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ABSTRACT Recently a large number of 3D object tracking methods have been extensively investigated and
applied in a variety of applications using convolutional neural networks. Although most of them have made
great progress in partial occlusion, the intricate interweaving of moving agents (e.g. pedestrians and vehicles)
may lead to inferior performance of 3D object tracking in complex traffic scenes. To boost the performance
of 3D object tracking in cases of severe occlusions, we present an end-to-end deep learning framework with
a driving behavior-aware model that takes full advantage of spatial-temporal details in consecutive frames
and learns the driving behavior from object variations in 2D center point, depth, rotation and translation in
parallel. In contrast to prior work, our novelty formulates driving behavior that reasons about the possible
motion trajectories of the investigated target for autonomous systems. We show in experiments that our
method outperforms state-of-the-art approaches on 3D object tracking in the challenging nuScenes dataset.

INDEX TERMS 3D object tracking, driving behavior, object offsets, rotation, translation.

I. INTRODUCTION
Multi-object tracking (MOT), also called multi-target track-
ing (MTT), is an essential component technology in
many computer vision applications such as autonomous
driving [1]–[3] and robot collision prediction [4], [5].
Given a set of measurements from onboard sensors, MOT
perceives road agents and surrounding environment using
spatial-temporal details to identify and track objects, such
as vehicles, pedestrians, etc., without any prior knowledge
about object properties, shape parts, or environment varia-
tions such as lighting and weather conditions. Though a wide
array of views and sensors have enabled depth information
to be well exploited by many MOT techniques, onboard
cameras are much cheaper and offer the promise to pro-
vide enough spatial-temporal details for detection and track-
ing since human observers have no difficulty in perceiving
3D world in both space and time. In this paper, we focus on
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3D object tracking in video data, especially for objects that
are subject to heavy occlusion in complex traffic scenes.

Impressive progress has been made over the last decade
towards solving the fundamental MOT problem. The current
literature on 3D object tracking can be divided into two
groups, global tracking and online MOT. The first group of
methods [6]–[9] assumes that all of the frames are avail-
able for processing. The idea is similar to bidirectional
prediction proposed in H.264 [10] and HEVC [11], with
spatial-temporal information from two directions, making the
tracking process bidirectional. Though good performances
have been achieved, these approaches can not afford to run
real-time applications online for MOT. The second group of
methods [2], [3], [12]–[16] makes use of the information upto
current frame without the assumption of any prior knowledge
of future frames. These approaches only rely on forward
prediction but are more suitable for online tracking and
real-time applications. Driven by the success of deep learn-
ing techniques, many recent approaches [2], [3], [16]–[18]
generate deep features and show much better perfor-
mance than hand-crafted representations [12]–[15] in these
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applications and furthermore exhibit a better speed-accuracy
trade-off.

Data-driven MOT approaches can be further divided into
two subgroups: (i) methods that are based on tracking by
detection paradigm. (ii) methods that jointly perform detec-
tion and tracking. The former methods [17], [19]–[23] mainly
focus on appearance feature extractor and data association.
Appearance feature extractors are used to detect the loca-
tions of road agents in the form of bounding boxes from
each individual frame, and then data association algorithms
are proposed to associate the detected bounding boxes or
additional target features across frames. These methods take
advantage of the detection of individual frames. However,
the detection is separated from tracking, which ignores the
motion features in spatial-temporal details between consec-
utive frames. The latter methods [2], [3], [16] generate deep
features in consecutive frames and jointly detect and track
objects, which can integrate multiple cues across time such as
motion features, appearance features, and interactive features
that help object detection and tracking under heavy occlu-
sion in complex traffic scenes. In this paper, we follow the
paradigm of the latter methods whereby object detection and
tracking are jointly processed.

Compared with 2D object tracking [17], [18], 3D object
tracking [2], [3], [16] provides more spatial details for envi-
ronmental perception [24], [25] in the areas of autonomous
vehicles and advanced driver-assistance systems. Such meth-
ods take full use of not only the knowledge of part-whole
intrinsic spatial relationships in each individual frame but
also spatial-temporal details between consecutive frames,
with good performance on 3D object tracking challenge in
nuScenes [25] dataset. Especially, the CenterTrack [3], which
assumes the objects as points and predicts the location offsets
to associate objects, has achieved the competitive perfor-
mance. However, the CenterTrack, based solely on supervi-
sion in the form of object 2D center offset across time, still
suffers from ID switches when both appearance and motion
features of the investigated target are starting to change under
different occlusion levels in complex traffic scenes.

Many approaches explore knowledge-based driving behav-
ior and teach machines to understand how the physical
world is unfolding [26], [27]. Inspired by the prior
works [28]–[30], we consider a natural formulation that the
movements of road agents with different poses and scales
are determined by human driving behavior. Based on this
natural formulation, instead of encoding object center offsets
on 2D plane for 3D tracking [3], we take full advantage
of spatial-temporal details across consecutive frames and
propose an end-to-end deep learning framework to learn the
driving behavior from variations in 2D center point, depth,
rotation and translation in the magnitude and direction of
hidden-state vectors. By exploring such high-level driving
behavior knowledge in CNN representations, our framework
has a clear advantage over methods that are based on object
center or bounding box offsets. Key to our approach is that
the learned driving behavior aims to reason about the pos-

sible motion trajectories of the investigated target in heavy
occluded or even worst-case traffic scenarios. Concretely,
our framework processes the object variations in 2D center
point, depth, rotation and translation in parallel, as illustrated
in Fig. 1, from which we conduct driving behavior-aware
transformation loss functions to formulate high-level driv-
ing behavior in consecutive frames, guiding the road agents
movements in any space and time.

FIGURE 1. System outputs. We learn not only the object 2D center offset
but also the object variations in depth, 3D rotation and translation in
consecutive frames for driving behavior exploration.

We evaluate our method on the nuScenes dataset [25].
To ensure a fair comparison, we follow the prior work [3]
and use the same model parameters released by CenterNet
[31] for DLA [32] network backbone without any prior
detections. We show experiments that our method outper-
forms the state-of-the-art CenterTrack by 0.042 and 0.026 for
nuScenes validation and test set, respectively, using AMOTA
metric. In summary, our end-to-end deep learning framework
achieves significantly better results, especially for road agents
under heavy occlusion in complex traffic scenes.

The key contributions of our work are as follows:
• An end-to-end deep learning network is proposed to
learn the driving behavior from the object variations
in 2D center point, depth, rotation and translation in
consecutive frames.

• The learned driving behavior aims to reason about the
possible motion trajectories of the investigated target in
complex traffic scenes, which is contributed to improve
the overall 3D tracking performance rather than a solely
learned object 2D center offset.

• Our driving behavior-aware network is tested on the
EvalAI nuScenes tracking online evaluation server
where it outperforms the state-of-the-art approaches in
terms of AMOTA.

II. PRELIMINARIES
Our method follows CenterTrack [3] and builds on the Cen-
terNet [31] for 3D object detection, in which a single image
I ∈ RH×W×3 is taken as input and a set of detections
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{(p̂i, ŝ2di , ŝ
3d
i , d̂i, êi)}

N−1
i=0 is produced for each class c ∈

{0, . . . ,C − 1}, where p̂i, ŝ2di , ŝ3di , d̂i, and êi denote the
i-th predicted object center point, the 2D bounding box size,
the 3D bounding box size, the depth, and the orientation
respectively. For all of the classes C , our network produces
low-resolution heatmap Ŷ ∈ [0, 1]

H
R ×

W
R ×C , 2D bounding box

heatmap Ŝ2d ∈ R
H
R ×

W
R ×2, 3D bounding box heatmap Ŝ3d ∈

R
H
R ×

W
R ×3, D̂ ∈ R

H
R ×

W
R , orientation heatmap Ê ∈ R

H
R ×

W
R ×8

for the i-th object, with a output stride R = 4. Each peak
p̂ ∈ R2 in a prediction Ŷ indicates the most likely 2D location
of an object, with the corresponding confidence ŵ = Ŷp̂.
We use the focal loss [33] to minimize the detection errors:

Lfl =
1
N

∑
xyc


(1− Ŷxyc)αlog(Ŷxyc) if Yxyc = 1
(1− Yxyc)β (Ŷxyc)α

log(1− Ŷxyc) otherwise

(1)

where N is the number of predicted object center points,
and Yxyc denotes a ground-truth object center point rendered
heatmap using a Gaussian kernel

Yxyc = exp(−
(x − p̃x)2 + (y− p̃y)2

2σ 2
p

) (2)

at 2D location (x, y) for class c. p̃ is a low-resolution repre-
sentation p̃ = b pRc with the downsampling stride R, where
p ∈ R2 denotes each ground-truth keypoint. σp is an object
size-adaptive standard deviation [3], [31], [34]. The pre-
diction Ŷxyc = 1 corresponds to the object center point,
while Ŷxyc = 0 is the background. The hyper-parameters
of focal loss α = 2 and β = 4 are used in our network,
following the prior work CornerNet [34], CenterNet [31], and
CenterTrack [3].

The 2D object size prediction is regressed by minimizing
the size errors using the following function:

L2ds =
1
N

N∑
i=1

|Ŝ2dp̃i − s
2d
i | (3)

where N is the number of predicted object center points in
image I , and Ŝp̃i denotes the i-th object 2D bounding box
size predicted from deep features of size output heatmap Ŝ ∈
R

H
R ×

W
R ×2 at the ground-truth location p̃i, while s2di indicates

the ground-truth size of i-th object 2D bounding box.
A local offset F̂ ∈ R

W
R ×

H
R ×2 is additionally proposed to

recover the discretization error caused by the output stride R,
trained with L1 loss:

Loff =
1
N

∑
p

|F̂p̃ − (
p
R
− p̃)| (4)

For 3D object bounding box size prediction, we add an
additional channel Ŝ3d ∈ R

H
R ×

W
R ×3 trained with L1 Loss in

absolute metric:

L3ds =
1
N

N∑
i=1

|Ŝ3dp̃i − s
3d
i | (5)

where s3di denotes the 3D bounding box size of the
i-th object.

The depth output channel D ∈ R
W
R ×

H
R consists of two

convolutional layers separated by a ReLU using the inverse
sigmoidal transformation at the output layer. We use the out-
put transformation proposed by Eigen et al. [35] d = 1

σ (d̂i)
−1

to minimize the depth errors using the following function:

Ldep =
1
N

N∑
i=i

|
1

σ (d̂i)
− 1− di| (6)

where N is the number of predicted object center points, and
di denotes the ground-truth absolute depth.
Following the prior works [2], [3], [31], [36], the orien-

tation θ prediction is to solve a fundamental softmax classi-
fication problem. An 8-scalar encoding scheme is proposed
to transform the orientation θ into 8 scalars for classification
with L1 loss:

Lorie =
1
N

N∑
i=1

2∑
k=1

(softmax(b̂k , ck )+ ck |âk − ak |) (7)

where N is the number of predicted center points in image I ,
and k indicates to one of the angular bins B = {B1,B2},
in which B1 = [− 7π

6 ,
π
6 ] and B2 = [−π6 ,

7π
6 ]. Two scalers

bk ∈ R2 in each angular bin are used for softmax classifica-
tion, while the rest scalers ak = (sin(θ − mk ), cos(θ − mk ))
are serves as in-bin offset to the bin center mk = I(θ ∈ Bk ).
At inference time, the decoding scheme is proposed to
recover the predicted orientation θ transformed from such
8-scalers using the following equation:

θ̂ = arctan2(âj1, âj2)+ mj (8)

where j is the index of the highest confidence in softmax
classification.

Thus, we have detailed the objective loss functions Lfl ,
L2ds, L3ds, Loff , Ldep and Lorie for object detections, includ-
ing object localization, 2D/3D bounding box size regression,
orientation classification, etc.

III. METHOD
Object motions, such as rotation, acceleration or decelera-
tion, driven by human behavior in complex traffic scenes,
play an important role in 3D object tracking. In this section,
we propose an end-to-end deep learning network with driv-
ing behavior-aware architecture and corresponding loss func-
tions for driving behavior exploration. We first introduce the
overview of our network architecture, and then detail the driv-
ing behavior-aware architecture and conduct spatial-temporal
relative transformation loss functions. Our framework aims
to learn the high-level driving behavior knowledge from the
motions of road agents in consecutive frames.

A. ARCHITECTURE OVERVIEW
The overview of our network architecture is shown in Fig. 2,
which takes current image I (t) ∈ RH×W×3, previ-
ous image I (t−1) ∈ RH×W×3, and a heatmap rendered
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FIGURE 2. The overview of our driving behavior-aware network. The current frame, the previous frame, and a heatmap rendered from
tracked object centers are sent into the deep layer aggregation structure with hierarchical and iterative skip connections. The architecture
consists of the standard convolutional layers, downsampling layers, tree nodes, root nodes and children of nodes. The iterative deep
aggregation is used in the upsampling layers for dense prediction. The driving behavior is learned from object variations in 2D center
point, depth, rotation and translation in parallel.

from tracked objects in the previous image T (t−1)
=

{b(t−1)0 , b(t−1)1 , b(t−1)2 , . . . , b(t−1)N } as inputs, where b(t−1)i =

(p, s2d , s3d , d, e,w, id) indicates the i-th tracked object
described by its 2D center location p ∈ R2, 2D bounding
box size s2d ∈ R2, 3D bounding box size s3d ∈ R3, depth
d ∈ R, orientation e ∈ R8, detection confidence w, and
the unique identity id ∈ I. We use Deep Layer Aggregation
(DLA) [32] as network backbone, and create convolutional
heads of object center point, 2D and 3D bounding box size,
depth, and orientation for 3D object detection. The DLA
structure can fuse information across layers with hierarchical
and iterative skip connections to make networks with better
accuracy and fewer parameters. We use DLA-34 for a good
trade-off between time complexity and tracking performance.

We use the driving behavior-aware hierarchical architecture
to learn the object variations in 2D center point, depth,
rotation, and translation for driving behavior exploration in
3D object tracking challenge.

B. DRIVING BEHAVIOR-AWARE HIERARCHICAL
ARCHITECTURE
The motion property of each object in complex traffic scenes
is an important cue for tracking targets that are occluded or
lost. One key challenge is to handle the intricate interweav-
ing of target and its neighboring interference objects under
occlusion, where the motion of the target may be non-linear,
especially if we reason on several motion components. The
motion components of a road agent can be analyzed on the
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basis of valuable instance-aware semantic information such
as object 2D location, depth, pose, velocity and their corre-
sponding relative variations, such as 2D displacement, depth
offset, rotation offset and translation offset in consecutive
frames. By exploring such semantic information and their
relative variations, we discover the latent geometric consis-
tency from two views of the same object. Inspired by this
natural formulation, our proposed driving behavior-aware
hierarchical architecture is able to learn this non-linearities
from consecutive frames, and build the relationships between
motion components and corresponding relative variations,
formulating driving behavior that contributes 3D object track-
ing in complex traffic scenes.

As for existing works, they associate objects through time
by producing an object 2D center offset heatmap Ôcp ∈
R

H
R ×

W
R ×2. With a 2D displacement offset prediction, they

simply associate objects across time. However, our moti-
vation is to learn the high-level driving behavior knowl-
edge from object motions in consecutive frames. In order to
formulate object motions in CNN representations, we con-
duct our driving behavior-aware architecture hierarchically
merge the feature hierarchy from object depth offset heatmap
Ôdep ∈ R

H
R ×

W
R , 3D rotation offset heatmap Ôrot ∈ R

H
R ×

W
R ×4,

3D translation offset heatmap Ôtra ∈ R
H
R ×

W
R ×3 and object 2D

center offset deep features. The driving behavior-aware deep
features can be defined as:

Gbeh = CAT (Ôcp, Ôdep, Ôrot , Ôtra) (9)

where Ôcp, Ôdep, Ôrot , Ôtra denote the deep features that
represent object variations in 2D center point, depth, 3D rota-
tion and translation respectively. Compared with the state-of-
the-art CenterTrack framework that is based solely on object
2D displacement supervised feature representations, our driv-
ing behavior-aware hierarchical architecture encodes object
motion components and object variations in consecutive
frames, producing a sufficiently better high-level knowledge-
based 2D displacement offset for 3D object tracking in com-
plex traffic scenes.

C. BEHAVIOR-AWARE RELATIVE TRANSFORMATION LOSS
In this section, we detail the key techniques of behavior-aware
relative transformation functions across consecutive frames,
which stand in contrast to previous networks under the super-
vision of a simple object 2D displacement.

The current state-of-the-art 3D tracking framework [3],
designed to focus on minimizing the residual error between
the ground-truth and the predicted object 2D displacement
in the absence of any other motion components, suffers
from severe degradation of performance or even failure in
the presence of heavy occluded scenes. Instead, our frame-
work learns not only the object 2D center offset but also
the object variations in the depth, rotation and translation
driven by human behavior and formulates high-level driving
behavior knowledge that contributes to 3D object tracking
for autonomous driving systems. Concretely, we focus on

minimizing the residual errors of object variations in 2D
center point, depth, rotation, and translation. For each object
at ground-truth location p(t), the offsets Ôcp

p(t)
, Ôdep

p(t)
, Ôrot

p(t)
, Ôtra

p(t)
capture the differences of 2D center point, depth, rotation and
translation in the current frame and the previous frame respec-
tively, from which the high-level driving behavior knowledge
is learned in our framework.

We learn object 2D displacement using the same regression
objective as size or location refinement:

Locp =
1
N

N∑
i=1

|Ôcp
p(t)i
− (p(t−1)i − p(t)i )| (10)

where Ôcp
p(t)i

denotes the predicted 2D displacement of

i-th object at time t , while p(t−1)i and p(t)i are the ground-truth
2D center location of i-th object. Likewise, the training loss
for depth offset is defined as follows:

Lodep =
1
N

N∑
i=1

|Ôdep
p(t)i
− (d (t−1)i − d (t)i )| (11)

where the Ôdep
p(t)i

denotes the predicted depth offset of

i-th object at time t , while d (t−1)i and d (t)i are the ground-truth
depth of i-th object at time (t − 1) and t respectively.
Since synchronized keyframes are sampled at a fixed frame

rate in nuScenes dataset [25], we can transform the motion
components in consecutive frames, from vector-based repre-
sentation of quaternion offset and velocity offset to relative
rotation and translation offsets. Thus, the relative rotation loss
Lorot is defined as follows:

Lorot =
1
N

N∑
i=1

2arcsin
(

1

2
√
2
||Ôrot

p(t)i
−R(t−1,t)

i ||
F

)
(12)

where the offset Ôrot
p(t)i

is the i-th object relative rotation matrix

of the predicted vector-based quaternion representation at the
ground-truth local location p(t)i at time t , while the residual
R(t−1,t)
i is defined as:

R(t−1,t)
i = R(t)i (R(t−1)i )−1 (13)

where (R(t−1)i )−1 is the inverse of R(t−1)i , which is the i-th
ground-truth object rotation matrix of vector-based quater-
nion at time t − 1, and likewise for the ground-truth R(t)i .
On the other hand, the relative translation loss Lotra is defined
as follows:

Lotra =
1
N

N∑
i=1

|Ôtra
p(t)i
− (γ (t−1)

i − γ
(t)
i )| (14)

where Ôts
p(t)i

denotes the predicted translation offset, while

γ
(t−1)
i and γ (t)

i are the ground truth translation of i-th object
at time t − 1 and t respectively.
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Having defined the above relative transformation losses
Locp, Lodep, Lorot and Lotra, the overall loss for behavior-aware
relative transformation can be written as:

Lbeh = Locp + Lodep + Lorot + Lotra. (15)

By exploring the object variations in motion components
that consist of 2D center offset, depth offset, rotation and
translation offset in consecutive frames, our framework in
contrast to prior work [3] that aims to formulate driving
behavior for efficient 3D object tracking with a finer 2D dis-
placement. We then use a simple greedy matching algorithm
to associate objects across time. For i-th object at position p̂(t)i
at time t , we greedily associate it with the closest unmatched
object at position p̂(t)i − D̂p̂(t)i

, in descending order of confi-
dence w. A new tracklet will be assigned if there is not any
matched prior detectionwithin a threshold τ , which is defined
as the geometric mean of width and height of the predicted
bounding boxes.

IV. EXPERIMENTS
To demonstrate our end-to-end deep network robust to
heavy occlusion in complex traffic scenes, we evaluate our
method on the challenging nuScenes [25] dataset presented
in Sec. IV-A. The corresponding results are reported in
Sec. IV-D, where the two main metrics AMOTA, AMOTP
and the secondary metrics MT, ML, IDS, FP and FN, etc., are
used for evaluation, detailed in Sec. IV-B.We also present our
implementation details in Sec. IV-C and the analysis on our
driving behavior-aware representations in Sec. IV-E.

A. DATASETS
The nuScenes dataset is a public large-scale dataset for
autonomous driving. It consists of 1000 scenes of 20s dura-
tion each, and keyframes are sampled at 2Hz in each scene
with 6 slightly overlapping images in a panoramic 360◦

view, resulting in 168k training, 36k validation, and 36k test
images. All of the 23 object classes are annotated in the
form of cuboids modeled as x, y, z, width, length, height,
yaw angle and other properties such as visibility, activity,
and pose. We follow the baseline [37] and current state-of-
the-art CenterTrack [3], and use the annotated keyframes
for training and validation. We also evaluated our proposed
driving behavior-aware network on the nuScenes [25] test set
by submitting tracking results to the EvalAI tracking online
evaluation server.

B. METRICS
AMOTA [3], [25], [37], average multi object tracking
accuracy, compared with the common multi-object tracking
accuracy [39], [40], is a weighted average of MOTA across
different output thresholds, defined as follows:

AMOTA =
1

n− 1

∑
r∈{ 1

n−1 ,
1

n−2 ,...,1}

MOTAR

MOTAR = max(0, 1− α
IDSr + FPr + FNr − (1− r)× P

r × P
)

(16)

where the n-point interpolation n = 40. The parameters
α = 0.2 (AMOTA@0.2) and α = 0.1 (AMOTA@0.1) are
set by the nuScenes [25] benchmark. The IDSr , FPr , and FNr
denote the total number of identity switches, false positives,
and false negatives respectively, all of which only consider
top confident samples that achieve the recall threshold r .
P refers to the total number of ground-truth positives among
all frames.

AMOTP [3], [25], [37], average multi object tracking pre-
cision, is defined as follows:

AMOTP =
1
N

∑
r∈{ 1

n−1 ,
1

n−2 ,...,1}

∑
i,t di,t∑
t TPt

(17)

where di,t indicates the position error of track i at time t , and
TPt is the number of matches at time t .

C. IMPLEMENTATION DETAILS
Our driving behavior-aware network consists of
DLA [32] backbone, CenterTrack heads [3], and our
proposed behavior-aware architecture, implemented using
Pytorch and optimized with Adam using learning rate 4e− 5
and batchsize 10. Data augmentations include random hor-
izontal flip, random scale, cropping, and color jittering,
while rendering pipeline [41], tensor completion [42] or
image inpainting [43] can be further leveraged by 3D object
tracking framework to handle heavy occlusions in future
work. We train our network on a machine with an Intel
E5-2680v4 and 1 TitanXp GPU. The network is trained
for 320 epochs with a learning rate drop at 300 epochs by
a factor 10.

Our network follows CenterTrack [3] that uses nuScenes
input resolution 800 × 448 from all the 6 cameras and fuses
network outputs without handling duplicate detections at the
intersection of views [38]. The hyperparameters are set at
λfp = 0.1, λfn = 0.4, with the output threshold θ = 0.1
and the heatmap rendering threshold τ = 0.1. The loss
weights for variations in 2D center point, depth, rotation and
translation are set to 1 while the rest loss weights are set the
same way as CenterTrack.

D. EVALUATION ON nuScenes DATASET
We compare our approach with the official monocular 3D
tracking baseline Mapillary [38] + AB3D [37], and the cur-
rent state-of-the-art method CenterTrack [3] in nuScenes [25]
validation and test set. The AMOTA, AMOTP, MOTAR, MT,
ML, IDS, FP and FN are reported to evaluate the perfor-
mances on the nuScenes [25] validation and test set, which
are listed in Table 1 and Table 2. Our driving behavior-aware
framework outperforms the state-of-the-art CenterTrack in
both validation and test set. More detailed results in terms
of MOTA are listed in Table 3.

Qualitative results of 3D object detection and tracking
are predicted from four video clips. The first video clip,
from nuScenes [25] dataset, is adopted by CenterTrack [3]
for visualization. The second and third video clips are from
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TABLE 1. Quantitative evaluation of 3D object tracking on nuScenes validation set.

TABLE 2. Quantitative evaluation of 3D object tracking on nuScenes test set.

TABLE 3. Quantitative results on the nuScenes test set in terms of MOTA.

nuScenes [25] dataset either, considering adverse weather
and extreme lighting conditions. The fourth video clip is
captured from an in-car camera in a tree-lined road scene,
where various random light spots are formed by the light that
passes through the trees, resulting light intensity variations in
a short time. Note that the position of in-car camera has been
changed, which is different from roof mounted cameras used
in nuScenes dataset.

Qualitative results predicted from the first video clip are
shown on the upper side of the Fig. 3. The 3D object detec-
tions of the black car and the silver car in the top row are infe-
rior to that in the bottom row, which shows that our driving
behavior-aware framework, compared with the current state-
of-the-art CenterTrack [3], has a significant improvement on
3D object detection task. Furthermore, the colors (vehicle
IDs) of 3D bounding box of the black car in the top row have
changed 4 times while that in the bottom row have changed
only once, which shows that our driving behavior-aware
framework outperforms the CenterTrack considerably as far
as both 3D object detection and tracking in complex traffic
scenes.

Qualitative results predicted from the second video clip are
shown on the middle side of the Fig. 3. CenterTrack [3] fails
to detect the truck in the second column and our approach has
always been tracking this white truck across time, from the
start to the end, with a unique ID 1002, while the CenterTrack
lost this truck and assigned a new ID 1086 from ID 1083,
which shows that our method outperforms the CenterTrack
on 3D object tracking task in heavily occluded scenes under
inclement weather conditions.

Qualitative results predicted from the third video clip are
shown on the bottom side of the Fig. 3. In the night-time
scene, most of color and texture information of target objects
are lost, which presents a challenge to the network because
many objects (e.g. cars and bicycles) are symmetric across
at least one axis. From different viewpoints, the objects may
appear visually identical especially in the night-time scene,

resulting in ambiguous poses with respect to an azimuth
rotation of π . Furthermore, the truncation level of the target
is increasing gradually, which is a key technical challenge
in performing 3D object detection and tracking in complex
traffic scenes. For 3D object detection challenge, our method
first detects the white car in the fourth column while the
CenterTrack [3] does not detect this white car, which shows
that our approach is more robust to night-time illumination.
For 3D object tracking challenge, CenterTrack [3] fails to
track the highly truncated target in the fifth column while our
approach is able to track it, which shows that our approach
is more robust to object truncation under heavy truncated
scenes.

Qualitative results predicted from the fourth video clip
are shown Fig. 4. The generalization capabilities of different
algorithms are compared from the fourth video clip. Both
the white and blue car have an increasing truncation level in
a tree-lined road scene where the light intensity is increas-
ing during this period. Compared with the CenterTrack [3]
trained on nuScenes [25] dataset, our approach tracks both the
blue and white car one more frame visualized in the third and
fifth columns of Fig. 4, which shows that our method, also
trained on nuScenes dataset, has an improvement on gener-
alization and robustness to nonlinear illumination variations
across consecutive frames.

E. ANALYSIS
In this section, we study the effects of our proposed driv-
ing behavior-aware architecture discussed in Section III-B.
Our driving behavior-aware network explores object vari-
ations in 2D center point, depth, rotation and translation
in consecutive frames, and formulates the driving behavior
contributed to 3D object tracking in complex traffic scenes.
In detail, we evaluate our 3D object tracking performances
by computing MOTAR-Recall curves, MOTA-Recall curves
and MOTP-Recall curves, as shown in Fig. 5.
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FIGURE 3. Qualitative results on nuScenes dataset. The arrows in each image are not the vehicle orientations, however, such arrows indicate the current
object offsets predicted from the corresponding objects in the last frame.

FIGURE 4. Qualitative results in a tree-lined road scene. Our method is robust to lighting variations, and outperforms the CenterTrack [3] under heavy
truncation.
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FIGURE 5. MOTAR-Recall curves, MOTA-Recall curves and MOTP-Recall curves on the nuScenes [25] dataset.

A comparison of the MOTAR-Recall curves provided by
the nuScenes [25] validation set shows that our driving
behavior-aware model has a distinct advantage to better avoid
false positives, false negatives and ID switches related to
MOTAR, especially for the car, bus and truck classes.

MOTA, multi object tracking accuracy, is the main metric
considered in many autonomous driving datasets, such as
KITTI [24] dataset for 2D tracking, nuScenes [25] dataset for
3D tracking, etc. We compute MOTA-Recall curves across
all 7 tracking categories provided by nuScenes [25] dataset
for 3D tracking. For objects that are symmetric across at
least one axis, e.g., the left side of a bus looks like the
right side flipped, the MOTA-Recall curves shows that the
learned driving behavior exercises a strong influence on 3D
symmetric objects tracking in complex traffic scenes. Our
driving behavior-aware network, using ground-truth object
variations in 2D center point, depth, rotation and translation in

consecutive frames as supervision, significantly outperforms
the solely direct 2D displacement supervised CenterTrack [3]
in the challenge of 3D object tracking.

MOTP, multi object tracking precision, is another main
metric adopted by nuScenes [25] benchmark for all 7 tracking
classes. The MOTP-Recall curves are computed to evaluate
the misalignment between the annotated and the predicted
bounding boxes. Compared with the current state-of-the-
art CenterTrack [3], the remarkable small position errors
returned by our proposed framework are in the range suitable
for 3D object tracking in complex traffic scenes, especially
for the car and bicycle classes.

V. CONCLUSION
In this paper, we introduced an end-to-end deep convolu-
tional neural network with a driving behavior-aware model
for 3D object tracking. We designed our network architecture
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and objective functions carefully and demonstrated that
the driving behavior, formulated from object variations in
2D center point, depth, rotation and translation, served as
a significant guidance for object association under heavy
occlusion. Experimentally, our method outperforms state-
of-the-art methods on nuScenes benchmark. We hope these
results motivate future research on 3D object tracking in
complex traffic scenes.
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