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ABSTRACT The aim of this paper is to present a novel model-order reduction (MOR) technique for the
efficient frequency-domain finite-element method (FEM) simulation of microwave components. It is based
on the standard reduced-basis method, but the subsequent expansion frequency points are selected following
the so-called sparsified greedy strategy. This feature makes it especially useful to perform a fast-frequency
sweep of problems that lead to systems of equations exhibiting a nonaffine frequency dependence. This
property appears, for example, when the excitation of the problem is characterized by a frequency-dependent
waveguide mode pattern, or when the computational domain includes materials with frequency-dependent
permittivity or permeability tensors. Moreover, the new MOR scheme can be also used to accelerate the
frequency sweep of problems with many excitations, for which the standard reduction algorithms tend to be
time-consuming. Its effectiveness and accuracy is verified through analysis of three microwave structures:
planar microstrip branch-line coupler, three-port waveguide junction with ferrite post, and an eighth-order
dual-mode waveguide filter.

INDEX TERMS Finite-element method, model-order reduction, nonaffine parameters.

I. INTRODUCTION
A key step in the design of modern microwave devices and
systems is full-wave electromagnetic simulation. The pur-
pose of such a simulation is usually to investigate the behavior
of a given structure in a specified frequency band. One of the
most effective and popular techniques used for this purpose is
the finite element method (FEM) [1]. The FEM is particularly
widely used in the analysis of problems with high geometric
and material complexity. However, FEM can be very time-
consuming in such cases, especially when the aim of the
simulation is parametric analysis or optimization of a given
structure over a wide frequency band.

In the last two decades, many algorithms have been pro-
posed to accelerate frequency-domain FEM simulations—
in other words, to perform a so-called fast-frequency sweep
(FFS). One of the most popular FFS techniques is based
on the concept of model-order reduction (MOR) [2]–[15].
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In this approach, a large-scale Finite-element (FE) full-order
model (FOM) is projected onto a properly constructed sub-
space, resulting in a so-called reduced-order model (ROM).
Importantly, the ROM preserves the properties of the original
model with sufficient accuracy in the specified frequency
band. However, since the size of the ROM is much smaller
than the FOM, the frequency sweep with the ROM is much
faster. In the reduced-basis method (RBM) family of MOR
techniques [6], [14], [15], the projecting basis is composed
of a set of field solutions (called snapshots) computed by
means of FOM at selected expansion (frequency) points.
The number and placement of the expansion points within
the frequency range is determined by following a greedy
strategy, supported by a residual-based a posteriori error
estimator [14].

These techniques have been proven to be numerically sta-
ble, efficient, and reliable. However, they can only be used
to accelerate certain kinds of frequency-domain simulations.
More precisely, a necessary condition for their use is that the
frequency parameter should appear in an explicit (‘‘affine’’)
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form, whereas the FEM matrices (both left and right hand
side components) should be frequency-independent. Unfor-
tunately, many problems in the field of computational elec-
tromagnetics have frequency as a nonaffine parameter; for
example:

• materials with frequency-dependent permittivity or per-
meability tensors,

• open-boundary problems where the computational
domain is truncated using perfectly matched layers
(PML),

• excitations in the form of frequency-dependent mode
patterns (appearing, for example, in microstrip lines).

In all these examples, the FEM matrices depend on fre-
quency in a nonaffine way, which means that they must be
regenerated for each frequency. In effect, it is not possible
to efficiently estimate the error introduced by the reduced
model, which is necessarily to control the whole reduction
process, so the standard MOR approaches cannot be used.

One possible remedy in such cases is to apply one of the
general parametric MOR (PMOR) approaches typically used
for problems with nonaffine parameter dependence. Publica-
tion [16] addresses this issue; it describes the PMORmethod,
where the computational domain is divided into so-called
design and ambient regions. Then only the ambient (not
the parametric) regions are subjected to the MOR process.
The frequency sweep in this case is thus accelerated to a
limited extent. However, it is then necessary to select the
number and placement of the snapshots prior to the reduction
process, so no adaptive strategy can be used. An adaptive
PMOR algorithm is proposed in [17], but is restricted only
to the nonaffine parameters associated with the geometry
of the computational domain. Similarly, geometric nonaffine
parameters can be handled by the PMOR proposed in [18],
but this can be applied only to selected subregions of the com-
putational domain. In [19], the elements of the FEMmatrices
with nonaffine parameter dependence are fitted to a low-order
polynomial. The resulting system of equations exhibits affine
parameter dependence, which is subsequently subjected to
the standard moment-matching based MOR process. A simi-
lar technique has been described in [20]. However, neither of
the two approaches is self-adaptive: the order of polynomials
used to interpolate the system matrix elements, as well as the
size of the projection basis used to generate the ROM, are set
a priori. Moreover, the error of the final ROM with respect
to the FOM error can be problematic to control, since it is
caused both by the interpolation of nonaffine parameters and
by the reduction process itself. In [21], a new generic PMOR
approach is proposed for the nonaffine parameter dependence
of the system, which is combined with the domain decompo-
sition method (DDM). In order to construct the reduced-order
model, the affine parametrization is extracted from the origi-
nal system using Chebychev-polynomial-based interpolation.
The ROMs obtained in this way preserve their passivity, reci-
procity, and causality; the proof of this is based on [22] and
[2]. However, neither the adaptive point-selection strategy

nor the control of the accuracy of the ROMs are considered.
A different strategy is proposed in [23], where the parameter-
dependent projection matrix is constructed by interpolating
projection spaces with respect to the nonaffine parameters.
This yields better accuracy and higher rates of convergence
than the other approaches [19]–[21]. However, [23] can lead
to significant levels of reduction error, since the order of ROM
is set a priori. The technique of [23] has been extended by
[24] to the case where implicit and explicit (material and
geometrical) parameters are taken into account. Once the
interpolation points are set and the FE system of equations is
solved at each point, the PMOR projection basis is generated
by means of a greedy multi-point MOR approach. It has been
further extended to efficiently analyzewireless power transfer
systems [25]. The approach of [26] is an improvement over
that of [24] and uses the subspace interpolation method. Even
though the ROMs in [24]–[26] are generated in a self-adaptive
way using the greedy approach, they have a number of limi-
tations: the nonaffine parameter dependence is approximated
using the interpolation method, which leads to error; and as in
the previously cited approaches, the order of the interpolating
polynomial is set a priori and cannot be adaptively altered.

In order to obtain an accurate ROM in a fully automatic
and self-adaptive process, additional numerical effort must be
made, proposed in [27]. In particular, the following process
should be considered:

• The parameter space is divided into hypercubes.
• In each hypercube, the projection basis and the nonaffine
parameter dependencies are interpolated.

• The selected hypercubes are refined, based on the two
local error indicators (associated with subspace interpo-
lation and affine parameter reconstruction), used in the
two consecutive adaptive loops. However, computing
the error estimator associated with the projection basis
requires the construction of an additional local ROM.

• The accuracy of the PROM is measured by means of
the global error indicator. However, since the number
of system matrices formed in this interpolation is larger
than in the original FEM system, the efficiency of the
error estimator may have deteriorated.

The complexity of this strategy makes it rather problematic
to implement in a form of universal, reliable, and efficient
black-box which could be used as a standard element in the
microwave-engineering design process. In summary, to the
best of the author’s knowledge, there is no fully automatic and
self-adaptive MOR algorithm for problems with nonaffine
frequency dependence which is also reliable, efficient, and
straightforward.

This paper addresses the above issue. In the proposed
technique, the projection basis used to generate a reduced-
order model is composed of snapshots computed in selected
frequency (expansion) points, as in the standard RBM
approach. However, as observed at the beginning of this
section, in this case it is not possible to efficiently assess
the error introduced by the reduced model. The standard
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greedy approach used to select the next expansion points and
the stopping criteria can thus not be used directly. Instead,
a sparsified greedy strategy is applied: that is, the error is
estimated only at selected frequency points, following the
bisection scheme. The subsequent snapshots are computed
at the frequencies where the error indicator is above the
tolerance level. Such a strategy has been used previously
to analyze problems with affine frequency dependence [9],
[28]. In this paper it is shown that although this strategy is
simpler than RBM, it can be used to perform a fast frequency
sweep of complex electromagnetic problems with nonaffine
frequency dependence in both the left-hand and right-hand
side components of the FEM system of equations. Moreover,
it can be also used to accelerate the fast frequency sweep
of problems with many excitations, for which standard error
estimation may be time-consuming.

The accuracy, efficiency, and reliability of this MOR
scheme is illustrated by various examples, including a planar
microstrip branch-line coupler, a three-port waveguide junc-
tionwith a ferrite post, and an eighth-order dual-modewaveg-
uide filter. In the last test, the efficiency of the technique is
compared with that of the interpolating sweep method [29],
where the transfer function of the structure is approximated
by the rational function, meaning the ROMs do not need to
be explicitly generated.

II. FINITE ELEMENT METHOD FORMULATION
In this section, an FEM formulation is described, focusing
on the problems posed by nonaffine frequency dependence.
Firstly, let us consider a source-free computational domain�
bounded by walls of perfect electric conductor (PEC), cross-
sections of nk waveguide ports, and absorbing boundary con-
ditions of the first kind, denoted SE , SkW , and SR, respectively,
for k = 1, . . . nk . The distribution of the electric field EE in �
is determined by the following frequency-domain boundary
value problem (BVP) [3], [30]:

∇ × ( ¯̄µ −1r (k0)∇ × EE)− k20 ¯̄εr (k0)EE = 0 in �,
EE × n̂ = 0 on SE ,

n̂× [(∇ × EE)× n̂]+ jk0η0 Ehk (k0) = 0 on SkW ,

n̂× (∇ × EE)+ jk0n̂× (n̂× EE) = 0 on SR, (1)

where n̂ is the outward unit vector, j is the imaginary unit,
k0 is the wavenumber, ¯̄εr (k0) and ¯̄µr (k0) are the frequency-
dependent relative permittivity and permeability tensors,
respectively, η0 is the characteristic impedance of free space,
and Ehk (k0) is the frequency-dependent normalized pattern of
the tangential magnetic field at the k-th port.

Considering a weak form of (1) and applying FEM dis-
cretization [1] leads to an n-dimensional linear system of
equations:

(0(s)+ sG+ s2C(s))E(s) = sB(s)i,

u = BT (s)E(s). (2)

where 0(s),G, and C(s) ∈ Cn×n are FEM system matrices,
B(s) ∈ Cn×nk is the excitation matrix, E(s) ∈ Cn×nk is a

matrix of unknowns, u, i ∈ Cnk are the vectors of amplitudes
of the voltage and current waves, respectively, nk is the total
number of the right-hand side vectors, and s = jk0 is the
complex frequency.

The following two subsections are devoted to a closer
analysis of the matrix components of equation (2):
0(s),G,C(s),B(s), with a focus on the nonaffine frequency
dependence.

A. EXCITATION MATRIX WITH NONAFFINE FREQUENCY
DEPENDENCE
Following [3], the columns ofmatrixB(s)= [b1(s),b2(s), . . . ,
bnk (s)] are expressed as:

bk (s) =


∫
SkW

Eα1 · (n̂× Ehk (s))dSkW

. . .∫
SkW

Eαn · (n̂× Ehk (s))dSkW

 , (3)

where Eαi are the H (curl)-conforming FE basis functions
associated with the tetrahedral mesh [31].

In a case of homogeneously filled waveguides, the field
pattern Ehk (s) used in (3) represents the TM/TE and TEM
modal functions (depending on port geometry), which yields
matrix B with an affine frequency dependence. However, for
inhomogeneously filled waveguides (such as microstrips),
the excitation field pattern cannot be expressed as TM, TE,
and TEM modes, since in such cases both the transverse
and longitudinal field components must be considered at the
ports. In order to apply such excitation, it is necessary to
construct and solve a generalized eigenvalue problem, which
consists of a mixed edge and a nodal FEM formulation [32].
In effect, the propagation constant γk and the corresponding
field pattern Ehk (s) associated with the k-th port are computed.
However, in this case, Ehk (s) varies with the frequency in such
a way that the columns of the excitation matrix bk (s) exhibit
nonaffine frequency dependence; the frequency cannot be
factored out as in the affine case, namely:

bk (s) =
np∑
p=1

κp(s)bk,p, np � n (4)

where bk,p is the frequency independent vector, and κp(s) is
the scalar function of s.

B. FE SYSTEM MATRICES WITH A NONAFFINE
FREQUENCY DEPENDENCE
The aim of this subsection is to focus on the frequency-
dependence of FEM system matrices. Firstly, it is assumed
that the whole computational domain � contains homoge-
neous material, characterized in general by the frequency-
dependent relative permittivity and permeability tensors,
denoted by ¯̄εr (s) and ¯̄µr (s), respectively. Thus, the entries of
0(s) and C(s) are defined as:

γmij =

∫
�m

(∇ × Eαi · ¯̄µ−1r (s)∇ × Eαj)d�m,
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cmij =
∫
�m

(Eαi · ¯̄εr (s)Eαj)d�m, (5)

It is noteworthy that, in many cases (e.g., perfectly matched
layers and ferrite materials), the tensors ¯̄εr (s) and ¯̄µr (s)
exhibit a nonaffine frequency dependence. This property
results in nonaffine frequency dependence of the whole
blocks of stiffness and mass matrices (0(s) and C(s)). Impor-
tantly, this means that these matrices have to be generated
from scratch for each frequency.

In this paper, we assume that the G matrix, which repre-
sents ABC boundary conditions of the first kind, is frequency-
independent, meaning that its elements are given by:

gij =
∫
SR
(n̂× Eαi) · (n̂× Eαj)dSR. (6)

In many practical cases, the computational domain � can
be partitioned into nm subdomains:

� =

nm⋃
m=1

�m, (7)

where it is assumed that�m contains homogeneous material,
characterized in general by ¯̄εr,m(s) and ¯̄µr,m(s). However,
it should be noted that computational domains can be made
up of subregions with both affine and nonaffine frequency
dependence. Due to assumption (7), the FE stiffness andmass
matrices can be decomposed into nm blocks:

0(s) =
nm∑
m=1

0m(s),

C(s) =
nm∑
m=1

Cm(s), (8)

where0m(s) andCm(s) ∈ Cn×n are associated with subregion
�m.

C. A FINITE ELEMENT FREQUENCY SWEEP OF PROBLEMS
WITH NONAFFINE DEPENDENCE
Let us assume that the goal of a simulation is to compute
the scattering parameters of a structure at the specified fre-
quency points: s = {s1, s2, . . . snf }. To this end, we follow
a procedure which can be summarized by the pseudocode in
Algorithm 1. At each frequency, we first construct the system
of equations specified by (2). It is worth noting that all the
nonaffine components (0(si),C(si),B(si)) must be generated
anew (line 3), taking into account the formulas given in (3)
and (5). Next, system (2) is solved at each frequency (line 5),
resulting in the impedance matrix Z(si):

Z(si) = B(si)T (0(si)+ siG+ s2i C(si))
−1siB(si). (9)

Finally, the scattering parameters of the structure are com-
puted using the formula:

S(si) = 2(I+ Z(si)−1)−1 − I, (10)

where I is the identity matrix (line 6).

Algorithm 1 Frequency Sweep

Require: s1, snf , nf , G
1: 1f = (snf − s1)/(nf − 1)
2: for si = s1:1f : snf do
3: Compute matrices: B(si), 0(si), C(si)
4: A(si) = 0(si)+ siG+ s2i C(si)
5: Z(si) = B(si)T (A(si))−1siB(si) // Solve system
6: S(si) = 2(I + Z(si)−1)−1 − I // Compute scattering

parameters
7: end for
8: return S(s)

It has to be emphasized that the overall frequency-
sweep process can be extremely time-consuming, especially
when the number of unknowns n and the number of fre-
quency points nf are large, and the FE system components
0(s),C(s),B(s) exhibit a nonaffine frequency dependence.
A novel MOR technique to accelerate a frequency sweep in
such cases is proposed in Section IV; however, for the sake
of clarity, some MOR techniques for problems with affine
frequency dependence will be introduced first.

III. MODEL ORDER REDUCTION FOR SYSTEMS WITH
AFFINE FREQUENCY DEPENDENCE
FE systems of equations with affine parameter frequency-
dependence involve the matrices 0, G, C and B which are
either frequency-independent or capable of being efficiently
decomposed into the finite sums of frequency-independent
matrices (as in (4)). In this section, for the sake of simplicity,
only the former case is considered.

In projection-based reduction approaches, such as [3], [4],
[6], [7], [12], [14], the original system of equations (2) is
transformed to the following reduced-order model:

(0r + sGr + s2Cr )Er (s) = sBr i,

u = BTr Er (s), (11)

where the reduced matrices are obtained using the Galerkin
approach: 0r = V∗0V ∈ CnR×nR , Gr = V∗GV ∈ CnR×nR ,
Cr = V∗CV ∈ CnR×nR and Br = V∗B ∈ CnR×nk , where
V ∈ Cn×nR is a properly constructed projection basis and
(·)∗ is a conjugate transpose of a matrix. The final number of
degrees of freedom of the system (11) is much smaller than
that of the original system (nR � n). The frequency sweep
can thus be performed much faster, resulting in:

Zr (s) = Br (s)T (0r (s)+ sGr + s2CR(s))−1sBr (s), (12)

which aims to approximate the original transfer function Z(s)
with sufficient accuracy in the frequency band.

There are several methods that aim to efficiently construct
the projection basis V. This paper focuses on the reduced
basis method (RBM) [4], [6], [14], which is one of the most
commonly used MOR techniques in computational electro-
magnetics. This approach takes advantage of the fact that,
in most cases, the electromagnetic field distribution does
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not vary significantly over the specified frequency band.
Thus, the solution of (2) at any frequency can be sought
in the reduced space spanned by the properly selected N
solutions of (2) (called snapshots), which are computed at
the expansion frequencies s̄1, s̄2, . . . , s̄N . These snapshots are
then combined, forming a projection basis:

V = [E(s̄1),E(s̄2), . . . ,E(s̄N )] , (13)

which is used to generate the reduced model (11).
The important questions are: which expansion points

should be selected to efficiently obtain a reliable reduced-
model? And how many are there? To address these, we need
to define the numerical tool called the error estimator, which
enables assessment of the error introduced by the reduced
model with respect to the original model. The error estimator
is defined as follows [14]:

es(s) = ‖
[
2sBTB− BT0VEr − s2BTCVEr
− sBTBBTVEr − sBTGVEr

]
‖/‖2sBTB‖, (14)

where Er (s) is the solution of the following linear problem:

(0r + s(Gr + BrBTr )+ s
2Cr )Er (s) = sBrI. (15)

Assuming that the matrices 0, G, B, C exhibit an affine
frequency dependence, the blocks 0r , Gr , Br , Cr , as well
as BTB, BT0V, BTCV, BTBBTV and BTGV, are also
frequency-independent, and can be computed just once. Since
all operations in (14) and (15) are performed on low-order
matrices (from CnR×nR space), they are evaluated extremely
fast, providing the error estimation in the whole specified
frequency band.
The error introduced by ROM is estimated each time a

solution block E(s̄i) is added to the projection basis V. The
next expansion point s̄i+1 is selected following the greedy
strategy. It is located within the frequency band [s1, snf ],
at the frequency for which the estimated error value is a
maximum. In other words due to this strategy the projec-
tion basis is enriched by the solution block E(s̄i+1) which
is the most linearly independent with respect to the vectors
included previously in the projection basis. In effect, this
strategy guarantees that the level of the error introduced by
the reduction process is lowered the most. Finally, the reduc-
tion algorithm stops once the error estimator falls below the
accepted tolerance for the whole frequency band. Impor-
tantly, this strategy ensures full automation and reliability
of the reduction process, allowing frequency sweeps to be
performed on various microwave structures. However, it can
only be used for problems with affine frequency dependence
(or in general, with affine parameter dependence).

IV. MODEL ORDER REDUCTION FOR SYSTEMS WITH
NONAFFINE FREQUENCY DEPENDENCE
Let us consider an FE system with a nonaffine frequency
dependence (2). Unfortunately, such a system is unsuitable
for the standard self-adaptive projection-based MOR meth-
ods [2]–[4], as it is impossible to effectively assess the error

caused by the reduced model using one of the standard error-
indicators (Eq. (14), [14]); this is because the following addi-
tional steps must be performed for each frequency:

1) the matrices 0(s), B(s), C(s) must be generated anew,
2) they must subsequently be projected onto a proper

subspace to obtain 0r (s), Br (s), Cr (s) and B(s)TB(s),
B(s)T0(s)V, B(s)TC(s)V, B(s)TB(s)B(s)TV and
B(s)TGV.

However, doing this at every frequency point constitutes a
computation with complexity depending on n � 1. More-
over, it must be performed each time the error introduced
by the reduced model is estimated. This severely deteriorates
the efficiency of the MOR process, making it useless from a
practical point of view.

As stated in the Introduction, in order to perform an FFS
of such a problem, one of the PMOR techniques can be used;
these can handle nonaffine geometry parameter dependence.
Such algorithms in general rely on a two-step approximation.
Firstly, in order to approximate nonaffine parameter depen-
dence, an affine decomposition of the parameter space can be
carried out—for example, [17], [19], [20] on the FOM level.
Such transformation leads to a system of equationswith affine
parameter dependence, which can then be treated directly by
means of the standard MOR approach. Alternatively, ROMs
can first be constructed for the selected points in the parame-
ter space, and then the interpolation can be carried out at the
reduced space level, as in [23], [24]. However, since an error
in the parametric ROM (PROM)with respect to the original is
introduced by these two approximations, it is problematic to
control. In order to generate an accurate reduced model in a
fully automatic and self-adaptive way following a two-step
approximation strategy, considerable additional numerical
effort is required, as described in [27], and in the Introduction
to this paper. This makes it rather problematic to imple-
ment in the form of a universal black box. To address this
issue, a novel MOR approach for problems with nonaffine
frequency dependence is described in the next section. This
approach is reliable, efficient, straightforward and, moreover,
the ROM is generated in a fully automatic and self-adaptive
way.

V. THE PROPOSED MOR FOR SYSTEMS WITH
NONAFFINE FREQUENCY DEPENDENCE
The proposed fast frequency sweepmethod for problemswith
nonaffine frequency dependence is based on the standard
RBM algorithm: that is, the projection basis is composed
of the solution vectors computed at selected expansion fre-
quency points. However, as noted in Section IV, the subse-
quent expansion points cannot be selected using the greedy
strategy, since it is not numerically efficient in this case.
To address this issue, we propose using a sparsified greedy
strategy, in which the error introduced by the reduction pro-
cess is assessed only at the selected frequency points, follow-
ing the bisection scheme. The frequency range is divided into
two subranges, and the error is estimated for each subrange at
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Algorithm 2 The Proposed MOR Approach

Require: s1, snf , tol, G
1: h = (snf − s1)/4
2: V = []
3: s̄ = [s1, snf , (s1 + snf )/2] // Initial expansion points
4: for i = 1:3 do
5: Compute matrices: B(s̄(i)), 0(s̄(i)), C(s̄(i))
6: A(s̄(i)) = 0(s̄(i))+ s̄(i)G+ s̄(i)2C(s̄(i))
7: Vi = s̄(i)A(s̄(i))−1B(s̄(i)) //solve system of equations

8: V = GS(V,Vi) // Gram–Schmidt process
9: end for
10: i = 3
11: while TRUE do
12: len_s = length(s̄)
13: if i > len_s then
14: BREAK
15: end if
16: while i ≤ len_s do
17: se = [s̄(i)− h, s̄(i)+ h]
18: for j = 1:2 do
19: Compute matrices: B(se(j)), 0(se(j)), C(se(j))
20: Compute reduced matrices:

0r (se(j)), Br (se(j)), Cr (se(j)), Gr ,
B(se(j))TB(se(j)), B(se(j))T0(se(j))V,
B(se(j))TC(se(j))V, B(se(j))TGV,
B(se(j))TB(se(j))B(se(j))TV

21: Solve eq. (15) for Er (se(j))
22: Compute estimated error: es(se(j)) using

eq. (14)
23: if es(se(j)) ≥ tol then
24: s̄ = [s̄, se(j)]
25: A(se(j)) = 0(se(j))+ se(j)G+ se(j)2C(se(j))
26: Vi = se(j)A(se(j))−1B(se(j)) //solve system
27: V = GS(V,Vi) // Gram–Schmidt process
28: end if
29: end for
30: i = i+1
31: end while
32: h = h/2
33: end while
34: return V

its middle point, where the accuracy of the ROM is assumed
to be the lowest. If the error indication therein is above
the tolerance level, the FOM system of equations is solved,
subsequent snapshot is added to the projection basis, and the
subrange is halved. The algorithm stops once the estimated
error in all the points falls below the tolerance level.

The proposed MOR approach is summarized in the pseu-
docode in Algorithm 2. This starts by specifying the input
parameters, which are the lower and upper frequency limits
s1 and snf , the error tolerance (tol), and the matrix G, which
is assumed to be frequency-independent. Next, the frequency

Algorithm 3 Fast Frequency Sweep

Require: s1, snf , nf , V, G
1: 1f = (snf − s1)/(nf − 1)
2: Compute: Gr = V∗GV
3: for si = s1:1f : snf do
4: Compute matrices: B(si), 0(si), C(si)
5: Project onto a reduced space: 0r (si) = V∗0(si)V,

Cr (si) = V∗C(si)V, Br (si) = V∗B(si)
6: Ar (si) = 0r (si)+ siGr + s2i Cr (si)
7: Zr (si) = Br (si)T (Ar (si))−1siBr (si) // Solve reduced

system
8: Sr (si) = 2(I+Zr (si)−1)−1− I // Compute scattering

parameters
9: end for
10: return Sr (s)

shift h used in the bisection scheme is defined. As with
RBM, the first expansion point is placed in the middle of
the frequency band: sM = (s1 + snf )/2. The projection basis
should consist of the most linearly independent vectors, so we
include the ends of the specified frequency band s1 and snf in
the initial set of expansion points. The algorithm thus starts
with the three initial expansion points s̄ = [s1, snf , sM ]
(line 3). In the first for loop (lines 4–9), for each of the
initial expansion points, the FEM matrices are computed
and the resultant system of equations is solved, giving the
subsequent projection basis V vectors. The orthogonality of
V is ensured by the Gram–Schmidt algorithm. Importantly,
the error indicator is not computed at this stage.

In the second part of the approach, the subsequent expan-
sion points are selected by following the bisection approach:
the computational domain is divided into two subintervals
and the error is estimated at the middle points, where the error
introduced by ROM is expected to be the greatest (sM − h
and sM + h, line 17). Matrices are generated to estimate the
error (lines 19–20), the reduced system of equations is solved,
giving Er (se(j)) (line 21) and finally, es(se(j)) is computed for
a single frequency point se(j) in line 22. If the error indicator
is above tol, the subsequent expansion point (se(j)) is added
to the set s̄ (line 24). The global FEM system of equations is
constructed (line 25) and solved (line 26) at this frequency.
The computed block Vi is orthogonalized using the Gram–
Schmidt method, and added to the projection basis V. The
algorithm stops once all the expansion points in the set s̄ have
been examined (lines 13–15). It is worth noting that the steps
5 and 19 can be performed extremely rapidly using the fast
FEMmatrix generation approach [33]. The algorithm returns
the projection basisV, which is subsequently used to generate
a reduced model and perform a fast frequency sweep.

The fast frequency sweep process is summarized by the
pseudocode in Algorithm 3. For each of nf frequency points,
the nonaffine matrices (B(si), 0(si), C(si)) are computed and
projected onto a reduced subspace V (lines 4 and 5, respec-
tively). Note that theGmatrix is frequency-independent, so it
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FIGURE 1. Scattering parameters of the planar microstrip branch-line
coupler [34], computed using the FEM formulation (black color),
the proposed method (red color); and as measured (dots).

is reduced only once. Next, the left-hand side of the reduced
system of equations (Ar (si)) is generated, and the system is
solved, in order to compute the reduced transfer (impedance)
function Zr (si) (line 7), and then the scattering parameters
Sr (si) (line 8).
Remark: It should be noted that the fast frequency sweep

loop should contain only operations with complexity depend-
ing on nR, as in standardMOR approaches. However, the FFS
described by Algorithm 3 contains operations with complex-
ity depending on n (where n� nR). It may thus seem that our
frequency sweep is more time-consuming; however, in most
cases, the nonaffine frequency dependence is associated only
with parts of the computational domain, such as ferrite pucks
and PML absorbing conditions. Thus, in order to generate
0r (si) and Cr (si), only small parts of the FEM system matri-
ces 0(si) and C(si) need be updated and projected onto a
reduced subspaceV. By the same token, the nonzero elements
of B(si) correspond to excitations, which is typically applied
only to small parts of the computational domain, and which
can be updated on the fly.

In other words, at each individual frequency point, instead
of constructing and solving the original FEM system of equa-
tions (Algorithm 1, lines 4 and 5), the matrices are instead
projected onto the reduced subspace, and the reduced system
of equations is constructed and solved (Algorithm 3, lines 5,
6, and 7, respectively). The computational time of the second
set of operations is usually much lower as compared to that
of the first set.

VI. NUMERICAL TESTS
We analyzed three structures in order to validate the effi-
ciency and accuracy of our MOR approach. All computations
were performed on an Intel Core i5-6500 processor with
64 GB RAM.

A. PLANAR MICROSTRIP BRANCH-LINE COUPLER
The first numerical example focuses on the planar microstrip
branch-line coupler, fed by microstrip ports, as described
in detail in [34] and shown in Fig. 1. The goal of the
first simulation was to compute the scattering parameters
of the structure at 101 equidistantly distributed points in
the 1.6–3.4 GHz band, using the standard FEM formulation

FIGURE 2. Model-order reduction scheme, planar microstrip branch-line
coupler. Black squares, black dots and black circles denote the initial
expansion points, selected expansion points, and candidate points,
respectively.

FIGURE 3. The actual error associated with all elements of scattering
matrix, computed using the proposed MOR approach for the planar
microstrip branch-line coupler [34] with the red line being the tol level.

[35], with the computational domain truncated using absorb-
ing boundary conditions. The FEM system of equations has
328,868 degrees of freedom, and the whole frequency-sweep
process took 1127.2 s. The resulting scattering characteristics
are shown in Figure 1; this shows that they are well correlated
with the measurements taken from [34].

Since the structure is fed by the microstrip ports, the elec-
tric field pattern at the port surfaces varies significantly with
frequency and, in effect, the RHS vectors are of a nonaffine
type. The coupler can thus not be easily analyzed using
the standard MOR methods. In fact, one can first construct
an auxiliary reduced-order model which approximates the
field distribution at the ports, and then perform the standard
reduction [36]. However, this approach is not straightforward,
and the error from the auxiliary ROM can affect the global
error. Alternatively, a fast-frequency sweep of this problem
can be carried out with ease using our approach. To this end,
a projection basis and the corresponding reduced-ordermodel
were constructed on the basis of the algorithm described
in Section V. The frequency points at which the snapshots
are computed are shown in the reduction scheme (Fig. 2).
In the first reduction level, the projection basis contained
three snapshots at 1.6, 2.5, and 3.4 GHz. In the second level,
the error was assessed at two frequency points (2.05 and
2.95 GHz); in both cases, the error was above the tolerance
level (tol = 1e− 6), so the next two snapshots were added to
the projection basis. In the third reduction level, the error was
assessed at four frequency points (denoted by the circles), and
the error level was found to be below tol in all cases, ending
the reduction process. In summary, in order to construct the
projection basis, the full FEM system of equations needed
to be solved at the five frequency points denoted by black
dots and squares (Fig. 2). Since each snapshot contained
four vectors, corresponding to each excitation port, the final
size of the projection basis (as well as the ROM) was 20.
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FIGURE 4. Scattering parameters of the three-port waveguide junction
(WR-90 waveguide) with a ferrite cylinder on a cylindrical support,
computed using the FEM formulation (black color) and the proposed
method (red color).

The computational time needed for the whole MOR process,
including the fast-frequency sweep, was 70.9 s, making it
nearly sixteen times faster than the standard frequency sweep.

Figure 1 shows that the results computed using the full-
order FEM model and the reduced model are indistinguish-
able. However, in order to compare the results more precisely,
the following definition of the actual error is used:

EACTij (k0) = ‖Sij(k0)MOR − Sij(k0)REF‖, (16)

where Sij(k0)MOR and Sij(k0)REF denote the scattering param-
eters computed using the reduced and the original model,
respectively, with i and j being the output and input ports of
the structure. A plot of EACTij (k0) is shown in Figure 3, and it
can be seen that it is below the tol level (denoted by the red
line) for the whole frequency band.

B. THREE-PORT WAVEGUIDE JUNCTION WITH A FERRITE
POST
The second numerical test deals with a circular cavity (height:
h = 10.16 mm, radius: r = 14.7 mm) fed by three WR-90
waveguide ports (22.86× 10.16 mm), as shown in Figure 4.
Inside the cavity, a cylindrical ferrite postH = 4.65 mm high
and with a radius of R = 3.75 mm is located centrally on the
support (with height Hs = 5.06 mm and radius Rs = 9 mm).
The ferrite is magnetized along the z-axis and its magnetic
permeability is described by a frequency-dependent tensor of
the form:

¯̄µr (k0) =

 1+ χxx(k0) χxy(k0) 0
χyx(k0) 1+ χyy(k0) 0

0 0 1

 (17)

where the formulas for the susceptibilities χxx , χyy, χyx and
χxy are provided in [37]. The parameters of the ferrite material
used in the example are as follows: εr = 14.4; magnetic
saturation:MS =133000 A/m; linewidth of the gyromagnetic
resonance corresponding to ferrite losses: 1H = 266 A/m;
and static magnetic field strength: H0 = 66500 A/m.
The circulator was first analyzed using the standard FEM

procedure in order to obtain the reference results. The com-
putational domain was discretized using 43,051 tetrahe-
drons, which resulted in the FEM system of equations with
263,908 unknowns. Next, the scattering parameters S11, S21

FIGURE 5. Model-order reduction scheme for the three-port waveguide
junction case. Black squares, black dots, and black circles denote the
initial expansion points, selected expansion points, and candidate points,
respectively.

FIGURE 6. The actual error for the three-port waveguide junction.

and S31 were computed at 101 equidistantly distributed fre-
quency points in the 7–13 GHz frequency band. The compu-
tations took 1266.7 s and the results are presented in Figure 4.

Since the ferromagnetic cylinder is characterized by a non-
affine frequency-dependent tensor (17), the resultant FEM
matrix 0(s) is also of a nonaffine kind (see (5) for details).
Therefore, as in Section VI-A, the scattering parameters of
this problem cannot be computed using standard MORmeth-
ods. However, one can perform a fast-frequency sweep of
this problem using our proposed MOR technique. Figure 5
shows the reduction scheme. In the first reduction level,
the projection base was composed of three snapshots com-
puted at 7, 10, and 13 GHz. In the second and third levels,
the error was assessed at two and four frequency points,
respectively, and in all cases the error was above the tolerance
(tol = 1e − 3). In the fourth reduction level, the error
was assessed at eight frequency points; however only in the
case of f = 11.875 GHz was it above the tol. In the fifth
level, the estimated error was below tol at the two consid-
ered points, which halted the reduction process. Taking into
account the fact that each snapshot contained three vectors,
the final size of the ROM is just 30, requiring 10 system
matrix factorizations. The overall MOR process took 185.5 s,
which is nearly seven times faster than the standard frequency
sweep.

Figure 6 shows that the actual error is below the tol level
over the whole frequency band. It should be noted that the
FEM formulation leads in this case to a nonsymmetric full-
order model. Higher accuracy in the reduced model can thus
be obtained using a two-sided projection instead of a one-
sided projection (see [38] for details).
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FIGURE 7. Scattering parameters of an eighth-order dual-mode
waveguide filter, computed using the FEM formulation (black color) and
the proposed method (red color).

C. EIGHTH-ORDER DUAL-MODE WAVEGUIDE FILTER
In the last example, we consider the eighth-order dual-
mode waveguide filter [4] whose geometry is shown in Fig-
ure 7. We were interested in a wide-band filter response,
so 11–19 GHz was specified as the band of interest, with
401 frequency points. FE discretization led to FOM with
n = 202474. In order to accuratelymodel the structure, all the
modes excited in the band of interest have been considered,
which resulted in eight excitation vectors for each port. The
direct sweep using this model took as long as 339 s. The
resultant S11 and S21 are shown in Figure 7.
Since the filter is non-lossy and the waveguide excitation

(TE and TM waveguide modes) are of an affine kind, this
can be analyzed using the standard MOR schemes. However,
the excitation matrix contains sixteen vectors, so the error
estimator defined in (14) significantly deteriorates the effi-
ciency of the reduction scheme. Assuming tol = 1e − 6,
the computational time needed for the RGM-MOR (reliable
greedy multipoint model-order reduction) [5] and RBM algo-
rithms was 107.5 s and 281.7 s, respectively.

The reduction scheme described in this paper was applied
next. It can be seen in Figure 8 that the reduction process
requires eight levels, with three, two, four, eight, two, one,
one, and zero expansion points in each of them, respectively.
Importantly, the expansion points are distributed mainly in
the pass-band of the filter, where the field solutions that
contribute the most to the behavior of the filter are located
(see [39] for details). Figure 7 shows that the characteristics
computed using FOM and ROM are indistinguishable, and
the actual error is below the tol level over the whole frequency
band (Fig. 9). The total MOR computation time was only
58.96 s, which is nearly six times faster than the direct sweep,
nearly five times faster than RBM, and twice as fast as RGM-
MOR.

D. INTERPOLATING SWEEP
Alternatively, in order to rapidly compute the scattering
parameters of these structures, the so-called interpolating-
sweep approach can be used. In this, unlike in our proposed
method, the reduced-order model is not generated explic-
itly. Instead, the scattering parameters are computed at the
selected frequency-points and the results are used to construct

FIGURE 8. Model-order reduction scheme for an eighth-order dual-mode
waveguide filter case. Black squares, black dots, and black circles denote
the initial expansion points, selected expansion points, and candidate
points, respectively.

FIGURE 9. The actual error associated with all elements of scattering
matrix, an eighth-order dual-mode waveguide filter case.

the rational function that approximates the transfer function
of the structure. In the last test we used the interpolating
sweep, based on the vector fittingmethod [29], to compute the
scattering parameters of the three-port waveguide junction
(considered in section VI-B). In order to obtain the rational
function, which approximates the original model with the true
error below 1e-3, as many as 23 FEM system matrix factor-
izations were needed; this is much more than in our proposed
method, where only ten factorizations were needed. In effect,
the computational time is significantly longer: 297.4 s, com-
pared with 185.5 s for the proposed method.

VII. CONCLUSION
This paper has presented a novel self-adaptive model-order
reduction approach to perform a fast frequency sweep of
complex electromagnetic problems with nonaffine frequency
dependence in both the left and right-hand side components
of the FEM system of equations.

In order to select the subsequent expansion frequency
points to construct a projection basis, a sparsified greedy
strategy is used: the error is estimated only at the selected fre-
quency points, following the bisection scheme. Our numer-
ical tests of a planar microstrip branch-line coupler, a
three-port waveguide junction with a ferrite post, and an
eighth-order dual-mode waveguide filter have demonstrated
the reliability, accuracy, and excellent computational perfor-
mance of this technique.
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