT solvers for MSE 2014 and
2017 on the unweighted benchmark.

The reminder of this paper is organized as follows. The
next section introduces preliminary knowledge. The related
work are presented in Section III. Then, we introduce our
AVD-SLS method in details in Section IV. The experimental
evaluation study is presented in Section V. Finally, we elab-
orate on the results and conclude the paper in Section VI and
Section VII respectively.

II. PRELIMINARIES
In this section, we briefly introduce the main notations, defi-
nitions, and background knowledge.

APropositional Variable vi is a Boolean variable assigned
a truth value (true or false).

A Literal li is a propositional variable (vi) or its negation
(¬vi).
Propositional Operators are logical connectives defined

as a set of three operators {¬,∧,∨} that represent the nega-
tion, conjunction, and disjunction operators respectively.

A Clause cj is a disjunction of literals defined by
∨k

i=1
li (e.g., cj = l1 ∨ l2 . . . ∨ li ∨ lk ), where k represents the
number of literals in each clause. A clause cj is said to be
satisfied if cj evaluates to true, such that at least one literal li ∈
cj is assigned to true; otherwise cj is said to be unsatisfied.
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If cj is a hard (mandatory) clause, then it must be satisfied.
Otherwise, cj is a soft clause that can be satisfied.
A Weighted Clause is a pair (cj,wj), where cj is a clause

and wj is an associated positive number that represents the
cost of cj unsatisfaction.
A Unit Clause cj is a clause that contains only one literal.
A Conjunctive Normal Form (CNF) formula F consists

of conjunction of clauses defined by
∧m

j=1 cj (e.g., F = c1 ∧
c2 . . . ∧ cj ∧ cm ), where m represents the number of clauses
in the CNF formula F .
The Set of All Variables appearing in F is defined by

V (F) = {v1, v2, . . . , vi, . . . , vn}, where n represents the num-
ber of variables in F .
An Assignment α of a given CNF formula F sets the truth

value of each variable vi ∈ V (F) : value(vi) ∈ {true, false}.
The Cost of an assignment α is defined by cost(α), that

denotes the number (or total weight) of the unsatisfied clauses
under the current assignment α. We say that α1 is better than
α2 if cost(α1) < cost(α2).
The Score of a variable vi is defined by score(vi), that

denotes the increment of the number (or total weight) of
satisfied clauses by flipping the truth value of a selected
variable vi from true to false or vice versa. The score(vi) =
make(vi)− break(vi). The property make(vi) is defined as the
total number (or total weight) of clauses that would become
satisfied if variable vi is flipped and the break(vi) is the
total number (or total weight) of clauses that would become
unsatisfied if variable vi is flipped.
The Hard Score of a variable vi is defined by hscore(vi),

that denotes the increment of the number (or total weight) of
satisfied hard clauses by flipping the truth value of a selected
variable vi.

The Soft Score of a variable vi is defined by sscore(vi),
that denotes the increment of the number (or total weight) of
satisfied soft clauses by flipping the truth value of a selected
variable vi.

A Decreasing Variable vi denotes that the score(vi) > 0;
if the score(vi) < 0 then vi is said to be an increasing variable.
hscore(vi) > 0 denotes a hard decreasing variable vi and
sscore(vi) > 0 denotes a soft decreasing variable vi.
A Non-decreasing Variable vi, defined as 0 − score,

denotes that the number (or total weight) of unsatisfied
clauses is not changed by flipping the truth value of a selected
variable vi. 0−hscore denotes a non-decreasing hard variable
vi.

The Neighborhood of a variable vi is defined by N (vi) =
{vj ∈ N (vi) : i 6= j}, which denotes the set of all neighboring
variables of vi ∈ V (F). Two different variables are neighbors
if and only if they appear in at least one clause simultaneously.
HN (vi) = {vj ∈ HN (vi) : i 6= j} denotes the set of all hard
neighboring variables of vi ∈ V (F). Two different variables
are hard neighbors if and only if they appear in at least one
hard clause simultaneously.

A Configuration Checking of a variable vi is the state
that indicates whether any variable vj ∈ N (vi) : i 6= j has
been selected and flipped since vi was last flipped. If at least

one variable vj ∈ N (vi) : i 6= j has been flipped since vi
was last flipped, then the configuration of vi is changed and
configuration(vi) = 1; otherwise, configuration(vi) = 0.

(Weighted) Partial Maximum Boolean Satisfiability
(PMSAT) problem is to find an assignment of truth values to
V (F) that satisfies a partial set of clauses, called hard clauses,
and minimizes the number (or weight) of unsatisfied soft
clause. An assignment α for the PMSAT problem is feasible,
if and only if, it satisfies all hard clauses. Minimizing (maxi-
mizing) the number of unsatisfied (satisfied) soft clauses is a
measure of solution quality.

(Weighted) Maximum Boolean Satisfiability (Max-
SAT) problem is to find an assignment of truth values to
V (F) that minimizes (maximizes) the number (weight) of
unsatisfied (satisfied) clauses.

III. RELATED WORK
Our investigation shows that there are three main state-of-
the-art SLS-based methods for PMSAT problem solving:
distinction-based [35] method, configuration checking-based
[36] method, and dynamic local search method [37]. These
SLS methods are built around two algorithmic components: a
variable-pick heuristic and a weighting scheme. SLSmethods
differ in the variable-pick heuristic selected as they employ
priority-based variable-pick heuristics differently based on
the scores of variables. Clause weighting is a weighting
scheme that make SLS methods dynamic [41]. The weights
are adjusted during the search to determine the search trajec-
tory while maintaining reasonable weight differentials [42].
The following paragraphs review each of state-of-the-art SLS
methods.

The distinction-based method was proposed by Cai et al.
in 2014 [35], which distinguishes between hard and soft
clauses by maintaining a weighting scheme for hard clauses
only. The weighting scheme for hard clauses is called the hard
pure additive weighting scheme (HPAWS), that was inspired
by the pure additive weighting scheme (PAWS) algorithm
proposed by Thornton et al. [41] to solve SAT problem.
PAWS is a dynamic local search algorithm that has been used
inmany SLS algorithms [43]–[46].Whenever the search stag-
nates and no improving neighborhood solutions are found,
the weights of the unsatisfied (hard) clauses are adjusted to
help escape from the local minimum. Additive weighting
schemes show better scalability than other weighting schemes
such as DLM [29] and SAPS [47]. HPAWS incorporates a
diversification probability, called the smoothing parameter
(sp is a real number that controls the hard clause weights),
to decide whether to increase the weights of unsatisfied hard
clauses or to decrease the weights of satisfied hard clauses.

Based on the concept of separation between hard and
soft scores, the distinction-based method uses a multi-level
priority-based approach for the variable-pick heuristic. Hard
decreasing variables (hscore > 0) have the highest priority,
and the hard variable with the greatest hard score may be
selected. In the second priority level come the non-decreasing
hard variables (0 − hscore) that are also soft decreasing
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(sscore > 0), and the variable with the greatest soft score
may be selected. The third level indicates that the search
stagnates and two actions take place. First, the weights of
the hard clauses are updated according to HPAWS. Second,
a random unsatisfied hard clause, if any, is chosen; otherwise,
from a randomly selected unsatisfied soft clause, either a
random variable v or the variable with the greatest soft score
is selected based on a given random walk probability wp
(a real number controls the activation of the random walk
heuristic). The distinction-based is designed with a simple
neighborhood definition and 1-flip move at each step of the
search.

There are six PMSAT SLS solvers based on the distinction
method: Dist [35], [48], HS-Greedy,1 Dist1,2 Dist2,3 Dist-
r,4 and DistUP [48]. The parameters were tuned either with
an automatic offline parameter tuning tool [42] or manually
based on researcher’s experience. Furthermore, some solvers
adopted the Best from Multiple Selections (BMS) heuristic
proposed in [49]. Generally, BMS is a probabilistic sampling
method that selects randomly t candidate decreasing vari-
ables and returns the best one. The source code of distinction-
based solvers are not available online.

The configuration checking-based method was first pro-
posed by Cai et al. in 2011 [50]. The configuration checking-
based method, similar to the distinction-based method, uses
HPAWS for hard clauses weighting scheme and maintains
separate scores for hard and soft clauses. The variable-pick
heuristic is based on the configuration checking property of
variables. The configuration checking property serves two
purposes: to avoid cycling and to promote the diversification
[50]. The configuration checking property is inspired by the
tabu search mechanism [36], [50].

The configuration checking-based method starts the search
with a probability p, to decide on whether to perform a
random move that is biased towards the satisfaction of hard
clauses or to switch to a greedy mode. In this mode, the con-
figuration checking-based method uses a multi-level priority-
based approach for the variable-pick heuristic. The highest
priority is for the hard decreasing variables (hscore > 0)
whose configuration changed, and the hard variable with the
greatest hard score may be selected. If there are no hard
decreasing variables, the weights of the hard clauses are
updated according to HPAWS. Then, the decreasing variable
(score > 0) with the greatest score whose configuration
changed may be selected, if any. Otherwise, when the search
stagnates, a variable v from a random unsatisfied hard clause
c, if any, is chosen or from a randomly selected unsatisfied
soft clause c. The configuration checking-based method is
similar to the distinction-based method, as it implements a
simple neighborhood definition and 1-flip move at each step
of the search.

1HS-Greedy - Max-SAT 2016 - http://www.maxsat.udl.cat/16/solvers/
index.html

2Dist1 -Max-SAT 2015 - http://www.maxsat.udl.cat/15/solvers/index.html
3Dist2 -Max-SAT 2015 - http://www.maxsat.udl.cat/15/solvers/index.html
4Dist-r -Max-SAT 2016 - http://www.maxsat.udl.cat/16/solvers/index.html

However, different priority-levels were adopted in litera-
ture [36], [51], [52]. For example the hard clause state-based
configuration checking (HCSCC) [51] forbidding mecha-
nism that is similar to the one proposed by Luo et al. [53],
but it emphasizes on hard clauses with a configuration that
consists of the states of hard clauses instead of neighboring
variables (i.e., captures the global effect of flipping a selected
variable v). This variable-pick heuristic, improves the results
on some real-world application of wighted PMSAT problem
instances [51].

There are six SLS solvers proposed to solve the PMSAT
problem which are based on the configuration checking-
based method: configuration checking local search (CCLS)
[36], configuration checking with emphasis on hard clauses
(CCEHC) [51], and hard neighboring variables with con-
figuration checking (HNVCC) [52]. HNVCC is based on
CCEHC with a new forbidding strategy [45] for hard vari-
ables only. Details of both solvers CCMPA5 and SC20166

were not published. The parameters were tuned either with
an automatic offline parameter tuning tool [42] or manually
based on researcher’s experience. Furthermore, some solvers
adopted the Best from Multiple Selections (BMS) heuristic.
And the source code of configuration checking-based solvers
are not available online.

The dynamic local search method was proposed by Lei
and Cai in 2018 [37]. Unlike the distinction-based and con-
figuration checking-based methods, the dynamic local search
method uses one weighting scheme (called Weighting-PMS)
for both hard and soft clauses based on PAWS [41], but the
increments of soft clauses’ weights are limited by amaximum
weight threshold ζ , to avoid favoring soft clauses over hard
clauses, which may mislead the search. For the hard clauses,
each hard clause is associated with value one for the weight
that is then updated during the search by a constant amount
(hinc). Whereas the original input weights of the soft clauses
are used. However, dynamic local search uses a simpler
variable-pick heuristic. This variable-pick heuristic considers
three break levels on updating the scores of the variables.
SATLike [37], [54], [55] solver is based on this dynamic local
search method and was the first SLS solver that competes on
industrial benchmarks [56]. The parameters were tuned man-
ually based on researcher’s experience. Furthermore, the Best
from Multiple Selections (BMS) heuristic was adopted by
SATLike. The source code of SATLike solver is available
online at MaxSAT Evaluation (MSE) 2018 website.

IV. ADAPTIVE VARIABLE DEPTH SLS ALGORITHM
The novel algorithm proposed in this work extends the state-
of-the-art dynamic local search framework by incorporating
two main components of an SLS method: parameter tuning
and neighborhood search.

5CCMPA - Max-SAT 2014 - http://www.maxsat.udl.cat/14/results-
incomplete/index.html

6SC2016 - Max-SAT 2016 - http://www.maxsat.udl.cat/16/solvers/6/
README.txt-201603260957
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In local search algorithms, even relatively minor deviations
from optimal parameter settings (i.e., parameter values) can
lead to a substantial increase in the expected time at which
a given problem instance is solved; this sensitivity seems
to increase with the size and hardness of an instance to
be solved [57]. In PMSAT SLS solvers, two main methods
are used to tune parameters: manual tuning (i.e., based on
a researcher’s experience) and automatic offline parameter
tuning [58]. The former is confronted with a serious diffi-
culty; that is, a parameter setting that results from the tuning
of some problem instances may not be applicable to other
(difficult) instances of the same class. This means that this
process is time consuming. By contrast, automatic offline
parameter tuning methods determine parameter settings on
the grounds of a representative set of benchmark instances
(i.e., per-set tuning) during a training phase before algorithm
deployment. Generally, these methods entail significant com-
putational cost and experimentation effort, but their outcomes
are nevertheless often reusable in a wide range of similar
problems [59]. Some PMSAT SLS solvers [48], [51], [52]
have been incorporated with an automatic offline parameter
tuner called the sequential model-based algorithm configura-
tion (SMAC) [60].

In contrast to automatic offline methods, adaptive parame-
ter tuning is aimed at dynamically establishing the parameter
values of an algorithm on the basis of feedback derived during
its run. Such tuning is easier to deploy because limited user
intervention is required. However, automatic adaptive meth-
odsmay suffer from twomajor drawbacks: overspecialization
if developed for a specific algorithm or problem and the
requirement for additional parameters, which may expand the
parameter domain that also requires tuning [58], [61].

Several online tuners have been proposed in the literature.
McAllester et al. [62] proposed a tuning method for six dif-
ferent variable-pick heuristics based on aWalkSAT algorithm
to solve the SAT problem. They found that when the noise
parameter p is tuned well for each heuristic, the performance
will be approximately the same. They called this a noise level
invariant. They suggested that given the best performance
of a heuristic, p can be tuned for the other heuristics for a
given measure of performance. The proposed tuning method
is based on the statistical properties of the search: mean and
variance of the violation count (i.e., invariant ratio). Their
empirical study showed that the best parameter tuningmethod
is related to both the problem instance and the underlying
algorithm.

Patterson and Kautz [63] extended the work of
McAllester et al. [62], and proposed the Auto-WalkSAT tun-
ing method. This method is based on the standard devi-
ation of the invariant ratio and Brents method [64]. The
tuner searches the invariant ratio space by two mathematical
methods: recursive bracketed and parabolic interpolation.
Then, the optimized p-value is used during the search. The
experimental evaluation showed that the best parameter tun-
ing method is related to whether p should be decreased on
increased during the tuning process.

Hoos [65] proposed a simple self-tuning noise mechanism
for the noise parameter p. This adaptive noise mechanism
was applied for different variants of a WalkSAT algorithm.
The basic idea is to increase the value of p to high values
when the search stagnates, leading to more diversification.
The empirical results showed that in some cases, the method
significantly improves the results in comparison to the basic
WalkSAT. Similarly, the reactive scaling and probabilistic
smoothing (RSAPS) method, proposed by Hutter et al. [47],
is also based on a simple self-tuning noise mechanism, but for
the smoothing parameter psmooth that controls the weighting
scheme. The experimental evaluation showed that the per-
formance was better for the RSAPS method than the basic
WalkSAT.

Two other research studies were based on Hoos’s method
[65]. Li et al. [66] proposed adaptG2WSAT, which com-
bines the adaptive noise tuning in [65] and Look-Ahead
for a variable-pick heuristic to solve the SAT problem. The
empirical results show that adaptG2WSAT method signifi-
cantly improved the results in comparison to G2WSAT and
other variants of the basic WalkSAT. Furthermore, the adap-
tive memory-based local search (AMLS) method, which Lu
and Hao [67] proposed for solving the Max-SAT problem,
employs a variable-pick heuristic based on a tabumechanism.
The parameters p and pw are both adaptively tuned based
on Hoos’s method [65]. Moreover, the authors proposed an
additional random perturbation operator for diversification.
AMLS showed better results for some Max-SAT instances
compared to the basicWalkSAT. However, the empirical eval-
uation showed that the initial setting of some other parameters
may need to be better tuned.

Prestwich [68] proposed a reinforcement learning algo-
rithm to automate the tuning process of the parameters using
the average-reward method. The basic idea is to learn better
noise levels against objective function values. That method
considers the average progress towards a solution, which is
called gain optimality. The experimental evaluation showed
that this method achieves a better performance than other
learning methods, such as Q-learning.

Based on the discussion presented above, we developed a
novel adaptive parameter tuner (Section IV-A) that consid-
ers Hoos’s tuning method [65] and a set of features for an
input PMSAT problem instance for initial parameter setting
selection.

How a neighborhood is defined and explored is a criti-
cal factor that affects the performance of local search algo-
rithms. The larger the neighborhood, the better the local
optima but the higher the computational cost. The key fea-
ture is to improve neighborhood search for large problem
instances without explicitly evaluating all neighbors each
time a search is trapped in a local minimum [69]. State-of-the-
art large neighborhood search (LNS) methods have shown
outstanding results in solving various problems from different
domains. An LNS search method can explore complex neigh-
borhoods and find better candidate solutions in each iteration,
thereby guiding searches towardmore promising search paths
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[70], [71]. LNSmethods are grouped into different categories,
such as variable neighborhood search (VNS) and variable
depth neighborhood search (VDS). In this work, we put for-
ward a VDS algorithm for PMSAT problem solving. An AVD
algorithm can search deeper neighborhoods in a heuristic way
using only one parameter that controls the depth of the neigh-
borhood search [39], [70]. Our proposed VDS algorithm is
presented in Section IV-B.

A. ADAPTIVE PARAMETER TUNING
Building an adaptive parameter tuner for a PMSAT SLS
algorithm is a challenging task for two main reasons: the time
constraint involved and the number of parameters needed to
be tuned. Our aim is to design a simple yet efficient tuning
algorithm. In our proposed algorithm, we build an adaptive
tuner for the underlying dynamic local search SLS solver
to tune nine parameters. Four parameters are used in the
weighting scheme, two random walk parameters used by a
variable pick heuristic, one parameter for the BMS heuristic,
one parameter that controls the depth of the VDS algorithm,
and one parameter used by the search algorithm for diversifi-
cation.

We have studied the relationship between the parameters’
values and some features of input instances on the basis of a
subset of weighted and unweighted benchmarks from MSE
2017 and 2018 (see Appendix A and Appendix B). For many
instances, some parameter settings are more related to some
features of an input instance. One of the most important
features for our adaptive tuner is the hard ratio, which is the
ratio of the number of hard clauses to the number of hard
variables of an input PMSAT problem instance.

Fig. 1 shows the main steps of the proposed adaptive
parameter tuner. Starting from initial default parameters’
values and extracted features of the input PMSAT prob-
lem instance (F), the tuner calls the underlying solver to
solve F and find a solution (α). The tuner then checks the
quality of the output solution, and if a feasible solution is
found, the tuner stops and the variable adaptive SLS search
starts. Otherwise, the tuner will re-tune each parameter sep-
arately and recall the solver again until a feasible solution is
found or the time limit is reached. In this re-tune step of each
parameter, the tuner is looking for improved solutions and a
parameter that results in a better solution is set as a sensitive
parameter of F and added to the list of sensitive parameters
for future recall of adaptive parameter tuner.

B. VARIABLE DEPTH NEIGHBORHOOD SEARCH (VDS)
As presented in Section III, state-of-the-art PMSAT SLS
algorithms rely on a single neighborhood search with single
(1 − flip) move in each iteration.However, this technique
fails to explore huge neighborhoods when solving large-
sized PMSAT problem instances. To tackle this limitation,
we propose a variable depth neighborhood search (VDS) [39]
adopted for PMSAT problem solving. To the best of our
knowledge, this is the first research work adopted VDS for
PMSAT problem solving.

Algorithm 1 VDS
Input: α*, a selected variable vi by adaptive variable depth

SLS algorithm
Output: return α*, cost*

// let α* the best solution found so far
// let cost the number (or total weight) of unsatisfied
clauses of α and cost* is the cost of α*
// let BEST a list of decreasing neighborhood variables

1: BEST ← vi
2: while depth > 0 do
3: if BEST 6= φ then
4: vbest ← remove a random variable from BEST
5: α← α with vbest flipped
6: BEST ← BEST

⋃
{vj ∈ N (vbest ) : score(vj) >

0 and best 6= j}
7: end if
8: depth← depth− 1
9: end while
10: return α*, cost*

The VDS (Algorithm 1) maintains a list called BEST that
keeps deceasing neighborhood variables [line 1] of a selected
variable vbest . Starting with a selected variable vi by adative
variable depth SLS algorithm (Algorithm 2), VDS flips the
selected variable and then adds to the best list all of its
decreasing neighborhood variables [lines 4-6]. In the next
iteration, a random variable from the best list is selected,
flipped, and then removed from the best list and all of its
decreasing neighborhood variables are addded to the best
list. The process is repeated until the depth is reached [line
2] or the best list becomes empty [line 3]. Finally, VDS
returns the best solution (α*) found. We believe that our pro-
posed VDS algorithm works simply and is naturally similar
to Distinction-based method and Configuration Checking-
based method which maintain a list of hard decreasing vari-
ables, but without using any additional data structures for
VDS. Algorithm 1 has a time complexity of O(depth) and a
memory complexity of O(depth).

C. ADAPTIVE VARIABLE DEPTH SLS ALGORITHM
The complete algorithm of adaptive variable depth SLS is
presented in this section. Our novel algorithm extends the
framework of state-of-the-art dynamic local search algo-
rithm SATLike [37] by using two main components: adap-
tive parameter tuning and variable depth search (VDS). The
adaptive variable depth SLS (Algorithm 2) works as follows.
First, an initial assignment α is randomly generated with
unit propagation-based decimation preprocessing [line 1].
Second, the adaptive parameter tuner is activated [lines 8-9]
before the search begin as described in section IV-A.

Then the search begins; based on the variable-pick heuris-
tic, a decreasing variable v is selected, if any. Otherwise,
the weighing scheme is activated, and the best variable v is
chosen from c a randomly selected unsatisfied hard clause,
if any. If not, it is chosen from a randomly selected unsatisfied
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FIGURE 1. Adaptive parameters tuning.

TABLE 1. Execution environment for MSE 2014-2019.

TABLE 2. PMS classes and statistics for MSE 2014-2019.

soft clause [lines 11-21]. The selected variable v is then sent
to VDS (Algorithm 1) [line 22]. VDS explores the (huge)
neighborhood deeply with a variable number of moves (k −
flips) at each iteration as described in Section IV-B. If no
feasible solution is found before the cutoff -time is reached,
the adaptive parameter tuner is re-activated to re-tune the
parameters [lines 8-9]. Algorithm 2 has a time complexity
of O(N ) and a memory complexity of O(N + C), where N
represents the total number of variables, and C represents the
total number of clauses.

V. EXPERIMENTAL EVALUATION OF ADAPTIVE
VARIABLE DEPTH-BASED SLS SOLVER
In this section, we empirically evaluate our algorithm pre-
sented in Section IV by implementing a PMSAT SLS solver
that is based on it. The solver is called AVD-SLS, which is

evaluated on both unweighted and weighted PMSAT bench-
marks from MaxSAT Evaluation (MSE) 2014-2019. In this
evaluation,, we refer to the unweighted PMSAT benchmark
as PMS and to the weighted PMSAT benchmark as WPMS.
The reported results are then compared to the results of
the PMSAT solvers that participated in MSE 2014-2019.
In this experimental evaluation, we do not consider the pub-
lished results of state-of-the-art PMSAT SLS solvers because
of two main reasons. The first reason is the inconsistency
of published results. A solver was ran more than once on
each benchmark with different results reported for each
run, although all adopted the MSE rules including the ‘‘run
once’’ rule, as described in Section V-A under Evaluation
Methodology. Moreover, detailed results are not available
for comparison with per-instance solution for the number of
solved instances, best solutions found, and best family results.
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Algorithm 2 Adaptive Variable Depth SLS
Input: PMSAT problem CNF instance F , initial

parameter setting, cutoff -time
Output: return α*, cost* if α* is a feasible solution. Other-

wise print ‘‘No solution found’’
// let α* the best solution found so far
// let cost* the number (or total weight) of unsatisfied
clauses of α*

1: α ← a randomly-generated complete initial assignment
of F with UP-based decimation preprocessing

2: α*← α

3: cost*←+∞
4: while elapsed time < cutoff -time do
5: if @ unsatisfied hard clauses and cost(α) < cost* then
6: α*← α, cost*= cost(α)
7: end if
8: if tuner activated then
9: new parameter setting ← tuner(current

parameter setting, α*)
10: end if
11: if ∃ decreasing variables then
12: v← a variable with the greatest score; breaking ties

for the one that is least recently flipped
13: else
14: update weights of clauses
15: if ∃ unsatisfied hard clauses then
16: c← a random-seleted unsatisfied hard clause
17: else
18: c← a random-seleted unsatisfied soft clause
19: end if
20: v← the variable from c with greatest score; break-

ing ties for the one that is least recently flipped
21: end if
22: VDS( α*, v);
23: end while
24: return α*, cost*

The second reason is that the state-of-the-art SLS solvers that
participated in MSE 2014–2019 showed better results than
the published ones.

A. EXPERIMENTAL SETUP
Our experiments were conducted on Shaheen, a supercom-
puter consisting of a 36 rack Cray XC40 system. The front-
end environment is running SUSE Linux Enterprise Server
15.The system has 6,174 dual sockets compute nodes based
on 16 core Intel Haswell processors running at 2.3GHz. Each
node has 128GB of DDR4 memory running at 2300MHz.7

AVD-SLS solver was implemented in C++ and compiled
by g++ with ‘−O3’ option. The execution environment for
MSE 2014-2019 benchmarks are shown in Table 1. The time
to find the best solution is not considered here, since the
processing time is machine-dependent. As such, it was not
considered by the latest MSE since 2017.

7https://www.hpc.kaust.edu.sa/content/shaheen-ii

1) BENCHMARKS
We consider in this experimental evaluation all the bench-
marks from incomplete track of MSE 2014-2019 for two
time limits 60 and 300 CPU seconds. The MSEs are affil-
iated events of the International Conference on Theory and
Applications of Satisfiability Testing (SAT) that is held every
year since 2006 [72]. The MSEs are devoted to empirically
evaluate MaxSAT and PMSAT solvers, and to publish public
benchmarks. There are two main tracks in the MSE: the
complete track and the incomplete track. The complete track
includes all complete solvers that are based on exact methods
and the incomplete track for hybrid and local search solvers.

Table 2 and Table 3 summarize each of MSE 2014-
2019 benchmarks classes and statistics. The total number
of distinct instances made public by MSE 2014-2019 for
the incomplete track is 3633 instances (1741 unweighted
instances, and 1892 weighted instances) under three classes:
random, crafted, and industrial instances. However, since
MSE 2017 only two benchmark classes of instances for
PMSAT problem are considered and merged: crafted and
industrial benchmark instances under both weighed and
unweighted categories [73]. The crafted and industrial bench-
mark instances are encoded from other domains and from
real-world applications.

In this evaluation study, subsets of MSE 2017 and MSE
2018 benchmarks were used for the initial tuning of the AVD-
SLS solver. Appendix A shows a subset (76 instances) of
the PMS benchmark instances from MSE 2017 and MSE
2018, where some of the instances are also a subset of the
MSE 2014, 2015, 2016, and 2019 PMS benchmarks as shown
in Table 14 - Appendix A. Appendix B shows a subset
(81 instances) of the WPMS benchmark instances fromMSE
2017 and MSE 2018, where some of the instances are also a
subset of MSE 2014, 2015, 2016, and 2019 WPMS bench-
marks as shown in Table 15 - Appendix B. We have excluded
these two subsets of instances from this evaluation study;
thus, a total of 3476 instances were used in this evaluation:
1665 instances from the PMS benchmark and 1811 from the
WPMS benchmark.

2) EVALUATION METHODOLOGY
We follow for each MSE the same methodology adopted in
the incomplete track:

• Each solver is executed once on each instance within a
time limit which is set to 60 CPU second for MSE 2017-
2019 benchmarks and to 300 CPU seconds for MSE
2014-2019 benchmarks.

• In each run, the solver prints successively the best solu-
tion it has found so far.

• The total number of instances in each benchmark is
denoted by #inst. and number of families by #families.

• For each solver on each benchmark, we report number
of solved instances denoted by #sol., within parentheses
the number of best solutions denoted by (#wins), and
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TABLE 3. WPMS classes and statistics from MSE 2014-2019.

score. The best results is presented in bold font face for
each benchmark and each evaluation criteria.

In this work, we consider three evaluation criteria for each
MSE result: number of solved instances, number of best
solutions found, and score. Score is based on the cost of the
output solutions andmeasures how far are the solutions found
by a solver from the best ones, taking into account the number
of solved instances. Solvers with a higher number of best
solutions and solved instances have higher scores.
• MSE 2014-2016: We adopt the same score measure as
MSE 2018-2019.

• MSE 2017:
score = 6i

cost of best solution for i found by any solver
cost of solution for i found by solver : i ∈

instances and score ∈ [0, 1].
• MSE 2018-2019:
score = 6i

(cost of best solution for i found by any solver+1)
(cost of solution for i found by solver +1)

: i ∈ instances, score ∈ [0, 1], and the best solution
found by all incomplete solvers within 300 seconds is
considered for each instance.

In this evaluation, for MSE 2014, MSE 2015, and MSE
2016, we merged the benchmarks for both crafted and indus-
trial classes under weighted and unweighted categories to
have a coherent and consistent comparison with MSE 2017-
2019 results.

3) PMSAT SLS SOLVERS
The state-of-the-art PMSAT SLS solvers experimental
results, that compete with AVD-SLS are the participated
solvers in MSE 2014-2019: CCLS and its variants, CCMPA,
Dist, Dist1, Dist2, Dist-r, DistUP, Ramp, HS-Greedy,
CCEHC, SC2016, and SATLike.

4) INITIAL PARAMETER SETTING FOR ADAPTIVE TUNER
The following nine parameters’ values are adjusted by the
adaptive tuner starting from initial default values adopted
from [37] and based on our experimental evaluation on tuning
our solver on a subset of benchmark instances from MSE
2017-2018 (Appendix A and Appendix B).
• number of samplings for BMS heuristic: t = 42 for PMS
and t = 15 for WPMS : t ∈ [10, 500].

• smooth probability for weighting scheme: sp =

0.000003 for PMS and sp = 0.0000001 iff the number
of variables > 2000; otherwise sp = 0.01 for WPMS
: sp ∈ [0, 1].

• increment for each falsified clause in the weighting
scheme: h_inc = 1 for PMS and h_inc = 3 for WPMS
: h_inc ∈ [1, 500].

• limit on maximum value on soft clause weight in the
weighting scheme: ζ = 400 for PMS and ζ = 1 for
WPMS : ζ ∈ [1, 500].

• randomwalk parameter:wp = 0.091 for PMS andwp =
0.1 for WPMS : wp ∈ [0, 1].

• noise parameters: rdprob = 0.01 and rwprob = 0.091
for PMS and rdprob = 0.01 and rwprob = 0.1 for
WPMS : rdprob and rwprob ∈ [0, 1].

• threshold of maximum flips without improvement:
max_non_improve_flip = 10000000 or 10M for
both PMS and WPMS : max_non_improve_flip ∈
[1M , 100M ].

• weight multiplier for initial weights of soft clauses:
weight_multiplier=100 for PMS andweight_multiplier
= 1 for WPMS : weight_multiplier ∈ [1, 100].

• PMSAT VDS algorithm depth parameter: depth = 1 for
both PMS and WPMS : depth ∈ [1, 35].

However, based on our experimental evaluation, we set
the initial parameters’ values for some PMS and WPMS
instances to different initial values based on an instance
hard ratio (i.e. ratio of number of hard clauses to hard
variables). We found that for some different ranges of hard
ratios, the PMS initial parameters’ values with the value of
max_non_improve_flip = 65M and depth = 3 are better
as initial values. The hard ratio ranges that have been found
to be better with this initialization values are 1.9 to 9.5 for
WPMS instances, and 2 to 6.25 for PMS instances. Then,
the adaptive tunerwill adjust the initialized values to guide the
search towards better (feasible) search regions. The adaptive
tuner is called before the search begin and then whenever the
max_non_improve_flip is reached and no feasible solution
found. We set the maximum time limit for the adaptive tuner
to 10% of time limit for each call based on our experiments.
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TABLE 4. AVD-SLS performance evaluation on MSE 2014-2019 PMS benchmarks by families.

TABLE 5. AVD-SLS performance evaluation on MSE 2014-2019 WPMS by families.

B. PERFORMANCE EVALUATION OF AVD-SLS SOLVER
In this section, we evaluate the performance of AVD-SLS
solver on both PMS and WPMS, and on each class: ran-
dom, crafted, and industrial instances. Then, we further focus
on the evaluation results based on benchmarks’ families.
We classify the performance of AVD-SLS based on the results
into 5 different classes as shown in Table 4 and Table 5.
We consider AVD-SLS fails to solve a benchmark family and
categorize a benchmark family as a hard family, if AVD-SLS
is unable to solve more than 50% of benchmark’s instances
for 300 CPU seconds.

Fig. 2 shows the overall performance results of AVD-SLS
on both PMS and WPMS. For PMS, the total number of
solved instances is 1492 (89.55%), and the average time to
find the best solution is below 50 CPU seconds. On the other
hand, for WPMS the total number of solved instances is 1774
(97.96%), and the average time to find the best solution is
also below 50 CPU seconds as the case of PMS. The results
indicate that AVD-SLS, in general, is an efficient solver w.r.t
time and percentage of solved instances. Moreover, AVD-
SLS remarkably perform better on WPMS than PMS.

1) AVD-SLS RESULTS ON PMS
For random class, AVD-SLS was able to solve all the
instances from random PMS except one instance that was
never solved by any solver. The average time to solve all
random PMS instances is 2.35 seconds. Table 4 shows that
AVD-SLS has an excellent performance on random families,
that were completely solved by AVD-SLS.

For crafted class, AVD-SLS was able to solve 94.13%
of instances from crafted PMS. The average time to solve
crafted PMS instances is 44.34 seconds. Table 4 shows that
AVD-SLS has an excellent performance on 88.5% of crafted
families, that were completely solved by AVD-SLS. How-
ever, AVD-SLS fails to solve many instances from reversi
family (multi-agent endgame). Excluding pseudo-Boolean-
primes family (as it was never solved by any solver), Fig. 3
shows that the number of solved instances from reversi family
is increased with time.

For industrial class, AVD-SLS was able to solve 81.26%
of instances from industrial PMS and the average time to
solve them is 63.49 seconds. Table 4 shows that AVD-SLS has
an excellent performance on 55.17% of industrial families.
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FIGURE 2. Variation of the running time of AVD-SLS with the number of MSE
2014-2019 benchmark instances.

FIGURE 3. Hard family-based PMS instances solving over time.

However, five industrial families have fail performance clas-
sification. AVD-SLS was unable to solve any instances from
atcoss mesat (air traffic controller shift scheduling) and cir-
cuit trace compaction families. Des (diagnosis of discrete
event systems) family and atcoss-sugar also reported very
poor results. However, the hs-timetabling family has only two
instances where only one is solved, which results in 50%.
As shown in Fig. 3, we can see that as the time increased,
the numbers of solved hard instances from industrial families
are modest or non-existent.

2) AVD-SLS RESULTS ON WPMS
For random class, AVD-SLS was able to solve all the
instances from random WPMS except one instance that was
never solved by any solver. The average time to solve all
randomWPMS instances is 2.11 seconds. Table 5 shows that
AVD-SLS has an excellent performance on random families,
that were completely solved by AVD-SLS.

For crafted class, AVD-SLS was able to solve 97.95% of
instances from crafted WPMS. The average time to solve
crafted WPMS instances is 54.74 seconds. Table 5 shows
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FIGURE 4. Hard family-based WPMS instances solving over time.

that AVD-SLS has an excellent performance on 92% of
crafted families, that were completely solved by AVD-SLS.
However, AVD-SLS was unable to solve more than 50% of
mip-lib-mps family from PB domain. However, two miplib
instances were never solved before, and we can see that
(Fig. 4) as the time increased, the number of solved instances
from miplib family is increased.

For industrial class, AVD-SLS was able to solve 96.20%
of instances from industrial WPMS and the average time
to solve them is 86.30 seconds. Table 5 shows that AVD-
SLS has an excellent performance on 72.72% of industrial
families. However, none of robot navigation family three
instances was solved by AVD-SLS. And, as shown in Fig. 4
as the time increased, the numbers of solved hard instances
from industrial families robot navigation and shift design are
modest or non-existent.

In concluding this section, we show that AVD-SLS
has an excellent performance results on both PMS and
WPMS. However, AVD-SLS performing remarkably better
on WPMS than PMS; especially on industrial families. Out
of 125 benchmark families, AVD-SLS shows an excellent
performance results on about 80% of benchmark families
which completely solved by AVD-SLS. On the other hand,
few hard instances were solved over time.

C. COMPARISON OF AVD-SLS WITH STATE-OF-THE-ART
SLS SOLVERS
AVD-SLS is compared to each SLS solver participated in
MSE 2014-2019. The results on PMS are shown in Table 6
and Table 7. The detailed results by family-based benchmarks
for PMS instances are shown in Appendix C. We highlight
here best and worse results of AVD-SLS on family-based
benchmarks compared to SLS solvers results.

For PMS 2014: Most SLS solvers were able to solve
random instances and AVD-SLS was the best SLS solver
for all three evaluation criteria except for total number
of solved crafted instances, where Dist solver was able
to solve two more instances. Dist was the second best
solver that is competitive for random and crafted bench-
marks. However, AVD-SLS is a prominent solver for merged
benchmark for all three evaluation criteria. For family-
based results as shown in Table 16 - Appendix C, AVD-
SLS has the best number of solved instances and aver-
age score with 20 best families, where second come Dist
with 10 best families. Moreover, only Dist and AVD-SLS
were able to solve a number of instances from atcoss-sugar
family. And all SLS solvers in this MSE failed to solve
any of atcoss-mesat and circuit-trace-compaction families
instances.

For PMS 2015: Most SLS solvers were able to solve ran-
dom instances. For crafted and industrial benchmarks, AVD-
SLS, Dist2 and DistUP were competitive. For the merged
benchmark, Dist2 solver was able to solve one more instance
but AVD-SLS have best number of best solutions and best
score. Dist2 was the second best solver that is competitive
for random and crafted benchmarks. For family-based results
as shown in Table 17 - Appendix C, AVD-SLS has the best
number of solved instances and average score with 20 best
families, where second come Dist2 with 10 best families.
Moreover, all Distinction-based solvers, CCEHC and AVD-
SLS were able to solve a number of instances from atcoss-
sugar family, where CCEHC has the best results. For Des
family, most of SLS solvers including AVD-SLS were able
to solve a number of Des instances, where DistUP has the
best results. And as in MSE 2014, all SLS solvers in this
MSE failed to solve any of atcoss-mesat and circuit-trace-
compaction families instances.
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TABLE 6. Summary results of AVD-SLS and PMSAT SLS solvers on MSE 2014-2016 PMS.

For PMS 2016: Similar to PMS 2014 and 2015, most SLS
solvers were able to solve random instances. For all bench-
marks, AVD-SLS was the best solver for all three evaluation
criteria. Dist was the second competitive solver. For family-
based results as shown in Table 18 - Appendix C, AVD-SLS
has the best number of solved instances and average score
with 17 best families, where second come Dist with 10 best
families. Moreover, Dist, CCEHC andAVD-SLSwere able to
solve a number of instances from atcoss-sugar family, where
CCEHC has the best results. For Des family, most of SLS
solvers including AVD-SLS were able to solve a number of
Des instances, where Dist has the best results. And as in MSE
2014 and 2015, all SLS solvers in this MSE failed to solve
any of atcoss-mesat and circuit-trace-compaction families
instances.

For PMS 2017: AVD-SLS was the best solver for all three
evaluation criteria. The results of CCEHC were improved

as time limit increased to 300 seconds. In this MSE, AVD-
SLS is a prominent solver. For family-based results as shown
in Table 19 - Appendix C, AVD-SLS has the best number
of solved instances and average score with 14 best families,
where second come CCEHC with 6 best families. Moreover,
AVD-SLS and CCEHC were able to solve a number of
instances from atcoss-sugar family. And all SLS solvers in
this MSE failed to solve any of atcoss-mesat, Des, and close-
solutions (from Satisfiabily domain) families instances.

For PMS 2018: AVD-SLS was the best solver for all
three evaluation criteria. And the number of best solutions
found so far were approximately more than 1.7 times for
both solvers as time limit increased to 300 seconds. It is
remarkable to see that the number of solved instances are
not increased relatively as the number of best solutions found
is increased. For family-based results as shown in Table 20
- Appendix C, AVD-SLS has the best number of solved
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instances and average score with 14 best families, where sec-
ond come SATLike with 8 best families. AVD-SLS was able
to solve a number of reversi instances that was never solved
by SATLike. Moreover, AVD-SLS and CCEHC were able to
solve a number of instances from atcoss-sugar family. And
both AVD-SLS and SATLike in this MSE were failed to
solve any of atcoss-mesat, Des, and close-solutions families
instances.

ForPMS 2019: AVD-SLS is a competitive solver, although
no other SLS solver participated in this evaluation. The
scores and number of best solutions are better than some
other well-known hybrid solvers. In this evaluation, AVD-
SLS has the best number of solved instances and average
score with 7 best families as shown in Table 21 - Appendix C.
As AVD-SLS is the only SLS solver in this section, the results
shown in Table 7 - section PMS_2019 - are based on the
best solution found so far for each instance by any SLS
solver during the past MSE 2014-2018. If an instance is
never tested before by any SLS solver, we set the solution
found by AVDS-SLS as the best solution found so far (about
12% of unweighted benchmark instances were never tested
before by SLS solvers). In this evaluation, AVD-SLS failed
to solve any of atcoss-mesat, and pseudo-Boolean-primes
families instances, that never solved by any SLS solver. Three
new benchmark families were included in this MSE, where
AVD-SLS perform very well and the reported results has
a score range from 0.860 to 0.987 as shown in Table 21 -
Appendix C.

Fig. 5 shows the performance comparison on MSE 2014-
2018 crafted and industrial instances, where PMSAT SLS
solvers have been participated. For each column of each
solver per year:

• length of a column represents the percentage (%) of total
solved instances per year.

• the colored part (e.g. light violet for AVD-SLS) repre-
sents the percentage (%) of total number of best solu-
tions found by a solver.

From this summary, we show that AVD-SLS has the
best results throughout MSE 2014-2019 w.r.t MSE three
evaluation measures: number of solved instances, score and
number of best solutions found. AVD-SLS report the best
performance results on many graph-theory families (such
as max-clique, maxcut, ramsey, and set-covering), on some
verification families (such as mbd and bcp-syn), and on
some optimization problems such as uaq (User Authorization
Query problem). However, the hardest PMS families for
AVD-SLS are: atocss-mesat, circuit trace compaction, and
robot navigation. However competitive PMSAT SLS solvers
such as AVD-SLS, SATLike, Dist, and CCEHC were able
to solve some instances from other hard benchmark families
such as atcoss-sugar, des, close-solutions, and reversi.

Next, the results on WPMS are shown in Table 8 and
Table 9. The detailed results by family-based benchmarks
for WPMS problem instances are shown in Appendix D.

TABLE 7. Summary results of AVD-SLS and PMSAT SLS solvers on MSE
2017-2019 PMS.

We highlight here best and worse results of AVD-SLS on
family-based benchmarks compared to SLS solvers results.

For WPMS 2014: AVD-SLS was the best SLS solver
for all three evaluation criteria for industrial and merged
benchmarks. However the number of best solutions found
for random benchmark is the worse among all solvers. For
crafted benchmarks, Dist has the best score. However, AVD-
SLS was the best solver on crafted benchmark for two evalu-
ation criteria. For family-based results as shown in Table 22
- Appendix D, AVD-SLS has the best number of solved
instances and best average score with 19 best families,
where second come Dist and CCMPA with 6 best families.
We found that all SLS solvers have reported the best results
for two auctions benchmark families. Moreover, AVD-SLS
was able to solve more instances from hard pseudo-miplib-
mps and hs-timetabling benchmark families than other SLS
solvers. And for upgrade-ability problem family, AVD-SLS
was the only solver that solved all instances, where non solved
by other SLS solvers. It is remarkable that both Dist and Dist-
r were not able to solve any instance from frb, ramsey, and
maxcut benchmark families.

For WPMS 2015: Most SLS solvers were able to solve
random instances but AVD-SLS, as in MSE 2014, has the
worse number of best solutions among all solvers. For crafted
benchmark, CCEHC has the best score. However, AVD-SLS
was the best solver for crafted benchmark for two evaluation
criteria and was the best solver for all three evaluation crite-
ria on industrial and merged benchmarks. For family-based
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FIGURE 5. Performance comparison of AVD-SLS with state-of-the-art PMSAT SLS solvers on MSE 2014-2018 PMS.

results as shown in Table 23 - Appendix D, AVD-SLS has
the best number of solved instances and best average score
with 17 best families, where second come CCEHC with
7 best families. And as in MSE 2014, all SLS solvers have
reported the best results for two auctions benchmark fami-
lies. Moreover, AVD-SLS were able to solve more instances
from hard hs-timetabling benchmark families than other SLS
solvers. Both HS-Greedy and AVD-SLS were able to solve
all instances from timetabling family.

For WPMS 2016: For the random benchmark, only three
solvers have the best results: CCEHC, Ramp, and SC2016.
For crafted benchmark, CCEHC has the best score. However,
AVD-SLS was the best solver on crafted benchmark for
two evaluation criteria and was the best solver for all three
evaluation criteria on industrial and merged benchmarks. For
family-based results as shown in Table 24 - Appendix D,
AVD-SLS has the best number of solved instances and best
average score with 22 best families, where second come
Ramp with 7 best families. And as in MSE 2014 and 2015,
all SLS solvers have reported the best results for two auctions
benchmark families. And for abstraction-refinement family,
AVD-SLSwas the only solver that solved all instances, where
non solved by other SLS solvers. Also, HS-Greedy were able
to solve more instances from hard hs-timetabling benchmark
family than AVD-SLS solver, that was the best for this family.

However, AVD-SLSwas the only solver that was able to solve
all instances from relational-inference family. And as in MSE
2014, both Dist and Dist-r were not able to solve any instance
from frb, ramsey, and maxcut benchmark families.

For WPMS 2017: AVD-SLS was the best solver for all
three evaluation criteria. The results of all solvers has very
slight improvement as time limit increased to 300 seconds.
In this MSE, AVD-SLS is a prominent solver. Generally,
many good-solutions were found by SLS solvers which indi-
cated by the enhanced score. For family-based results as
shown in Table 25 - Appendix D, AVD-SLS has the best
number of solved instances and best average score with
14 best families, where second come CCEHC with 6 best
families. Moreover, AVD-SLS the only solver that was able
to solve all instances from min-width family. And AVD-SLS
solved a number of instances from pseudo-miplib-mps and
shift design hard benchmark families, where non solved by
other SLS solvers.

For WPMS 2018: AVD-SLS was the best solver for all
three evaluation criteria. And the number of best solutions
found so far were approximately doubled for AVDS-SLS and
4.4 times increased for SATLike as time limit increased to
300 seconds. It is also remarkable as for PMS, that the number
of solved instances are not increased relatively as the number
of best solutions found increased by double or more. For
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TABLE 8. Summary results of AVD-SLS and PMSAT SLS solvers on MSE 2014-2016 WPMS.

family-based results as shown in Table 26 - Appendix D,
AVD-SLS has the best number of solved instances and best
average score with 11 best families, where SATLike was the
best for 7 families. For causal-discovery family, AVD-SLS
was the best and found optimal solutions for all instances
(zero cost). Also, AVD-SLS was able to solve more instances
from hard hs-timetabling benchmark family. The hardest
families that never solved by SLS solvers in this MSE are:
robot navigation and pseudo-miplib-mps families.

For WPMS 2019: AVD-SLS is a competitive solver,
although no other SLS solver participated in this evaluation.
The scores and number of best solutions are better than some
other well-known hybrid solvers. In this evaluation, AVD-
SLS has the best number of solved instances and average
score with 5 best families as shown in Table 27 - Appendix D.
As AVD-SLS is the only SLS solver in this MSE, the results
shown in Table 9 - section WPMS_2019 - are based on the
best solution found so far for each instance by any SLS

solver during the past MSE 2014-2018. If an instance is never
tested before by any SLS solver, we set the solution found by
AVDS-SLS as the best solution found so far (about 20% of
weighted benchmark instances were never tested before by
SLS solvers). The hardest families that never solved by SLS
solvers in this MSE are: robot navigation and shift design
families.

Fig. 6 shows the performance comparison on MSE 2014-
2018 crafted and industrial instances, where PMSAT SLS
solvers have been participated. For each column of each
solver per year:

• length of a column represents the percentage (%) of total
solved instances per year.

• the colored part (e.g. light violet for AVD-SLS) repre-
sents the percentage (%) of total number of best solu-
tions found by a solver.
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TABLE 9. Summary results of AVD-SLS and PMSAT SLS solvers on MSE 2017-2019 WPMS.

From this summary, we show that AVD-SLS has the
best results throughout MSE 2014-2019 w.r.t MSE three
evaluation measures: number of solved instances, score and
number of best solutions found. AVD-SLS report the best
performance results on many graph-theory families (such
as maxcut, and set-covering), on realizability optimization
problems such as power distribution, and other optimization
problems such as random network, min-width, abstraction
refinement, causal discovery, and CSG families. However,
the hardest PMS families for AVD-SLS are: robot naviag-
tion and shift design. Competitive PMSAT SLS solvers such
as AVD-SLS, SATLike, Dist, and CCEHC were able to solve
some instances from other hard benchmark families such as
pseudo-miblip-mps and hs-timetabling.

We conclude this experimental evaluation results of AVD-
SLS and PMSAT SLS solvers that participated in MSE
2014-2019 on both PMS and WPMS with more than
3400 instances, that AVD-SLS reported the best results and
outperform all PMSAT SLS solvers, based on the evaluation
criteria presented in this study that were adopted from MSE
2014-2019. Generally, AVD-SLS improves the quality of
found solutions when the time limit increased. The minimum
score for AVD-SLS in this evaluation, as shown in Fig. 5
and Fig. 6, ranges from 0.820 to 0.900. This evaluation study
shows that AVD-SLS perform remarkably better on WPMS
instances.

D. COMPARISON OF AVD-SLS WITH ALL
STATE-OF-THE-ART MaxSAT EVALUATION
2014-2019 PMSAT SOLVERS
We also compare AVD-SLS with all PMSAT solvers partic-
ipated in MSE 2014-2019. The results on PMS are shown
in Table 10 and Table 11. In this section, we plot distribution
of scores per instances figures for each MSE; the same used
by latest MSE since 2017. In each figure, each solver results
are represented by a curve, where each point represent the
score of each solved/unsolved instance. We encoded each
solver results with a unique color, where results of AVD-SLS
are represented with a violet color in all figures. We ordered
PMSAT solvers in the legend from best-scored to worse-
scored.

For PMS 2014: Both AVD-SLS and Dist have best
results on random instances. However, AVD-SLS has the
best number of best solutions for crafted benchmark. AVD-
SLS is competitive to a number of hybrid solvers. Based
on score measure results shown in Fig. 7, AVD-SLS is the
third best solver in this Evaluation after WPM-2014-in and
optimax2-rn-i. For family-based results as shown in Table 16
- Appendix C, AVD-SLS has the best average score for
4 benchmark families.

For PMS 2015: Most SLS solvers have best results on
random instances. AVD-SLS is competitive to a number
of hybrid solvers. Based on score measure results shown
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FIGURE 6. Performance comparison of AVD-SLS with state-of-the-art PMSAT SLS solvers on MSE 2014-2018 WPMS.

in Fig. 8, AVD-SLS is ranked the fourth best solver in this
Evaluation. For family-based results as shown in Table 17
- Appendix C, AVD-SLS has the best average score for
2 benchmark families.

For PMS 2016: For random benchmark, almost all SLS
solves random instances with best solutions. For crafted
benchmark, AVD-SLS was able to solve the maximum num-
ber of instances. Based on score measure results shown
in Fig. 9, AVD-SLS ranked in the fifth position in this
Evaluation. For family-based results as shown in Table 18
- Appendix C, AVD-SLS has the best average score for
4 benchmark families.

For PMS 2017: For 60 seconds time limit, AVD-SLS has
the best number of best solutions and ranked the first based
on score measue. For 300 seconds, maxroster solver results
improved significantly as the time increased, and AVD-SLS
ranked as the second best solver as shown in Fig. 10. For
family-based results as shown in Table 19 - Appendix C,
AVD-SLS has the best average score for 3 benchmark fami-
lies.

For PMS 2018: AVD-SLS is a competitive solver with
number of hybrid solvers, where the best number of best
solutions is achieved by AVD-SLS for both time limits. AVD-
SLS ranked as the third best solver for 60 seconds time limit
and fourth for 300 seconds time limit as shown in Fig. 11;
maxroster solver results improved significantly as the time

increased. For family-based results as shown in Table 20
- Appendix C, AVD-SLS has the best average score for
4 benchmark families.

For PMS 2019: Similar to MSE 2018 results, AVD-SLS
has shown it is a competitive solver with number of hybrid
solvers, where the best number of best solutions is achieved
by AVD-SLS for both time limits. The increasing of best
solutions found by AVD-SLS is remarkable as the time limit
increased. Based on score measure results shown in Fig. 12,
AVD-SLS was competitive for a number of hybrid solvers.
For family-based results as shown in Table 21 - Appendix C,
AVD-SLS has the best average score for 7 benchmark fami-
lies.

Next, the results on WPMS Benchmark are shown
in Table 12 and Table 13.

For WPMS 2014: Only SAT4J-ms-inc solver was unable
to solve the random instances. However, AVD-SLS shows
competitive results and has the best number of best crafted
solutions. For industrial instances, AVD-SLS shows compet-
itive results with best performing hybrid solvers as shown
in Fig. 13, where AVD-SLS ranked as the fourth best
solver. For family-based results as shown in Table 22 -
Appendix D, AVD-SLS has the best average score for
8 benchmark families.

For WPMS 2015: AVD-SLS is ranked the first based on
score measure results as shown in Fig. 14 and was able to
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TABLE 10. Summary results of AVD-SLS with PMSAT solvers on MSE 2014-2016 PMS.

solve the maximum number of instances on all classes. For
family-based results as shown in Table 23 - Appendix D,
AVD-SLS has the best average score for 5 benchmark
families.

ForWPMS2016: Similar results toMSE 2015 are reported
to AVD-SLS. AVD-SLS was able to solve the maximum
number of instances on all classes and ranked here as the third
best solver after WPM3-2015-in, based on score measure

49824 VOLUME 9, 2021



H. H. Alkasem, M. E. B. Menai: SLS Algorithm for the PMSAT Problem Based on Adaptive Tuning and VDS

TABLE 11. Summary results of AVD-SLS with PMSAT solvers on MSE 2017-2019 PMS.

results shown in figure 15. For family-based results as shown
in Table 24 - Appendix D, AVD-SLS has the best average
score for 7 benchmark families.

For WPMS 2017: For 60 seconds time limit, AVD-SLS
has the best number of best solutions and ranked as the best
solver. For 300 seconds time limit, AVD-SLS ranked the
third based on score measure results shown in Fig. 16. For
family-based results as shown in Table 25 - Appendix D,
AVD-SLS has the best average score for 2 benchmark
families.

For WPMS 2018: AVD-SLS is a competitive solver with
number of hybrid solvers, and is ranked here as the third best
solver for 300 seconds time limit as shown in Fig. 17. While
AVD-SLS is the best solver for 60 seconds time limit based
on score measure and number of best solutions. For family-

based results as shown in Table 26 - Appendix D, AVD-SLS
has the best average score for 5 benchmark families.

For WPMS 2019: In this evaluation, no SLS solver was
participated. A number of well-known hybrid solvers partici-
pated in this evaluation such as TT-Open-WBO-Inc, Loandra,
LinSBPS2018, and Open-WBO solvers variants. However,
AVD-SLS was able to compete with a number of solvers
on the number of best solutions found as shown in Fig. 18.
For family-based results as shown in Table 27 - Appendix D,
AVD-SLS has the best average score for 5 benchmark fami-
lies.

We conclude this experimental evaluation of AVD-SLS
and PMSAT solvers that participated in MSE 2014-2019 on
both PMS and WPMS with more than 3400 instances, that
AVD-SLS is a competitive solver as shown in Fig.s 7 to
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FIGURE 7. Distribution of scores for PMSAT solvers on MSE 2014 PMS (300s).

FIGURE 8. Distribution of scores for PMSAT solvers on MSE 2015 PMS (300s).

18 w.r.t evaluation criteria presented in this study which are
adopted from MSE. AVD-SLS solver, improves the perfor-
mance of SLS solvers especially on WPMS.

VI. DISCUSSION
The MaxSAT Evaluation events (MSE) added great value
to the literature, where thousands of benchmark instances
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FIGURE 9. Distribution of scores for PMSAT solvers on MSE 2016 PMS (300s).

FIGURE 10. Distribution of scores for PMSAT solvers on MSE 2017 PMS (300s).

made available publicly. Problems from a large range of
domains were encoded as Partial Max-SAT (PMSAT) prob-
lem, including hardware and software verification, opti-

mization, graph theory, Satisfiability, automated reasoning,
multi-agent solving, etc. Overall, 125 benchmark families
(shown in Appendex C and D) were encoded from various
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FIGURE 11. Distribution of scores for PMSAT solvers on MSE 2018 PMS (300s).

FIGURE 12. Distribution of scores for PMSAT solvers on MSE 2019 PMS (300s).

domains under three classes: random, crafted, and industrial
instances.

Furthermore, the MSE represent the evolution of PMSAT
solvers development, which can be traced and studied

throughout the years. State-of-the-art solvers have shown
great advancements in solving PMSAT problem instances.
However, the evaluation results of MSE 2014-2019 show that
many benchmarks instances related to weighted industrial
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TABLE 12. Summary results of AVD-SLS with PMSAT solvers on MSE 2014-2016 WPMS.

applications are still beyond the capacity of existing PMSAT
SLS solvers. This present work is a contribution that aims
to advance the development of PMSAT SLS solvers. Our
proposed solver incorporates an adaptive parameter tuner and
a variable depth neighborhood search (VDS) method adopted
for solving PMSAT problem, which were combined with the
dynamic local search solver SATLike. To the best of our
knowledge, our proposed components have never adopted
previously for PMSAT solving by SLS methods.

In this study, we evaluate the performance of our AVD-SLS
solver that is implemented based on the proposed algorithm
presented in Section IV. First, we evaluate the performance of
AVD-SLS on all unweighted andweighted instances. Second,
as themain goal of this paper, we compare the results obtained
by AVD-SLS to those drawn by state-of-the-art SLS solvers
that participated in theMSE 2014–2019. Finally, we compare
the results of AVD-SLS to those obtained by all state-of-
the-art PMSAT solvers that participated in MSE 2014-2019,
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FIGURE 13. Distribution of scores for PMSAT solvers on MSE 2014 WPMS (300s).

FIGURE 14. Distribution of scores for PMSAT solvers on MSE 2015 WPMS (300s).

includingmanywell-known hybrid solvers. Almost all hybrid
solvers are SAT-based solvers [18].

We classify the performance of the AVD-SLS solver in this
study based on the percentage of solved instances per bench-

mark family into five different classes, as shown in Table 4
and Table 5: excellent (100%), very good (80-99%), good
(66-79%), poor (51-65%), and fail (0-50%). We consider
that AVD-SLS has failed to solve a benchmark family and
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FIGURE 15. Distribution of scores for PMSAT solvers on MSE 2016 WPMS (300s).

FIGURE 16. Distribution of scores for PMSAT solvers on MSE 2017 WPMS (300s).

categorize the benchmark family as hard if AVD-SLS is
unable to solve more than 50% of the benchmark’s instances
for 300 CPU seconds.

A. DISCUSSION OF THE RESULTS ON PMS
AVD-SLS shows excellent performance on random
instances like most SLS solvers, whereas the hybrid solvers
were not competitive in this class.

For the crafted class, AVD-SLS is competitive with all
PMSAT solvers with regards to the number of best solu-
tions found. However, Dist and Dist2 SLS solvers solved
a few more instances than AVD-SLS from MSE 2014 and
2015 PMS. Furthermore, based on our categorization of
AVD-SLS performance, AVD-SLS shows excellent perfor-
mance in 23 crafted families. Only one benchmark family is a
hard family: reversi.We found that some reversi instances can
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FIGURE 17. Distribution of scores for PMSAT solvers on MSE 2018 WPMS (300s).

FIGURE 18. Distribution of scores for PMSAT solvers on MSE 2019 WPMS (300s).

be solved when the time limit is increased. However, we did
not include the pseudo-Boolean-primes benchmark family as
hard here, as it was never solved by any solver.

For the industrial class, AVD-SLS shows excellent perfor-
mance in 16 benchmark families and is the best SLS solver
on this class. Moreover, AVD-SLS is competitive with the
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TABLE 13. Summary results of AVD-SLS with PMSAT SLS solvers on MSE 2017-2019 WPMS.

PMSAT solvers with regards to the number of best solu-
tions found. AVD-SLS have five hard benchmark families:
atcoss-mesat, atcoss-sugar, circuit-compaction, des, and hs-
timetabling. The hs-timetabling benchmark family only has
two instances, and AVD-SLS solved one; we believe this
result does not reflect the performance of AVD-SLS in this
family. On the other hand, instances from atcoss-mest and
circuit compaction families were never solved by any SLS
solver. In atcoss-mesat, we found very large-sized instances
with hundred thousands to millions of variables and clauses.
Meanwhile, the circuit compaction instances have only a few
thousands of variables and clauses, but had complex struc-
tures. Such hard instances may require more pre-processing

techniques or structure extraction methods for them to be
solved by SLS solvers. Most SLS solvers only consider unit
propagation (UP) for pre-processing, as is the case for our
solver AVD-SLS.

This evaluation study shows that AVD-SLS is the best
solver among SLS solvers (Fig. 5 and Fig. 6) and that it is
competitive with a number of well-known hybrid solvers,
as shown in Fig.s 7 to 12. For example, AVD-SLS is among
the top three solvers for MSE 2014 and MSE 2017. It is
remarkable that for most of solved instances, AVD-SLS is
able to find the best solution or near best solutions. AVD-
SLS may be improved to solve more hard instances either by
means of new pre-processing techniques [74], [75] to reduce
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TABLE 14. A subset of PMS benchmark from MSE 2017-2018 used for the initial tuning of the parameters for our solver.
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TABLE 15. A subset of WPMS benchmark from MSE 2017-2018 used for the initial tuning of the parameters for our solver.
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TABLE 16. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2014 (crafted and industrial) benchmark - 300 seconds.

TABLE 17. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2015 (crafted and industrial) benchmark - 300 seconds.

the dimensionality of large-size instances, by extracting com-
plex structure such as Boolean gates of input CNF formula
F [76], or by using both. Almost all complete and hybrid
PMSAT solver incorporate many pre- or co-processing tech-
niques to reduce the dimensionality of large-sized instances.

B. DISCUSSION OF THE RESULTS ON WPMS
AVD-SLS shows excellent performance on random
instances like most SLS solvers, with regards to number of

solved instances, but is able to find only few best solutions.
Only few hybrid solvers were able to solve all random
instances.

For the crafted class, AVD-SLS perform competitively
with all PMSAT solvers with regards to the number of best
solutions found and is the best SLS solver on this class. Fur-
thermore, based on our categorization of AVD-SLS’ perfor-
mance, it demonstrates excellent performance in 23 crafted
families. In fact, only one benchmark family is hard: miplib.
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TABLE 18. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2016 (crafted and industrial) benchmark - 300 seconds.

TABLE 19. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2017 (crafted and industrial) benchmark - 300 seconds.

TABLE 20. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2018 (crafted and industrial) benchmark - 300 seconds.
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TABLE 21. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on PMS_2019 (crafted and industrial) benchmark - 300 seconds.

TABLE 22. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2014 (crafted and industrial) benchmark - 300 seconds.

We found that some miplib instances can be solved when the
time limit is increased.

For the industrial class, AVD-SLS shows excellent perfor-
mance in 16 benchmark families and is the best SLS solver
on this class. Moreover, AVD-SLS perform competitively
with the PMSAT solvers with regards to the number of best
solutions found. AVD-SLS has two hard benchmark families:
robot navigation and shift design. We found that the robot
navigation instances of large-size with hundred thousands of
variables and clauses, whereas the shift design instances have
very large size with hundredmillions of variables and clauses.

As discussed in the PMS results, such hard instances may
need more pre-processing techniques or structure extraction
methods for them to be solved by SLS solvers.

This evaluation study shows that AVD-SLS is the best
solver among SLS solvers (Fig. 5 and Fig. 6) and that it
is competitive to a number of well-known hybrid solvers,
as shown in Fig.s 13 to 18. For MSE 2015 to MSE 2018,
AVD-SLS is among the top three solvers. It is remarkable
that for most of solved instances, AVD-SLS is able to find the
best solution or near best solutions. As discussed in the PMS
section above, AVD-SLSmay be improved to solvemore hard
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TABLE 23. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2015 (crafted and industrial) benchmark - 300 seconds.

TABLE 24. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2016 (crafted and industrial) benchmark - 300 seconds.

TABLE 25. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2017 (crafted and industrial) benchmark - 300 seconds.

instances by means of new pre-processing techniques [74],
[75] to reduce the dimensionality of large-size instances or by
extracting complex structure [76] or by using both. Almost all

complete and hybrid PMSAT solvers incorporate many pre-
or co-processing techniques to reduce the dimensionality of
large-sized instances.
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TABLE 26. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2018 (crafted and industrial) benchmark - 300 seconds.

TABLE 27. Detailed results of AVD-SLS and state-of-the-art SLS and hybrid solvers on WPMS_2019 (crafted and industrial) benchmark - 300 seconds.

VII. CONCLUSION
In this work, we have presented an adaptive variable depth
SLS algorithm for the PMSAT problem. In this novel algo-
rithm framework, we have proposed two main components:
an adaptive parameter tuner and a VDS algorithm adopted for
the PMSAT problem. This work provides a comprehensive
evaluation of the AVD-SLS solver implemented based on our
proposed algorithm with the use of MSE 2014–2019 bench-
marks. AVD-SLSwas evaluated onmore than 3,600 instances
from MSE weighted and unweighted benchmarks.

As expected, the experimental evaluation study in
Section V demonstrates that our solver AVD-SLS is a highly
competitive SLS solver. AVD-SLS proves that PMSAT SLS
solvers have the capability to compete with hybrid PMSAT
solvers in both PMS and WPMS. Generally, AVD-SLS
improves the quality of solutions when the time limit is
increased. This emphasizes the critical role of each SLS
method’s component.

Furthermore, AVD-SLS outperforms all PMSAT SLS
solvers that participated in MSE 2014–2019 on crafted and
industrial benchmarks with regards to three evaluation cri-
teria: number of solved instances, number of best solutions,
and score measure. AVD-SLS performs remarkably better
in WPMS than in PMS. For example, if we compare the

rankings of AVD-SLS and SATLike on PMS (Fig. 11) and
on WPMS (Fig. 17) in MSE 2018, AVD-SLS ranked fourth
and third, respectively, whereas SATLike ranked fifth and
seventh, respectively.

Our investigation shows that state-of-the-art PMSAT SLS
solvers are built around two important algorithmic com-
ponents: a variable-pick heuristic and a weighting scheme.
However, some hard benchmark families constitute very large
and/or complex structures, which are still beyond the capacity
of existing SLS solvers. Based on the evaluation results in
Section V, we found that the general framework of an SLS
method consists of additional algorithmic components that
can be exploited to improve state-of-the-art SLS solvers.
In this study, we selected two components, namely, parameter
tuning and VDS for large neighborhood search. Other algo-
rithmic components include new pre-processing techniques,
neighborhood definition and search method, and other diver-
sification techniques such as reset and restarts.

In our proposed algorithm, we designed the adaptive
parameter tuner based on our study of the features of an
input instance. In this study, we considered the problem size
features, variable-clause features, and balance features [77].
More features may be included in the future to improve the
adaptive tuner, such as variable-graph features, clause-graph
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features, and local search probes including the minimum
fraction of unsatisfied clauses per run, the number of steps
to the best local minimum per run, etc. In addition, more
heuristics may be adopted with the VDS algorithm to facil-
itate its improvement, such as the highest cumulative score
heuristic [78].

Several algorithmic components of an SLS algorithm can
be exploited to improve its performance. The results of the
evaluation study emphasize many of these components, such
as preprocessing techniques, parameter tuning, neighborhood
definition and search algorithms, diversification techniques,
and exploitation of the structure of instances.

Nevertheless, SAT and PMSAT solvers have been shown
to be competitive for solving hard constrained combinatorial
problems in many different domains with various techniques
while speeding up solving, including automated software and
hardware engineering problems such as fault test, detection
and diagnosis [79], [80], upgradability [81], circuit design
diagnosis [82], etc., that encoded as SAT and PMSAT prob-
lems and solved by SAT solvers [83] and PMSAT solvers
[84]–[86]. However, robustness and correctness are essential
criteria, since these solvers are used as core decision engines
and optimization methods [87]. Automated software engi-
neering approaches, such as combinatorial testing (CT), can
be used as systematic techniques that detect faults and failures
in the software under testing (SUT) [83].
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APPENDIX A
UNWEIGHTED BENCHMARK USED FOR INITIAL TUNING
See Table 14.

APPENDIX B
WEIGHTED BENCHMARK USED FOR INITIAL TUNING
See Table 15.

APPENDIX C
UNWEIGHTED FAMILY-BASED BENCHMARKS
See Tables 17–21.

APPENDIX D
WEIGHTED FAMILY-BASED BENCHMARKS
See Tables 22–27.
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