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ABSTRACT With the rapid development of research on machine learning models, especially deep learning,
more and more endeavors have been made on designing new learning models with properties such as
fast training with good convergence, and incremental learning to overcome catastrophic forgetting. In this
paper, we propose a scalable wide neural network (SWNN), composed of multiple multi-channel wide RBF
neural networks (MWRBF). The MWRBF neural network focuses on different regions of data and nonlinear
transformations can be performed with Gaussian kernels. The number of MWRBFs for proposed SWNN is
decided by the scale and difficulty of learning tasks. The splitting and iterative least squares (SILS) training
method is proposed to make the training process easy with large and high dimensional data. Because the
least squares method can find pretty good weights during the first iteration, only a few succeeding iterations
are needed to fine tune the SWNN. Experiments were performed on different datasets including gray and
colored MNIST data, hyperspectral remote sensing data (KSC, Pavia Center, Pavia University, and Salinas),
and compared with main stream learning models. The results show that the proposed SWNN is highly
competitive with the other models.

INDEX TERMS Wide neural network, least squares, fast training, incremental learning.

I. INTRODUCTION
It is well known that one model cannot give answers to all
kinds of tasks. Deep convolutional neural networks work
excellently on image, video, and speech tasks, but except
for these tasks, other learning models such as random for-
est [1], and XGBoost [2] still play an important role in
applications such as booking tickets, hotel etc., and win in
many Kaggle competition tasks. Therefore, it is helpful to
study different kinds of learning models to push forward the
development of machine learning, together with the develop-

The associate editor coordinating the review of this manuscript and

approving it for publication was Easter Selvan Suviseshamuthu .

ment of deep learning architectures. For example, recently,
Hinton proposed the capsules network [3], in which the
neurons are organized as groups, also known as capsules,
to represent an object or an object part by an activity vector.
Kontschieder et al. [4] proposed deep neural decision forests,
which use random, differentiable decision trees to help the
representation learning in hidden layers of deep networks.

For complex learning tasks, learning models always
become deep with many layers and a great number of
parameters, often with good test performance and gener-
alization. However, they are still poorly understood in a
theoretical sense, and it is hard to characterize the training
and generalization because of highly non-convex behaviour.
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Recently, researchers also did many works on wide learning
[5], [6], or both wide and deep learning architectures [7],
where the width refers to the number of hidden units in a fully
connected layer or channels in a convolutional layer. A broad
learning system (BLS)was also proposed byChen and Liu [8]
to learn incrementally and effectively without a deep learning
structure. It was shown that the wide fully connected neural
networks are equivalent to Gaussian Processes, which make
the characterization of training and learning process simpler
by evaluating the Gaussian process. The wide neural network
can also be found to generalize better [5], [6].

One natural way to make learning much wider is using
ensemble methods, for example, bagging [9] and boosting
(including Adaboost) [10], in which multiple learners (or
classifiers) are trained together to achieve better generaliza-
tion. Ciregan et al. [11] proposed multi-column deep neural
network (MCDNN) including 35 independent convolutional
neural networks as an ensemble. Another benefit of ensemble
learning is that the classifiers can be organized in a hierarchi-
cal approach, and therefore, the designed models can learn
knowledge incrementally. Roy et al. [12] proposed Tree-
CNN, which is a hierarchical deep convolutional neural net-
work for incremental learning. An ensemble of RBF neural
networks in decision tree structure with knowledge transfer
(ERDK) [13] is composed of radial basis function (RBF)
networks as tree nodes with a decision to sort features.

Incremental learning itself is an important desired property
of learning models to overcome catastrophic forgetting [14].
The elastic weight consolidation (EWC) was proposed by
Kirkpatrick et al. [15], which remembers learned knowledge
by selectively reducing important weights on these knowl-
edge. Lee et al. [16] proposed incremental moment match-
ing (IMM), which uses the Bayesian neural network, and
assumes that the posterior distribution of parameters of neural
networks matches the moment of the posteriors incremen-
tally. Stochastic configuration networks (SCNs) [17] was
proposed by Wang et al., which uses stochastic configuration
to generate models incrementally. Dhar et al. [18] proposed
learning without memorizing (LwM) to learn new classes and
to preserve knowledge of old classes without sorting the used
data. The forest of decision trees with RBF networks and
knowledge transfer (FDRK) [19] was proposed to classify
features using a tree of RBF nodes.

Two goals in developing learning models is to reduce both
training and testing time so that they can be used in real-
time or fast computing applications, such as with mobile
terminal or edge computing. Recently, researchers did more
and more work on developing lightweight deep learning
models, including Xception [20], ShuffleNet v2 [21] and
so on. These models are used more easily in embedded
applications. Recently, lightweight learning models have also
been proposed for hyperspectral image classification such as
lightweight convolutional neural network [22] and spectral-
spatial squeeze-and-excitation residual bag-of-features learn-
ing [23]. Another way to reduce the training time is using
RBF network [24]–[27]. It has two layers including the kernal

functions layer and the fully connected layer. The weights
of the second layer are trained using least squares (LS). The
recent works on RBF networks can be categorized into two
types. (1) Using RBF networks as an ensemble: For example,
multicolumn RBF network [25] uses k-d tree two select sub-
sets of features, and learns these subsets with different RBF
networks. It has excellent performance on classification of
manually selected features, but it is difficult to use this kind
of ensemble to do image classification. ERDK and FDRK can
also be categorized into this type. (2) Using RBF kernels to
design different kinds of activation functions for CNN: Such
as deep RBF network [28], DeepLABNet [29], which are
end-to-end deep Radial Basis networks with fully learnable
basis functions, and deep RBF value functions for continuous
control. These networks can be used for image classifica-
tion or system control, but actually, they are still trained using
gradient based methods, which is time consuming when the
data is large and the architectures are deeper [30].

In general, the longstanding goals of a learning model
include: (1) learning and testing efficiently and fast, which
means the architecture can be optimized with less number of
parameters, the training time can be reduced and accelerated;
(2) robust generalization, which means the learning model
has a good testing performance on previously unseen data;
and (3) incremental learning to overcome catastrophic forget-
ting, whichmeans it learns new knowledge without forgetting
learned knowledge (can do life-long learning).

In this paper, we propose a scalable wide neural network
(SWNN), considering the above goals, and the contributions
are: (1) It can deal with both images and vectors as input sam-
ples. It is composed of multi-channel wide RBF (MWRBF)
neural networks as learning stages, which can be generated
incrementally to learn data without overfitting. The MWRBF
extends the input instances in thewide direction as input to the
RBF kernels, and the outputs are summed among channels to
reduce the data, sorted, and subsampled to reduce the output
number of Gaussian basis functions. (2) The SWNN can be
trained fast because of using iterative splitting least squares
along both feature and sample dimensions to save training
time and to deal with large and high dimensional datasets
compared with the discussed above other recent RBF related
methods.

The rest of the paper is organized as follows: Section II
provides an overview of related work on scalable learning.
Section III presents the proposed scalable wide neural net-
work. Section IV provides the experimental settings and the
results with the proposed SWNN. In Sections V and VI,
the discussion and conclusions are given.

II. RELATED WORK
A. MULTISTAGE SCALABLE LEARNING MODELS
Early works on multistage scalable learning models were
proposed in 1990’s. Ersoy et al. published works includ-
ing the parallel, self-organizing, hierarchical neural net-
works (PSHNN) [31], and parallel consensual neural network
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(PCNN) [32]. PSHNN is composed of multiple stages. Non-
linear transforms are performed on input dataset of all the
stages. Except for the first stage, each stage only receives
the rejected instances from the previous stage. Nonlinear
transforms convert these samples into another space to make
them easier to classify. They also designed competitive learn-
ing and safe rejection schemes [33] for PSHNN, and a net-
work with continuous inputs and outputs [34]was developed.
PCNN uses statistical consensus theory to organize stages
of neural networks, and the final output is decided by the
consensus result among all the stages of neural networks.
Additionally, adaptive multistage image transform coding is
proposedwith an optimalmethod for bit allocation. The quan-
tization errors of a previous stage are corrected by the current
stage. Recently, scalable-effort classifiers [35], [36] were
proposed, composed of multiple stages of classifiers with
increasing architectural complexity as the stages increase.
The number of stages is adjusted by the difficulty of the input
instances.

B. TREE-LIKE AND DEEP SCALABLE LEARNING MODELS
Recently, a Tree-CNN was proposed by Roy et al. [37],
which is a tree-like approach and the deep convolutional
neural network is organized in a hierarchical way to over-
come catastrophic forgetting and to realize lifelong learn-
ing. Jiang et al. [38] proposed another version of Tree-CNN,
which includes a cluster algorithm and a Trunk-CNN as
Tree CNN. The branch-CNNs are fine tuned by extracting a
feature map and dividing it into fine classes. ERDK [13] uses
decision tree to generate RBF networks as leaf nodes, and
the class labels of a corresponding leaf node are determined
by the RBF network of this node. The forest of decision trees
with RBF networks and knowledge transfer (FDRK) [19] was
proposed by Abpeykar, which classifies high-dimensional
data using a tree composed of RBF tree nodes. Hybrid clus-
tering is used to sort the features, which are used to generate
nodes of RBF neural networks. A tree-based deep network
[39] was proposed by Muhammad et al., which has many
branches composed of convolutional layers and can be used
for edge devices. Zhou and Feng [40] proposed deep for-
est, also known as multi-Grained Cascade Forest (gcForest),
which uses a decision tree to generate an ensemble and can be
implemented in parallel. A conditional deep learning (CDL)
was proposed by Panda et al. [41], in which the deep convo-
lutional layer can be activated when the input is difficult to be
classified. This method can adjust the architecture according
to the difficulty of test instances, and thereby, the computing
resources can be saved. Lin et al. [42] used focal loss to deal
with imbalanced data in object detection. Kim et al. [43]
proposed a regularization method to train the network and
classify them correctly. Hou et al. [44] proposed a frame-
work to learn a unified classifier incrementally. We see that
researchers are paying more and more attention to develop
new learning models or new methods to overcome the defi-
ciencies of current deep learning models.

III. SCALABLE WIDE NEURAL NETWORK
A. MULTI-CHANNEL WIDE RBF NETWORK
The convolutional neural network has the property of using
a number of convolutional kernels to extract features in the
space domain on images with multiple channels. Another
advantage of CNN is that although it has a great number
of parameters and many layers, these parameters are highly
reduced by using local connections and weights sharing. The
local receptive field is used to define the area to perceive
local features, while these features are extracted by a group
of convolutional kernels with sharedweights in different local
areas of an image. Color images usually have three channels
including red, green, and blue, while hyperspectral images
have hundreds of bands, which can be considered as channels.
CNNs can work very well for classification of such datasets.
On the other hand, it is hard for the original RBF network
to get a pretty good performance with such data. When there
are many channels, and especially when the images are big,
the input instances have large dimension after being flattened
into a vector. It consumes large computing resources to train
such a shallow RBF network with much greater number of
hidden RBF kernels as hidden units. We proposed a multi-
channel wide RBF neural network to use the advantages of
RBF networks more efficiently on such datasets as shown
in Fig. 1. There are mainly three characteristics with this net-
work. (1) Local connections are used to reduce the number of
RBF kernels, (2) RBF networks are generated for each local
slidingwindowwithmulti channels, and they are combined in
the wide direction as theMWRBF. (3) Subsampling is used to
reduce the number of outputs from RBF kernels, and thereby,
the number of linear weights are reduced [45].

Assume the input dataset is X ∈ Rd1×d2×d3×N , where
d1, d2, and d3 are the sizes of instances in each dimension.
Supposing the dataset is in the format of images, they denote
the height, width, and channel of an input image. N denotes
the number of data samples. Multi-channel sliding window
with size r1 × r2 × d3 is used from left to right, and top to
bottom, to choose the local area. We also denote r = r1× r2.
The default sliding stride is 1, therefore, the sliding index k
satisfies 1 ≤ k ≤ K = (d1 − r1 + 1) × (d2 − r2 + 1). The
input instances of the local area for the kth sliding index is
xk ∈ Rr×d3×N after being flattened in dimensions d1 and d2.
xk ∈ Rr×d3×N can be rewritten as xk =

[
x1k , x

2
k , · · · , x

d3
k

]
,

in which each element represents an input data cube for lth
channel (1 ≤ l ≤ d3), and the size of these elements is
r × N . These data cubes are fed into d3 RBF networks with
N l
k Gaussian response functions {φ

l
k1, φ

l
k2, . . . , φ

l
kN l

k
} as RBF

kernels. The outputs of the Gaussian response functions are

8l
k =

[
φlk1

(
xlTk
)
, φlk2

(
xlTk
)
, . . . , φlkNk

(
xlTk
) ]
(1)

φlki

(
xlTk
)
= exp

(∥∥xlTk − cli
∥∥2

σ l2i

)
(2)
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FIGURE 1. The architecture of the MWRBF network. The MWRBF extends
the input samples in the wide direction and sends them to the RBF
kernels, then the response outputs are summed among channels to
reduce the data, sorted, and subsampled to reduce the output features.
The least squares is used to compute the weights fast. During testing,
the sampled features can be computed in parallel in the wide direction.

where cli, and σ
l
i are the parameters of the Gaussian function,

respectively. (·)T denotes the transpose of a vector or amatrix.
After the outputs of all the channels are obtained, the fol-

lowing three steps are processed:
(1) Channel summation:Outputs are summed together as

8k =

d3∑
l=1

8l
k . (3)

(2) Response sorting:8k is summed along sample dimen-
sion and sorted in descending order:

8′k = sort

(
N∑

col=1

8k ↓

)
. (4)

(3) Subsampling:

8kS = subsample
(
8′k ,NkS

)
(5)

where NkS is the subsampling interval.
Channel summation reduces the number of computing

channels, whereas response sorting and subsampling result
in sorting different Gaussian responses and reserve abundant
feature information with a reduced computational load.

Let NS =
∑K

k=1 Nk be the total number of outputs after
subsampling, where Nk is the subsampling number for kth
sliding. Then, the matrix 8 ∈ RN×NS with all the outputs is

8=
[
81S , 82S , · · · , 8KS

]
. (6)

The final outputs of the MWRBF network are given by

Y = 8W. (7)

The least squares estimation of Ŵ is obtained by minimiz-
ing the square error

Ŵ = argmin
W
‖8W− D‖2 , (8)

where D is the vector of desired outputs.
The pseudoinverse 8+ of 8 is used to calculate Ŵ [46]:

Ŵ = 8+D =
(
8T8

)−1
8TD. (9)

B. SCALABLE WIDE NEURAL NETWORK
It is known that CNNs usually need to be trained several
hundreds of epochs together with validation process to reach
a good performance, while MWRBF is only trained once
using least squares. Therefore, we introduce more MWRBF
networks incrementally to learn adequate features in a large
dataset. Each MWRBF is just focused on reducing a propor-
tion of training errors, which can be continuously reduced as
the WRBF networks are added one after the other.

Another problem is that when the training dataset includes
a large number of instances and features, it is hard to compute
the weights with all the training samples at one time using
the LS method. Therefore, the splitting iterative least squares
(SILS) training method is proposed to train the proposed
SWNN as described below.

1) THE ARCHITECTURE OF SWNN
The number of MWRBF networks depends on the size of the
data and the complexity of the application. Assuming there
are P MWRBF networks, the dataset X can be learned P
times. The architecture is shown in Fig. 2. The first MWRBF
is trained to learn the labels of the training data, then the sec-
ond is trainedwith the same training set to learn the remaining
error from the firstMWRBF. Thewhole network is composed
in this way. EachMWRBF has its own learning tasks, and the
learning error can be reduced by oneMWRBF after the other.

The learning process is organized in cascade using
MWRBF networks as learning stages. Supposing the
MWRBF networks at corresponding stage are h1, h2, . . . , hP,
the outputs after subsampling fed to the linear layers of
MWRBF networks are 81,82, . . . , 8P (8i ∈ RN×PNS , 1 ≤
i ≤ P), and the expected output of the dataset is D ∈ RC×N .
Then, the output of the SWNN denoted asY can be expressed
as

Y = 8W = [81,82, . . . , 8P]W

= 81W1 +82W2 + · · · +8PWP. (10)

2) TRAINING SWNN USING SPLITTING ITERATIVE LEAST
SQUARES
The SWNN has many attractive properties. However, as the
training data becomes much larger both in numbers of
dimensions and in instances, the training process with the
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FIGURE 2. The architecture of the SWNN, and the re-splitting block (DC represents data chuck in the figure). The input data is split into subsets with
overlapping factors λ to train the network continuously. The SWNN is composed of P MWRBF networks. Each MWRBF network learns to reduce a portion
of training errors, and can be generated one by one incrementally. It is trained fast because of using least squares instead of gradient descent to compute
the weights. For the large and high dimensional data, the splitting iterative least squares (SILS) along both feature (re-splitting block) and sample
(training subsets) dimensions are used to reduce both computing load and time. The SWNN can be tested highly in parallel from different levels (from
single MWRNF to SWNN).

LS method consumes both time and computing resources.
In order to accelerate the training process and to reduce the
concurrent computing resources, the splitting iterative train-
ingmethod is proposed, inwhich the training data is separated
both in feature and sample space, and trained interactively.

First, in order to learn the features more accurately, the data
separation is performed in the sample space. The proposed
method trains the SWNN for Nc epochs using the shuffle
operation. For each epoch, the training data X is separated
into Nb parts with a proportion of overlap (use overlapping
factor λ, 0 ≤ λ ≤ 1). For example, consider two MWRBF
neural networks setup to describe the training process. Sup-
pose, for the first epoch, we have

X = X1
1 ,X

1
2 , . . . ,X

1
Nb . (11)

Then, for each training part input to the SWNN network,
P Gaussian output matrices obtained for PMWRBF are

81
=

[
81

1,8
1
2, . . . , 8

1
P

]
. (12)

The current output is

Y = 8W 1
= 81

1W
1
1
+81

2W
1
2 + · · · +8

1
PW

1
P . (13)

Then, the MWRBF network h1 is used to reduce the learn-
ing error by

81
1W

1
1 (1) = D (14)

The weights of h1 is computed by

W 1
1 (1) = 8

1+
1 D. (15)
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The output of h1 is computed by

Y 1
1 (1) = 8

1
18

1+
1 D. (16)

The remained error of h1 is denoted by

e11 (1) = D− Y 1
1 = D−81

18
1+
1 D. (17)

Then, the second MWRBF h2 is added to reduce the learn-
ing error left by

81
2W

1
2 (1) = e11 (1) . (18)

The weights of h2 are computed by

W 1
2 (1) = 8

1+
2 e11 (1) . (19)

The output of h2 is computed by

Y 1
2 (1) = 8

1
28

1+
2 e11 (1) . (20)

The remaining error of h2 is denoted by

e12 (1) = e11 (1)− Y
1
2 (1) = e11 (1)−8

1
28

1+
2 e11 (1) . (21)

The second iteration of the two MWRBF networks is
shown below. Other iterations are performed in the same way.

The weights of h1 for the second iteration are computed by

81
1W

1
1 (2) = Y 1

1 (1)+ e
1
P (1) (22)

W 1
1 (2) = 8

1+
1

[
Y 1
1 (1)+ e

1
P (1)

]
. (23)

The output of h1 for the second iteration is computed by

Y 1
1 (2) = 8

1
18

1+
1

[
Y 1
1 (1)+ e

1
P (1)

]
. (24)

The remaining error of h1 for the second iteration is

e11 (2) = Y 1
1 (1)+ e

1
P (1)− Y

1
1 (2) . (25)

The weights of h2 for the second iteration is computed by

81
2W

1
2 (2) = Y 1

2 + e
1
1 (2) (26)

W 1
2 (2) = 8

1+
2

[
Y 1
2 (1)+ e

1
1 (2)

]
. (27)

The output of h2 for the second iteration is computed by

Y 1
2 (2) = 8

1
28

1+
2

[
Y 1
2 (1)+ e

1
1 (2)

]
. (28)

The remaining error of h2 for the second iteration is

e12 (2) = Y 1
2 (1)+ e

1
1 (2)− Y

1
2 (2) . (29)

The remaining error reduction process can be performed
in the same way. With P MWRBFs, the training process is
similar. After all theMWRBFs processed in the first iteration,
the process is iteratedM times to continue reducing the learn-
ing error. The iteration stops when the validation performance
stops improving for a given number of times.

After that, the second training part with an overlap pro-
portion (to learn new knowledge with less forgetting of old
knowledge) is used in the same way based on the remaining
error in the first training part. For each iteration, the validation
performance is evaluated and compared with the result of
the previous iteration. If the performance decays for a given

number of times (adjusted according to the task requirement),
the training process will stop to avoid overfitting. After all
the trained parts are used, the training data X is shuffled
and split for the second epoch. This process continues until
the maximum training epoch is reached, or validation perfor-
mance stops improving. The optimizers like stochastic gra-
dient descent (SGD), AdaGrad, AdaDelta, RMSProp, Adam,
and especially the recently proposed diffGrad have excellent
performance on training CNNs. These methods compute the
gradients to find the trained parameters. For the proposed
SWNN, the proposed iterative least square method is used
to train the network, which uses pseudo inverse to compute
the weights, and does not need to compute the gradients. This
is completely different from the gradient based methods.

3) WEIGHTS RE-SPLITTING AND INCREMENTAL LEARNING
When the feature matrix 8 extracted by P MWRBFs is
much greater than the number of training samples, the feature
matrix 8 is split along the feature dimension to make the
feature dimension close to the number of samples. Supposing
the splitting number is Q, the output matrix is rewritten as

Y = 8W =
[
91, 92, . . . , 9Q

]
W

= 91W ′1 +92W ′2 + · · · +9QW ′Q. (30)

Then,
[
91,92, . . . ,9Q

]
is used instead of [81,82,. . . ,8P]

to train the SWNN network. The training details are shown
in Algorithm 1.
The number of MWRBF networks can be added incre-

mentally depending on the complexity of the tasks. More
specifically, the new MWRBF can be added one by one
according to the remaining errors of current SWNN with a
threshold Ts. Suppose the trained SWNN is composed of P
MWRBF networks, and the new training subset is Xnew. The
remaining training error of the Pth MWRBF after training
with Xnew is eP. The (P+ 1)th MWRBF is added by learning
the weights using

WP+1 = 8
+

P+1eP (31)

where 8P+1 is the subsampled outputs in the (P+ 1)th
MWRBF.

4) SPEEDING UP THE TESTING OF THE SWNN
For deep neural networks, although the convolutional pro-
cess can be performed in parallel, the testing process is
still performed one layer after another. As the architecture
goes deeper and deeper, the testing time becomes more and
more important, especially in the applications of edge com-
puting, and embedded computing. Researchers are making
more andmore endeavor on lightweight methods to compress
and speed up the deep models [36]. The tree based deep
network [39] is composed of many convolutional layers as
parallel branches, and can be implemented more easily on
edge devices.
The architecture of SWNN can be executed in parallel

in three levels to reduce the testing time. (1) The testing
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Algorithm 1 Training Procedure
Input: Original training dataset X ; training epochs Nc; num-

bers of separated training parts, separated feature dimen-
sions, and iterations: Nb, Q, and M ; overlapping factor
λ; initialized SWNN network composed of P MWRBF
networks: h1, h2. . . . , hP.

Output: WeightsW of Trained SWNN
1: Separate X into Nb training parts with overlapping factor
λ: X = X1

1 ,X
1
2 , . . . ,X

1
Nb ;

2: for epoch i = 1 : Nc do
3: for Data parts j = 1 : Nb do
4: Compute Caussian output matrix 8 of P MWRBF

networks using X ji : 8
i
=
[
8i

1,8
i
2, . . . , 8

i
P

]
;

5: Separate 8i into Q parts:8i
=
[
91, 92, . . . , 9Q

]
;

6: for Separated feature groups k = 1 : Q do
7: Compute the weight withM maximum iterations

and early stop with validation process:
8: 8i+

k = SVD(8i
k )
−1

9: W ′ki = 8
i+
k e

i
k ;

10: end for
11: end for
12: end for
13: W =

[
W ′1,W ′2, . . . ,W ′Q

]
= [W1,W2, . . . ,WP]

instances can be organized and stored in distributed way,
(2) Each MWRBF can be implemented in parallel, (3) The
multistages of MWRBF can be tested in parallel.

a: STORING THE TEST INSTANCES IN DISTRIBUTED WAY
Suppose the test data is Xt . Let the sliding window be r1× r2,
and the sliding stride (Default value is 1) be determined. Xt
is separated into K = (d1 − r1 + 1)× (d2 − r2 + 1) test data
blocks, which are denoted as

Xt = Xt1 ∪ Xt2 ∪ · · · ∪ XtK . (32)

The test data blocks can be stored and used in parallel.

b: TESTING MWRBF NETWORKS IN PARALLEL
The trained MWRBF network is composed of K multi-
channel RBF networks with data sorting and subsampling.
Each multi-channel RBF is focused on a test data block,
and performed independently from each other. The parallel
testing outputs of all the test data blocks after sorting and
subsampling are

8tS = [8tS1,8tS2, . . . , 8tSK ] . (33)

c: TESTING SWNN NETWORK IN PARALLEL
The SWNN network is composed of and trained with P
MWRBF networks: h1, h2, . . . , hP. During training, each
MWRBF is focused on reducing the total error of the cur-
rent stage. Therefore, they are trained in cascade stage by
stage. During testing, these networks can be implemented
independently and run in parallel. The testing outputs of these

FIGURE 3. The architecture of the MSWNN.

P networks are

Yt = [Yt1,Yt2, . . . ,Y tP] . (34)

The final test output of SWNN is

Yf =
P∑
i=1

Yti. (35)

C. MULTISTAGE SCALABLE WIDE NEURAL NETWORK
The SWNN can be trained by iterations with multiple
MWRBF networks until the desired accuracy or maximum
number of iterations is reached.

For datasets with large number of samples, multiple
SWNNs can be organized as multistage scalable wide neural
network (MSWNN) to make each SWNN learn a different
subset of the dataset. Another reason for such design is that it
can also learn misclassified samples from previous MWRBF.
The architecture is shown in Fig. 3. Suppose the training
dataset is Dtr , and it is split into M subsets, which are Ds1,
Ds2, . . . , and DsM . The MSWNN HMSW is composed of M
SWNNs, which are denoted as H1, H2, . . . , and HM .

IV. EXPERIMENTS
A. DATASETS AND EXPERIMENTAL SETUP
The datasets in the experiments include the following:

(1) MNIST Data: The MNIST [47] data is handwritten
digits, including a training set of 60000 instances, and a test
set of 10000 instances. These digits are of size 28×28 pixels.
The dataset samples are shown in Fig. 4 (a).
(2) Colored MNIST Data: The colored MNIST was gen-

erated to test the performance of the SWNN. The samples
of the data are shown in Fig. 4 (b). We selected 10 different
colors as the main colors. These colors were assigned to the
instances randomly using uniform distribution. Then, the col-
ored instances were transformed from RGB to HSI color
model. We used the gray image as the intensity component
of the HSI model, and finally transformed HST to RGB color
model. The generating process is shown in Fig. 4 (c).

(3) KSC: The KSC dataset was acquired over the Kennedy
Space Center in Florida on March 23, 1996, has 176 bands
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FIGURE 4. Experimental Datasets. (a) Original MNIST dataset. (b) Colored
MNIST dataset. (c) Example of generating a colored handwriting digit
sample. (d) KSC data. (e) Pavia Center data. (f) Pavia University data.
(g) Salinas data.

after removing water absorption and 224 bands. The size
of the image is 512 × 614, and there are 13 classes for
classification. The data is shown in Fig. 4 (d).
(4) Pavia Center: The Pavia Center scenes were acquired

by the ROSIS sensor over Pavia, in northern Italy. The num-
ber of bands is 102, and the size of the images is 1096×1096
(After discarding the pixels without information, the size is
1096×715). There are 9 classes in the ground truth. If all the
spectral and spatial information are used, the computing load
is excessive. The data is shown in Fig. 4 (e).

(5) Pavia University: The Pavia University scenes were
acquired by the ROSIS sensor over Pavia. It has the size of
610 × 610 (After discarding the pixels without information,
the size is 610×340). There are 9 classes in the ground truth.
The data is shown in Fig. 4 (f).
(6) Salinas: It was gathered in Salinas valley, California

including 204 bands after abandoning bands of water absorp-
tion. Its size is 512× 217 pixels, and the class number is 16.
The data is shown in Fig. 4 (g).
The experiments were implemented using a Work Station

with Intel-i7-9700K CPU@ 3.6 GHz, and 64G memory. For
all the experiments, the centers of RBF basis functions were
randomly chosen from the training samples, and the width
was chosen as a fixed number neither too big or too small.

For datasets 3), 4), 5), and 6) in the following experiments,
normalization was performed for each band. The spacial
(pixels in a 3 × 3 window for each centered pixel) and
spectral features were used for training and testing. Recently,
different band selection methods were proposed such as
using end-to-end framework [23], unsupervised network with
dual-attention [48], which are very effective to reduce the
bands. The effective organization and use of spatial and spec-

tral features are very important. The hybrid spectral CNN
(HybridSN) [49], and the 3D deep learning framework [50]
were proposed to use these information effectively. These
methods has excellent performance on hyperspectral classi-
fication. But, in the experiments, to compare the proposed
method with different learning models fairly, the number of
spectral features was reduced to the same number 15 by
using the principal components analysis (PCA), and higher
than 99% spectral information was preserved. No additional
measures were used to obtain more spatial or spectral features
to improve the classification performance. For KSC dataset,
a small proportion (0.2) of the total pixels was chosen ran-
domly as training and validation samples because there is a
small number of samples for each class, and the remaining
0.6 portion of samples were used as testing samples. For
Pavia Center, Pavia University, and Salinas, 0.05 proportion
of the total pixels were chosen randomly as the training and
validation sets, respectively. The remaining 0.9 portion was
the testing set. The overall accuracy (OA), average accuracy
(AA), and Kappa coefficient were used to evaluate the per-
formance.

B. SPLITTING ITERATIVE LEARNING ALONG FEATURE
DIMENSION
For hard tasks, a large number of MWRBF networks are
needed to learn features accurately. Then, the total weight
matrix is big, and an efficient method to compute with it is
important. As we discussed in Section III, the matrix will
be split into small matrices to compute the pseudo inverse
quickly and to reduce the demanding computing resources.

Here we discuss splitting iterative least squares (SILS)
training SWNN as a function of the number of MWRBFs.
The numbers for training and validation samples are both
6000 for MNIST and colored MNIST. These samples were
chosen randomly from the whole datasets, respectively. The
test samples were the whole testing sets. The window size
of MNIST and colored MNIST was 13, and the numbers of
hidden units and RBF nodes after subsampling were 1000 and
50, respectively. For Pavia Center, the window size was 103,
and the numbers of hidden units, and RBF nodes after sub-
sampling were 800 and 50, respectively.

The results are shown in Fig. 5. The computing process
is iterated to improve performance. Because the LS method
is used to compute the weights, the errors are reduced a
large amount during the first iteration, and then, the train-
ing process is completed with a small number of iterations.
During the iterations, the validation and testing performance
continues to improve at early iterations. Then, they improve
less, or even get worse, while the training accuracy is still
increasing. This means the model is overfitted. The changes
of training errors with different number of splitting in feature
space (weights matrices) are also shown in Fig. 5. It can be
observed that as the number of iterations increases, the train-
ing error of each splitting part continuously decreases, which
also demonstrates the effectiveness of splitting iterative learn-
ing in feature space.
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FIGURE 5. Accuracies of training, validation, testing, and training errors with different data. (a) MNIST. (b) Colored MNIST. (c) Pavia Center hyperspectral
remote sensing data. The colorbar represents the amount of the training error. It is seen that as the numbers of MWRBFs (or splitting matrices) and
iterations increase, the training error continuously decreases along both axes.
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It is also seen that as the number of MWRBF networks
increases, the performance of the model is improved, but the
number of iterations is reduced. This means the model can
reach its best performance with less number of iterations.

C. SPLITTING ITERATIVE LEARNING ALONG SAMPLE
DIMENSION
Larger training sets can be split into smaller training sets to
train the SWNN effectively. If there are not enough training
examples, the augmentation method can be used to generate
more training samples to continue training the SWNN. The
main problem which may be encountered is catastrophic
forgetting if large different training sets are used one by one
to continue training the models.

Experiment was implemented to show the effectiveness of
the proposed training method when splitting the training set
into small subsets. The MNIST and colored MNIST were
used in this experiment. The training sets were shuffled and
separated into subsets with size 6000 including 600 new
samples. The validation set was the last 6000 training samples
which were not used during the training process in the experi-
ment. Thewindow size of themodels was 13. The SWNNwas
composed of 24 MWRBF networks. The numbers of hidden
units and subsampling were chosen as 3 and 1, respectively.

The experimental results are shown in Fig. 6. It is observed
that the trends of validation and testing performance go up,
and finally become flatten when the number of iterations
increases. This is seen more clearly when showing the testing
accuracies at maximums of validation accuracies during iter-
ations for each training subset. Although both validation and
testing accuracies drop at the beginning of iterations for each
training subset, they become higher than themaximums in the
previous training subset, which demonstrates that the training
method of splitting along sample dimension is effective, and
it can learn new knowledge without forgetting the learned
knowledge. In the top sub-figure of Fig. 6 (b), the fluctuated
curve pattern occurred when the new subset is used to train
the network. That is because the network was learning new
knowledge; and the weights trained by the previous subset
were not suitable with new subset. Therefore, the validation
and test accuracies dropped off at the beginning, and as the
training was going on, they began to rise again, and finally,
the best performance on the current subset was better than that
of the previous subset. This demonstrates that the proposed
SWNN can learn new knowledge incrementally without for-
getting the learned knowledge. Another observed fluctuation
is in the iterations of a subset. That is because during training,
the performance of the SWNN improved continuously and
then it became overfitting. The SWNN with best trained
weights can be saved during the iterations in each subset dur-
ing the validation process. The changes of training errors are
also shown in Fig. 6. It is seen that the training errors decrease
with the same subset for each splitting part in sample space
(weights matrices) when iterations are performed. When the
next training subset is input, the training errors grow up, and
then begin decreasing again. This process provides a vision

FIGURE 6. Accuracies and training errors with different training subsets
of different data. (a)MNIST. (b) Colored MNIST. The colorbar represents
the amount of training error. It is seen that as the numbers of MWRBFs
(or Splitting Matrices ) and iterations increase, the training error
continuously decreases within the training subset, and increases between
the training subsets, but the total trend is still decreasing. This
demonstrates that the SWNN can learn new knowledge without
forgetting old knowledge continuously.

TABLE 1. Testing accuracies of SWNN with different number of MWRBF
on gray and colored MNIST datasets.

on the ability of incremental learning with iterative splitting
in the sample space.

D. SWNN WITH DIFFERENT NUMBER OF MWRBF
NETWORKS
Different number of MWRBF networks is generated for dif-
ferent tasks, so that the model with proper complexity can be
found for a specific task.

Experiments were performed first on the MNIST and col-
oredMNIST datasets. The SWNNwas testedwith 2MWRBF
networks as the minimum setup. The window size of each
MWRBF was 13. The number of hidden units was 16, and
the subsampling number was 8 for MNIST. The number of
hidden units was 20, and the subsampling number was 10 for
colored MNIST. The test accuracy is shown in Table 1.

50776 VOLUME 9, 2021



J. Xi et al.: SWNN: A Parallel, Incremental Learning Model Using SILS

TABLE 2. Testing accuracies of SWNN with different MWRBF neural networks on KSC, Pavia Center, and Pavia University datasets.

It is observed that with a small number of MWRBF net-
works, for example, 2, the SWNN has accuracies higher than
98.34% for MNIST and 97.44% for colored MNIST. That
is because a single MWRBF already has enough complexity
to learn features under current parameter settings. The total
numbers of parameters were 40960 and 51200, respectively.
As the number of MWRBF networks increases, the testing
accuracies continue increasing and finally stops increasing,
which means the model is becoming overfitting. The best
test accuracy for current parameter settings were 99.02% for
MNIST with 60MWRBF networks. For coloredMNIST, it is
seen that the performance stops increasing when the accuracy
reaches 98.37% with 30 MWRBF networks.

Experiments were also performed with KSC, Pavia Center,
and Pavia University datasets. The window size for all the
three datasets was 103. The number of hidden units for KSC
was 200, and for Pavia Center and Pavia University, it was
800. The number of subsampling outputs was 50 for all three
datasets.

The results are shown in Table 2. It is seen that, for KSC
dataset, the model is overfitted when the number of MWRBF
is 24, and the best OA and AA reach 96.18% and 93.89%
for the current parameter settings, respectively. For Pavia
Center, the OA and AA continue to increase to 99.23% and
97.45%, respectively. For Pavia University, the OA continues
to increase to 94.27%, and the AA reaches 89.65%. When
there were 2 MWRBF networks, the proposed method had
already good performance on these three datasets, and the
total numbers of parameters were 42900, 29700 and 29700,
respectively.

According to these experiments, it is observed that,
the more MWRBF networks are generated, the higher accu-
racy can be obtained as a SWNN. However, the accuracy
decreases with too many MWRBF networks, which means
that the model is overfitted. Therefore, the model can be
scalable with an optimal number of MWRBF depending on
the difficulty of each application (using the training errors and
a given threshold).

E. CLASSIFICATION PERFORMANCE OF SWNN
The performance of the proposed model was compared with
different kinds of models based on the above datasets. The
parameter settings of SWNN for these datasets are shown

TABLE 3. Parameter settings of SWNN on different datasets.

TABLE 4. Testing accuracies of different learning models on MNIST
dataset.

TABLE 5. Testing accuracies of different learning models on colored
MNIST dataset.

in Table 3. The results are shown in Tables 4, 5, and 6, and
Fig. 7.
For MNIST, the SWNN was compared with RBF network

with 10000 hidden units, CNN (6c-2s-12c-2s, c represents
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TABLE 6. Testing accuracies of different learning models on KSC, Pavia Center, Pavia University, and Salinas datasets.

FIGURE 7. Ground truths of hyperspectral datasets: (a) KSC data, (b) Pavia Center data, (c) Pavia University
data, and (d) Salinas data; Classification results of SWNN on hyperspectral datasets: (e) KSC data, (f)Pavia
Center data, (g) Pavia University data, and (h) Salinas data.

convolutional layer, s represents subsampling or pooling lay-
ers, 5×5 kernels), RBF ensemble (1000 hidden units, 5 RBF
networks), CNN ensemble (6c-2s-12c-2s, 5 CNNs), and also
some other methods: SVM [40], multilayer perceptron [51],
random forest [40], deep belief net [52], restricted Boltzmann
machine (RBM) [53], fuzzy restricted Boltzmann machine
(FRBM) [53]. It was also compared with recently proposed
scalable and incremental learning methods such as condi-
tional deep learning [41], elastic weight consolidation (EWC)
[15], and incremental moment matching (IMM) [16]. The
recently proposed different learning models including broad
learning system (BLS) [8], and multi-grained cascade forest
[40] were also compared. For colored MNIST, the ResNet
with 8 layers (6 convolutional layers, 2 skip connection lay-
ers, and 1 fully connected layer, 3× 3 kernels) and 26 layers
(18 convolutional layers, 2 skip connection layers, and 1 fully
connected layer, 3 × 3 kernels) were also compared under
the same usage of data. Other parameter settings of models
were the same as in MNIST. For KSC, Pavia Center and
Pavia University, MLP with 500 hidden units, RBF with
2000 hidden units, and SAE with 200 and 50 hidden units
for encoder and decoder were used to compare with SWNN,

and parameter settings of other models were the same as in
MNIST.

It is observed that, for MNIST dataset, the proposed
SWNN reaches 99.04% accuracy, which is the second best
result among the compared models, and a bit lower than the
results of gc forest. For colored MNIST dataset, the proposed
model has the best accuracy (98.52%) among the compared
methods. For KSC, Pavia Center, Pavia University, and Sali-
nas the OAs are 97.12%, 99.53%, 97.44%, and 95.14%,
respectively, and the AAs are 94.48%, 98.67%, 96.24%, and
94.64%, respectively. These four groups of results including
Kappa coefficients are the best among the compared learning
models. It can be seen that the SWNN has stable and compet-
itive performance on classification tasks, and actually, after
extending hierarchically as MSWNN, the performance can
be further improved.

F. EVALUATION OF PARALLEL TESTING
The parallel implementation of the testing process of the
SWNN was evaluated in this experiment. The Pavia Center
dataset was chosen considering it has a large number of
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TABLE 7. Testing evaluation of parallel implementation with different number of MWRBF networks.

TABLE 8. Testing evaluation of parallel implementation with CNN ensemble and SWNN.

FIGURE 8. Evaluation of the testing process in parallel. (a) Original and
parallel testing time of SWNN with different number of MWRBF networks.
(b) The performance gain of SWNN with different number of MWRBF
networks with parallel implementation of the testing process.

instances to compute the testing time. The testing process of
the CNN ensemble with 5 CNNs (6c-2s-12c-2s) was imple-
mented in parallel to compare with that of the SWNN. The
hyperparameters of the two models were the same as in
Section IV-E. The parallel testing process was run on thework
station (CPU with 8 cores) with up to 8 parallel workers. The
specific number of workers was the same as the numbers of
MWRBFs for the SWNN and CNNs for the CNN ensemble,
and each single learning model was run with an independent
worker.

First, the testing process of the SWNN with different
number of MWRBF networks were implemented in par-
allel to evaluate the performance gain of computing time.
The results are show in Fig. 8, and Table 7. It is seen
that as the number of MWRBF increases from 2 to 8,
the performance gain of computing time is also increased
to 5.73 times.

Secondly, the comparison results of parallel implementa-
tion of the CNN ensemble and SWNN are shown in Table 8.
The SWNN is composed of 5 MWRBFs. It has a bit better
classification performance than that of the CNN ensemble,
and its original testing time is less than that of the CNN
ensemble. It can be seen in the table that after parallel imple-
mentations, the SWNN can run much faster than CNN and
CNNE, and it has larger performance gain of computing time
than that of the CNN ensemble.

It can be seen from the above results that in spite of
the hidden overhead, which includes allocating test data to
different workers and gathering computing results from those
works, the speeding up of the parallel implementation is close
to the theoretical speedup number.

V. DISCUSSION
A. THE RELATIONSHIP OF NUMBERS OF HIDDEN UNITS,
RBF NODES, AND MWRBF NETWORKS
There is a tradeoff between the complexity (numbers of
hidden units and subsampled outputs) of a single MWRBF
network and the number of MWRBFs. Actually, if the single
MWRBF network has smaller number of hidden units and
subsampled outputs, the training process can be trained more
stably, and can get a better performance. Conversely, if the
performance is decreased a bit, fewer MWRBFs are needed.
This can be seen in Tables 1, 2, comparedwith the final classi-
fication performance in SectionVI-E. The better performance
is obtained when less number of hidden units and sampled
outputs (RBF nodes), but more MWRBF networks are used.

B. ITERATIVE LEARNING ALONG BOTH FEATURE AND
SAMPLE DIMENSIONS
In Fig. 5 (c), it is seen that the training process continues for
more than 10 iterations, during which time the training, vali-
dation, and testing (OA and AA) performances are improved
rapidly. When the number of iterations is larger than 20,
all the performances improve much more slowly. A possible
reason is that the numbers of features and samples of Pavia
Center are big, and the model can learn more stably to reach
its best performance. This result means that the learning
process can be ceased after 20 iterations to save computing
time and resources.

In Fig. 6, for each training subset, the validation perfor-
mance reaches its maximum with even less than 5 itera-
tions. After that, although the training performance is still
improved (which can be seen from the changes of training
errors in Fig. 6 ), the validation and testing performances do
not improve or begin to drop. The reason is that although the
training set is smaller (6000 training samples), the number
of parameters of the SWNN is also small, and therefore,
the model can learn stably, and reach its best performance
quickly. These results mean that this training process can be
stopped with only 5 iterations at a very early time point for
each training subset.

The splitting along feature and sample dimensions can be
stopped in time by using validation process, and because
of using least squares, the training of SWNN starts with a
very good performance, and can be stopped quickly with few
iterations.
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VI. CONCLUSION
Recently, researchers have done many works on developing
different types of models compared with deep learning mod-
els, and they are also working improving the performances of
previous learning models. For example, fast training, devel-
oping methods that can make models learn incrementally,
which means learning new tasks without forgetting knowl-
edge learned from old task. In this paper, a newmodel SWNN
is proposed with scalable property, which is generated incre-
mentally in the wide direction using the proposed MWRBF
networks. The proposed model is trained using iterative split-
ting along feature and sample dimensions together with least
squares to reduce the training error quickly. SWNN can deal
with large number of instances and large number of features.
Experiments were performed on MNIST, colored MNIST,
KSC, Pavia Center, and Pavia University datasets, and com-
paredwith shallow and deepmodels. The results show that the
proposed SWNN has comparatively excellent performance
on classification tasks. The main limitation of the proposed
work is that it cannot extract spatial features from images
easily, because the image blocks in the sliding windows are
flattened into vectors and learned by MWRBF directly. CNN
can extract different levels of spatial features with a number of
convolutional layers. We are working on solving this problem
by (1) learning the spatial features directly for images with
two dimensional Gaussian kernels; (2) extending the SWNN
with multiple feature extracting layers to make it deeper, but
still to be trained quickly.
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