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ABSTRACT Super resolution (SR) and Perceptual Image Enhancement (PIE) are gaining more and
more interests in digital image processing and have been studied independently in the past decades.
Although plenty of state-of-the-art researches have demonstrated great improvement in SR problem, they
neglect practical requirements in real-world application. In practice, these two tasks are always mixed
and combined to obtain a high-resolution enhanced (HRE) image with high quality from a low-resolution
original image (LRO) with low quality. In this paper, we propose a joint SR-PIE learning framework called
Deep SR-PIE, which comprises Multi-scale Backward Fusion Network (MBFNet), Perceptual Enhancement
Network (PENet) and Dual-Path Unsampling Network (DUNet). MBFNet network is responsible for deep
feature representation for further image reconstruction and perceptual enhancement, and PENet seeks
the optimal local transformation to recover perceptual loss (color, tone, exposure and so on). DUNet
works in different scales and exchanges each other to complement more details during upsampling. In our
experiments, a real-world dataset is released to facilitate the development of joint learning for SR and PIE.
Then, a thorough ablation study is provided to better understand the superiority of our method. Finally,
extensive experiments suggest that the proposed method performs favorably against the state-of-the-arts in
terms of visual quality, PSRN, SSIM, model size and inference time. By virtue of splitting operation and
inverse residual blocks, as a lightweight deep neural network, our model is compatible with low-computation
device.

INDEX TERMS Super resolution, perceptual image enhancement, lightweight.

I. INTRODUCTION
Image super-resolution and perceptual image enhancement
are main research topics in the fields of computer vision
and image processing. SR refers to recovering natural High
Resolution (HR) images from Low Resolution (LR) images,
which enjoys a wide range of real-world applications, such
as medicine, public safety and surveillance, aerospace and
so on. PIE typically learns the non-linear mapping from
input images to retouched images, which is popular in
photo retouching and computer vision [1]. There are some
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similarities and differences between these two tasks. For their
similarities, they both attempt to reconstruct LR image with
higher quality by alleviating blurs and artifacts. For their dif-
ferences, SR caresmore about detail reconstruction while PIE
focuses more on perceptual enhancement (color rendition,
light and contrast adjustment). Through a joint learning of
SR and PIE, the visual quality of LR image can be enhanced
in terms of contrast, color and detail with less side effects.

In our practical scenario, limited by unstable bandwidth
and low computation capability, live streaming image are
downscaled and retouched by our own Image Sensor Proces-
sor (IPS) and then displayed on terminal devices. In this way,
we offer pleasing experience as well as decreasing network
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delay. Afterwards, all the HR images are carried back with
external disk or big hard disk, and then retouched by profes-
sional photographers with Adober Photoshop or Lightroom.
Unfortunately, it takes arduous efforts to achieve pleasing
visual results. Thus, it is essential to convert LR image to HR
image with higher perceptual quality automatically.

In general, this joint problem is challenging and ill-posed
since the pair of LR image and HR image is not a one-to-
one correspondence. Recently, deep learning techniques have
achieved substantial performance in various computer vision
tasks and have greatly promoted the development of SR and
PIE. To tackle SR task, a variety of deep learning methods
based on traditional Convolution Neural Network (CNN)
[2] and Generative Adversarial Nets (GAN) are developed.
To handle PIE task, a serious of automatic methods are devel-
oped to address the issues of color rendition, image sharpness,
brightness and contrast [1], [3]. For the joint problem, people
takes for granted that producing HRE image from LRO one
is to execute SR and PIE methods in sequence. Nevertheless,
it is inefficient and inaccurate since error would be propa-
gated in cascaded process. Moreover, when performing in
joint scheme, the outputs generated by these two tasks could
potentially complement each other to provide better results.

To address the joint SR-PIE problem, we consider it from
a holistic perspective and then propose a deep neural net-
work named Deep SR-PIE, which consists of Multi-scale
Backward Fusion Network(MBFNet), Dual-Path Unsam-
pling Network (DUNet) and Perceptual Enhancement Net-
work (PENet). With respect to MBFNet, in order to increase
the enlarge receptive field for extracting hierarchical features,
we take different scales into account and adopt a backward
concatenation for feature fusion. In detail, Multi-scale Split-
ting Block(MSB) is proposed to express multi-scale features,
which retains partial information and proceeds other infor-
mation with further layers. As for DUNet, it is proposed
for upsampling through two-path shared convolution layers.
With regard to PENet, an encoder-decoder network is pro-
posed to learn the local transformation to correct the results
from MBFNet. Benefiting from joint learning strategy, our
method is capable to generate promising Super-Resolution
Enhanced (SRE) images with low inference time. To better
train our method, we release a real-world dataset named
Alltuu2 involving 5K LRO and HRE image pairs.

Our contributions are summarized as follows: 1) We pro-
pose a novel multi-branch deep learning model for joint SR-
PIE problem that achieves good trade-off between speed
and performance. 2) We design an encoder-decoder network
to learning the local transformation to improve the percep-
tual performance of high-resolution image. 3) We propose a
new upsampling network with dual-path shared convolutions
to enhance high-frequency details. 4) We contribute a new
practical dataset named Alltuu2 for joint SR-PIE problem,
and employ evaluation of the comparative methods on four
datasets to figure out the superiority of our method.

The rest of this paper is organized as follows. Section II
displays the discussion of related work. In Section III,

the proposed method is described, and the experimental
results are analyzed in Section IV. Finally, Section V con-
cludes the paper and suggests possible topics for future
research.

II. RELATED WORK
This work addresses the joint problem of SR and PIE
for a single RGB image. In previous works, these two
problems are well-studied separately. To our best knowl-
edge, we are the first to solve the joint problem in a
joint way. In this section, we first review several major
works for Single Image SR (SISR) and PIE under super-
vision, respectively, and then discuss the literature of joint
solution.

A. SUPER-RESOLUTION
Compared with traditional method, SISR methods based on
deep learning show superior performance thanks to their
powerful feature representation capability. With more recent
structures employing residual block [4], dense connections
[5] and channel attention blocks [6], most of the state-of-
the-art approaches attempt to seek different optimal combi-
nations of multiple modules. In residual learning, shortcut
connections are used to directly connect input and output
images(features). The pioneer work [2] proposes SRCNN
to learn the mapping from LR image to HR image and
achieve superior performance against previous works. Later,
Kim et al. [7] and Zhang et al. [8] further improve SR
performance by increasing the depth of CNN with residual
learning. In SRResNet [9], stacked residual blocks and gener-
ative adversarial network are introduced to solve SR problem.
Then, SRResNet is enhanced to a wider network EDSR and
a deeper network MDSR via stacking more residual net-
works. In dense connections, for each layer in a dense block,
the features maps of all preceding layers are treated as inputs,
and their own feature maps are also passed to subsequent
layers. Tong et al. [10] construct SRDenseNet with dense
blocks and insert dense connection between different dense
blocks to restore details and speed up SR model. To make
full use of cleaner residual features, RFA [11] aggregates
the local residual features with dense connection for more
powerful feature representation. Whereas, the requirement of
abundant parameters limits its application in real-time prac-
tice. MemNet [12], RDN [13], CARN [14] and DBPN [15]
utilize wider and deeper network with layer-level and block-
layer dense connections to boost their performance. Besides
extensive efforts spent on designing wider and deeper struc-
tures, several models with attention modules are proposed
to further enhance representation power of deep CNNs by
exploring feature correlations along either spatial or channel
dimension. RCAN [13] and SOCA [16] incorporate channel
attention to further boost the performance. As an extension of
channel attention, CS-NL [17] allows the network to concen-
trate on informative area with cross-scale feature correlation.
However, its better SR results come at high computation
cost.
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B. PERCEPTUAL IMAGE ENHANCEMENT
Perception Image Enhancement has been studied for a long
time in computer vision and image processing [3], [18].
Recently, with the success of CNN, pretty of learned-based
approaches have been emerged as useful tools and enhance
perceptual images in the following two aspects. The first
one aims to learn a color-aware and lightness-aware mapping
between the pairwise original-and-retouched training data.
Yan et al. [19] automatically enhance color based machine-
learned ranking approach. By means of local semantics
in image, the automatic photo adjustment framework [20]
applies stylistic color and tone adjustments to input original
image after training on elaborated selected pairwise data
samples. Gharbi et al. [21] introduce bilateral learning by
combining bilateral grid algorithm with local affine color
transformation for real-time application. Besides, reinforce-
ment learning is also incorporated to generate understandable
operation sequences for photo retouching [22], [23]. The sec-
ond one mainly pays regard to detail recovery of low-quality
image. Hybrid model is designed to model high-frequency
edges and low-frequency image contents using Recurrent
Neural Network (RNN) and autoencoder technique, respec-
tively [24]. To compensate for lost details, Enhancenet [25]
generates images with more realistic textures by using a per-
ceptual loss, and reference [26] learns a translation mapping
from ordinary photos to DSLR-quality photos to improve
both rendition and image sharpness. Moreover, the issue of
low-light image enhancement is similar to perceptual image
enchantment. Apart from the factors of low-light and noise,
perceptual image enhancement also focuses on the color
variant. Lore et al. [27] make the first attempt by training
Low-Light Net (LLNet) on random Gamma correction for
contrast enhancement and noise removal. Later on, various
methods on more complex networks are proposed with paired
dataset [24], [28] or unpaired dataset [29], [30]. Because these
method are oriented towards enchaining contrast information
rather than color change, the results of these methods are still
imperfect especially failing to restore color variance.

C. JOINT SR-PIE
In real-world application, it is impossible to remain image
perceptual quality when resolving SR problem. In the field
of joint SR-PIE, much effort is paid for raw images rather
than RGB images. For 12-bit or 14-bit raw images, a series
of approaches analyze intrinsic mechanism of raw image
and learn a large collection of operations (e.g., demosaicing,
denoising, compression and color correction) to approximate
nonlinear ISP pipelines. To be concrete, Schwartz et al. [31]
resort to deep CNNs for learning color correction mapping of
specific digital cameras. Following their work, Xu et al. [32]
design a dual network to exploit both raw data and color
image for real scene super-resolution, which generalizes well
to different cameras. Also, HERN [33] employs two parallel
paths to learn image features in two different resolutions.
For joint SR-PIE problem, recent methods only treat PIE as

auxiliary product when solving SR problem for raw images,
and most of them only concern about details rather than color.
However, the mixture problem of SR and PIE has not wit-
nessed jointly learning strategy to the best of our knowledge.

III. METHODOLOGY
Many recent SR networks have similar network structure,
similar to several state-of-the-art methods [11], [13], the over-
all pipeline of our proposed framework is depicted in Fig. 1,
which is mainly divided into three components: Multi-scale
Backward Fusion Network (MBFNet), Dual-path Unsam-
pling Network (DUNet) and Perceptual Enhancement Net-
work (PENet). In order to reduce computation and spatial
complexity, we prefer putting upsampling operation at the
end. The detail of the proposed framework is elaborated
below.

IMBFNet = HMBFNet (I , Ii+d ) (1)

IPENet = HPENet (IMBFNet , I ) (2)

ISRE = HDUNet (IPENet ) (3)

where IMBFNet and IPENet are the outputs of MBFNet and
PENet. HMBFNet (·), HPENet (·) and HDUNet (·) denote the net-
work of MBFNet, PENet and DUNet, respectively. MBFNet
network is responsible for deep feature representation for
further image reconstruction and perceptual enhancement.
PENet network is devised to estimate local transformation on
above deep features IMBFNet and input image I . To achieve
SR objective, DUNet network is designed for image recon-
struction where dual-path shared convolutions followed by
pixelshuffle modules are applied. Ii+d means the concatena-
tion of I and Id . ISRE is the final output of Deep SR-PIE.

A. INPUT DECOMPOSITION
Inspired by the work [34], an efficient and effective guided
filter is used to preserve edges and textures. For a given
LRO image I and its corresponding HRE image IHRE . In our
pipeline, I is first decomposed into the base layer Ib and the
detail layer Id . Ib is obtained by applying low-pass filter to
LRO image, and Id is calculated by simply diving I by Ib.

Ib = low_ filter(I ) (4)

Id = I � Ib (5)

where � is element-wise division operation and low_filter
denotes low-pass filter. Id is dominant with high frequency
information that can preserve edges and textures. Owning to
the specific usages of the detail layer, we entitle our model
to describe high frequency more powerfully by using Ii+d as
one of its input, which is formulated as:

Ii+d = I + Id (6)

B. MULTI-SCALE BACKWARD FUSION BLOCK
As illustrated in Fig. 1, MBFNet mainly consists of
three paths: Multi-scale Splitting Block (MSB), Backward

48448 VOLUME 9, 2021



Y. Xu et al.: Joint Learning of SR and PIE for Single Image

FIGURE 1. The overall pipeline of our proposed framework Deep SR-PIE.

Propagation Block (BPB) and Hybrid Feature Aggregation
(HFA).

IMSBt = HMSB(IMSBt−1 )

= HMSB(HMSB(· · · (HMSB((H(I )) · · · )) (7)

IBPBk+1 = HBPB(IMSBt−k−1, I
BPB
k ) (8)

IHFA = Concat(IMSB0 , IMSB1 , · · · , IMSBt , IBPBt ,H(Ii+d ))

(9)

IMBFNet = HMBFNet (I , Ii+d )

= Conv3(Conv3(Conv1_R(IHFA))⊕H(I )) (10)

whereHMSB,HBPB represents the modules of MSB and BPB,
respectively. IMSBk and IBPBk respectively denote the outputs
of the k-th MSB and BPB(k ∈ [0, t]). Given the input,
we can get the shallow feature H(·) where H stands for the
convolution operator 3×3 in our implementation.Conv1_R(·)
is convolution 1×1 followed by RRelu activation and Conv3
is 3× 3 convolution.

1) MULTI-SCALE SPLITTING BLOCK
The goal of MSBs is to extract features for deep feature
learning. Inspired by Inception block [35] and channel split-
ting idea [36], we design Multi-scale Splitting Block (MSB)
and utilize t + 1 MSBs to capture the features at different
scales. As illustrated in Fig. 2, MSB uses a series of multi-
scale residual splitting operations to extract different scales
features. Firstly, as dilated convolution [37] could increase
the receptive field under the condition that the resolution of
feature map is unchanged, we use a dilated convolution 3×3
followed byRReLu layer to perceivemore information. Then,

we put forward a series of splitting steps to produce multi-
scale features efficiently. For the first step, MSB employs
1×1, 3×3 and 5×5 convolution layers to split the preceding
features into three parts. The result of 1 × 1 convolution
layer is retained, and the other two parts are fed into the next
steps. For the second step, the result of 3 × 3 convolution
layer is split into two parts with channel splitting operation.
One is preserved and the other part is fed into next step.
Also, the above procedure is applied to the result of 5 × 5
convolution layer. After two splitting steps, all the distilled
features are concatenated together and then fed into a 1 × 1
convolution to reduce the channels and parameters.

In SR task, the reconstruction performance depends on
the perception of high-frequency features. Accordingly,
Frequency-aware Channel Attention (FCA) is proposed to
select frequency-aware contextual information. Let xcon is
the above concatenated features, we first adopt two dilated
convolutions to extract features in different receptive fields.
The two convolutions fd1 and fd2 are kernel = 1 with dilation
rate = 1 and kernel = 3 with dilation rate = 2, respectively.
Next, we consider a high-frequency ratio map Cr between
these two groups.

Cr = sigmoid(fd1(xcon)− fd2(xcon)) (11)

where Cr is the pixel-wise contrast information where the
pixel with high contrasts, and sigmoid is sigmoid function.
Then, we multiply xcon by Cr to obtain high-frequency map
Ch = Cr ·xcon. Finally, the output of FCA layer is expressed as
IFCA = Ch⊕Cr that acts as the enhancement of xcon. With the
assistance of FCA module, our network can improve the SR
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FIGURE 2. The architecture of MSB. Here, 64, 48, 32 and 16 represent the
output channels of the convolution layers. ‘FCA layer’ indicates the
proposed frequency-aware channel attention (FCA).

performance steadily. Besides, a skip connection is utilized to
enhance the feature propagation of IFCA, yielding the output
of IMSBk+1 = IFCA ⊕ IMSBk .

2) BACKWARD PROPAGATION BLOCK
As we all know, hierarchical information plays an importance
role in reconstructing image. Therefore, we present t + 1
backward propagation blocks to fuse the features from the
preceding MSBs. As illustrated in Fig. 1, there are t = 3
BPBs. Mathematically, the output of the (k+1)-th BPB IBPBk+1
is formulated as:

IBPBk+1

=

{
Conv1_R(IMSBt−k−1) if k == 0,
Concat(Conv1(IMSBt−k−1),Conv1(I

BPB
k )), otherwise

(12)

where Concat is the concatenation operation. From Eq. 12,
except the first BPB, the feature IBPBk followed by a 1 × 1
convolution is concatenated with IMSBt−k−1 followed by a 1 ×
1 convolution. In this way, we find such a backward fused
strategy helps to integrate the features with more hierarchical
contextual information.

3) HYBRID FEATURE AGGREGATION
As a aggregation module of all the features from different
branches, HFA is able to provide a more representative fea-
ture for SR task. As displayed in Eq. 9, HFA is designed to
concatenate the following hybrid features. Regarding the first

FIGURE 3. The details of perceptual enhancement network.

branch HFA1, the output of IBPBt is generated subsequently
to make a better use of hierarchical features. As the second
branch HFA2, the output of the t-th MSB is sent directly to
the end of IBPBk+1 , which link the MSBs with IBPBk+1 in order
to provide rich information for SR reconstruction. For the
last branch HFA3, the input Ii+d carried with high-frequency
details pass through a 3 × 3 convolution to compensate the
lost high-frequency information. After that, a concatenation
operation is applied to stack the above features together
termed as IHFA. Compared with the way of simply stacking
multiple residual skipping, HFA attempts to ensure that the
useful information can be propagated to the next layer without
any significant loss, leading to a more discriminative feature
representation.

To alleviate the vanishing-gradient problem, a skip con-
nection from the shallow feature of input I is introduced into
MBFNet. As illustrated in Eq. 10, Conv3(Conv1_R(IHFA)) is
element-wise addition with and H(I ), and then pass through
3× 3 convolution to yield the output of MBFNet IMBFNet .

C. PERCEPTUAL ENHANCEMENT NETWORK
As another critical branch, PENet and its postprocessing are
designed to correct and restore lost perception between LRO
and HRE. PENet aims to learn a pixel-wise mapping param-
eters for local transformation, and then is applied to the pre-
ceding mapping on IMBFNet in order to enable more versatile
adjustment. The input of PENet is the shallow feature H(I )
while the output is local transformation. Detailedly, PENet
has an encoder-decoder structure. The encoder reduces the
spatial resolution ofH(I ) to exploit larger receptive fields for
spatial filtering, while the decoder performs upsampling to
restore the spatial resolution. The detail of PENet is depicted
in Fig. 3. Given the input shallow feature H(I ), it is encoded
and gradually downsampled with a series of inverse residual
3×3 convolution operations until W8 ×

H
8 ×32. In decoder part,

upsampling denotes the deconvolution operation to increase
the size of the feature map with scale×2. ‘Copy and Concat’
copies the outputs of ‘Stage 1’, ‘Stage 2’ and ‘Stage 3’, and
concatenate with the previous results in ‘Stage 6’, ‘Stage 7’
and ‘Stage 8’. After three upsampling stages with ‘Copy and
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Concat’, the feature map shares identical size with the input is
obtained. In ‘Stage 9’, we utilize 1× 1 convolution to reduce
the channel dimension and output theAPENet with the size of
W × H × 12.

Motivated by the works [31], [38], [39], we try to learn
a pixel-wise local transformation to recover perceptual loss.
Since global enhancement adjustment methods work for all
the pixels, they always over-/under-enhance local regions in
most cases. To address this problem, as a postprocessing step,
we resort to matrix APENet with the size ofW ×H × 12 as a
pixel-wise local transformation for each pixel, and write it as
follows:

ISRE =
2∑
i=0

APENet [:, :, i× 3 : (i+ 1)× 3]

× IMBFNet (1− IMBFNet )+APENet [:, :, 9 : 11]

×IMBFNet

D. DUAL-PATH UPSAMPLING NETWORK
As an important end-to-end learnable layer, pixelshuffle has
been widely used to upsample in SISR task [40]. Different
from deconvolution layer, it generates a series of channels by
convolution and then reshape them. After this layer, a feature
map can be upsampled with s2 times channels where s is
the scaling factor. However, limited by fixed kernel size,
pixelshuffle fails to provide enough contextual information
to restore realistic details. In order to address the problem,
we propose Dual-path Upsampling Network (DUNet) which
works in different scales and exchange each other to com-
plement more details. As illustrated in Fig. 4 and Eq. 13,
the input FMSDAB with 3 channels is processed by 3 × 3
and 5 × 5 convolutions, respectively. Using the channel
splitting strategy in Section III-B1, the preceding results
are split into three parts. the first (FT1_1 or FB1_1) goes
forward the next convolution layer, the second (FT1_2 or
FB1_2) moves to another path, and the last (FT1_3 or FB1_3)
acts as skip connection. During these two-bypass convo-
lution operations, the information between those bypasses
can be shared each other. Then, they are passed through
shuffle operations to upsample s2 times. Finally, all of these
feature maps are concatenated and sent to a 1 × 1 convo-
lution layer. Formally, the above procedure can be written
as:

FT1 = Conv5(FMSDAB)

FB1 = Conv3(FMSDAB)

FT1_1,FT1_2,FT1_3 = Split(FT1)

FB1_1,FB1_2,FB1_3 = Split(FB1)

FT2 = Conv5(Concat(FT1_1,FB1_2))

FB2 = Conv3(Concat(FB1_1,FT1_2))

FT3 = Shuffle(Concat(FT2,FT1_3)))

FB3 = Shuffle(Concat(FB2,FB1_3))

ISRE = Conv1(Concat(FT3,FB3))

(13)

FIGURE 4. The architecture of dual-path upsampling network.

where Split and Shuffle denote channel splitting operation and
PixelShuffle operation, respectively.

E. HYBRID LOSS AND EVALUATION METRICS
1) LOSS FUNCTION
Apart from network architecture, loss function also plays a
key part in network design. In this paper, we propose a hybrid
loss function containing five components and minimize it
during our training. Given an input image I , the predicted
SRE image ISRE and the ground-truth image IGT , the hybrid
loss can be expressed as Eq.14.

L = w1Lcon + w2Ltv + w3Lcolor + w4LMSSIM + w5L1

(14)

where Lcon, Ltv, Lcolor , LMSSIM and L1 are loss components,
and w1, w2, w3, w4 and w5 are their corresponding tunable
weights, respectively. Empirically, we set w1 = 0.001, w2 =

1, w3 = 0.0005, w4 = 300 and w5 = 0.05.
Content Loss: Content loss, also named as perceptual loss,

makesmany contributions on SR and PIE. The goal of content
loss is to encourage distances of images in feature representa-
tions to be as close as possible. In our case, it helps to preserve
image semantics to some extent. Generally, the feature space
constructed by an pre-trainedVGG-19model proves effective
in previous works [41]. So, content loss is defined as:

Lcon =
1

CjHjWj

∥∥∥ϕj(ISRE , IGT )∥∥∥ (15)

where Cj, Hj, and Wj are the number of channels, height,
width of feature maps obtained by j-th convolutional layer of
VGG-19 CNN network. Here, we use pool4 layer as feather
extractor when training our framework.
Total Variation Loss:Typically, it is observed that networks

only with content loss are inclined to generate highly pixe-
lated and noisy output. Consequently, we add total variation
loss to enforce spatial smoothness and continuity. Intrinsi-
cally, total variation loss can be treated as regularization loss.

Ltv =
1

CHW

∥∥∥∇xISRE +∇yIGT∥∥∥ (16)

where C , H , W are the size of output ISRE .

VOLUME 9, 2021 48451



Y. Xu et al.: Joint Learning of SR and PIE for Single Image

Color Loss: In addition to content loss and total variation
loss, differences in contrast, brightness and color are consid-
ered to encourage the above properties of ISRE to match those
in IGT . For the purpose of enhancing perceptual quality, color
loss is incorporated to solve our joint SR-PIE problem.

Lcolor =
∥∥∥ISREdk − I

GT
dk

∥∥∥2
2

(17)

where ISREdk and IGTdk are the blurred images of ISRT and IGT ,
respectively. In contrast to Gaussian blur, dual kawase blur is
more efficient to produce comparable or even better results.
MSSIM Loss:As one of our goals, our framework attempts

to produce visual pleasing images. The networks with struc-
tural similarity index (SSIM) loss are always encountered
with the dilemma of whether set larger Gaussian coefficient
or smaller one [42]. Rather than fine-tuning the coefficients,
a Multi-scale SSIM (MSSIM) is utilized to extract SSIM at
different scales based on the sensitivity of HVS. Given a
pixel p from the same spatial location from ISRE and IGT ,
its MSSIM can be written as

MSSIM (p) = [lM (p)]αM ·
M∏
j=1

[cj(p)]βj [sj(p)]γj (18)

where lM (p) is the luminance comparison at scale M.
At j-th scale, cj(p) and sj(p) denote the contrast comparison
and the structure comparison, respectively. αM , βj and γj
are used as the weights of different components. For conve-
nience, in most cases, αM = βj = γj = 1. To alleviate the
difficulty of calculating the derivatives, an alternativeMSSIM
can be found.

LMSSIM = 1−MSSIM (p̃) (19)

where p̃ is the center pixel of input images. As proved in [42],
the network kernels learned by the center pixel can be also
equally applied to the other pixel in the images.

L1 Loss Pixel-wise loss is critical to measure reconstruc-
tion error and guide model optimization. Instead of L2 loss,
the networks equippedwithL1 loss tend to learn better signal-
to-noise ratio (PSNR) [43], [44] that is highly correlated with
pixel-wise difference. Thus, we also prefer L1 loss to avoid
getting stuck in a local minimum.

L1 =

∥∥∥ISRE − IGT∥∥∥
1

(20)

2) EVALUATION METRICS
Evaluation metrics play an import role in measuring the
performance of models. As we all know, there is no unified
and admitted metric to evaluate image quality objectively.
To be fair, we also adopt the most widely used metrics PSNR
and SSIM as our evaluation metrics. With regard to PSNR,
it is used to measure signal distortion between ISRE and IGT ,
whereas it would result in incredible value even if two image
are almost indistinguishable. In reference to SSIM, it focuses
on measuring the perceptual quality of brightness, contrast
and structure. As for these two common metrics, the higher
are the values, the better are the quality of ISRE .

IV. EXPERIMENTS
In this section, we conduct our experiments to evaluate the
performance of our proposed framework for joint SR-PIE
problem. The experiments include three parts: The first part
makes ablation studies of our framework, the second part
evaluates our proposed framework against several state-of-
the-art methods on various benchmark datasets and the last
part presents some failure cases.

A. DATASETS
1) TRAINING SETS
Following the previous works, we choose DIV2K dataset as
one of our training sets. It contains 800 LR-HR 2K resolution
images and spans a variety of image categories, including
animal, building, food, landscape, people, plant, etc. We use
all the 800 high-resolution images as training images. It was
collected for NTIRE2017 and NTIRE2018 Super-Resolution
Challenges in order to encourage research on image super-
resolution with more realistic degradation. As illustrated
in Fig. 5(a,b), no perceptual loss is found in dataset DIV2K.
Note that there is no specific benchmark dataset for the joint
problem of SR and PIE, so we further release a real-world
dataset called Alltuu2 which is captured with various ISP
equipments (Canon EOS 5D Mark IV, NIKON D810, Canon
EOS 5D Mark III, etc.). In our practical application, millions
of 2K+ images from different scenes are captured and stored
according to scene category. For these LRO images, several
skilled photographers enhance the images with Adober Pho-
toshop or lightroom, yielding LRO-HRE image pairs. Then,
we randomly extract image pairs from different categories to
avoid high coherence among these images. As seen in Fig.
5(c,d), resolution loss and perceptual loss are found in dataset
Alltuu2. In total, 5,153 training images are randomly selected
from Alltuu2 in our experiments. All relevant codes and our
own dataset are available in Deep SR-PIE soon.

2) TESTING SETS
After treating DIV2K dataset as training set, we adopted
four widely-used super resolution benchmark datasets in
inference procedure. BSD100, as a subset of BSD 500 [45],
provides 100 natural scenes collected from Berkeley seg-
mentation dataset. Set14 and Set5 consists of 14 images and
5 images with different objects reported in [46], respectively.
Urban100 contains 100 HR images with a variety of real-
world building structures that fetched from Flickr using key-
words such as urban, city, architecture, and structure [47].
In the light of these four datasets, their heights or widths range
from 228 to 566. As a matter of convenience, the above four
benchmark datasets are collectively named dataset SRT. For
Alltuu2, 304 images are prepared for testing.

B. IMPLEMENTATION DETAILS
1) TRAINING DETAILS
To boost the performance and generality ability of our model,
random horizontal and vertical flipping(random probability
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FIGURE 5. The examples of training images. (a) (b) An pair example (LR
and HR) in dataset DIV2K. (c) (d) An pair example (LRO and HRE) in
dataset Alltuu2.

is 1) are used for data argumentation. In total, there are
1,600 and 10,306 training images in DIV2K and Alltuu2,
respectively. The proposed network is implemented with
Pytorch 1.1.0. The network is trained on a single NVIDIAr

1080Ti GPU by optimizing loss L for 120 epochs with var-
ied batch sizes. Inspired by the progressive training strategy
used in [33], we grow the resolutions of input and ground-
truth gradually. For the first 50 epoch, we use 64 × 64
patches and set the learning rate lr = 1 × 10−4. For the
last 70 epoch, we use 88 × 88 patches and set the learn-
ing rate lr = 1 × 10−5. With different patch sizes during
training, the batch size is also decreasing from 16 to 4.
Adam optimizer with setting (β1 = 0.9, β2 = 0.999) is
adopted. To prevent overfitting, we set dropout rate to 0.5.
To be fair, all the comparative methods are implemented
and line with the hyperparameters and parameters in their
papers.

2) TESTING DETAILS
In this section, self-ensemble strategy is applied on testing
images to improve model performance and robustness. Con-
cretely, three different operations, horizontal flipping, vertical
flipping and horizontal-vertical flipping are carried out on
testing image. Four different images including original one
are fed into our framework to get a set of four temporal
images. Then, the corresponding inverse transformations are
executed on the temporal set to produce the outputs. For the
final prediction image, it is conducted by the average of these
outputs.

In addition, we also evaluate the generalization abil-
ity of our model. Fig. 6 shows the training loss curve
vs testing loss over the number of the epochs on dataset
Alltuu2. As can be seen, as the number of the epoch
increases, the gap between training and testing loss
is stable. Namely, our model has strong generalization
ability.

FIGURE 6. The training loss curve vs testing loss over the number of the
epochs on dataset Alltuu2.

C. ABLATION STUDY
To better evaluate our proposed framework, we conduct abla-
tion studies by removing each component and keeping the
rest unchanged. We place particular emphasis on differences
brought by four main components. Thus, we design and
analyze the following experiments.

1) STUDY OF INPUT COMPOSITION
In this section, we validate the effectiveness of different
combinations of the inputs. In MSB, it requires more com-
plete and precise image information while either Ib or Id
will bring color cast. Thus, we only treat I as the input of
MSB and employ no further experiment on it. In the last
branch of HFA(HFA3), we take three different combinations
of input composition into account, and place their results
in Table 1(1-4). Notable benefit is gained with stacking I
and Ii+d that conforms with the report in [34]. Compared
with the whole image I , Ii+d puts particular emphasis on
high-frequency and detailed information. In addition, no fur-
ther performance is gained by Ib since the features only
dominated with low-frequency information are deficient to
reveal enough discriminated ability. Aside from quantitative
analysis, an visual qualitative comparison of HFA3 with the
above settings is placed in Fig. 7. From the perspective of
information utilization, we can inform that Ii+d better pre-
serves more informative high-frequency details and depress
noise and artifact at the same time, which is in accord with
the goal of HFA3.

2) STUDY OF MBFNet
In this section, the effectiveness of critical operations will be
investigated. At first, we make a thorough comparative exper-
iment to verify the importance of BPB. In general, BPB fuses
feature from multiple layers to obtain more contextual infor-
mation. As displayed in Table 1(1, 5), after removing HFA1
from our model, it is found the performance drops 5.87%
and 1.8% on metric PSRN and SSIM, respectively. From the
observation, it indicates BPB has a significant influence on
the performance. Then, we continue to verify the superiority
of skip connection from the shallow feature of input I . Skip
connection is always suggested in deep network architecture
to preserve long-term memory for residual learning. When
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TABLE 1. Ablation results (PSNR / SSIM) of the Deep SR-PIE model on dataset Alltuu2. The best results are highlighted in bold.

FIGURE 7. The visual qualitative result of different input of the last branch of HFA(HFA3).

FIGURE 8. The visual ablation comparative results with metrics PSNR and SSIM.

removing the skip connection(HFA2), Table 1(6) shows the
quantitative ablation results, from which we can find slight
performance decreases comparing with our model. Finally,
we evaluate the model when (HFA3) is eliminated. In this
case, no high-frequency and detailed information is used to
compensate the proposed model. As seen in Table 1(1, 7),
HFA3 plays an active role in the reconstruction process of SR
task. Moreover, we place their visual results in Fig. 8. From
Fig. 8(c), with the same settings in perceptual enhancement,
the difference between them and the ground-truth is the qual-
ity of reconstructed details. Without BPB models, the model

produces unnatural and blurry texture. From Fig. 8(b,d,e),
we find that the removal of HFA2 or HFA3 will result in
unclear details. As a summary, the above analysis demon-
strate that HFA1, HFA2 and HFA3 are of crucial importance
for fully exploiting deep features and high-frequency detail
from LRO images.

3) STUDY OF PENet
To investigate the importance of PENet, we design a series
of experiments with different structures. As mentioned in
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Section III-D, we apply another two local transformations to
correct the perceptual loss of ISR. For the first implementa-
tion, we refer to [48] and name it asAv1. Its definition can be
formulated as follows:

ISRE = Av1 × IMBFNet (1− IMBFNet )+ IMBFNet (21)

Similar to APENet , Av1 is learned by PENet in which the
convolution of ‘Stage 9’ is substituted with 5×5 convolution
with 3 channels. For the second implementation, we consider
the process in [39] and revise it as Av2.

ISRE = Av2 × IMBFNet (1− IMBFNet )+ IMBFNet

Av2 = S(x)
(22)

where x means the position of a pixel, and S(x) ∈ [−1, 1].
For the pixels with different light conditions (overexposure
or underexposure), the functions S(x) are totally different.
To achieve a clear result with rich details, we take brightness
and gradient information into account. We first choose a
moderate bezier curve whose coordinates are [0,1,1,1] to
get a illumination adjustment result Vh. Vb is taken as the
borderline of IMBFNet . Then, we calculates the gradient of Vh
and Vb, and get their difference D(x) = ∇Vh − Vb. Next,
we employ OTSU on D to get a threshold tg.

S(x) =

{
D(x), D(x) ≥ tg,
0, D(x) ≤ tg

(23)

The quantitative comparison results are given in
Table 1 (1, 8, 9, 10). Local transformations (APENet , Av1)
share the same processing pipeline which applies the output
of PENet to perceptual enhancement. In this way, ISR are
mapped to the ground-truth better. The biggest difference
between these two local transformations is the postprocess-
ing procedure. Instead of the linear combination of several
matrices in postprocessing, the transformation inAv1 for each
channel is a given matrix. Also, the coefficient of addition
term IMBFNet is set to 1. Note that Av2 is independent on the
output of PENet, which is determined by the brightness and
gradient information of IMBFNet . As shown in Table 1 (1, 8,
9, 10), our method performs better than the others. In Fig. 8,
we observe that the sample processed by Av2 (Fig. 8 (g))
is color cast, and the model without Av1 (Fig. 8 (f)) is the
most visually similar to the ground-truth. In order to show the
necessity of branch PENet, we train our model where branch
PENet has been removed. From Fig. 8 (h) and Table 1 (10),
it can be seen that high-fidelity color cannot be satisfactorily
recovered in this way.

4) STUDY OF DUNet
We conduct ablation analysis to concern about the contri-
bution of DUNet . As a contrast, the comparative module is
constructed with pixelshuffle and trained on our own dataset.
In table 1 (1, 11) and Fig. 8 (i), DUNet helps our model to
obtain better PSRN and SSIM by ways of shared features
brought by two-bypass convolution operations described in
Section III-D.

D. PERFORMANCE EVALUATION
1) COMPARATIVE METHODS
To our best knowledge, there is no public research for joint
SR-PIE problem. So far, there are enormous state-of-the-art
works toward SR and PIE independently. In some excel-
lent researches, latent key points in downscaled image are
perceived and explored to boost SR performance in the sub-
sequent upsampling procedure [49]. Nevertheless, the don-
wsampling operation is always unknown or even nonexistent
in real-world application. In our experiments, all of those
methods are not taken into consideration. Yet for all that,
we still try to train several SR methods and give them the
ability to address joint SR-PIE problem.
CS-NL: The cross-scale nonLocal attention module

(CS-NL) [17] is proposed to sufficiency discover the widely
existing cross-scale feature similarities in nature images. It is
then integrated with local and previous in-scale non-local
priors to benefit SISR.
EDRN: The encoder-decoder residual network (EDRN)

[50] introduces an encoder-decoder structure with coarse-to-
fine scheme. By means of larger receptive field and metic-
ulous network design, it can describe features with more
convex information and restore lost information gradually.
Also, it also makes a thorough discussion whether the usage
of batch normalization is efficient or not in real-world SISR
problem.
IMDN: The lightweight information multi-distillation net-

work (IMDN) [36] solves SISR problem by construct-
ing distillation and selective fusion parts. It conducts a
progressive refinement module to extract hierarchical fea-
ture and steadily improves SR performance with contrast-
aware channel attention. To be compatible with real-world
images with arbitrary size, it presents a adaptive cropping
strategy.
RFA: The residual feature aggregation (RFA) groups the

residual block together alongwith useful hierarchical features
[11]. Besides, an enhanced spatial attention (ESA) is intro-
duced to focus on spatial contents of key importance. The
final network is constructed by applying RFA with the ESA
blocks, which produces comparable SR results.
RCAN: The very deep residual channel attention Networks

(RCAN) [51] proposes residual in residual structure, multi-
skip connection and channel-attention module in SISR task.
As the best performance record holder in 2018, it achieves
better accuracy and visual improvement against the state-of-
the-art in terms of PSNR and SSIM.
DPE: The deep photo enhancer (DPE) [1] learns image

enhancement from a set of given photographers with unpaired
settings. Inspired by CycleGAN, it works in a two-way GAN
and makes some improvements on the stability and feature
representation of GAN models. As a practical unsupervised
method, it can be personalized to match individual users’
preferences conveniently.
DRBN: A deep recursive band network (DRBN) is pro-

posed to recover a linear band representation of an enhanced
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FIGURE 9. Qualitative comparison against the state-of-the-art on dataset SRT. Zoom in to see the details. The best result is
highlighted with underline.

FIGURE 10. Qualitative comparison against the state-of-the-arts on dataset Alltuu2. Zoom in to see the details. The best result is highlighted with
underline.

normal-light image with paired low/normal-light images, and
then be improved via another learnable linear transformation
based on a perceptual quality-driven adversarial learning with
unpaired data [30].

2) QUANTITATIVE COMPARISON
To confirm the effectiveness and robustness of our pro-
posed model, we compare our method against the state-
of-the-arts introduced in section IV-D1. To be fair, all the
compared methods are trained on dataset SRT in SR task.
We list the qualitative comparison with ×2 scaling factor
and present their results in Table 2. The comparisons are

organized into two groups based on different datasets. Since
the well-trained methods on dataset SRT did not capture
the perceptual change, they are unable to handle SR and
PIE simultaneously. Therefore, in the joint task of SR and
PIE, all the models are retrained on dataset Alltuu2 with
the parameters declared in their papers. As in other SR
methods, we also adopt self-ensemble strategy to further
improve our framework and denote it as Deep SR-PIE+. For
dataset Alltuu2, considering the joint-learning strategy, our
Deep SR-PIE and Deep SR-PIE+ greatly surpass the others
in the joint task. Without the consideration of perceptual
recovery, it is observed that traditional SR methods (EDRN,
CS-NL, RFA and RCAN) are capable of constructing the lost
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FIGURE 11. Qualitative comparison against the state-of-the-art on dataset Alltuu2. Zoom in to see the details. The best result is highlighted with
underline.

FIGURE 12. Qualitative comparison against the state-of-the-art on benchmark dataset Alltuu2. Zoom in to see the details. The best result is highlighted
with underline.

detail to some degree. Specially, DRBN + IMDN employs
DRBN for light enhancement and then tackle SR with light-
weight IMDN. Compared with the second best method
(DRBN + IMDN), our method gains 2.48% and 0.65% per-
formance on metrics PSNR and SSIM. Here, it is noting that
DPE + IMDN and IMDN + DPE are only better than Bicu-
bic. Limited by the ability of DPE in dark environment, these
two models suffer from halo artifacts and amplified noise.
Regarding dataset SRT, only our method is trained from the
scratch while the others load pre-trained models on dataset
DIV2K. From Table 2, on dataset Set14, Set15, BSD100 and
Urban100, we find that our method all achieves best per-
formance in terms of PSNR and SSIM. Therefore, we can
safely come to the conclusion that our method produces
comparable results even through it is not dedicated to SR
task.

3) QUALITATIVE COMPARISON
To evaluate visual quality of the generated images,
we place reconstructed results and some zoomed details
in Fig. 9-Fig. 13. For dataset Alltuu2, the samples are ran-
domly chosen with diverse properties including indoor and
outdoor scenes. Comparing with other results, we notice
three main observations of our method: 1). Our method is
competent to recover more details and better contrast in all
samples without obviously sacrificing over/under exposing
parts. 2) It also produces vivid and natural color, making
the reconstructed results more realistic. 3) It can eliminate
noise and artifacts, leading to more visual pleasing results.
Now, let’s respectively take a closer at qualitative examples
in Fig. 10-Fig. 13. In Fig. 10, it can seen DRBN + IMDB
is liable to produce artifacts in blue sky (the area marked by
red box) while RCAN always renders slightly overexposed
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FIGURE 13. Qualitative comparison against the state-of-the-art on benchmark dataset Alltuu2. Zoom in to see the details. The best result is highlighted
with underline.

results. Fig. 11 shows a boy stands in a park who is pos-
ing for taking picture. As can be seen, our method shows
clear characters in the T-skirt with natural light condition.
In Fig. 12, several methods fail to locate the rotten part of
strawberries (CS-NL and EDRN), and could not provide real-
istic color rendition of light spots on the top left corner (DPE
+ IMDN,IMDN + DPE, Bicubic, CS-NL, RFA). In Fig. 13,
under extreme low-light condition, the majority of developed
methods could not perceive objects clearly hidden in the
left dark area. Surprisingly, the result processed by Bicubic
achieves relatively higher PSNR but lower SSIM. The main
reason can be illustrated as the difference between original
input image and enhanced image is slighter than other sam-
ples. Though it is true that Bicubic achieves better PSNR in
this case, its result looks worse from the perceptive of visual
perception. Inherited from tone mapping for some images,
the methods related to DPE (DPE + IMDN and IMDN
+ DPE) have trouble in producing clear and clean results.
Besides, one can also see that all samples yielded by EDRN
have horizontal patch borders that look like crease mark
where the arrows are pointing. For dataset SRT, we depict two
sets of visual results processed by the comparative methods
in Fig. 9. Compared with the others, the images reconstructed
by our methods (Deep SR-PIE and Deep SR-PIE+) yield
compelling visual effect. To be specific, In Fig. 9(a), only
Deep SR-PIE and Deep SR-PIEd+ display clear texture of
silver eardrop. Also for the anemones in Fig. 9(b), Deep
SR-PIE (Ours) and Deep SR-PIEd (Ours+) can help us to
count the number of tentacles while the others cannot. As a
conclusion, the above comparison on datasets Alltuu2 and
SRT can demonstrate the effectiveness and robustness of our
method both in single SR task and joint SR-PIE task.

4) EVALUATION OF TIME EFFICIENCY
In this section, we study time efficiency of our proposed
framework. We compare our model with EDRN, RFA,

FIGURE 14. Failure Cases. (a) The condition of local color gradient.
(b) Overexposed condition. (c) Underexposed condition.

CS-NL, RCAN and DEP + IMDB on dataset Alltuu2.
Notably, all comparisons are evaluated on the same machine.
As seen in Table 2, with distillation model and selective
fused parts, DEP+ IMDB and Deep SR-PIE (Ours) are com-
patible with low computing power devices. Unsurprisingly,
by introducing more elaborate and complex modules, both
the size and the running time of the comparative models
increase by a large margin. Both on model size and infer-
ence time, our method demonstrates impressive and feasible
capability.

5) FAILURE CASES STUDY
Though our proposed framework works well on the majority
of testing images, we list several failure cases in Fig. 14.
In Fig. 14(a), except for color adjustment and contrast bal-
ance, retouchers might use local color gradient to give the
whole scene a more natural feeling that cannot be learned
by our deep model. In our testing example, an additional
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TABLE 2. Quantitative comparison of different approaches for SR-PIE on datasets: Alltuu2, Set14, BSD100, Urban100 and Set 5. The SR factor is 2. The
best results are highlighted in bold. Params(M): The number of parameters (unit:million). Time(s): The inference time (unit:second). ‘/’ denotes the result
is not available.

lighting is introduced, which alters the image tone irrevo-
cably. In Fig. 14(b), when too much light is allowed during
exposure, the image brighter than it should be is often con-
sidered overexposed. Seeing that too much details are lost
in this mode, our framework is incapable of restoring the
imponderable pixels. As we can seen, the detail of window
frames in the background cannot be reconstructed as rich
as the one in ground-truth. In Fig. 14(c), since severely-
underexposed image is usually imperceptible and its enhance-
ment is highly nonlinear and subjective, it is infeasible to fully
recover the lost details. In our case, our model fails to recon-
struct the girl’s facial expression under extreme conditions,
since the region is almost black without any trace in input
image.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose the Deep SR-PIE, a joint learn-
ing framework for SR-PIE task. To boost the capacity of
precisely predicting lost high-frequency details, the original
input is decomposed and adopted for different branches.
For branch MBFNet, Multi-scale Backward Fusion Net-
work (MBFNet) shoulders the responsibility for SR task by
fusing hierarchical deep features. The branch of Perceptual
Enhancement Network (PENet) aims to learn the perceptual
mapping from LRO to HRE, which could assist our model
in recovering the lost of color, tone, contrast and so on.
For branch Dual-path Upsampling Net (DUNet), it provides
an informative upsampling feature map via shared bypath
convolutions, which is conducive to capturing lost details to
some extent. Besides, the comprehensive experimental results
have demonstrated that our proposed Deep SR-PIE delivers
comparative performance against the state-of-the-arts on four
datasets.

Our further work is to adaptively solve SR-PIE prob-
lem of arbitrary scale factor with a single model. Another
direction is to address the nearly black and white
region by virtue of semantic analysis and image content
generation.
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